xref: /openbmc/linux/arch/alpha/lib/ev6-stxcpy.S (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1*1da177e4SLinus Torvalds/*
2*1da177e4SLinus Torvalds * arch/alpha/lib/ev6-stxcpy.S
3*1da177e4SLinus Torvalds * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com>
4*1da177e4SLinus Torvalds *
5*1da177e4SLinus Torvalds * Copy a null-terminated string from SRC to DST.
6*1da177e4SLinus Torvalds *
7*1da177e4SLinus Torvalds * This is an internal routine used by strcpy, stpcpy, and strcat.
8*1da177e4SLinus Torvalds * As such, it uses special linkage conventions to make implementation
9*1da177e4SLinus Torvalds * of these public functions more efficient.
10*1da177e4SLinus Torvalds *
11*1da177e4SLinus Torvalds * On input:
12*1da177e4SLinus Torvalds *	t9 = return address
13*1da177e4SLinus Torvalds *	a0 = DST
14*1da177e4SLinus Torvalds *	a1 = SRC
15*1da177e4SLinus Torvalds *
16*1da177e4SLinus Torvalds * On output:
17*1da177e4SLinus Torvalds *	t12 = bitmask (with one bit set) indicating the last byte written
18*1da177e4SLinus Torvalds *	a0  = unaligned address of the last *word* written
19*1da177e4SLinus Torvalds *
20*1da177e4SLinus Torvalds * Furthermore, v0, a3-a5, t11, and t12 are untouched.
21*1da177e4SLinus Torvalds *
22*1da177e4SLinus Torvalds * Much of the information about 21264 scheduling/coding comes from:
23*1da177e4SLinus Torvalds *	Compiler Writer's Guide for the Alpha 21264
24*1da177e4SLinus Torvalds *	abbreviated as 'CWG' in other comments here
25*1da177e4SLinus Torvalds *	ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
26*1da177e4SLinus Torvalds * Scheduling notation:
27*1da177e4SLinus Torvalds *	E	- either cluster
28*1da177e4SLinus Torvalds *	U	- upper subcluster; U0 - subcluster U0; U1 - subcluster U1
29*1da177e4SLinus Torvalds *	L	- lower subcluster; L0 - subcluster L0; L1 - subcluster L1
30*1da177e4SLinus Torvalds * Try not to change the actual algorithm if possible for consistency.
31*1da177e4SLinus Torvalds */
32*1da177e4SLinus Torvalds
33*1da177e4SLinus Torvalds#include <asm/regdef.h>
34*1da177e4SLinus Torvalds
35*1da177e4SLinus Torvalds	.set noat
36*1da177e4SLinus Torvalds	.set noreorder
37*1da177e4SLinus Torvalds
38*1da177e4SLinus Torvalds	.text
39*1da177e4SLinus Torvalds
40*1da177e4SLinus Torvalds/* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that
41*1da177e4SLinus Torvalds   doesn't like putting the entry point for a procedure somewhere in the
42*1da177e4SLinus Torvalds   middle of the procedure descriptor.  Work around this by putting the
43*1da177e4SLinus Torvalds   aligned copy in its own procedure descriptor */
44*1da177e4SLinus Torvalds
45*1da177e4SLinus Torvalds
46*1da177e4SLinus Torvalds	.ent stxcpy_aligned
47*1da177e4SLinus Torvalds	.align 4
48*1da177e4SLinus Torvaldsstxcpy_aligned:
49*1da177e4SLinus Torvalds	.frame sp, 0, t9
50*1da177e4SLinus Torvalds	.prologue 0
51*1da177e4SLinus Torvalds
52*1da177e4SLinus Torvalds	/* On entry to this basic block:
53*1da177e4SLinus Torvalds	   t0 == the first destination word for masking back in
54*1da177e4SLinus Torvalds	   t1 == the first source word.  */
55*1da177e4SLinus Torvalds
56*1da177e4SLinus Torvalds	/* Create the 1st output word and detect 0's in the 1st input word.  */
57*1da177e4SLinus Torvalds	lda	t2, -1		# E : build a mask against false zero
58*1da177e4SLinus Torvalds	mskqh	t2, a1, t2	# U :   detection in the src word (stall)
59*1da177e4SLinus Torvalds	mskqh	t1, a1, t3	# U :
60*1da177e4SLinus Torvalds	ornot	t1, t2, t2	# E : (stall)
61*1da177e4SLinus Torvalds
62*1da177e4SLinus Torvalds	mskql	t0, a1, t0	# U : assemble the first output word
63*1da177e4SLinus Torvalds	cmpbge	zero, t2, t8	# E : bits set iff null found
64*1da177e4SLinus Torvalds	or	t0, t3, t1	# E : (stall)
65*1da177e4SLinus Torvalds	bne	t8, $a_eos	# U : (stall)
66*1da177e4SLinus Torvalds
67*1da177e4SLinus Torvalds	/* On entry to this basic block:
68*1da177e4SLinus Torvalds	   t0 == the first destination word for masking back in
69*1da177e4SLinus Torvalds	   t1 == a source word not containing a null.  */
70*1da177e4SLinus Torvalds	/* Nops here to separate store quads from load quads */
71*1da177e4SLinus Torvalds
72*1da177e4SLinus Torvalds$a_loop:
73*1da177e4SLinus Torvalds	stq_u	t1, 0(a0)	# L :
74*1da177e4SLinus Torvalds	addq	a0, 8, a0	# E :
75*1da177e4SLinus Torvalds	nop
76*1da177e4SLinus Torvalds	nop
77*1da177e4SLinus Torvalds
78*1da177e4SLinus Torvalds	ldq_u	t1, 0(a1)	# L : Latency=3
79*1da177e4SLinus Torvalds	addq	a1, 8, a1	# E :
80*1da177e4SLinus Torvalds	cmpbge	zero, t1, t8	# E : (3 cycle stall)
81*1da177e4SLinus Torvalds	beq	t8, $a_loop	# U : (stall for t8)
82*1da177e4SLinus Torvalds
83*1da177e4SLinus Torvalds	/* Take care of the final (partial) word store.
84*1da177e4SLinus Torvalds	   On entry to this basic block we have:
85*1da177e4SLinus Torvalds	   t1 == the source word containing the null
86*1da177e4SLinus Torvalds	   t8 == the cmpbge mask that found it.  */
87*1da177e4SLinus Torvalds$a_eos:
88*1da177e4SLinus Torvalds	negq	t8, t6		# E : find low bit set
89*1da177e4SLinus Torvalds	and	t8, t6, t12	# E : (stall)
90*1da177e4SLinus Torvalds	/* For the sake of the cache, don't read a destination word
91*1da177e4SLinus Torvalds	   if we're not going to need it.  */
92*1da177e4SLinus Torvalds	and	t12, 0x80, t6	# E : (stall)
93*1da177e4SLinus Torvalds	bne	t6, 1f		# U : (stall)
94*1da177e4SLinus Torvalds
95*1da177e4SLinus Torvalds	/* We're doing a partial word store and so need to combine
96*1da177e4SLinus Torvalds	   our source and original destination words.  */
97*1da177e4SLinus Torvalds	ldq_u	t0, 0(a0)	# L : Latency=3
98*1da177e4SLinus Torvalds	subq	t12, 1, t6	# E :
99*1da177e4SLinus Torvalds	zapnot	t1, t6, t1	# U : clear src bytes >= null (stall)
100*1da177e4SLinus Torvalds	or	t12, t6, t8	# E : (stall)
101*1da177e4SLinus Torvalds
102*1da177e4SLinus Torvalds	zap	t0, t8, t0	# E : clear dst bytes <= null
103*1da177e4SLinus Torvalds	or	t0, t1, t1	# E : (stall)
104*1da177e4SLinus Torvalds	nop
105*1da177e4SLinus Torvalds	nop
106*1da177e4SLinus Torvalds
107*1da177e4SLinus Torvalds1:	stq_u	t1, 0(a0)	# L :
108*1da177e4SLinus Torvalds	ret	(t9)		# L0 : Latency=3
109*1da177e4SLinus Torvalds	nop
110*1da177e4SLinus Torvalds	nop
111*1da177e4SLinus Torvalds
112*1da177e4SLinus Torvalds	.end stxcpy_aligned
113*1da177e4SLinus Torvalds
114*1da177e4SLinus Torvalds	.align 4
115*1da177e4SLinus Torvalds	.ent __stxcpy
116*1da177e4SLinus Torvalds	.globl __stxcpy
117*1da177e4SLinus Torvalds__stxcpy:
118*1da177e4SLinus Torvalds	.frame sp, 0, t9
119*1da177e4SLinus Torvalds	.prologue 0
120*1da177e4SLinus Torvalds
121*1da177e4SLinus Torvalds	/* Are source and destination co-aligned?  */
122*1da177e4SLinus Torvalds	xor	a0, a1, t0	# E :
123*1da177e4SLinus Torvalds	unop			# E :
124*1da177e4SLinus Torvalds	and	t0, 7, t0	# E : (stall)
125*1da177e4SLinus Torvalds	bne	t0, $unaligned	# U : (stall)
126*1da177e4SLinus Torvalds
127*1da177e4SLinus Torvalds	/* We are co-aligned; take care of a partial first word.  */
128*1da177e4SLinus Torvalds	ldq_u	t1, 0(a1)		# L : load first src word
129*1da177e4SLinus Torvalds	and	a0, 7, t0		# E : take care not to load a word ...
130*1da177e4SLinus Torvalds	addq	a1, 8, a1		# E :
131*1da177e4SLinus Torvalds	beq	t0, stxcpy_aligned	# U : ... if we wont need it (stall)
132*1da177e4SLinus Torvalds
133*1da177e4SLinus Torvalds	ldq_u	t0, 0(a0)	# L :
134*1da177e4SLinus Torvalds	br	stxcpy_aligned	# L0 : Latency=3
135*1da177e4SLinus Torvalds	nop
136*1da177e4SLinus Torvalds	nop
137*1da177e4SLinus Torvalds
138*1da177e4SLinus Torvalds
139*1da177e4SLinus Torvalds/* The source and destination are not co-aligned.  Align the destination
140*1da177e4SLinus Torvalds   and cope.  We have to be very careful about not reading too much and
141*1da177e4SLinus Torvalds   causing a SEGV.  */
142*1da177e4SLinus Torvalds
143*1da177e4SLinus Torvalds	.align 4
144*1da177e4SLinus Torvalds$u_head:
145*1da177e4SLinus Torvalds	/* We know just enough now to be able to assemble the first
146*1da177e4SLinus Torvalds	   full source word.  We can still find a zero at the end of it
147*1da177e4SLinus Torvalds	   that prevents us from outputting the whole thing.
148*1da177e4SLinus Torvalds
149*1da177e4SLinus Torvalds	   On entry to this basic block:
150*1da177e4SLinus Torvalds	   t0 == the first dest word, for masking back in, if needed else 0
151*1da177e4SLinus Torvalds	   t1 == the low bits of the first source word
152*1da177e4SLinus Torvalds	   t6 == bytemask that is -1 in dest word bytes */
153*1da177e4SLinus Torvalds
154*1da177e4SLinus Torvalds	ldq_u	t2, 8(a1)	# L :
155*1da177e4SLinus Torvalds	addq	a1, 8, a1	# E :
156*1da177e4SLinus Torvalds	extql	t1, a1, t1	# U : (stall on a1)
157*1da177e4SLinus Torvalds	extqh	t2, a1, t4	# U : (stall on a1)
158*1da177e4SLinus Torvalds
159*1da177e4SLinus Torvalds	mskql	t0, a0, t0	# U :
160*1da177e4SLinus Torvalds	or	t1, t4, t1	# E :
161*1da177e4SLinus Torvalds	mskqh	t1, a0, t1	# U : (stall on t1)
162*1da177e4SLinus Torvalds	or	t0, t1, t1	# E : (stall on t1)
163*1da177e4SLinus Torvalds
164*1da177e4SLinus Torvalds	or	t1, t6, t6	# E :
165*1da177e4SLinus Torvalds	cmpbge	zero, t6, t8	# E : (stall)
166*1da177e4SLinus Torvalds	lda	t6, -1		# E : for masking just below
167*1da177e4SLinus Torvalds	bne	t8, $u_final	# U : (stall)
168*1da177e4SLinus Torvalds
169*1da177e4SLinus Torvalds	mskql	t6, a1, t6		# U : mask out the bits we have
170*1da177e4SLinus Torvalds	or	t6, t2, t2		# E :   already extracted before (stall)
171*1da177e4SLinus Torvalds	cmpbge	zero, t2, t8		# E :   testing eos (stall)
172*1da177e4SLinus Torvalds	bne	t8, $u_late_head_exit	# U : (stall)
173*1da177e4SLinus Torvalds
174*1da177e4SLinus Torvalds	/* Finally, we've got all the stupid leading edge cases taken care
175*1da177e4SLinus Torvalds	   of and we can set up to enter the main loop.  */
176*1da177e4SLinus Torvalds
177*1da177e4SLinus Torvalds	stq_u	t1, 0(a0)	# L : store first output word
178*1da177e4SLinus Torvalds	addq	a0, 8, a0	# E :
179*1da177e4SLinus Torvalds	extql	t2, a1, t0	# U : position ho-bits of lo word
180*1da177e4SLinus Torvalds	ldq_u	t2, 8(a1)	# U : read next high-order source word
181*1da177e4SLinus Torvalds
182*1da177e4SLinus Torvalds	addq	a1, 8, a1	# E :
183*1da177e4SLinus Torvalds	cmpbge	zero, t2, t8	# E : (stall for t2)
184*1da177e4SLinus Torvalds	nop			# E :
185*1da177e4SLinus Torvalds	bne	t8, $u_eos	# U : (stall)
186*1da177e4SLinus Torvalds
187*1da177e4SLinus Torvalds	/* Unaligned copy main loop.  In order to avoid reading too much,
188*1da177e4SLinus Torvalds	   the loop is structured to detect zeros in aligned source words.
189*1da177e4SLinus Torvalds	   This has, unfortunately, effectively pulled half of a loop
190*1da177e4SLinus Torvalds	   iteration out into the head and half into the tail, but it does
191*1da177e4SLinus Torvalds	   prevent nastiness from accumulating in the very thing we want
192*1da177e4SLinus Torvalds	   to run as fast as possible.
193*1da177e4SLinus Torvalds
194*1da177e4SLinus Torvalds	   On entry to this basic block:
195*1da177e4SLinus Torvalds	   t0 == the shifted high-order bits from the previous source word
196*1da177e4SLinus Torvalds	   t2 == the unshifted current source word
197*1da177e4SLinus Torvalds
198*1da177e4SLinus Torvalds	   We further know that t2 does not contain a null terminator.  */
199*1da177e4SLinus Torvalds
200*1da177e4SLinus Torvalds	.align 3
201*1da177e4SLinus Torvalds$u_loop:
202*1da177e4SLinus Torvalds	extqh	t2, a1, t1	# U : extract high bits for current word
203*1da177e4SLinus Torvalds	addq	a1, 8, a1	# E : (stall)
204*1da177e4SLinus Torvalds	extql	t2, a1, t3	# U : extract low bits for next time (stall)
205*1da177e4SLinus Torvalds	addq	a0, 8, a0	# E :
206*1da177e4SLinus Torvalds
207*1da177e4SLinus Torvalds	or	t0, t1, t1	# E : current dst word now complete
208*1da177e4SLinus Torvalds	ldq_u	t2, 0(a1)	# L : Latency=3 load high word for next time
209*1da177e4SLinus Torvalds	stq_u	t1, -8(a0)	# L : save the current word (stall)
210*1da177e4SLinus Torvalds	mov	t3, t0		# E :
211*1da177e4SLinus Torvalds
212*1da177e4SLinus Torvalds	cmpbge	zero, t2, t8	# E : test new word for eos
213*1da177e4SLinus Torvalds	beq	t8, $u_loop	# U : (stall)
214*1da177e4SLinus Torvalds	nop
215*1da177e4SLinus Torvalds	nop
216*1da177e4SLinus Torvalds
217*1da177e4SLinus Torvalds	/* We've found a zero somewhere in the source word we just read.
218*1da177e4SLinus Torvalds	   If it resides in the lower half, we have one (probably partial)
219*1da177e4SLinus Torvalds	   word to write out, and if it resides in the upper half, we
220*1da177e4SLinus Torvalds	   have one full and one partial word left to write out.
221*1da177e4SLinus Torvalds
222*1da177e4SLinus Torvalds	   On entry to this basic block:
223*1da177e4SLinus Torvalds	   t0 == the shifted high-order bits from the previous source word
224*1da177e4SLinus Torvalds	   t2 == the unshifted current source word.  */
225*1da177e4SLinus Torvalds$u_eos:
226*1da177e4SLinus Torvalds	extqh	t2, a1, t1	# U :
227*1da177e4SLinus Torvalds	or	t0, t1, t1	# E : first (partial) source word complete (stall)
228*1da177e4SLinus Torvalds	cmpbge	zero, t1, t8	# E : is the null in this first bit? (stall)
229*1da177e4SLinus Torvalds	bne	t8, $u_final	# U : (stall)
230*1da177e4SLinus Torvalds
231*1da177e4SLinus Torvalds$u_late_head_exit:
232*1da177e4SLinus Torvalds	stq_u	t1, 0(a0)	# L : the null was in the high-order bits
233*1da177e4SLinus Torvalds	addq	a0, 8, a0	# E :
234*1da177e4SLinus Torvalds	extql	t2, a1, t1	# U :
235*1da177e4SLinus Torvalds	cmpbge	zero, t1, t8	# E : (stall)
236*1da177e4SLinus Torvalds
237*1da177e4SLinus Torvalds	/* Take care of a final (probably partial) result word.
238*1da177e4SLinus Torvalds	   On entry to this basic block:
239*1da177e4SLinus Torvalds	   t1 == assembled source word
240*1da177e4SLinus Torvalds	   t8 == cmpbge mask that found the null.  */
241*1da177e4SLinus Torvalds$u_final:
242*1da177e4SLinus Torvalds	negq	t8, t6		# E : isolate low bit set
243*1da177e4SLinus Torvalds	and	t6, t8, t12	# E : (stall)
244*1da177e4SLinus Torvalds	and	t12, 0x80, t6	# E : avoid dest word load if we can (stall)
245*1da177e4SLinus Torvalds	bne	t6, 1f		# U : (stall)
246*1da177e4SLinus Torvalds
247*1da177e4SLinus Torvalds	ldq_u	t0, 0(a0)	# E :
248*1da177e4SLinus Torvalds	subq	t12, 1, t6	# E :
249*1da177e4SLinus Torvalds	or	t6, t12, t8	# E : (stall)
250*1da177e4SLinus Torvalds	zapnot	t1, t6, t1	# U : kill source bytes >= null (stall)
251*1da177e4SLinus Torvalds
252*1da177e4SLinus Torvalds	zap	t0, t8, t0	# U : kill dest bytes <= null (2 cycle data stall)
253*1da177e4SLinus Torvalds	or	t0, t1, t1	# E : (stall)
254*1da177e4SLinus Torvalds	nop
255*1da177e4SLinus Torvalds	nop
256*1da177e4SLinus Torvalds
257*1da177e4SLinus Torvalds1:	stq_u	t1, 0(a0)	# L :
258*1da177e4SLinus Torvalds	ret	(t9)		# L0 : Latency=3
259*1da177e4SLinus Torvalds	nop
260*1da177e4SLinus Torvalds	nop
261*1da177e4SLinus Torvalds
262*1da177e4SLinus Torvalds	/* Unaligned copy entry point.  */
263*1da177e4SLinus Torvalds	.align 4
264*1da177e4SLinus Torvalds$unaligned:
265*1da177e4SLinus Torvalds
266*1da177e4SLinus Torvalds	ldq_u	t1, 0(a1)	# L : load first source word
267*1da177e4SLinus Torvalds	and	a0, 7, t4	# E : find dest misalignment
268*1da177e4SLinus Torvalds	and	a1, 7, t5	# E : find src misalignment
269*1da177e4SLinus Torvalds	/* Conditionally load the first destination word and a bytemask
270*1da177e4SLinus Torvalds	   with 0xff indicating that the destination byte is sacrosanct.  */
271*1da177e4SLinus Torvalds	mov	zero, t0	# E :
272*1da177e4SLinus Torvalds
273*1da177e4SLinus Torvalds	mov	zero, t6	# E :
274*1da177e4SLinus Torvalds	beq	t4, 1f		# U :
275*1da177e4SLinus Torvalds	ldq_u	t0, 0(a0)	# L :
276*1da177e4SLinus Torvalds	lda	t6, -1		# E :
277*1da177e4SLinus Torvalds
278*1da177e4SLinus Torvalds	mskql	t6, a0, t6	# U :
279*1da177e4SLinus Torvalds	nop
280*1da177e4SLinus Torvalds	nop
281*1da177e4SLinus Torvalds	nop
282*1da177e4SLinus Torvalds1:
283*1da177e4SLinus Torvalds	subq	a1, t4, a1	# E : sub dest misalignment from src addr
284*1da177e4SLinus Torvalds	/* If source misalignment is larger than dest misalignment, we need
285*1da177e4SLinus Torvalds	   extra startup checks to avoid SEGV.  */
286*1da177e4SLinus Torvalds	cmplt	t4, t5, t12	# E :
287*1da177e4SLinus Torvalds	beq	t12, $u_head	# U :
288*1da177e4SLinus Torvalds	lda	t2, -1		# E : mask out leading garbage in source
289*1da177e4SLinus Torvalds
290*1da177e4SLinus Torvalds	mskqh	t2, t5, t2	# U :
291*1da177e4SLinus Torvalds	ornot	t1, t2, t3	# E : (stall)
292*1da177e4SLinus Torvalds	cmpbge	zero, t3, t8	# E : is there a zero? (stall)
293*1da177e4SLinus Torvalds	beq	t8, $u_head	# U : (stall)
294*1da177e4SLinus Torvalds
295*1da177e4SLinus Torvalds	/* At this point we've found a zero in the first partial word of
296*1da177e4SLinus Torvalds	   the source.  We need to isolate the valid source data and mask
297*1da177e4SLinus Torvalds	   it into the original destination data.  (Incidentally, we know
298*1da177e4SLinus Torvalds	   that we'll need at least one byte of that original dest word.) */
299*1da177e4SLinus Torvalds
300*1da177e4SLinus Torvalds	ldq_u	t0, 0(a0)	# L :
301*1da177e4SLinus Torvalds	negq	t8, t6		# E : build bitmask of bytes <= zero
302*1da177e4SLinus Torvalds	and	t6, t8, t12	# E : (stall)
303*1da177e4SLinus Torvalds	and	a1, 7, t5	# E :
304*1da177e4SLinus Torvalds
305*1da177e4SLinus Torvalds	subq	t12, 1, t6	# E :
306*1da177e4SLinus Torvalds	or	t6, t12, t8	# E : (stall)
307*1da177e4SLinus Torvalds	srl	t12, t5, t12	# U : adjust final null return value
308*1da177e4SLinus Torvalds	zapnot	t2, t8, t2	# U : prepare source word; mirror changes (stall)
309*1da177e4SLinus Torvalds
310*1da177e4SLinus Torvalds	and	t1, t2, t1	# E : to source validity mask
311*1da177e4SLinus Torvalds	extql	t2, a1, t2	# U :
312*1da177e4SLinus Torvalds	extql	t1, a1, t1	# U : (stall)
313*1da177e4SLinus Torvalds	andnot	t0, t2, t0	# .. e1 : zero place for source to reside (stall)
314*1da177e4SLinus Torvalds
315*1da177e4SLinus Torvalds	or	t0, t1, t1	# e1    : and put it there
316*1da177e4SLinus Torvalds	stq_u	t1, 0(a0)	# .. e0 : (stall)
317*1da177e4SLinus Torvalds	ret	(t9)		# e1    :
318*1da177e4SLinus Torvalds	nop
319*1da177e4SLinus Torvalds
320*1da177e4SLinus Torvalds	.end __stxcpy
321*1da177e4SLinus Torvalds
322