1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/kernel/ptrace.c 4 * 5 * By Ross Biro 1/23/92 6 * edited by Linus Torvalds 7 * ARM modifications Copyright (C) 2000 Russell King 8 */ 9 #include <linux/kernel.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/mm.h> 13 #include <linux/elf.h> 14 #include <linux/smp.h> 15 #include <linux/ptrace.h> 16 #include <linux/user.h> 17 #include <linux/security.h> 18 #include <linux/init.h> 19 #include <linux/signal.h> 20 #include <linux/uaccess.h> 21 #include <linux/perf_event.h> 22 #include <linux/hw_breakpoint.h> 23 #include <linux/regset.h> 24 #include <linux/audit.h> 25 #include <linux/tracehook.h> 26 #include <linux/unistd.h> 27 28 #include <asm/syscall.h> 29 #include <asm/traps.h> 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/syscalls.h> 33 34 #define REG_PC 15 35 #define REG_PSR 16 36 /* 37 * does not yet catch signals sent when the child dies. 38 * in exit.c or in signal.c. 39 */ 40 41 #if 0 42 /* 43 * Breakpoint SWI instruction: SWI &9F0001 44 */ 45 #define BREAKINST_ARM 0xef9f0001 46 #define BREAKINST_THUMB 0xdf00 /* fill this in later */ 47 #else 48 /* 49 * New breakpoints - use an undefined instruction. The ARM architecture 50 * reference manual guarantees that the following instruction space 51 * will produce an undefined instruction exception on all CPUs: 52 * 53 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx 54 * Thumb: 1101 1110 xxxx xxxx 55 */ 56 #define BREAKINST_ARM 0xe7f001f0 57 #define BREAKINST_THUMB 0xde01 58 #endif 59 60 struct pt_regs_offset { 61 const char *name; 62 int offset; 63 }; 64 65 #define REG_OFFSET_NAME(r) \ 66 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)} 67 #define REG_OFFSET_END {.name = NULL, .offset = 0} 68 69 static const struct pt_regs_offset regoffset_table[] = { 70 REG_OFFSET_NAME(r0), 71 REG_OFFSET_NAME(r1), 72 REG_OFFSET_NAME(r2), 73 REG_OFFSET_NAME(r3), 74 REG_OFFSET_NAME(r4), 75 REG_OFFSET_NAME(r5), 76 REG_OFFSET_NAME(r6), 77 REG_OFFSET_NAME(r7), 78 REG_OFFSET_NAME(r8), 79 REG_OFFSET_NAME(r9), 80 REG_OFFSET_NAME(r10), 81 REG_OFFSET_NAME(fp), 82 REG_OFFSET_NAME(ip), 83 REG_OFFSET_NAME(sp), 84 REG_OFFSET_NAME(lr), 85 REG_OFFSET_NAME(pc), 86 REG_OFFSET_NAME(cpsr), 87 REG_OFFSET_NAME(ORIG_r0), 88 REG_OFFSET_END, 89 }; 90 91 /** 92 * regs_query_register_offset() - query register offset from its name 93 * @name: the name of a register 94 * 95 * regs_query_register_offset() returns the offset of a register in struct 96 * pt_regs from its name. If the name is invalid, this returns -EINVAL; 97 */ 98 int regs_query_register_offset(const char *name) 99 { 100 const struct pt_regs_offset *roff; 101 for (roff = regoffset_table; roff->name != NULL; roff++) 102 if (!strcmp(roff->name, name)) 103 return roff->offset; 104 return -EINVAL; 105 } 106 107 /** 108 * regs_query_register_name() - query register name from its offset 109 * @offset: the offset of a register in struct pt_regs. 110 * 111 * regs_query_register_name() returns the name of a register from its 112 * offset in struct pt_regs. If the @offset is invalid, this returns NULL; 113 */ 114 const char *regs_query_register_name(unsigned int offset) 115 { 116 const struct pt_regs_offset *roff; 117 for (roff = regoffset_table; roff->name != NULL; roff++) 118 if (roff->offset == offset) 119 return roff->name; 120 return NULL; 121 } 122 123 /** 124 * regs_within_kernel_stack() - check the address in the stack 125 * @regs: pt_regs which contains kernel stack pointer. 126 * @addr: address which is checked. 127 * 128 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). 129 * If @addr is within the kernel stack, it returns true. If not, returns false. 130 */ 131 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) 132 { 133 return ((addr & ~(THREAD_SIZE - 1)) == 134 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))); 135 } 136 137 /** 138 * regs_get_kernel_stack_nth() - get Nth entry of the stack 139 * @regs: pt_regs which contains kernel stack pointer. 140 * @n: stack entry number. 141 * 142 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which 143 * is specified by @regs. If the @n th entry is NOT in the kernel stack, 144 * this returns 0. 145 */ 146 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) 147 { 148 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); 149 addr += n; 150 if (regs_within_kernel_stack(regs, (unsigned long)addr)) 151 return *addr; 152 else 153 return 0; 154 } 155 156 /* 157 * this routine will get a word off of the processes privileged stack. 158 * the offset is how far from the base addr as stored in the THREAD. 159 * this routine assumes that all the privileged stacks are in our 160 * data space. 161 */ 162 static inline long get_user_reg(struct task_struct *task, int offset) 163 { 164 return task_pt_regs(task)->uregs[offset]; 165 } 166 167 /* 168 * this routine will put a word on the processes privileged stack. 169 * the offset is how far from the base addr as stored in the THREAD. 170 * this routine assumes that all the privileged stacks are in our 171 * data space. 172 */ 173 static inline int 174 put_user_reg(struct task_struct *task, int offset, long data) 175 { 176 struct pt_regs newregs, *regs = task_pt_regs(task); 177 int ret = -EINVAL; 178 179 newregs = *regs; 180 newregs.uregs[offset] = data; 181 182 if (valid_user_regs(&newregs)) { 183 regs->uregs[offset] = data; 184 ret = 0; 185 } 186 187 return ret; 188 } 189 190 /* 191 * Called by kernel/ptrace.c when detaching.. 192 */ 193 void ptrace_disable(struct task_struct *child) 194 { 195 /* Nothing to do. */ 196 } 197 198 /* 199 * Handle hitting a breakpoint. 200 */ 201 void ptrace_break(struct pt_regs *regs) 202 { 203 force_sig_fault(SIGTRAP, TRAP_BRKPT, 204 (void __user *)instruction_pointer(regs)); 205 } 206 207 static int break_trap(struct pt_regs *regs, unsigned int instr) 208 { 209 ptrace_break(regs); 210 return 0; 211 } 212 213 static struct undef_hook arm_break_hook = { 214 .instr_mask = 0x0fffffff, 215 .instr_val = 0x07f001f0, 216 .cpsr_mask = PSR_T_BIT, 217 .cpsr_val = 0, 218 .fn = break_trap, 219 }; 220 221 static struct undef_hook thumb_break_hook = { 222 .instr_mask = 0xffffffff, 223 .instr_val = 0x0000de01, 224 .cpsr_mask = PSR_T_BIT, 225 .cpsr_val = PSR_T_BIT, 226 .fn = break_trap, 227 }; 228 229 static struct undef_hook thumb2_break_hook = { 230 .instr_mask = 0xffffffff, 231 .instr_val = 0xf7f0a000, 232 .cpsr_mask = PSR_T_BIT, 233 .cpsr_val = PSR_T_BIT, 234 .fn = break_trap, 235 }; 236 237 static int __init ptrace_break_init(void) 238 { 239 register_undef_hook(&arm_break_hook); 240 register_undef_hook(&thumb_break_hook); 241 register_undef_hook(&thumb2_break_hook); 242 return 0; 243 } 244 245 core_initcall(ptrace_break_init); 246 247 /* 248 * Read the word at offset "off" into the "struct user". We 249 * actually access the pt_regs stored on the kernel stack. 250 */ 251 static int ptrace_read_user(struct task_struct *tsk, unsigned long off, 252 unsigned long __user *ret) 253 { 254 unsigned long tmp; 255 256 if (off & 3) 257 return -EIO; 258 259 tmp = 0; 260 if (off == PT_TEXT_ADDR) 261 tmp = tsk->mm->start_code; 262 else if (off == PT_DATA_ADDR) 263 tmp = tsk->mm->start_data; 264 else if (off == PT_TEXT_END_ADDR) 265 tmp = tsk->mm->end_code; 266 else if (off < sizeof(struct pt_regs)) 267 tmp = get_user_reg(tsk, off >> 2); 268 else if (off >= sizeof(struct user)) 269 return -EIO; 270 271 return put_user(tmp, ret); 272 } 273 274 /* 275 * Write the word at offset "off" into "struct user". We 276 * actually access the pt_regs stored on the kernel stack. 277 */ 278 static int ptrace_write_user(struct task_struct *tsk, unsigned long off, 279 unsigned long val) 280 { 281 if (off & 3 || off >= sizeof(struct user)) 282 return -EIO; 283 284 if (off >= sizeof(struct pt_regs)) 285 return 0; 286 287 return put_user_reg(tsk, off >> 2, val); 288 } 289 290 #ifdef CONFIG_IWMMXT 291 292 /* 293 * Get the child iWMMXt state. 294 */ 295 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp) 296 { 297 struct thread_info *thread = task_thread_info(tsk); 298 299 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 300 return -ENODATA; 301 iwmmxt_task_disable(thread); /* force it to ram */ 302 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE) 303 ? -EFAULT : 0; 304 } 305 306 /* 307 * Set the child iWMMXt state. 308 */ 309 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp) 310 { 311 struct thread_info *thread = task_thread_info(tsk); 312 313 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 314 return -EACCES; 315 iwmmxt_task_release(thread); /* force a reload */ 316 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE) 317 ? -EFAULT : 0; 318 } 319 320 #endif 321 322 #ifdef CONFIG_CRUNCH 323 /* 324 * Get the child Crunch state. 325 */ 326 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp) 327 { 328 struct thread_info *thread = task_thread_info(tsk); 329 330 crunch_task_disable(thread); /* force it to ram */ 331 return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE) 332 ? -EFAULT : 0; 333 } 334 335 /* 336 * Set the child Crunch state. 337 */ 338 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp) 339 { 340 struct thread_info *thread = task_thread_info(tsk); 341 342 crunch_task_release(thread); /* force a reload */ 343 return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE) 344 ? -EFAULT : 0; 345 } 346 #endif 347 348 #ifdef CONFIG_HAVE_HW_BREAKPOINT 349 /* 350 * Convert a virtual register number into an index for a thread_info 351 * breakpoint array. Breakpoints are identified using positive numbers 352 * whilst watchpoints are negative. The registers are laid out as pairs 353 * of (address, control), each pair mapping to a unique hw_breakpoint struct. 354 * Register 0 is reserved for describing resource information. 355 */ 356 static int ptrace_hbp_num_to_idx(long num) 357 { 358 if (num < 0) 359 num = (ARM_MAX_BRP << 1) - num; 360 return (num - 1) >> 1; 361 } 362 363 /* 364 * Returns the virtual register number for the address of the 365 * breakpoint at index idx. 366 */ 367 static long ptrace_hbp_idx_to_num(int idx) 368 { 369 long mid = ARM_MAX_BRP << 1; 370 long num = (idx << 1) + 1; 371 return num > mid ? mid - num : num; 372 } 373 374 /* 375 * Handle hitting a HW-breakpoint. 376 */ 377 static void ptrace_hbptriggered(struct perf_event *bp, 378 struct perf_sample_data *data, 379 struct pt_regs *regs) 380 { 381 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp); 382 long num; 383 int i; 384 385 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i) 386 if (current->thread.debug.hbp[i] == bp) 387 break; 388 389 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i); 390 391 force_sig_ptrace_errno_trap((int)num, (void __user *)(bkpt->trigger)); 392 } 393 394 /* 395 * Set ptrace breakpoint pointers to zero for this task. 396 * This is required in order to prevent child processes from unregistering 397 * breakpoints held by their parent. 398 */ 399 void clear_ptrace_hw_breakpoint(struct task_struct *tsk) 400 { 401 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp)); 402 } 403 404 /* 405 * Unregister breakpoints from this task and reset the pointers in 406 * the thread_struct. 407 */ 408 void flush_ptrace_hw_breakpoint(struct task_struct *tsk) 409 { 410 int i; 411 struct thread_struct *t = &tsk->thread; 412 413 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) { 414 if (t->debug.hbp[i]) { 415 unregister_hw_breakpoint(t->debug.hbp[i]); 416 t->debug.hbp[i] = NULL; 417 } 418 } 419 } 420 421 static u32 ptrace_get_hbp_resource_info(void) 422 { 423 u8 num_brps, num_wrps, debug_arch, wp_len; 424 u32 reg = 0; 425 426 num_brps = hw_breakpoint_slots(TYPE_INST); 427 num_wrps = hw_breakpoint_slots(TYPE_DATA); 428 debug_arch = arch_get_debug_arch(); 429 wp_len = arch_get_max_wp_len(); 430 431 reg |= debug_arch; 432 reg <<= 8; 433 reg |= wp_len; 434 reg <<= 8; 435 reg |= num_wrps; 436 reg <<= 8; 437 reg |= num_brps; 438 439 return reg; 440 } 441 442 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type) 443 { 444 struct perf_event_attr attr; 445 446 ptrace_breakpoint_init(&attr); 447 448 /* Initialise fields to sane defaults. */ 449 attr.bp_addr = 0; 450 attr.bp_len = HW_BREAKPOINT_LEN_4; 451 attr.bp_type = type; 452 attr.disabled = 1; 453 454 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, 455 tsk); 456 } 457 458 static int ptrace_gethbpregs(struct task_struct *tsk, long num, 459 unsigned long __user *data) 460 { 461 u32 reg; 462 int idx, ret = 0; 463 struct perf_event *bp; 464 struct arch_hw_breakpoint_ctrl arch_ctrl; 465 466 if (num == 0) { 467 reg = ptrace_get_hbp_resource_info(); 468 } else { 469 idx = ptrace_hbp_num_to_idx(num); 470 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 471 ret = -EINVAL; 472 goto out; 473 } 474 475 bp = tsk->thread.debug.hbp[idx]; 476 if (!bp) { 477 reg = 0; 478 goto put; 479 } 480 481 arch_ctrl = counter_arch_bp(bp)->ctrl; 482 483 /* 484 * Fix up the len because we may have adjusted it 485 * to compensate for an unaligned address. 486 */ 487 while (!(arch_ctrl.len & 0x1)) 488 arch_ctrl.len >>= 1; 489 490 if (num & 0x1) 491 reg = bp->attr.bp_addr; 492 else 493 reg = encode_ctrl_reg(arch_ctrl); 494 } 495 496 put: 497 if (put_user(reg, data)) 498 ret = -EFAULT; 499 500 out: 501 return ret; 502 } 503 504 static int ptrace_sethbpregs(struct task_struct *tsk, long num, 505 unsigned long __user *data) 506 { 507 int idx, gen_len, gen_type, implied_type, ret = 0; 508 u32 user_val; 509 struct perf_event *bp; 510 struct arch_hw_breakpoint_ctrl ctrl; 511 struct perf_event_attr attr; 512 513 if (num == 0) 514 goto out; 515 else if (num < 0) 516 implied_type = HW_BREAKPOINT_RW; 517 else 518 implied_type = HW_BREAKPOINT_X; 519 520 idx = ptrace_hbp_num_to_idx(num); 521 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 522 ret = -EINVAL; 523 goto out; 524 } 525 526 if (get_user(user_val, data)) { 527 ret = -EFAULT; 528 goto out; 529 } 530 531 bp = tsk->thread.debug.hbp[idx]; 532 if (!bp) { 533 bp = ptrace_hbp_create(tsk, implied_type); 534 if (IS_ERR(bp)) { 535 ret = PTR_ERR(bp); 536 goto out; 537 } 538 tsk->thread.debug.hbp[idx] = bp; 539 } 540 541 attr = bp->attr; 542 543 if (num & 0x1) { 544 /* Address */ 545 attr.bp_addr = user_val; 546 } else { 547 /* Control */ 548 decode_ctrl_reg(user_val, &ctrl); 549 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type); 550 if (ret) 551 goto out; 552 553 if ((gen_type & implied_type) != gen_type) { 554 ret = -EINVAL; 555 goto out; 556 } 557 558 attr.bp_len = gen_len; 559 attr.bp_type = gen_type; 560 attr.disabled = !ctrl.enabled; 561 } 562 563 ret = modify_user_hw_breakpoint(bp, &attr); 564 out: 565 return ret; 566 } 567 #endif 568 569 /* regset get/set implementations */ 570 571 static int gpr_get(struct task_struct *target, 572 const struct user_regset *regset, 573 struct membuf to) 574 { 575 return membuf_write(&to, task_pt_regs(target), sizeof(struct pt_regs)); 576 } 577 578 static int gpr_set(struct task_struct *target, 579 const struct user_regset *regset, 580 unsigned int pos, unsigned int count, 581 const void *kbuf, const void __user *ubuf) 582 { 583 int ret; 584 struct pt_regs newregs = *task_pt_regs(target); 585 586 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 587 &newregs, 588 0, sizeof(newregs)); 589 if (ret) 590 return ret; 591 592 if (!valid_user_regs(&newregs)) 593 return -EINVAL; 594 595 *task_pt_regs(target) = newregs; 596 return 0; 597 } 598 599 static int fpa_get(struct task_struct *target, 600 const struct user_regset *regset, 601 struct membuf to) 602 { 603 return membuf_write(&to, &task_thread_info(target)->fpstate, 604 sizeof(struct user_fp)); 605 } 606 607 static int fpa_set(struct task_struct *target, 608 const struct user_regset *regset, 609 unsigned int pos, unsigned int count, 610 const void *kbuf, const void __user *ubuf) 611 { 612 struct thread_info *thread = task_thread_info(target); 613 614 thread->used_cp[1] = thread->used_cp[2] = 1; 615 616 return user_regset_copyin(&pos, &count, &kbuf, &ubuf, 617 &thread->fpstate, 618 0, sizeof(struct user_fp)); 619 } 620 621 #ifdef CONFIG_VFP 622 /* 623 * VFP register get/set implementations. 624 * 625 * With respect to the kernel, struct user_fp is divided into three chunks: 626 * 16 or 32 real VFP registers (d0-d15 or d0-31) 627 * These are transferred to/from the real registers in the task's 628 * vfp_hard_struct. The number of registers depends on the kernel 629 * configuration. 630 * 631 * 16 or 0 fake VFP registers (d16-d31 or empty) 632 * i.e., the user_vfp structure has space for 32 registers even if 633 * the kernel doesn't have them all. 634 * 635 * vfp_get() reads this chunk as zero where applicable 636 * vfp_set() ignores this chunk 637 * 638 * 1 word for the FPSCR 639 */ 640 static int vfp_get(struct task_struct *target, 641 const struct user_regset *regset, 642 struct membuf to) 643 { 644 struct thread_info *thread = task_thread_info(target); 645 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard; 646 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 647 648 vfp_sync_hwstate(thread); 649 650 membuf_write(&to, vfp->fpregs, sizeof(vfp->fpregs)); 651 membuf_zero(&to, user_fpscr_offset - sizeof(vfp->fpregs)); 652 return membuf_store(&to, vfp->fpscr); 653 } 654 655 /* 656 * For vfp_set() a read-modify-write is done on the VFP registers, 657 * in order to avoid writing back a half-modified set of registers on 658 * failure. 659 */ 660 static int vfp_set(struct task_struct *target, 661 const struct user_regset *regset, 662 unsigned int pos, unsigned int count, 663 const void *kbuf, const void __user *ubuf) 664 { 665 int ret; 666 struct thread_info *thread = task_thread_info(target); 667 struct vfp_hard_struct new_vfp; 668 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); 669 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 670 671 vfp_sync_hwstate(thread); 672 new_vfp = thread->vfpstate.hard; 673 674 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 675 &new_vfp.fpregs, 676 user_fpregs_offset, 677 user_fpregs_offset + sizeof(new_vfp.fpregs)); 678 if (ret) 679 return ret; 680 681 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 682 user_fpregs_offset + sizeof(new_vfp.fpregs), 683 user_fpscr_offset); 684 if (ret) 685 return ret; 686 687 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 688 &new_vfp.fpscr, 689 user_fpscr_offset, 690 user_fpscr_offset + sizeof(new_vfp.fpscr)); 691 if (ret) 692 return ret; 693 694 thread->vfpstate.hard = new_vfp; 695 vfp_flush_hwstate(thread); 696 697 return 0; 698 } 699 #endif /* CONFIG_VFP */ 700 701 enum arm_regset { 702 REGSET_GPR, 703 REGSET_FPR, 704 #ifdef CONFIG_VFP 705 REGSET_VFP, 706 #endif 707 }; 708 709 static const struct user_regset arm_regsets[] = { 710 [REGSET_GPR] = { 711 .core_note_type = NT_PRSTATUS, 712 .n = ELF_NGREG, 713 .size = sizeof(u32), 714 .align = sizeof(u32), 715 .regset_get = gpr_get, 716 .set = gpr_set 717 }, 718 [REGSET_FPR] = { 719 /* 720 * For the FPA regs in fpstate, the real fields are a mixture 721 * of sizes, so pretend that the registers are word-sized: 722 */ 723 .core_note_type = NT_PRFPREG, 724 .n = sizeof(struct user_fp) / sizeof(u32), 725 .size = sizeof(u32), 726 .align = sizeof(u32), 727 .regset_get = fpa_get, 728 .set = fpa_set 729 }, 730 #ifdef CONFIG_VFP 731 [REGSET_VFP] = { 732 /* 733 * Pretend that the VFP regs are word-sized, since the FPSCR is 734 * a single word dangling at the end of struct user_vfp: 735 */ 736 .core_note_type = NT_ARM_VFP, 737 .n = ARM_VFPREGS_SIZE / sizeof(u32), 738 .size = sizeof(u32), 739 .align = sizeof(u32), 740 .regset_get = vfp_get, 741 .set = vfp_set 742 }, 743 #endif /* CONFIG_VFP */ 744 }; 745 746 static const struct user_regset_view user_arm_view = { 747 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, 748 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets) 749 }; 750 751 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 752 { 753 return &user_arm_view; 754 } 755 756 long arch_ptrace(struct task_struct *child, long request, 757 unsigned long addr, unsigned long data) 758 { 759 int ret; 760 unsigned long __user *datap = (unsigned long __user *) data; 761 762 switch (request) { 763 case PTRACE_PEEKUSR: 764 ret = ptrace_read_user(child, addr, datap); 765 break; 766 767 case PTRACE_POKEUSR: 768 ret = ptrace_write_user(child, addr, data); 769 break; 770 771 case PTRACE_GETREGS: 772 ret = copy_regset_to_user(child, 773 &user_arm_view, REGSET_GPR, 774 0, sizeof(struct pt_regs), 775 datap); 776 break; 777 778 case PTRACE_SETREGS: 779 ret = copy_regset_from_user(child, 780 &user_arm_view, REGSET_GPR, 781 0, sizeof(struct pt_regs), 782 datap); 783 break; 784 785 case PTRACE_GETFPREGS: 786 ret = copy_regset_to_user(child, 787 &user_arm_view, REGSET_FPR, 788 0, sizeof(union fp_state), 789 datap); 790 break; 791 792 case PTRACE_SETFPREGS: 793 ret = copy_regset_from_user(child, 794 &user_arm_view, REGSET_FPR, 795 0, sizeof(union fp_state), 796 datap); 797 break; 798 799 #ifdef CONFIG_IWMMXT 800 case PTRACE_GETWMMXREGS: 801 ret = ptrace_getwmmxregs(child, datap); 802 break; 803 804 case PTRACE_SETWMMXREGS: 805 ret = ptrace_setwmmxregs(child, datap); 806 break; 807 #endif 808 809 case PTRACE_GET_THREAD_AREA: 810 ret = put_user(task_thread_info(child)->tp_value[0], 811 datap); 812 break; 813 814 case PTRACE_SET_SYSCALL: 815 task_thread_info(child)->abi_syscall = data & 816 __NR_SYSCALL_MASK; 817 ret = 0; 818 break; 819 820 #ifdef CONFIG_CRUNCH 821 case PTRACE_GETCRUNCHREGS: 822 ret = ptrace_getcrunchregs(child, datap); 823 break; 824 825 case PTRACE_SETCRUNCHREGS: 826 ret = ptrace_setcrunchregs(child, datap); 827 break; 828 #endif 829 830 #ifdef CONFIG_VFP 831 case PTRACE_GETVFPREGS: 832 ret = copy_regset_to_user(child, 833 &user_arm_view, REGSET_VFP, 834 0, ARM_VFPREGS_SIZE, 835 datap); 836 break; 837 838 case PTRACE_SETVFPREGS: 839 ret = copy_regset_from_user(child, 840 &user_arm_view, REGSET_VFP, 841 0, ARM_VFPREGS_SIZE, 842 datap); 843 break; 844 #endif 845 846 #ifdef CONFIG_HAVE_HW_BREAKPOINT 847 case PTRACE_GETHBPREGS: 848 ret = ptrace_gethbpregs(child, addr, 849 (unsigned long __user *)data); 850 break; 851 case PTRACE_SETHBPREGS: 852 ret = ptrace_sethbpregs(child, addr, 853 (unsigned long __user *)data); 854 break; 855 #endif 856 857 default: 858 ret = ptrace_request(child, request, addr, data); 859 break; 860 } 861 862 return ret; 863 } 864 865 enum ptrace_syscall_dir { 866 PTRACE_SYSCALL_ENTER = 0, 867 PTRACE_SYSCALL_EXIT, 868 }; 869 870 static void tracehook_report_syscall(struct pt_regs *regs, 871 enum ptrace_syscall_dir dir) 872 { 873 unsigned long ip; 874 875 /* 876 * IP is used to denote syscall entry/exit: 877 * IP = 0 -> entry, =1 -> exit 878 */ 879 ip = regs->ARM_ip; 880 regs->ARM_ip = dir; 881 882 if (dir == PTRACE_SYSCALL_EXIT) 883 tracehook_report_syscall_exit(regs, 0); 884 else if (tracehook_report_syscall_entry(regs)) 885 current_thread_info()->abi_syscall = -1; 886 887 regs->ARM_ip = ip; 888 } 889 890 asmlinkage int syscall_trace_enter(struct pt_regs *regs) 891 { 892 int scno; 893 894 if (test_thread_flag(TIF_SYSCALL_TRACE)) 895 tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER); 896 897 /* Do seccomp after ptrace; syscall may have changed. */ 898 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER 899 if (secure_computing() == -1) 900 return -1; 901 #else 902 /* XXX: remove this once OABI gets fixed */ 903 secure_computing_strict(syscall_get_nr(current, regs)); 904 #endif 905 906 /* Tracer or seccomp may have changed syscall. */ 907 scno = syscall_get_nr(current, regs); 908 909 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) 910 trace_sys_enter(regs, scno); 911 912 audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, 913 regs->ARM_r3); 914 915 return scno; 916 } 917 918 asmlinkage void syscall_trace_exit(struct pt_regs *regs) 919 { 920 /* 921 * Audit the syscall before anything else, as a debugger may 922 * come in and change the current registers. 923 */ 924 audit_syscall_exit(regs); 925 926 /* 927 * Note that we haven't updated the ->syscall field for the 928 * current thread. This isn't a problem because it will have 929 * been set on syscall entry and there hasn't been an opportunity 930 * for a PTRACE_SET_SYSCALL since then. 931 */ 932 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) 933 trace_sys_exit(regs, regs_return_value(regs)); 934 935 if (test_thread_flag(TIF_SYSCALL_TRACE)) 936 tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT); 937 } 938