1*1da177e4SLinus Torvalds/* 2*1da177e4SLinus Torvalds * arch/alpha/lib/ev6-stxcpy.S 3*1da177e4SLinus Torvalds * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com> 4*1da177e4SLinus Torvalds * 5*1da177e4SLinus Torvalds * Copy a null-terminated string from SRC to DST. 6*1da177e4SLinus Torvalds * 7*1da177e4SLinus Torvalds * This is an internal routine used by strcpy, stpcpy, and strcat. 8*1da177e4SLinus Torvalds * As such, it uses special linkage conventions to make implementation 9*1da177e4SLinus Torvalds * of these public functions more efficient. 10*1da177e4SLinus Torvalds * 11*1da177e4SLinus Torvalds * On input: 12*1da177e4SLinus Torvalds * t9 = return address 13*1da177e4SLinus Torvalds * a0 = DST 14*1da177e4SLinus Torvalds * a1 = SRC 15*1da177e4SLinus Torvalds * 16*1da177e4SLinus Torvalds * On output: 17*1da177e4SLinus Torvalds * t12 = bitmask (with one bit set) indicating the last byte written 18*1da177e4SLinus Torvalds * a0 = unaligned address of the last *word* written 19*1da177e4SLinus Torvalds * 20*1da177e4SLinus Torvalds * Furthermore, v0, a3-a5, t11, and t12 are untouched. 21*1da177e4SLinus Torvalds * 22*1da177e4SLinus Torvalds * Much of the information about 21264 scheduling/coding comes from: 23*1da177e4SLinus Torvalds * Compiler Writer's Guide for the Alpha 21264 24*1da177e4SLinus Torvalds * abbreviated as 'CWG' in other comments here 25*1da177e4SLinus Torvalds * ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html 26*1da177e4SLinus Torvalds * Scheduling notation: 27*1da177e4SLinus Torvalds * E - either cluster 28*1da177e4SLinus Torvalds * U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1 29*1da177e4SLinus Torvalds * L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1 30*1da177e4SLinus Torvalds * Try not to change the actual algorithm if possible for consistency. 31*1da177e4SLinus Torvalds */ 32*1da177e4SLinus Torvalds 33*1da177e4SLinus Torvalds#include <asm/regdef.h> 34*1da177e4SLinus Torvalds 35*1da177e4SLinus Torvalds .set noat 36*1da177e4SLinus Torvalds .set noreorder 37*1da177e4SLinus Torvalds 38*1da177e4SLinus Torvalds .text 39*1da177e4SLinus Torvalds 40*1da177e4SLinus Torvalds/* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that 41*1da177e4SLinus Torvalds doesn't like putting the entry point for a procedure somewhere in the 42*1da177e4SLinus Torvalds middle of the procedure descriptor. Work around this by putting the 43*1da177e4SLinus Torvalds aligned copy in its own procedure descriptor */ 44*1da177e4SLinus Torvalds 45*1da177e4SLinus Torvalds 46*1da177e4SLinus Torvalds .ent stxcpy_aligned 47*1da177e4SLinus Torvalds .align 4 48*1da177e4SLinus Torvaldsstxcpy_aligned: 49*1da177e4SLinus Torvalds .frame sp, 0, t9 50*1da177e4SLinus Torvalds .prologue 0 51*1da177e4SLinus Torvalds 52*1da177e4SLinus Torvalds /* On entry to this basic block: 53*1da177e4SLinus Torvalds t0 == the first destination word for masking back in 54*1da177e4SLinus Torvalds t1 == the first source word. */ 55*1da177e4SLinus Torvalds 56*1da177e4SLinus Torvalds /* Create the 1st output word and detect 0's in the 1st input word. */ 57*1da177e4SLinus Torvalds lda t2, -1 # E : build a mask against false zero 58*1da177e4SLinus Torvalds mskqh t2, a1, t2 # U : detection in the src word (stall) 59*1da177e4SLinus Torvalds mskqh t1, a1, t3 # U : 60*1da177e4SLinus Torvalds ornot t1, t2, t2 # E : (stall) 61*1da177e4SLinus Torvalds 62*1da177e4SLinus Torvalds mskql t0, a1, t0 # U : assemble the first output word 63*1da177e4SLinus Torvalds cmpbge zero, t2, t8 # E : bits set iff null found 64*1da177e4SLinus Torvalds or t0, t3, t1 # E : (stall) 65*1da177e4SLinus Torvalds bne t8, $a_eos # U : (stall) 66*1da177e4SLinus Torvalds 67*1da177e4SLinus Torvalds /* On entry to this basic block: 68*1da177e4SLinus Torvalds t0 == the first destination word for masking back in 69*1da177e4SLinus Torvalds t1 == a source word not containing a null. */ 70*1da177e4SLinus Torvalds /* Nops here to separate store quads from load quads */ 71*1da177e4SLinus Torvalds 72*1da177e4SLinus Torvalds$a_loop: 73*1da177e4SLinus Torvalds stq_u t1, 0(a0) # L : 74*1da177e4SLinus Torvalds addq a0, 8, a0 # E : 75*1da177e4SLinus Torvalds nop 76*1da177e4SLinus Torvalds nop 77*1da177e4SLinus Torvalds 78*1da177e4SLinus Torvalds ldq_u t1, 0(a1) # L : Latency=3 79*1da177e4SLinus Torvalds addq a1, 8, a1 # E : 80*1da177e4SLinus Torvalds cmpbge zero, t1, t8 # E : (3 cycle stall) 81*1da177e4SLinus Torvalds beq t8, $a_loop # U : (stall for t8) 82*1da177e4SLinus Torvalds 83*1da177e4SLinus Torvalds /* Take care of the final (partial) word store. 84*1da177e4SLinus Torvalds On entry to this basic block we have: 85*1da177e4SLinus Torvalds t1 == the source word containing the null 86*1da177e4SLinus Torvalds t8 == the cmpbge mask that found it. */ 87*1da177e4SLinus Torvalds$a_eos: 88*1da177e4SLinus Torvalds negq t8, t6 # E : find low bit set 89*1da177e4SLinus Torvalds and t8, t6, t12 # E : (stall) 90*1da177e4SLinus Torvalds /* For the sake of the cache, don't read a destination word 91*1da177e4SLinus Torvalds if we're not going to need it. */ 92*1da177e4SLinus Torvalds and t12, 0x80, t6 # E : (stall) 93*1da177e4SLinus Torvalds bne t6, 1f # U : (stall) 94*1da177e4SLinus Torvalds 95*1da177e4SLinus Torvalds /* We're doing a partial word store and so need to combine 96*1da177e4SLinus Torvalds our source and original destination words. */ 97*1da177e4SLinus Torvalds ldq_u t0, 0(a0) # L : Latency=3 98*1da177e4SLinus Torvalds subq t12, 1, t6 # E : 99*1da177e4SLinus Torvalds zapnot t1, t6, t1 # U : clear src bytes >= null (stall) 100*1da177e4SLinus Torvalds or t12, t6, t8 # E : (stall) 101*1da177e4SLinus Torvalds 102*1da177e4SLinus Torvalds zap t0, t8, t0 # E : clear dst bytes <= null 103*1da177e4SLinus Torvalds or t0, t1, t1 # E : (stall) 104*1da177e4SLinus Torvalds nop 105*1da177e4SLinus Torvalds nop 106*1da177e4SLinus Torvalds 107*1da177e4SLinus Torvalds1: stq_u t1, 0(a0) # L : 108*1da177e4SLinus Torvalds ret (t9) # L0 : Latency=3 109*1da177e4SLinus Torvalds nop 110*1da177e4SLinus Torvalds nop 111*1da177e4SLinus Torvalds 112*1da177e4SLinus Torvalds .end stxcpy_aligned 113*1da177e4SLinus Torvalds 114*1da177e4SLinus Torvalds .align 4 115*1da177e4SLinus Torvalds .ent __stxcpy 116*1da177e4SLinus Torvalds .globl __stxcpy 117*1da177e4SLinus Torvalds__stxcpy: 118*1da177e4SLinus Torvalds .frame sp, 0, t9 119*1da177e4SLinus Torvalds .prologue 0 120*1da177e4SLinus Torvalds 121*1da177e4SLinus Torvalds /* Are source and destination co-aligned? */ 122*1da177e4SLinus Torvalds xor a0, a1, t0 # E : 123*1da177e4SLinus Torvalds unop # E : 124*1da177e4SLinus Torvalds and t0, 7, t0 # E : (stall) 125*1da177e4SLinus Torvalds bne t0, $unaligned # U : (stall) 126*1da177e4SLinus Torvalds 127*1da177e4SLinus Torvalds /* We are co-aligned; take care of a partial first word. */ 128*1da177e4SLinus Torvalds ldq_u t1, 0(a1) # L : load first src word 129*1da177e4SLinus Torvalds and a0, 7, t0 # E : take care not to load a word ... 130*1da177e4SLinus Torvalds addq a1, 8, a1 # E : 131*1da177e4SLinus Torvalds beq t0, stxcpy_aligned # U : ... if we wont need it (stall) 132*1da177e4SLinus Torvalds 133*1da177e4SLinus Torvalds ldq_u t0, 0(a0) # L : 134*1da177e4SLinus Torvalds br stxcpy_aligned # L0 : Latency=3 135*1da177e4SLinus Torvalds nop 136*1da177e4SLinus Torvalds nop 137*1da177e4SLinus Torvalds 138*1da177e4SLinus Torvalds 139*1da177e4SLinus Torvalds/* The source and destination are not co-aligned. Align the destination 140*1da177e4SLinus Torvalds and cope. We have to be very careful about not reading too much and 141*1da177e4SLinus Torvalds causing a SEGV. */ 142*1da177e4SLinus Torvalds 143*1da177e4SLinus Torvalds .align 4 144*1da177e4SLinus Torvalds$u_head: 145*1da177e4SLinus Torvalds /* We know just enough now to be able to assemble the first 146*1da177e4SLinus Torvalds full source word. We can still find a zero at the end of it 147*1da177e4SLinus Torvalds that prevents us from outputting the whole thing. 148*1da177e4SLinus Torvalds 149*1da177e4SLinus Torvalds On entry to this basic block: 150*1da177e4SLinus Torvalds t0 == the first dest word, for masking back in, if needed else 0 151*1da177e4SLinus Torvalds t1 == the low bits of the first source word 152*1da177e4SLinus Torvalds t6 == bytemask that is -1 in dest word bytes */ 153*1da177e4SLinus Torvalds 154*1da177e4SLinus Torvalds ldq_u t2, 8(a1) # L : 155*1da177e4SLinus Torvalds addq a1, 8, a1 # E : 156*1da177e4SLinus Torvalds extql t1, a1, t1 # U : (stall on a1) 157*1da177e4SLinus Torvalds extqh t2, a1, t4 # U : (stall on a1) 158*1da177e4SLinus Torvalds 159*1da177e4SLinus Torvalds mskql t0, a0, t0 # U : 160*1da177e4SLinus Torvalds or t1, t4, t1 # E : 161*1da177e4SLinus Torvalds mskqh t1, a0, t1 # U : (stall on t1) 162*1da177e4SLinus Torvalds or t0, t1, t1 # E : (stall on t1) 163*1da177e4SLinus Torvalds 164*1da177e4SLinus Torvalds or t1, t6, t6 # E : 165*1da177e4SLinus Torvalds cmpbge zero, t6, t8 # E : (stall) 166*1da177e4SLinus Torvalds lda t6, -1 # E : for masking just below 167*1da177e4SLinus Torvalds bne t8, $u_final # U : (stall) 168*1da177e4SLinus Torvalds 169*1da177e4SLinus Torvalds mskql t6, a1, t6 # U : mask out the bits we have 170*1da177e4SLinus Torvalds or t6, t2, t2 # E : already extracted before (stall) 171*1da177e4SLinus Torvalds cmpbge zero, t2, t8 # E : testing eos (stall) 172*1da177e4SLinus Torvalds bne t8, $u_late_head_exit # U : (stall) 173*1da177e4SLinus Torvalds 174*1da177e4SLinus Torvalds /* Finally, we've got all the stupid leading edge cases taken care 175*1da177e4SLinus Torvalds of and we can set up to enter the main loop. */ 176*1da177e4SLinus Torvalds 177*1da177e4SLinus Torvalds stq_u t1, 0(a0) # L : store first output word 178*1da177e4SLinus Torvalds addq a0, 8, a0 # E : 179*1da177e4SLinus Torvalds extql t2, a1, t0 # U : position ho-bits of lo word 180*1da177e4SLinus Torvalds ldq_u t2, 8(a1) # U : read next high-order source word 181*1da177e4SLinus Torvalds 182*1da177e4SLinus Torvalds addq a1, 8, a1 # E : 183*1da177e4SLinus Torvalds cmpbge zero, t2, t8 # E : (stall for t2) 184*1da177e4SLinus Torvalds nop # E : 185*1da177e4SLinus Torvalds bne t8, $u_eos # U : (stall) 186*1da177e4SLinus Torvalds 187*1da177e4SLinus Torvalds /* Unaligned copy main loop. In order to avoid reading too much, 188*1da177e4SLinus Torvalds the loop is structured to detect zeros in aligned source words. 189*1da177e4SLinus Torvalds This has, unfortunately, effectively pulled half of a loop 190*1da177e4SLinus Torvalds iteration out into the head and half into the tail, but it does 191*1da177e4SLinus Torvalds prevent nastiness from accumulating in the very thing we want 192*1da177e4SLinus Torvalds to run as fast as possible. 193*1da177e4SLinus Torvalds 194*1da177e4SLinus Torvalds On entry to this basic block: 195*1da177e4SLinus Torvalds t0 == the shifted high-order bits from the previous source word 196*1da177e4SLinus Torvalds t2 == the unshifted current source word 197*1da177e4SLinus Torvalds 198*1da177e4SLinus Torvalds We further know that t2 does not contain a null terminator. */ 199*1da177e4SLinus Torvalds 200*1da177e4SLinus Torvalds .align 3 201*1da177e4SLinus Torvalds$u_loop: 202*1da177e4SLinus Torvalds extqh t2, a1, t1 # U : extract high bits for current word 203*1da177e4SLinus Torvalds addq a1, 8, a1 # E : (stall) 204*1da177e4SLinus Torvalds extql t2, a1, t3 # U : extract low bits for next time (stall) 205*1da177e4SLinus Torvalds addq a0, 8, a0 # E : 206*1da177e4SLinus Torvalds 207*1da177e4SLinus Torvalds or t0, t1, t1 # E : current dst word now complete 208*1da177e4SLinus Torvalds ldq_u t2, 0(a1) # L : Latency=3 load high word for next time 209*1da177e4SLinus Torvalds stq_u t1, -8(a0) # L : save the current word (stall) 210*1da177e4SLinus Torvalds mov t3, t0 # E : 211*1da177e4SLinus Torvalds 212*1da177e4SLinus Torvalds cmpbge zero, t2, t8 # E : test new word for eos 213*1da177e4SLinus Torvalds beq t8, $u_loop # U : (stall) 214*1da177e4SLinus Torvalds nop 215*1da177e4SLinus Torvalds nop 216*1da177e4SLinus Torvalds 217*1da177e4SLinus Torvalds /* We've found a zero somewhere in the source word we just read. 218*1da177e4SLinus Torvalds If it resides in the lower half, we have one (probably partial) 219*1da177e4SLinus Torvalds word to write out, and if it resides in the upper half, we 220*1da177e4SLinus Torvalds have one full and one partial word left to write out. 221*1da177e4SLinus Torvalds 222*1da177e4SLinus Torvalds On entry to this basic block: 223*1da177e4SLinus Torvalds t0 == the shifted high-order bits from the previous source word 224*1da177e4SLinus Torvalds t2 == the unshifted current source word. */ 225*1da177e4SLinus Torvalds$u_eos: 226*1da177e4SLinus Torvalds extqh t2, a1, t1 # U : 227*1da177e4SLinus Torvalds or t0, t1, t1 # E : first (partial) source word complete (stall) 228*1da177e4SLinus Torvalds cmpbge zero, t1, t8 # E : is the null in this first bit? (stall) 229*1da177e4SLinus Torvalds bne t8, $u_final # U : (stall) 230*1da177e4SLinus Torvalds 231*1da177e4SLinus Torvalds$u_late_head_exit: 232*1da177e4SLinus Torvalds stq_u t1, 0(a0) # L : the null was in the high-order bits 233*1da177e4SLinus Torvalds addq a0, 8, a0 # E : 234*1da177e4SLinus Torvalds extql t2, a1, t1 # U : 235*1da177e4SLinus Torvalds cmpbge zero, t1, t8 # E : (stall) 236*1da177e4SLinus Torvalds 237*1da177e4SLinus Torvalds /* Take care of a final (probably partial) result word. 238*1da177e4SLinus Torvalds On entry to this basic block: 239*1da177e4SLinus Torvalds t1 == assembled source word 240*1da177e4SLinus Torvalds t8 == cmpbge mask that found the null. */ 241*1da177e4SLinus Torvalds$u_final: 242*1da177e4SLinus Torvalds negq t8, t6 # E : isolate low bit set 243*1da177e4SLinus Torvalds and t6, t8, t12 # E : (stall) 244*1da177e4SLinus Torvalds and t12, 0x80, t6 # E : avoid dest word load if we can (stall) 245*1da177e4SLinus Torvalds bne t6, 1f # U : (stall) 246*1da177e4SLinus Torvalds 247*1da177e4SLinus Torvalds ldq_u t0, 0(a0) # E : 248*1da177e4SLinus Torvalds subq t12, 1, t6 # E : 249*1da177e4SLinus Torvalds or t6, t12, t8 # E : (stall) 250*1da177e4SLinus Torvalds zapnot t1, t6, t1 # U : kill source bytes >= null (stall) 251*1da177e4SLinus Torvalds 252*1da177e4SLinus Torvalds zap t0, t8, t0 # U : kill dest bytes <= null (2 cycle data stall) 253*1da177e4SLinus Torvalds or t0, t1, t1 # E : (stall) 254*1da177e4SLinus Torvalds nop 255*1da177e4SLinus Torvalds nop 256*1da177e4SLinus Torvalds 257*1da177e4SLinus Torvalds1: stq_u t1, 0(a0) # L : 258*1da177e4SLinus Torvalds ret (t9) # L0 : Latency=3 259*1da177e4SLinus Torvalds nop 260*1da177e4SLinus Torvalds nop 261*1da177e4SLinus Torvalds 262*1da177e4SLinus Torvalds /* Unaligned copy entry point. */ 263*1da177e4SLinus Torvalds .align 4 264*1da177e4SLinus Torvalds$unaligned: 265*1da177e4SLinus Torvalds 266*1da177e4SLinus Torvalds ldq_u t1, 0(a1) # L : load first source word 267*1da177e4SLinus Torvalds and a0, 7, t4 # E : find dest misalignment 268*1da177e4SLinus Torvalds and a1, 7, t5 # E : find src misalignment 269*1da177e4SLinus Torvalds /* Conditionally load the first destination word and a bytemask 270*1da177e4SLinus Torvalds with 0xff indicating that the destination byte is sacrosanct. */ 271*1da177e4SLinus Torvalds mov zero, t0 # E : 272*1da177e4SLinus Torvalds 273*1da177e4SLinus Torvalds mov zero, t6 # E : 274*1da177e4SLinus Torvalds beq t4, 1f # U : 275*1da177e4SLinus Torvalds ldq_u t0, 0(a0) # L : 276*1da177e4SLinus Torvalds lda t6, -1 # E : 277*1da177e4SLinus Torvalds 278*1da177e4SLinus Torvalds mskql t6, a0, t6 # U : 279*1da177e4SLinus Torvalds nop 280*1da177e4SLinus Torvalds nop 281*1da177e4SLinus Torvalds nop 282*1da177e4SLinus Torvalds1: 283*1da177e4SLinus Torvalds subq a1, t4, a1 # E : sub dest misalignment from src addr 284*1da177e4SLinus Torvalds /* If source misalignment is larger than dest misalignment, we need 285*1da177e4SLinus Torvalds extra startup checks to avoid SEGV. */ 286*1da177e4SLinus Torvalds cmplt t4, t5, t12 # E : 287*1da177e4SLinus Torvalds beq t12, $u_head # U : 288*1da177e4SLinus Torvalds lda t2, -1 # E : mask out leading garbage in source 289*1da177e4SLinus Torvalds 290*1da177e4SLinus Torvalds mskqh t2, t5, t2 # U : 291*1da177e4SLinus Torvalds ornot t1, t2, t3 # E : (stall) 292*1da177e4SLinus Torvalds cmpbge zero, t3, t8 # E : is there a zero? (stall) 293*1da177e4SLinus Torvalds beq t8, $u_head # U : (stall) 294*1da177e4SLinus Torvalds 295*1da177e4SLinus Torvalds /* At this point we've found a zero in the first partial word of 296*1da177e4SLinus Torvalds the source. We need to isolate the valid source data and mask 297*1da177e4SLinus Torvalds it into the original destination data. (Incidentally, we know 298*1da177e4SLinus Torvalds that we'll need at least one byte of that original dest word.) */ 299*1da177e4SLinus Torvalds 300*1da177e4SLinus Torvalds ldq_u t0, 0(a0) # L : 301*1da177e4SLinus Torvalds negq t8, t6 # E : build bitmask of bytes <= zero 302*1da177e4SLinus Torvalds and t6, t8, t12 # E : (stall) 303*1da177e4SLinus Torvalds and a1, 7, t5 # E : 304*1da177e4SLinus Torvalds 305*1da177e4SLinus Torvalds subq t12, 1, t6 # E : 306*1da177e4SLinus Torvalds or t6, t12, t8 # E : (stall) 307*1da177e4SLinus Torvalds srl t12, t5, t12 # U : adjust final null return value 308*1da177e4SLinus Torvalds zapnot t2, t8, t2 # U : prepare source word; mirror changes (stall) 309*1da177e4SLinus Torvalds 310*1da177e4SLinus Torvalds and t1, t2, t1 # E : to source validity mask 311*1da177e4SLinus Torvalds extql t2, a1, t2 # U : 312*1da177e4SLinus Torvalds extql t1, a1, t1 # U : (stall) 313*1da177e4SLinus Torvalds andnot t0, t2, t0 # .. e1 : zero place for source to reside (stall) 314*1da177e4SLinus Torvalds 315*1da177e4SLinus Torvalds or t0, t1, t1 # e1 : and put it there 316*1da177e4SLinus Torvalds stq_u t1, 0(a0) # .. e0 : (stall) 317*1da177e4SLinus Torvalds ret (t9) # e1 : 318*1da177e4SLinus Torvalds nop 319*1da177e4SLinus Torvalds 320*1da177e4SLinus Torvalds .end __stxcpy 321*1da177e4SLinus Torvalds 322