xref: /openbmc/linux/arch/alpha/kernel/process.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  *  linux/arch/alpha/kernel/process.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the architecture-dependent parts of process handling.
9  */
10 
11 #include <linux/config.h>
12 #include <linux/errno.h>
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/smp.h>
18 #include <linux/smp_lock.h>
19 #include <linux/stddef.h>
20 #include <linux/unistd.h>
21 #include <linux/ptrace.h>
22 #include <linux/slab.h>
23 #include <linux/user.h>
24 #include <linux/a.out.h>
25 #include <linux/utsname.h>
26 #include <linux/time.h>
27 #include <linux/major.h>
28 #include <linux/stat.h>
29 #include <linux/mman.h>
30 #include <linux/elfcore.h>
31 #include <linux/reboot.h>
32 #include <linux/tty.h>
33 #include <linux/console.h>
34 
35 #include <asm/reg.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/pgtable.h>
40 #include <asm/hwrpb.h>
41 #include <asm/fpu.h>
42 
43 #include "proto.h"
44 #include "pci_impl.h"
45 
46 void default_idle(void)
47 {
48 	barrier();
49 }
50 
51 void
52 cpu_idle(void)
53 {
54 	while (1) {
55 		void (*idle)(void) = default_idle;
56 		/* FIXME -- EV6 and LCA45 know how to power down
57 		   the CPU.  */
58 
59 		while (!need_resched())
60 			idle();
61 		schedule();
62 	}
63 }
64 
65 
66 struct halt_info {
67 	int mode;
68 	char *restart_cmd;
69 };
70 
71 static void
72 common_shutdown_1(void *generic_ptr)
73 {
74 	struct halt_info *how = (struct halt_info *)generic_ptr;
75 	struct percpu_struct *cpup;
76 	unsigned long *pflags, flags;
77 	int cpuid = smp_processor_id();
78 
79 	/* No point in taking interrupts anymore. */
80 	local_irq_disable();
81 
82 	cpup = (struct percpu_struct *)
83 			((unsigned long)hwrpb + hwrpb->processor_offset
84 			 + hwrpb->processor_size * cpuid);
85 	pflags = &cpup->flags;
86 	flags = *pflags;
87 
88 	/* Clear reason to "default"; clear "bootstrap in progress". */
89 	flags &= ~0x00ff0001UL;
90 
91 #ifdef CONFIG_SMP
92 	/* Secondaries halt here. */
93 	if (cpuid != boot_cpuid) {
94 		flags |= 0x00040000UL; /* "remain halted" */
95 		*pflags = flags;
96 		clear_bit(cpuid, &cpu_present_mask);
97 		halt();
98 	}
99 #endif
100 
101 	if (how->mode == LINUX_REBOOT_CMD_RESTART) {
102 		if (!how->restart_cmd) {
103 			flags |= 0x00020000UL; /* "cold bootstrap" */
104 		} else {
105 			/* For SRM, we could probably set environment
106 			   variables to get this to work.  We'd have to
107 			   delay this until after srm_paging_stop unless
108 			   we ever got srm_fixup working.
109 
110 			   At the moment, SRM will use the last boot device,
111 			   but the file and flags will be the defaults, when
112 			   doing a "warm" bootstrap.  */
113 			flags |= 0x00030000UL; /* "warm bootstrap" */
114 		}
115 	} else {
116 		flags |= 0x00040000UL; /* "remain halted" */
117 	}
118 	*pflags = flags;
119 
120 #ifdef CONFIG_SMP
121 	/* Wait for the secondaries to halt. */
122 	cpu_clear(boot_cpuid, cpu_possible_map);
123 	while (cpus_weight(cpu_possible_map))
124 		barrier();
125 #endif
126 
127 	/* If booted from SRM, reset some of the original environment. */
128 	if (alpha_using_srm) {
129 #ifdef CONFIG_DUMMY_CONSOLE
130 		/* This has the effect of resetting the VGA video origin.  */
131 		take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
132 #endif
133 		pci_restore_srm_config();
134 		set_hae(srm_hae);
135 	}
136 
137 	if (alpha_mv.kill_arch)
138 		alpha_mv.kill_arch(how->mode);
139 
140 	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
141 		/* Unfortunately, since MILO doesn't currently understand
142 		   the hwrpb bits above, we can't reliably halt the
143 		   processor and keep it halted.  So just loop.  */
144 		return;
145 	}
146 
147 	if (alpha_using_srm)
148 		srm_paging_stop();
149 
150 	halt();
151 }
152 
153 static void
154 common_shutdown(int mode, char *restart_cmd)
155 {
156 	struct halt_info args;
157 	args.mode = mode;
158 	args.restart_cmd = restart_cmd;
159 	on_each_cpu(common_shutdown_1, &args, 1, 0);
160 }
161 
162 void
163 machine_restart(char *restart_cmd)
164 {
165 	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
166 }
167 
168 EXPORT_SYMBOL(machine_restart);
169 
170 void
171 machine_halt(void)
172 {
173 	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
174 }
175 
176 EXPORT_SYMBOL(machine_halt);
177 
178 void
179 machine_power_off(void)
180 {
181 	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
182 }
183 
184 EXPORT_SYMBOL(machine_power_off);
185 
186 /* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
187    saved in the context it's used.  */
188 
189 void
190 show_regs(struct pt_regs *regs)
191 {
192 	dik_show_regs(regs, NULL);
193 }
194 
195 /*
196  * Re-start a thread when doing execve()
197  */
198 void
199 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
200 {
201 	set_fs(USER_DS);
202 	regs->pc = pc;
203 	regs->ps = 8;
204 	wrusp(sp);
205 }
206 
207 /*
208  * Free current thread data structures etc..
209  */
210 void
211 exit_thread(void)
212 {
213 }
214 
215 void
216 flush_thread(void)
217 {
218 	/* Arrange for each exec'ed process to start off with a clean slate
219 	   with respect to the FPU.  This is all exceptions disabled.  */
220 	current_thread_info()->ieee_state = 0;
221 	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
222 
223 	/* Clean slate for TLS.  */
224 	current_thread_info()->pcb.unique = 0;
225 }
226 
227 void
228 release_thread(struct task_struct *dead_task)
229 {
230 }
231 
232 /*
233  * "alpha_clone()".. By the time we get here, the
234  * non-volatile registers have also been saved on the
235  * stack. We do some ugly pointer stuff here.. (see
236  * also copy_thread)
237  *
238  * Notice that "fork()" is implemented in terms of clone,
239  * with parameters (SIGCHLD, 0).
240  */
241 int
242 alpha_clone(unsigned long clone_flags, unsigned long usp,
243 	    int __user *parent_tid, int __user *child_tid,
244 	    unsigned long tls_value, struct pt_regs *regs)
245 {
246 	if (!usp)
247 		usp = rdusp();
248 
249 	return do_fork(clone_flags, usp, regs, 0, parent_tid, child_tid);
250 }
251 
252 int
253 alpha_vfork(struct pt_regs *regs)
254 {
255 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(),
256 		       regs, 0, NULL, NULL);
257 }
258 
259 /*
260  * Copy an alpha thread..
261  *
262  * Note the "stack_offset" stuff: when returning to kernel mode, we need
263  * to have some extra stack-space for the kernel stack that still exists
264  * after the "ret_from_fork".  When returning to user mode, we only want
265  * the space needed by the syscall stack frame (ie "struct pt_regs").
266  * Use the passed "regs" pointer to determine how much space we need
267  * for a kernel fork().
268  */
269 
270 int
271 copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
272 	    unsigned long unused,
273 	    struct task_struct * p, struct pt_regs * regs)
274 {
275 	extern void ret_from_fork(void);
276 
277 	struct thread_info *childti = p->thread_info;
278 	struct pt_regs * childregs;
279 	struct switch_stack * childstack, *stack;
280 	unsigned long stack_offset, settls;
281 
282 	stack_offset = PAGE_SIZE - sizeof(struct pt_regs);
283 	if (!(regs->ps & 8))
284 		stack_offset = (PAGE_SIZE-1) & (unsigned long) regs;
285 	childregs = (struct pt_regs *)
286 	  (stack_offset + PAGE_SIZE + (long) childti);
287 
288 	*childregs = *regs;
289 	settls = regs->r20;
290 	childregs->r0 = 0;
291 	childregs->r19 = 0;
292 	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */
293 	regs->r20 = 0;
294 	stack = ((struct switch_stack *) regs) - 1;
295 	childstack = ((struct switch_stack *) childregs) - 1;
296 	*childstack = *stack;
297 	childstack->r26 = (unsigned long) ret_from_fork;
298 	childti->pcb.usp = usp;
299 	childti->pcb.ksp = (unsigned long) childstack;
300 	childti->pcb.flags = 1;	/* set FEN, clear everything else */
301 
302 	/* Set a new TLS for the child thread?  Peek back into the
303 	   syscall arguments that we saved on syscall entry.  Oops,
304 	   except we'd have clobbered it with the parent/child set
305 	   of r20.  Read the saved copy.  */
306 	/* Note: if CLONE_SETTLS is not set, then we must inherit the
307 	   value from the parent, which will have been set by the block
308 	   copy in dup_task_struct.  This is non-intuitive, but is
309 	   required for proper operation in the case of a threaded
310 	   application calling fork.  */
311 	if (clone_flags & CLONE_SETTLS)
312 		childti->pcb.unique = settls;
313 
314 	return 0;
315 }
316 
317 /*
318  * Fill in the user structure for an ECOFF core dump.
319  */
320 void
321 dump_thread(struct pt_regs * pt, struct user * dump)
322 {
323 	/* switch stack follows right below pt_regs: */
324 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
325 
326 	dump->magic = CMAGIC;
327 	dump->start_code  = current->mm->start_code;
328 	dump->start_data  = current->mm->start_data;
329 	dump->start_stack = rdusp() & ~(PAGE_SIZE - 1);
330 	dump->u_tsize = ((current->mm->end_code - dump->start_code)
331 			 >> PAGE_SHIFT);
332 	dump->u_dsize = ((current->mm->brk + PAGE_SIZE-1 - dump->start_data)
333 			 >> PAGE_SHIFT);
334 	dump->u_ssize = (current->mm->start_stack - dump->start_stack
335 			 + PAGE_SIZE-1) >> PAGE_SHIFT;
336 
337 	/*
338 	 * We store the registers in an order/format that is
339 	 * compatible with DEC Unix/OSF/1 as this makes life easier
340 	 * for gdb.
341 	 */
342 	dump->regs[EF_V0]  = pt->r0;
343 	dump->regs[EF_T0]  = pt->r1;
344 	dump->regs[EF_T1]  = pt->r2;
345 	dump->regs[EF_T2]  = pt->r3;
346 	dump->regs[EF_T3]  = pt->r4;
347 	dump->regs[EF_T4]  = pt->r5;
348 	dump->regs[EF_T5]  = pt->r6;
349 	dump->regs[EF_T6]  = pt->r7;
350 	dump->regs[EF_T7]  = pt->r8;
351 	dump->regs[EF_S0]  = sw->r9;
352 	dump->regs[EF_S1]  = sw->r10;
353 	dump->regs[EF_S2]  = sw->r11;
354 	dump->regs[EF_S3]  = sw->r12;
355 	dump->regs[EF_S4]  = sw->r13;
356 	dump->regs[EF_S5]  = sw->r14;
357 	dump->regs[EF_S6]  = sw->r15;
358 	dump->regs[EF_A3]  = pt->r19;
359 	dump->regs[EF_A4]  = pt->r20;
360 	dump->regs[EF_A5]  = pt->r21;
361 	dump->regs[EF_T8]  = pt->r22;
362 	dump->regs[EF_T9]  = pt->r23;
363 	dump->regs[EF_T10] = pt->r24;
364 	dump->regs[EF_T11] = pt->r25;
365 	dump->regs[EF_RA]  = pt->r26;
366 	dump->regs[EF_T12] = pt->r27;
367 	dump->regs[EF_AT]  = pt->r28;
368 	dump->regs[EF_SP]  = rdusp();
369 	dump->regs[EF_PS]  = pt->ps;
370 	dump->regs[EF_PC]  = pt->pc;
371 	dump->regs[EF_GP]  = pt->gp;
372 	dump->regs[EF_A0]  = pt->r16;
373 	dump->regs[EF_A1]  = pt->r17;
374 	dump->regs[EF_A2]  = pt->r18;
375 	memcpy((char *)dump->regs + EF_SIZE, sw->fp, 32 * 8);
376 }
377 
378 /*
379  * Fill in the user structure for a ELF core dump.
380  */
381 void
382 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
383 {
384 	/* switch stack follows right below pt_regs: */
385 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
386 
387 	dest[ 0] = pt->r0;
388 	dest[ 1] = pt->r1;
389 	dest[ 2] = pt->r2;
390 	dest[ 3] = pt->r3;
391 	dest[ 4] = pt->r4;
392 	dest[ 5] = pt->r5;
393 	dest[ 6] = pt->r6;
394 	dest[ 7] = pt->r7;
395 	dest[ 8] = pt->r8;
396 	dest[ 9] = sw->r9;
397 	dest[10] = sw->r10;
398 	dest[11] = sw->r11;
399 	dest[12] = sw->r12;
400 	dest[13] = sw->r13;
401 	dest[14] = sw->r14;
402 	dest[15] = sw->r15;
403 	dest[16] = pt->r16;
404 	dest[17] = pt->r17;
405 	dest[18] = pt->r18;
406 	dest[19] = pt->r19;
407 	dest[20] = pt->r20;
408 	dest[21] = pt->r21;
409 	dest[22] = pt->r22;
410 	dest[23] = pt->r23;
411 	dest[24] = pt->r24;
412 	dest[25] = pt->r25;
413 	dest[26] = pt->r26;
414 	dest[27] = pt->r27;
415 	dest[28] = pt->r28;
416 	dest[29] = pt->gp;
417 	dest[30] = rdusp();
418 	dest[31] = pt->pc;
419 
420 	/* Once upon a time this was the PS value.  Which is stupid
421 	   since that is always 8 for usermode.  Usurped for the more
422 	   useful value of the thread's UNIQUE field.  */
423 	dest[32] = ti->pcb.unique;
424 }
425 
426 int
427 dump_elf_task(elf_greg_t *dest, struct task_struct *task)
428 {
429 	struct thread_info *ti;
430 	struct pt_regs *pt;
431 
432 	ti = task->thread_info;
433 	pt = (struct pt_regs *)((unsigned long)ti + 2*PAGE_SIZE) - 1;
434 
435 	dump_elf_thread(dest, pt, ti);
436 
437 	return 1;
438 }
439 
440 int
441 dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
442 {
443 	struct thread_info *ti;
444 	struct pt_regs *pt;
445 	struct switch_stack *sw;
446 
447 	ti = task->thread_info;
448 	pt = (struct pt_regs *)((unsigned long)ti + 2*PAGE_SIZE) - 1;
449 	sw = (struct switch_stack *)pt - 1;
450 
451 	memcpy(dest, sw->fp, 32 * 8);
452 
453 	return 1;
454 }
455 
456 /*
457  * sys_execve() executes a new program.
458  */
459 asmlinkage int
460 do_sys_execve(char __user *ufilename, char __user * __user *argv,
461 	      char __user * __user *envp, struct pt_regs *regs)
462 {
463 	int error;
464 	char *filename;
465 
466 	filename = getname(ufilename);
467 	error = PTR_ERR(filename);
468 	if (IS_ERR(filename))
469 		goto out;
470 	error = do_execve(filename, argv, envp, regs);
471 	putname(filename);
472 out:
473 	return error;
474 }
475 
476 /*
477  * Return saved PC of a blocked thread.  This assumes the frame
478  * pointer is the 6th saved long on the kernel stack and that the
479  * saved return address is the first long in the frame.  This all
480  * holds provided the thread blocked through a call to schedule() ($15
481  * is the frame pointer in schedule() and $15 is saved at offset 48 by
482  * entry.S:do_switch_stack).
483  *
484  * Under heavy swap load I've seen this lose in an ugly way.  So do
485  * some extra sanity checking on the ranges we expect these pointers
486  * to be in so that we can fail gracefully.  This is just for ps after
487  * all.  -- r~
488  */
489 
490 unsigned long
491 thread_saved_pc(task_t *t)
492 {
493 	unsigned long base = (unsigned long)t->thread_info;
494 	unsigned long fp, sp = t->thread_info->pcb.ksp;
495 
496 	if (sp > base && sp+6*8 < base + 16*1024) {
497 		fp = ((unsigned long*)sp)[6];
498 		if (fp > sp && fp < base + 16*1024)
499 			return *(unsigned long *)fp;
500 	}
501 
502 	return 0;
503 }
504 
505 unsigned long
506 get_wchan(struct task_struct *p)
507 {
508 	unsigned long schedule_frame;
509 	unsigned long pc;
510 	if (!p || p == current || p->state == TASK_RUNNING)
511 		return 0;
512 	/*
513 	 * This one depends on the frame size of schedule().  Do a
514 	 * "disass schedule" in gdb to find the frame size.  Also, the
515 	 * code assumes that sleep_on() follows immediately after
516 	 * interruptible_sleep_on() and that add_timer() follows
517 	 * immediately after interruptible_sleep().  Ugly, isn't it?
518 	 * Maybe adding a wchan field to task_struct would be better,
519 	 * after all...
520 	 */
521 
522 	pc = thread_saved_pc(p);
523 	if (in_sched_functions(pc)) {
524 		schedule_frame = ((unsigned long *)p->thread_info->pcb.ksp)[6];
525 		return ((unsigned long *)schedule_frame)[12];
526 	}
527 	return pc;
528 }
529