1 /* 2 * linux/arch/alpha/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds 5 * 6 * This file contains the PC-specific time handling details: 7 * reading the RTC at bootup, etc.. 8 * 1994-07-02 Alan Modra 9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime 10 * 1995-03-26 Markus Kuhn 11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 12 * precision CMOS clock update 13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 14 * "A Kernel Model for Precision Timekeeping" by Dave Mills 15 * 1997-01-09 Adrian Sun 16 * use interval timer if CONFIG_RTC=y 17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca) 18 * fixed tick loss calculation in timer_interrupt 19 * (round system clock to nearest tick instead of truncating) 20 * fixed algorithm in time_init for getting time from CMOS clock 21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net) 22 * fixed algorithm in do_gettimeofday() for calculating the precise time 23 * from processor cycle counter (now taking lost_ticks into account) 24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de> 25 * Fixed time_init to be aware of epoches != 1900. This prevents 26 * booting up in 2048 for me;) Code is stolen from rtc.c. 27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com> 28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM 29 */ 30 #include <linux/errno.h> 31 #include <linux/module.h> 32 #include <linux/sched.h> 33 #include <linux/kernel.h> 34 #include <linux/param.h> 35 #include <linux/string.h> 36 #include <linux/mm.h> 37 #include <linux/delay.h> 38 #include <linux/ioport.h> 39 #include <linux/irq.h> 40 #include <linux/interrupt.h> 41 #include <linux/init.h> 42 #include <linux/bcd.h> 43 #include <linux/profile.h> 44 45 #include <asm/uaccess.h> 46 #include <asm/io.h> 47 #include <asm/hwrpb.h> 48 #include <asm/8253pit.h> 49 50 #include <linux/mc146818rtc.h> 51 #include <linux/time.h> 52 #include <linux/timex.h> 53 54 #include "proto.h" 55 #include "irq_impl.h" 56 57 static int set_rtc_mmss(unsigned long); 58 59 DEFINE_SPINLOCK(rtc_lock); 60 EXPORT_SYMBOL(rtc_lock); 61 62 #define TICK_SIZE (tick_nsec / 1000) 63 64 /* 65 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting 66 * by 48 gives us 16 bits for HZ while keeping the accuracy good even 67 * for large CPU clock rates. 68 */ 69 #define FIX_SHIFT 48 70 71 /* lump static variables together for more efficient access: */ 72 static struct { 73 /* cycle counter last time it got invoked */ 74 __u32 last_time; 75 /* ticks/cycle * 2^48 */ 76 unsigned long scaled_ticks_per_cycle; 77 /* last time the CMOS clock got updated */ 78 time_t last_rtc_update; 79 /* partial unused tick */ 80 unsigned long partial_tick; 81 } state; 82 83 unsigned long est_cycle_freq; 84 85 86 static inline __u32 rpcc(void) 87 { 88 __u32 result; 89 asm volatile ("rpcc %0" : "=r"(result)); 90 return result; 91 } 92 93 /* 94 * timer_interrupt() needs to keep up the real-time clock, 95 * as well as call the "do_timer()" routine every clocktick 96 */ 97 irqreturn_t timer_interrupt(int irq, void *dev) 98 { 99 unsigned long delta; 100 __u32 now; 101 long nticks; 102 103 #ifndef CONFIG_SMP 104 /* Not SMP, do kernel PC profiling here. */ 105 profile_tick(CPU_PROFILING); 106 #endif 107 108 write_seqlock(&xtime_lock); 109 110 /* 111 * Calculate how many ticks have passed since the last update, 112 * including any previous partial leftover. Save any resulting 113 * fraction for the next pass. 114 */ 115 now = rpcc(); 116 delta = now - state.last_time; 117 state.last_time = now; 118 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick; 119 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); 120 nticks = delta >> FIX_SHIFT; 121 122 while (nticks > 0) { 123 do_timer(1); 124 #ifndef CONFIG_SMP 125 update_process_times(user_mode(get_irq_regs())); 126 #endif 127 nticks--; 128 } 129 130 /* 131 * If we have an externally synchronized Linux clock, then update 132 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be 133 * called as close as possible to 500 ms before the new second starts. 134 */ 135 if (ntp_synced() 136 && xtime.tv_sec > state.last_rtc_update + 660 137 && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2 138 && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) { 139 int tmp = set_rtc_mmss(xtime.tv_sec); 140 state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0); 141 } 142 143 write_sequnlock(&xtime_lock); 144 return IRQ_HANDLED; 145 } 146 147 void __init 148 common_init_rtc(void) 149 { 150 unsigned char x; 151 152 /* Reset periodic interrupt frequency. */ 153 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f; 154 /* Test includes known working values on various platforms 155 where 0x26 is wrong; we refuse to change those. */ 156 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) { 157 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x); 158 CMOS_WRITE(0x26, RTC_FREQ_SELECT); 159 } 160 161 /* Turn on periodic interrupts. */ 162 x = CMOS_READ(RTC_CONTROL); 163 if (!(x & RTC_PIE)) { 164 printk("Turning on RTC interrupts.\n"); 165 x |= RTC_PIE; 166 x &= ~(RTC_AIE | RTC_UIE); 167 CMOS_WRITE(x, RTC_CONTROL); 168 } 169 (void) CMOS_READ(RTC_INTR_FLAGS); 170 171 outb(0x36, 0x43); /* pit counter 0: system timer */ 172 outb(0x00, 0x40); 173 outb(0x00, 0x40); 174 175 outb(0xb6, 0x43); /* pit counter 2: speaker */ 176 outb(0x31, 0x42); 177 outb(0x13, 0x42); 178 179 init_rtc_irq(); 180 } 181 182 183 /* Validate a computed cycle counter result against the known bounds for 184 the given processor core. There's too much brokenness in the way of 185 timing hardware for any one method to work everywhere. :-( 186 187 Return 0 if the result cannot be trusted, otherwise return the argument. */ 188 189 static unsigned long __init 190 validate_cc_value(unsigned long cc) 191 { 192 static struct bounds { 193 unsigned int min, max; 194 } cpu_hz[] __initdata = { 195 [EV3_CPU] = { 50000000, 200000000 }, /* guess */ 196 [EV4_CPU] = { 100000000, 300000000 }, 197 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */ 198 [EV45_CPU] = { 200000000, 300000000 }, 199 [EV5_CPU] = { 250000000, 433000000 }, 200 [EV56_CPU] = { 333000000, 667000000 }, 201 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */ 202 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */ 203 [EV6_CPU] = { 466000000, 600000000 }, 204 [EV67_CPU] = { 600000000, 750000000 }, 205 [EV68AL_CPU] = { 750000000, 940000000 }, 206 [EV68CB_CPU] = { 1000000000, 1333333333 }, 207 /* None of the following are shipping as of 2001-11-01. */ 208 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */ 209 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */ 210 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */ 211 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */ 212 }; 213 214 /* Allow for some drift in the crystal. 10MHz is more than enough. */ 215 const unsigned int deviation = 10000000; 216 217 struct percpu_struct *cpu; 218 unsigned int index; 219 220 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset); 221 index = cpu->type & 0xffffffff; 222 223 /* If index out of bounds, no way to validate. */ 224 if (index >= ARRAY_SIZE(cpu_hz)) 225 return cc; 226 227 /* If index contains no data, no way to validate. */ 228 if (cpu_hz[index].max == 0) 229 return cc; 230 231 if (cc < cpu_hz[index].min - deviation 232 || cc > cpu_hz[index].max + deviation) 233 return 0; 234 235 return cc; 236 } 237 238 239 /* 240 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from 241 * arch/i386/time.c. 242 */ 243 244 #define CALIBRATE_LATCH 0xffff 245 #define TIMEOUT_COUNT 0x100000 246 247 static unsigned long __init 248 calibrate_cc_with_pit(void) 249 { 250 int cc, count = 0; 251 252 /* Set the Gate high, disable speaker */ 253 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 254 255 /* 256 * Now let's take care of CTC channel 2 257 * 258 * Set the Gate high, program CTC channel 2 for mode 0, 259 * (interrupt on terminal count mode), binary count, 260 * load 5 * LATCH count, (LSB and MSB) to begin countdown. 261 */ 262 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */ 263 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */ 264 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */ 265 266 cc = rpcc(); 267 do { 268 count++; 269 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT); 270 cc = rpcc() - cc; 271 272 /* Error: ECTCNEVERSET or ECPUTOOFAST. */ 273 if (count <= 1 || count == TIMEOUT_COUNT) 274 return 0; 275 276 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1); 277 } 278 279 /* The Linux interpretation of the CMOS clock register contents: 280 When the Update-In-Progress (UIP) flag goes from 1 to 0, the 281 RTC registers show the second which has precisely just started. 282 Let's hope other operating systems interpret the RTC the same way. */ 283 284 static unsigned long __init 285 rpcc_after_update_in_progress(void) 286 { 287 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)); 288 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); 289 290 return rpcc(); 291 } 292 293 void __init 294 time_init(void) 295 { 296 unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch; 297 unsigned long cycle_freq, tolerance; 298 long diff; 299 300 /* Calibrate CPU clock -- attempt #1. */ 301 if (!est_cycle_freq) 302 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit()); 303 304 cc1 = rpcc(); 305 306 /* Calibrate CPU clock -- attempt #2. */ 307 if (!est_cycle_freq) { 308 cc1 = rpcc_after_update_in_progress(); 309 cc2 = rpcc_after_update_in_progress(); 310 est_cycle_freq = validate_cc_value(cc2 - cc1); 311 cc1 = cc2; 312 } 313 314 cycle_freq = hwrpb->cycle_freq; 315 if (est_cycle_freq) { 316 /* If the given value is within 250 PPM of what we calculated, 317 accept it. Otherwise, use what we found. */ 318 tolerance = cycle_freq / 4000; 319 diff = cycle_freq - est_cycle_freq; 320 if (diff < 0) 321 diff = -diff; 322 if ((unsigned long)diff > tolerance) { 323 cycle_freq = est_cycle_freq; 324 printk("HWRPB cycle frequency bogus. " 325 "Estimated %lu Hz\n", cycle_freq); 326 } else { 327 est_cycle_freq = 0; 328 } 329 } else if (! validate_cc_value (cycle_freq)) { 330 printk("HWRPB cycle frequency bogus, " 331 "and unable to estimate a proper value!\n"); 332 } 333 334 /* From John Bowman <bowman@math.ualberta.ca>: allow the values 335 to settle, as the Update-In-Progress bit going low isn't good 336 enough on some hardware. 2ms is our guess; we haven't found 337 bogomips yet, but this is close on a 500Mhz box. */ 338 __delay(1000000); 339 340 sec = CMOS_READ(RTC_SECONDS); 341 min = CMOS_READ(RTC_MINUTES); 342 hour = CMOS_READ(RTC_HOURS); 343 day = CMOS_READ(RTC_DAY_OF_MONTH); 344 mon = CMOS_READ(RTC_MONTH); 345 year = CMOS_READ(RTC_YEAR); 346 347 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 348 BCD_TO_BIN(sec); 349 BCD_TO_BIN(min); 350 BCD_TO_BIN(hour); 351 BCD_TO_BIN(day); 352 BCD_TO_BIN(mon); 353 BCD_TO_BIN(year); 354 } 355 356 /* PC-like is standard; used for year >= 70 */ 357 epoch = 1900; 358 if (year < 20) 359 epoch = 2000; 360 else if (year >= 20 && year < 48) 361 /* NT epoch */ 362 epoch = 1980; 363 else if (year >= 48 && year < 70) 364 /* Digital UNIX epoch */ 365 epoch = 1952; 366 367 printk(KERN_INFO "Using epoch = %d\n", epoch); 368 369 if ((year += epoch) < 1970) 370 year += 100; 371 372 xtime.tv_sec = mktime(year, mon, day, hour, min, sec); 373 xtime.tv_nsec = 0; 374 375 wall_to_monotonic.tv_sec -= xtime.tv_sec; 376 wall_to_monotonic.tv_nsec = 0; 377 378 if (HZ > (1<<16)) { 379 extern void __you_loose (void); 380 __you_loose(); 381 } 382 383 state.last_time = cc1; 384 state.scaled_ticks_per_cycle 385 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq; 386 state.last_rtc_update = 0; 387 state.partial_tick = 0L; 388 389 /* Startup the timer source. */ 390 alpha_mv.init_rtc(); 391 } 392 393 /* 394 * Use the cycle counter to estimate an displacement from the last time 395 * tick. Unfortunately the Alpha designers made only the low 32-bits of 396 * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz 397 * part. So we can't do the "find absolute time in terms of cycles" thing 398 * that the other ports do. 399 */ 400 void 401 do_gettimeofday(struct timeval *tv) 402 { 403 unsigned long flags; 404 unsigned long sec, usec, seq; 405 unsigned long delta_cycles, delta_usec, partial_tick; 406 407 do { 408 seq = read_seqbegin_irqsave(&xtime_lock, flags); 409 410 delta_cycles = rpcc() - state.last_time; 411 sec = xtime.tv_sec; 412 usec = (xtime.tv_nsec / 1000); 413 partial_tick = state.partial_tick; 414 415 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); 416 417 #ifdef CONFIG_SMP 418 /* Until and unless we figure out how to get cpu cycle counters 419 in sync and keep them there, we can't use the rpcc tricks. */ 420 delta_usec = 0; 421 #else 422 /* 423 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks) 424 * = cycles * (s_t_p_c) * 1e6 / (2**48 * ticks) 425 * = cycles * (s_t_p_c) * 15625 / (2**42 * ticks) 426 * 427 * which, given a 600MHz cycle and a 1024Hz tick, has a 428 * dynamic range of about 1.7e17, which is less than the 429 * 1.8e19 in an unsigned long, so we are safe from overflow. 430 * 431 * Round, but with .5 up always, since .5 to even is harder 432 * with no clear gain. 433 */ 434 435 delta_usec = (delta_cycles * state.scaled_ticks_per_cycle 436 + partial_tick) * 15625; 437 delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2; 438 #endif 439 440 usec += delta_usec; 441 if (usec >= 1000000) { 442 sec += 1; 443 usec -= 1000000; 444 } 445 446 tv->tv_sec = sec; 447 tv->tv_usec = usec; 448 } 449 450 EXPORT_SYMBOL(do_gettimeofday); 451 452 int 453 do_settimeofday(struct timespec *tv) 454 { 455 time_t wtm_sec, sec = tv->tv_sec; 456 long wtm_nsec, nsec = tv->tv_nsec; 457 unsigned long delta_nsec; 458 459 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 460 return -EINVAL; 461 462 write_seqlock_irq(&xtime_lock); 463 464 /* The offset that is added into time in do_gettimeofday above 465 must be subtracted out here to keep a coherent view of the 466 time. Without this, a full-tick error is possible. */ 467 468 #ifdef CONFIG_SMP 469 delta_nsec = 0; 470 #else 471 delta_nsec = rpcc() - state.last_time; 472 delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle 473 + state.partial_tick) * 15625; 474 delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2; 475 delta_nsec *= 1000; 476 #endif 477 478 nsec -= delta_nsec; 479 480 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); 481 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); 482 483 set_normalized_timespec(&xtime, sec, nsec); 484 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); 485 486 ntp_clear(); 487 488 write_sequnlock_irq(&xtime_lock); 489 clock_was_set(); 490 return 0; 491 } 492 493 EXPORT_SYMBOL(do_settimeofday); 494 495 496 /* 497 * In order to set the CMOS clock precisely, set_rtc_mmss has to be 498 * called 500 ms after the second nowtime has started, because when 499 * nowtime is written into the registers of the CMOS clock, it will 500 * jump to the next second precisely 500 ms later. Check the Motorola 501 * MC146818A or Dallas DS12887 data sheet for details. 502 * 503 * BUG: This routine does not handle hour overflow properly; it just 504 * sets the minutes. Usually you won't notice until after reboot! 505 */ 506 507 508 static int 509 set_rtc_mmss(unsigned long nowtime) 510 { 511 int retval = 0; 512 int real_seconds, real_minutes, cmos_minutes; 513 unsigned char save_control, save_freq_select; 514 515 /* irq are locally disabled here */ 516 spin_lock(&rtc_lock); 517 /* Tell the clock it's being set */ 518 save_control = CMOS_READ(RTC_CONTROL); 519 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); 520 521 /* Stop and reset prescaler */ 522 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); 523 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); 524 525 cmos_minutes = CMOS_READ(RTC_MINUTES); 526 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) 527 BCD_TO_BIN(cmos_minutes); 528 529 /* 530 * since we're only adjusting minutes and seconds, 531 * don't interfere with hour overflow. This avoids 532 * messing with unknown time zones but requires your 533 * RTC not to be off by more than 15 minutes 534 */ 535 real_seconds = nowtime % 60; 536 real_minutes = nowtime / 60; 537 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) { 538 /* correct for half hour time zone */ 539 real_minutes += 30; 540 } 541 real_minutes %= 60; 542 543 if (abs(real_minutes - cmos_minutes) < 30) { 544 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 545 BIN_TO_BCD(real_seconds); 546 BIN_TO_BCD(real_minutes); 547 } 548 CMOS_WRITE(real_seconds,RTC_SECONDS); 549 CMOS_WRITE(real_minutes,RTC_MINUTES); 550 } else { 551 printk(KERN_WARNING 552 "set_rtc_mmss: can't update from %d to %d\n", 553 cmos_minutes, real_minutes); 554 retval = -1; 555 } 556 557 /* The following flags have to be released exactly in this order, 558 * otherwise the DS12887 (popular MC146818A clone with integrated 559 * battery and quartz) will not reset the oscillator and will not 560 * update precisely 500 ms later. You won't find this mentioned in 561 * the Dallas Semiconductor data sheets, but who believes data 562 * sheets anyway ... -- Markus Kuhn 563 */ 564 CMOS_WRITE(save_control, RTC_CONTROL); 565 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); 566 spin_unlock(&rtc_lock); 567 568 return retval; 569 } 570