xref: /openbmc/linux/arch/alpha/kernel/time.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  *  linux/arch/alpha/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
5  *
6  * This file contains the PC-specific time handling details:
7  * reading the RTC at bootup, etc..
8  * 1994-07-02    Alan Modra
9  *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1995-03-26    Markus Kuhn
11  *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12  *      precision CMOS clock update
13  * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
14  *		"A Kernel Model for Precision Timekeeping" by Dave Mills
15  * 1997-01-09    Adrian Sun
16  *      use interval timer if CONFIG_RTC=y
17  * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
18  *      fixed tick loss calculation in timer_interrupt
19  *      (round system clock to nearest tick instead of truncating)
20  *      fixed algorithm in time_init for getting time from CMOS clock
21  * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
22  *	fixed algorithm in do_gettimeofday() for calculating the precise time
23  *	from processor cycle counter (now taking lost_ticks into account)
24  * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de>
25  * 	Fixed time_init to be aware of epoches != 1900. This prevents
26  * 	booting up in 2048 for me;) Code is stolen from rtc.c.
27  * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
28  *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
29  */
30 #include <linux/errno.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/param.h>
35 #include <linux/string.h>
36 #include <linux/mm.h>
37 #include <linux/delay.h>
38 #include <linux/ioport.h>
39 #include <linux/irq.h>
40 #include <linux/interrupt.h>
41 #include <linux/init.h>
42 #include <linux/bcd.h>
43 #include <linux/profile.h>
44 
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <asm/hwrpb.h>
48 #include <asm/8253pit.h>
49 
50 #include <linux/mc146818rtc.h>
51 #include <linux/time.h>
52 #include <linux/timex.h>
53 
54 #include "proto.h"
55 #include "irq_impl.h"
56 
57 static int set_rtc_mmss(unsigned long);
58 
59 DEFINE_SPINLOCK(rtc_lock);
60 EXPORT_SYMBOL(rtc_lock);
61 
62 #define TICK_SIZE (tick_nsec / 1000)
63 
64 /*
65  * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
66  * by 48 gives us 16 bits for HZ while keeping the accuracy good even
67  * for large CPU clock rates.
68  */
69 #define FIX_SHIFT	48
70 
71 /* lump static variables together for more efficient access: */
72 static struct {
73 	/* cycle counter last time it got invoked */
74 	__u32 last_time;
75 	/* ticks/cycle * 2^48 */
76 	unsigned long scaled_ticks_per_cycle;
77 	/* last time the CMOS clock got updated */
78 	time_t last_rtc_update;
79 	/* partial unused tick */
80 	unsigned long partial_tick;
81 } state;
82 
83 unsigned long est_cycle_freq;
84 
85 
86 static inline __u32 rpcc(void)
87 {
88     __u32 result;
89     asm volatile ("rpcc %0" : "=r"(result));
90     return result;
91 }
92 
93 /*
94  * timer_interrupt() needs to keep up the real-time clock,
95  * as well as call the "do_timer()" routine every clocktick
96  */
97 irqreturn_t timer_interrupt(int irq, void *dev)
98 {
99 	unsigned long delta;
100 	__u32 now;
101 	long nticks;
102 
103 #ifndef CONFIG_SMP
104 	/* Not SMP, do kernel PC profiling here.  */
105 	profile_tick(CPU_PROFILING);
106 #endif
107 
108 	write_seqlock(&xtime_lock);
109 
110 	/*
111 	 * Calculate how many ticks have passed since the last update,
112 	 * including any previous partial leftover.  Save any resulting
113 	 * fraction for the next pass.
114 	 */
115 	now = rpcc();
116 	delta = now - state.last_time;
117 	state.last_time = now;
118 	delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
119 	state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
120 	nticks = delta >> FIX_SHIFT;
121 
122 	while (nticks > 0) {
123 		do_timer(1);
124 #ifndef CONFIG_SMP
125 		update_process_times(user_mode(get_irq_regs()));
126 #endif
127 		nticks--;
128 	}
129 
130 	/*
131 	 * If we have an externally synchronized Linux clock, then update
132 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
133 	 * called as close as possible to 500 ms before the new second starts.
134 	 */
135 	if (ntp_synced()
136 	    && xtime.tv_sec > state.last_rtc_update + 660
137 	    && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2
138 	    && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) {
139 		int tmp = set_rtc_mmss(xtime.tv_sec);
140 		state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0);
141 	}
142 
143 	write_sequnlock(&xtime_lock);
144 	return IRQ_HANDLED;
145 }
146 
147 void __init
148 common_init_rtc(void)
149 {
150 	unsigned char x;
151 
152 	/* Reset periodic interrupt frequency.  */
153 	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
154         /* Test includes known working values on various platforms
155            where 0x26 is wrong; we refuse to change those. */
156 	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
157 		printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
158 		CMOS_WRITE(0x26, RTC_FREQ_SELECT);
159 	}
160 
161 	/* Turn on periodic interrupts.  */
162 	x = CMOS_READ(RTC_CONTROL);
163 	if (!(x & RTC_PIE)) {
164 		printk("Turning on RTC interrupts.\n");
165 		x |= RTC_PIE;
166 		x &= ~(RTC_AIE | RTC_UIE);
167 		CMOS_WRITE(x, RTC_CONTROL);
168 	}
169 	(void) CMOS_READ(RTC_INTR_FLAGS);
170 
171 	outb(0x36, 0x43);	/* pit counter 0: system timer */
172 	outb(0x00, 0x40);
173 	outb(0x00, 0x40);
174 
175 	outb(0xb6, 0x43);	/* pit counter 2: speaker */
176 	outb(0x31, 0x42);
177 	outb(0x13, 0x42);
178 
179 	init_rtc_irq();
180 }
181 
182 
183 /* Validate a computed cycle counter result against the known bounds for
184    the given processor core.  There's too much brokenness in the way of
185    timing hardware for any one method to work everywhere.  :-(
186 
187    Return 0 if the result cannot be trusted, otherwise return the argument.  */
188 
189 static unsigned long __init
190 validate_cc_value(unsigned long cc)
191 {
192 	static struct bounds {
193 		unsigned int min, max;
194 	} cpu_hz[] __initdata = {
195 		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
196 		[EV4_CPU]    = {  100000000,  300000000 },
197 		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
198 		[EV45_CPU]   = {  200000000,  300000000 },
199 		[EV5_CPU]    = {  250000000,  433000000 },
200 		[EV56_CPU]   = {  333000000,  667000000 },
201 		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
202 		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
203 		[EV6_CPU]    = {  466000000,  600000000 },
204 		[EV67_CPU]   = {  600000000,  750000000 },
205 		[EV68AL_CPU] = {  750000000,  940000000 },
206 		[EV68CB_CPU] = { 1000000000, 1333333333 },
207 		/* None of the following are shipping as of 2001-11-01.  */
208 		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
209 		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
210 		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
211 		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
212 	};
213 
214 	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
215 	const unsigned int deviation = 10000000;
216 
217 	struct percpu_struct *cpu;
218 	unsigned int index;
219 
220 	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
221 	index = cpu->type & 0xffffffff;
222 
223 	/* If index out of bounds, no way to validate.  */
224 	if (index >= ARRAY_SIZE(cpu_hz))
225 		return cc;
226 
227 	/* If index contains no data, no way to validate.  */
228 	if (cpu_hz[index].max == 0)
229 		return cc;
230 
231 	if (cc < cpu_hz[index].min - deviation
232 	    || cc > cpu_hz[index].max + deviation)
233 		return 0;
234 
235 	return cc;
236 }
237 
238 
239 /*
240  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
241  * arch/i386/time.c.
242  */
243 
244 #define CALIBRATE_LATCH	0xffff
245 #define TIMEOUT_COUNT	0x100000
246 
247 static unsigned long __init
248 calibrate_cc_with_pit(void)
249 {
250 	int cc, count = 0;
251 
252 	/* Set the Gate high, disable speaker */
253 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
254 
255 	/*
256 	 * Now let's take care of CTC channel 2
257 	 *
258 	 * Set the Gate high, program CTC channel 2 for mode 0,
259 	 * (interrupt on terminal count mode), binary count,
260 	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
261 	 */
262 	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
263 	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
264 	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
265 
266 	cc = rpcc();
267 	do {
268 		count++;
269 	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
270 	cc = rpcc() - cc;
271 
272 	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
273 	if (count <= 1 || count == TIMEOUT_COUNT)
274 		return 0;
275 
276 	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
277 }
278 
279 /* The Linux interpretation of the CMOS clock register contents:
280    When the Update-In-Progress (UIP) flag goes from 1 to 0, the
281    RTC registers show the second which has precisely just started.
282    Let's hope other operating systems interpret the RTC the same way.  */
283 
284 static unsigned long __init
285 rpcc_after_update_in_progress(void)
286 {
287 	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
288 	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
289 
290 	return rpcc();
291 }
292 
293 void __init
294 time_init(void)
295 {
296 	unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch;
297 	unsigned long cycle_freq, tolerance;
298 	long diff;
299 
300 	/* Calibrate CPU clock -- attempt #1.  */
301 	if (!est_cycle_freq)
302 		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
303 
304 	cc1 = rpcc();
305 
306 	/* Calibrate CPU clock -- attempt #2.  */
307 	if (!est_cycle_freq) {
308 		cc1 = rpcc_after_update_in_progress();
309 		cc2 = rpcc_after_update_in_progress();
310 		est_cycle_freq = validate_cc_value(cc2 - cc1);
311 		cc1 = cc2;
312 	}
313 
314 	cycle_freq = hwrpb->cycle_freq;
315 	if (est_cycle_freq) {
316 		/* If the given value is within 250 PPM of what we calculated,
317 		   accept it.  Otherwise, use what we found.  */
318 		tolerance = cycle_freq / 4000;
319 		diff = cycle_freq - est_cycle_freq;
320 		if (diff < 0)
321 			diff = -diff;
322 		if ((unsigned long)diff > tolerance) {
323 			cycle_freq = est_cycle_freq;
324 			printk("HWRPB cycle frequency bogus.  "
325 			       "Estimated %lu Hz\n", cycle_freq);
326 		} else {
327 			est_cycle_freq = 0;
328 		}
329 	} else if (! validate_cc_value (cycle_freq)) {
330 		printk("HWRPB cycle frequency bogus, "
331 		       "and unable to estimate a proper value!\n");
332 	}
333 
334 	/* From John Bowman <bowman@math.ualberta.ca>: allow the values
335 	   to settle, as the Update-In-Progress bit going low isn't good
336 	   enough on some hardware.  2ms is our guess; we haven't found
337 	   bogomips yet, but this is close on a 500Mhz box.  */
338 	__delay(1000000);
339 
340 	sec = CMOS_READ(RTC_SECONDS);
341 	min = CMOS_READ(RTC_MINUTES);
342 	hour = CMOS_READ(RTC_HOURS);
343 	day = CMOS_READ(RTC_DAY_OF_MONTH);
344 	mon = CMOS_READ(RTC_MONTH);
345 	year = CMOS_READ(RTC_YEAR);
346 
347 	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
348 		BCD_TO_BIN(sec);
349 		BCD_TO_BIN(min);
350 		BCD_TO_BIN(hour);
351 		BCD_TO_BIN(day);
352 		BCD_TO_BIN(mon);
353 		BCD_TO_BIN(year);
354 	}
355 
356 	/* PC-like is standard; used for year >= 70 */
357 	epoch = 1900;
358 	if (year < 20)
359 		epoch = 2000;
360 	else if (year >= 20 && year < 48)
361 		/* NT epoch */
362 		epoch = 1980;
363 	else if (year >= 48 && year < 70)
364 		/* Digital UNIX epoch */
365 		epoch = 1952;
366 
367 	printk(KERN_INFO "Using epoch = %d\n", epoch);
368 
369 	if ((year += epoch) < 1970)
370 		year += 100;
371 
372 	xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
373 	xtime.tv_nsec = 0;
374 
375         wall_to_monotonic.tv_sec -= xtime.tv_sec;
376         wall_to_monotonic.tv_nsec = 0;
377 
378 	if (HZ > (1<<16)) {
379 		extern void __you_loose (void);
380 		__you_loose();
381 	}
382 
383 	state.last_time = cc1;
384 	state.scaled_ticks_per_cycle
385 		= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
386 	state.last_rtc_update = 0;
387 	state.partial_tick = 0L;
388 
389 	/* Startup the timer source. */
390 	alpha_mv.init_rtc();
391 }
392 
393 /*
394  * Use the cycle counter to estimate an displacement from the last time
395  * tick.  Unfortunately the Alpha designers made only the low 32-bits of
396  * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz
397  * part.  So we can't do the "find absolute time in terms of cycles" thing
398  * that the other ports do.
399  */
400 void
401 do_gettimeofday(struct timeval *tv)
402 {
403 	unsigned long flags;
404 	unsigned long sec, usec, seq;
405 	unsigned long delta_cycles, delta_usec, partial_tick;
406 
407 	do {
408 		seq = read_seqbegin_irqsave(&xtime_lock, flags);
409 
410 		delta_cycles = rpcc() - state.last_time;
411 		sec = xtime.tv_sec;
412 		usec = (xtime.tv_nsec / 1000);
413 		partial_tick = state.partial_tick;
414 
415 	} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
416 
417 #ifdef CONFIG_SMP
418 	/* Until and unless we figure out how to get cpu cycle counters
419 	   in sync and keep them there, we can't use the rpcc tricks.  */
420 	delta_usec = 0;
421 #else
422 	/*
423 	 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)
424 	 *	= cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)
425 	 *	= cycles * (s_t_p_c) * 15625 / (2**42 * ticks)
426 	 *
427 	 * which, given a 600MHz cycle and a 1024Hz tick, has a
428 	 * dynamic range of about 1.7e17, which is less than the
429 	 * 1.8e19 in an unsigned long, so we are safe from overflow.
430 	 *
431 	 * Round, but with .5 up always, since .5 to even is harder
432 	 * with no clear gain.
433 	 */
434 
435 	delta_usec = (delta_cycles * state.scaled_ticks_per_cycle
436 		      + partial_tick) * 15625;
437 	delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
438 #endif
439 
440 	usec += delta_usec;
441 	if (usec >= 1000000) {
442 		sec += 1;
443 		usec -= 1000000;
444 	}
445 
446 	tv->tv_sec = sec;
447 	tv->tv_usec = usec;
448 }
449 
450 EXPORT_SYMBOL(do_gettimeofday);
451 
452 int
453 do_settimeofday(struct timespec *tv)
454 {
455 	time_t wtm_sec, sec = tv->tv_sec;
456 	long wtm_nsec, nsec = tv->tv_nsec;
457 	unsigned long delta_nsec;
458 
459 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
460 		return -EINVAL;
461 
462 	write_seqlock_irq(&xtime_lock);
463 
464 	/* The offset that is added into time in do_gettimeofday above
465 	   must be subtracted out here to keep a coherent view of the
466 	   time.  Without this, a full-tick error is possible.  */
467 
468 #ifdef CONFIG_SMP
469 	delta_nsec = 0;
470 #else
471 	delta_nsec = rpcc() - state.last_time;
472 	delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle
473 		      + state.partial_tick) * 15625;
474 	delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
475 	delta_nsec *= 1000;
476 #endif
477 
478 	nsec -= delta_nsec;
479 
480 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
481 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
482 
483 	set_normalized_timespec(&xtime, sec, nsec);
484 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
485 
486 	ntp_clear();
487 
488 	write_sequnlock_irq(&xtime_lock);
489 	clock_was_set();
490 	return 0;
491 }
492 
493 EXPORT_SYMBOL(do_settimeofday);
494 
495 
496 /*
497  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
498  * called 500 ms after the second nowtime has started, because when
499  * nowtime is written into the registers of the CMOS clock, it will
500  * jump to the next second precisely 500 ms later. Check the Motorola
501  * MC146818A or Dallas DS12887 data sheet for details.
502  *
503  * BUG: This routine does not handle hour overflow properly; it just
504  *      sets the minutes. Usually you won't notice until after reboot!
505  */
506 
507 
508 static int
509 set_rtc_mmss(unsigned long nowtime)
510 {
511 	int retval = 0;
512 	int real_seconds, real_minutes, cmos_minutes;
513 	unsigned char save_control, save_freq_select;
514 
515 	/* irq are locally disabled here */
516 	spin_lock(&rtc_lock);
517 	/* Tell the clock it's being set */
518 	save_control = CMOS_READ(RTC_CONTROL);
519 	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
520 
521 	/* Stop and reset prescaler */
522 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
523 	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
524 
525 	cmos_minutes = CMOS_READ(RTC_MINUTES);
526 	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
527 		BCD_TO_BIN(cmos_minutes);
528 
529 	/*
530 	 * since we're only adjusting minutes and seconds,
531 	 * don't interfere with hour overflow. This avoids
532 	 * messing with unknown time zones but requires your
533 	 * RTC not to be off by more than 15 minutes
534 	 */
535 	real_seconds = nowtime % 60;
536 	real_minutes = nowtime / 60;
537 	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
538 		/* correct for half hour time zone */
539 		real_minutes += 30;
540 	}
541 	real_minutes %= 60;
542 
543 	if (abs(real_minutes - cmos_minutes) < 30) {
544 		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
545 			BIN_TO_BCD(real_seconds);
546 			BIN_TO_BCD(real_minutes);
547 		}
548 		CMOS_WRITE(real_seconds,RTC_SECONDS);
549 		CMOS_WRITE(real_minutes,RTC_MINUTES);
550 	} else {
551 		printk(KERN_WARNING
552 		       "set_rtc_mmss: can't update from %d to %d\n",
553 		       cmos_minutes, real_minutes);
554  		retval = -1;
555 	}
556 
557 	/* The following flags have to be released exactly in this order,
558 	 * otherwise the DS12887 (popular MC146818A clone with integrated
559 	 * battery and quartz) will not reset the oscillator and will not
560 	 * update precisely 500 ms later. You won't find this mentioned in
561 	 * the Dallas Semiconductor data sheets, but who believes data
562 	 * sheets anyway ...                           -- Markus Kuhn
563 	 */
564 	CMOS_WRITE(save_control, RTC_CONTROL);
565 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
566 	spin_unlock(&rtc_lock);
567 
568 	return retval;
569 }
570