1# SPDX-License-Identifier: GPL-2.0 2# 3# General architecture dependent options 4# 5 6# 7# Note: arch/$(SRCARCH)/Kconfig needs to be included first so that it can 8# override the default values in this file. 9# 10source "arch/$(SRCARCH)/Kconfig" 11 12menu "General architecture-dependent options" 13 14config CRASH_CORE 15 bool 16 17config KEXEC_CORE 18 select CRASH_CORE 19 bool 20 21config KEXEC_ELF 22 bool 23 24config HAVE_IMA_KEXEC 25 bool 26 27config SET_FS 28 bool 29 30config HOTPLUG_SMT 31 bool 32 33config GENERIC_ENTRY 34 bool 35 36config KPROBES 37 bool "Kprobes" 38 depends on MODULES 39 depends on HAVE_KPROBES 40 select KALLSYMS 41 help 42 Kprobes allows you to trap at almost any kernel address and 43 execute a callback function. register_kprobe() establishes 44 a probepoint and specifies the callback. Kprobes is useful 45 for kernel debugging, non-intrusive instrumentation and testing. 46 If in doubt, say "N". 47 48config JUMP_LABEL 49 bool "Optimize very unlikely/likely branches" 50 depends on HAVE_ARCH_JUMP_LABEL 51 depends on CC_HAS_ASM_GOTO 52 help 53 This option enables a transparent branch optimization that 54 makes certain almost-always-true or almost-always-false branch 55 conditions even cheaper to execute within the kernel. 56 57 Certain performance-sensitive kernel code, such as trace points, 58 scheduler functionality, networking code and KVM have such 59 branches and include support for this optimization technique. 60 61 If it is detected that the compiler has support for "asm goto", 62 the kernel will compile such branches with just a nop 63 instruction. When the condition flag is toggled to true, the 64 nop will be converted to a jump instruction to execute the 65 conditional block of instructions. 66 67 This technique lowers overhead and stress on the branch prediction 68 of the processor and generally makes the kernel faster. The update 69 of the condition is slower, but those are always very rare. 70 71 ( On 32-bit x86, the necessary options added to the compiler 72 flags may increase the size of the kernel slightly. ) 73 74config STATIC_KEYS_SELFTEST 75 bool "Static key selftest" 76 depends on JUMP_LABEL 77 help 78 Boot time self-test of the branch patching code. 79 80config STATIC_CALL_SELFTEST 81 bool "Static call selftest" 82 depends on HAVE_STATIC_CALL 83 help 84 Boot time self-test of the call patching code. 85 86config OPTPROBES 87 def_bool y 88 depends on KPROBES && HAVE_OPTPROBES 89 select TASKS_RCU if PREEMPTION 90 91config KPROBES_ON_FTRACE 92 def_bool y 93 depends on KPROBES && HAVE_KPROBES_ON_FTRACE 94 depends on DYNAMIC_FTRACE_WITH_REGS 95 help 96 If function tracer is enabled and the arch supports full 97 passing of pt_regs to function tracing, then kprobes can 98 optimize on top of function tracing. 99 100config UPROBES 101 def_bool n 102 depends on ARCH_SUPPORTS_UPROBES 103 help 104 Uprobes is the user-space counterpart to kprobes: they 105 enable instrumentation applications (such as 'perf probe') 106 to establish unintrusive probes in user-space binaries and 107 libraries, by executing handler functions when the probes 108 are hit by user-space applications. 109 110 ( These probes come in the form of single-byte breakpoints, 111 managed by the kernel and kept transparent to the probed 112 application. ) 113 114config HAVE_64BIT_ALIGNED_ACCESS 115 def_bool 64BIT && !HAVE_EFFICIENT_UNALIGNED_ACCESS 116 help 117 Some architectures require 64 bit accesses to be 64 bit 118 aligned, which also requires structs containing 64 bit values 119 to be 64 bit aligned too. This includes some 32 bit 120 architectures which can do 64 bit accesses, as well as 64 bit 121 architectures without unaligned access. 122 123 This symbol should be selected by an architecture if 64 bit 124 accesses are required to be 64 bit aligned in this way even 125 though it is not a 64 bit architecture. 126 127 See Documentation/core-api/unaligned-memory-access.rst for 128 more information on the topic of unaligned memory accesses. 129 130config HAVE_EFFICIENT_UNALIGNED_ACCESS 131 bool 132 help 133 Some architectures are unable to perform unaligned accesses 134 without the use of get_unaligned/put_unaligned. Others are 135 unable to perform such accesses efficiently (e.g. trap on 136 unaligned access and require fixing it up in the exception 137 handler.) 138 139 This symbol should be selected by an architecture if it can 140 perform unaligned accesses efficiently to allow different 141 code paths to be selected for these cases. Some network 142 drivers, for example, could opt to not fix up alignment 143 problems with received packets if doing so would not help 144 much. 145 146 See Documentation/core-api/unaligned-memory-access.rst for more 147 information on the topic of unaligned memory accesses. 148 149config ARCH_USE_BUILTIN_BSWAP 150 bool 151 help 152 Modern versions of GCC (since 4.4) have builtin functions 153 for handling byte-swapping. Using these, instead of the old 154 inline assembler that the architecture code provides in the 155 __arch_bswapXX() macros, allows the compiler to see what's 156 happening and offers more opportunity for optimisation. In 157 particular, the compiler will be able to combine the byteswap 158 with a nearby load or store and use load-and-swap or 159 store-and-swap instructions if the architecture has them. It 160 should almost *never* result in code which is worse than the 161 hand-coded assembler in <asm/swab.h>. But just in case it 162 does, the use of the builtins is optional. 163 164 Any architecture with load-and-swap or store-and-swap 165 instructions should set this. And it shouldn't hurt to set it 166 on architectures that don't have such instructions. 167 168config KRETPROBES 169 def_bool y 170 depends on KPROBES && HAVE_KRETPROBES 171 172config USER_RETURN_NOTIFIER 173 bool 174 depends on HAVE_USER_RETURN_NOTIFIER 175 help 176 Provide a kernel-internal notification when a cpu is about to 177 switch to user mode. 178 179config HAVE_IOREMAP_PROT 180 bool 181 182config HAVE_KPROBES 183 bool 184 185config HAVE_KRETPROBES 186 bool 187 188config HAVE_OPTPROBES 189 bool 190 191config HAVE_KPROBES_ON_FTRACE 192 bool 193 194config HAVE_FUNCTION_ERROR_INJECTION 195 bool 196 197config HAVE_NMI 198 bool 199 200# 201# An arch should select this if it provides all these things: 202# 203# task_pt_regs() in asm/processor.h or asm/ptrace.h 204# arch_has_single_step() if there is hardware single-step support 205# arch_has_block_step() if there is hardware block-step support 206# asm/syscall.h supplying asm-generic/syscall.h interface 207# linux/regset.h user_regset interfaces 208# CORE_DUMP_USE_REGSET #define'd in linux/elf.h 209# TIF_SYSCALL_TRACE calls tracehook_report_syscall_{entry,exit} 210# TIF_NOTIFY_RESUME calls tracehook_notify_resume() 211# signal delivery calls tracehook_signal_handler() 212# 213config HAVE_ARCH_TRACEHOOK 214 bool 215 216config HAVE_DMA_CONTIGUOUS 217 bool 218 219config GENERIC_SMP_IDLE_THREAD 220 bool 221 222config GENERIC_IDLE_POLL_SETUP 223 bool 224 225config ARCH_HAS_FORTIFY_SOURCE 226 bool 227 help 228 An architecture should select this when it can successfully 229 build and run with CONFIG_FORTIFY_SOURCE. 230 231# 232# Select if the arch provides a historic keepinit alias for the retain_initrd 233# command line option 234# 235config ARCH_HAS_KEEPINITRD 236 bool 237 238# Select if arch has all set_memory_ro/rw/x/nx() functions in asm/cacheflush.h 239config ARCH_HAS_SET_MEMORY 240 bool 241 242# Select if arch has all set_direct_map_invalid/default() functions 243config ARCH_HAS_SET_DIRECT_MAP 244 bool 245 246# 247# Select if the architecture provides the arch_dma_set_uncached symbol to 248# either provide an uncached segment alias for a DMA allocation, or 249# to remap the page tables in place. 250# 251config ARCH_HAS_DMA_SET_UNCACHED 252 bool 253 254# 255# Select if the architectures provides the arch_dma_clear_uncached symbol 256# to undo an in-place page table remap for uncached access. 257# 258config ARCH_HAS_DMA_CLEAR_UNCACHED 259 bool 260 261# Select if arch init_task must go in the __init_task_data section 262config ARCH_TASK_STRUCT_ON_STACK 263 bool 264 265# Select if arch has its private alloc_task_struct() function 266config ARCH_TASK_STRUCT_ALLOCATOR 267 bool 268 269config HAVE_ARCH_THREAD_STRUCT_WHITELIST 270 bool 271 depends on !ARCH_TASK_STRUCT_ALLOCATOR 272 help 273 An architecture should select this to provide hardened usercopy 274 knowledge about what region of the thread_struct should be 275 whitelisted for copying to userspace. Normally this is only the 276 FPU registers. Specifically, arch_thread_struct_whitelist() 277 should be implemented. Without this, the entire thread_struct 278 field in task_struct will be left whitelisted. 279 280# Select if arch has its private alloc_thread_stack() function 281config ARCH_THREAD_STACK_ALLOCATOR 282 bool 283 284# Select if arch wants to size task_struct dynamically via arch_task_struct_size: 285config ARCH_WANTS_DYNAMIC_TASK_STRUCT 286 bool 287 288config ARCH_32BIT_OFF_T 289 bool 290 depends on !64BIT 291 help 292 All new 32-bit architectures should have 64-bit off_t type on 293 userspace side which corresponds to the loff_t kernel type. This 294 is the requirement for modern ABIs. Some existing architectures 295 still support 32-bit off_t. This option is enabled for all such 296 architectures explicitly. 297 298# Selected by 64 bit architectures which have a 32 bit f_tinode in struct ustat 299config ARCH_32BIT_USTAT_F_TINODE 300 bool 301 302config HAVE_ASM_MODVERSIONS 303 bool 304 help 305 This symbol should be selected by an architecture if it provides 306 <asm/asm-prototypes.h> to support the module versioning for symbols 307 exported from assembly code. 308 309config HAVE_REGS_AND_STACK_ACCESS_API 310 bool 311 help 312 This symbol should be selected by an architecture if it supports 313 the API needed to access registers and stack entries from pt_regs, 314 declared in asm/ptrace.h 315 For example the kprobes-based event tracer needs this API. 316 317config HAVE_RSEQ 318 bool 319 depends on HAVE_REGS_AND_STACK_ACCESS_API 320 help 321 This symbol should be selected by an architecture if it 322 supports an implementation of restartable sequences. 323 324config HAVE_FUNCTION_ARG_ACCESS_API 325 bool 326 help 327 This symbol should be selected by an architecture if it supports 328 the API needed to access function arguments from pt_regs, 329 declared in asm/ptrace.h 330 331config HAVE_HW_BREAKPOINT 332 bool 333 depends on PERF_EVENTS 334 335config HAVE_MIXED_BREAKPOINTS_REGS 336 bool 337 depends on HAVE_HW_BREAKPOINT 338 help 339 Depending on the arch implementation of hardware breakpoints, 340 some of them have separate registers for data and instruction 341 breakpoints addresses, others have mixed registers to store 342 them but define the access type in a control register. 343 Select this option if your arch implements breakpoints under the 344 latter fashion. 345 346config HAVE_USER_RETURN_NOTIFIER 347 bool 348 349config HAVE_PERF_EVENTS_NMI 350 bool 351 help 352 System hardware can generate an NMI using the perf event 353 subsystem. Also has support for calculating CPU cycle events 354 to determine how many clock cycles in a given period. 355 356config HAVE_HARDLOCKUP_DETECTOR_PERF 357 bool 358 depends on HAVE_PERF_EVENTS_NMI 359 help 360 The arch chooses to use the generic perf-NMI-based hardlockup 361 detector. Must define HAVE_PERF_EVENTS_NMI. 362 363config HAVE_NMI_WATCHDOG 364 depends on HAVE_NMI 365 bool 366 help 367 The arch provides a low level NMI watchdog. It provides 368 asm/nmi.h, and defines its own arch_touch_nmi_watchdog(). 369 370config HAVE_HARDLOCKUP_DETECTOR_ARCH 371 bool 372 select HAVE_NMI_WATCHDOG 373 help 374 The arch chooses to provide its own hardlockup detector, which is 375 a superset of the HAVE_NMI_WATCHDOG. It also conforms to config 376 interfaces and parameters provided by hardlockup detector subsystem. 377 378config HAVE_PERF_REGS 379 bool 380 help 381 Support selective register dumps for perf events. This includes 382 bit-mapping of each registers and a unique architecture id. 383 384config HAVE_PERF_USER_STACK_DUMP 385 bool 386 help 387 Support user stack dumps for perf event samples. This needs 388 access to the user stack pointer which is not unified across 389 architectures. 390 391config HAVE_ARCH_JUMP_LABEL 392 bool 393 394config HAVE_ARCH_JUMP_LABEL_RELATIVE 395 bool 396 397config MMU_GATHER_TABLE_FREE 398 bool 399 400config MMU_GATHER_RCU_TABLE_FREE 401 bool 402 select MMU_GATHER_TABLE_FREE 403 404config MMU_GATHER_PAGE_SIZE 405 bool 406 407config MMU_GATHER_NO_RANGE 408 bool 409 410config MMU_GATHER_NO_GATHER 411 bool 412 depends on MMU_GATHER_TABLE_FREE 413 414config ARCH_WANT_IRQS_OFF_ACTIVATE_MM 415 bool 416 help 417 Temporary select until all architectures can be converted to have 418 irqs disabled over activate_mm. Architectures that do IPI based TLB 419 shootdowns should enable this. 420 421config ARCH_HAVE_NMI_SAFE_CMPXCHG 422 bool 423 424config HAVE_ALIGNED_STRUCT_PAGE 425 bool 426 help 427 This makes sure that struct pages are double word aligned and that 428 e.g. the SLUB allocator can perform double word atomic operations 429 on a struct page for better performance. However selecting this 430 might increase the size of a struct page by a word. 431 432config HAVE_CMPXCHG_LOCAL 433 bool 434 435config HAVE_CMPXCHG_DOUBLE 436 bool 437 438config ARCH_WEAK_RELEASE_ACQUIRE 439 bool 440 441config ARCH_WANT_IPC_PARSE_VERSION 442 bool 443 444config ARCH_WANT_COMPAT_IPC_PARSE_VERSION 445 bool 446 447config ARCH_WANT_OLD_COMPAT_IPC 448 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION 449 bool 450 451config HAVE_ARCH_SECCOMP 452 bool 453 help 454 An arch should select this symbol to support seccomp mode 1 (the fixed 455 syscall policy), and must provide an overrides for __NR_seccomp_sigreturn, 456 and compat syscalls if the asm-generic/seccomp.h defaults need adjustment: 457 - __NR_seccomp_read_32 458 - __NR_seccomp_write_32 459 - __NR_seccomp_exit_32 460 - __NR_seccomp_sigreturn_32 461 462config HAVE_ARCH_SECCOMP_FILTER 463 bool 464 select HAVE_ARCH_SECCOMP 465 help 466 An arch should select this symbol if it provides all of these things: 467 - all the requirements for HAVE_ARCH_SECCOMP 468 - syscall_get_arch() 469 - syscall_get_arguments() 470 - syscall_rollback() 471 - syscall_set_return_value() 472 - SIGSYS siginfo_t support 473 - secure_computing is called from a ptrace_event()-safe context 474 - secure_computing return value is checked and a return value of -1 475 results in the system call being skipped immediately. 476 - seccomp syscall wired up 477 - if !HAVE_SPARSE_SYSCALL_NR, have SECCOMP_ARCH_NATIVE, 478 SECCOMP_ARCH_NATIVE_NR, SECCOMP_ARCH_NATIVE_NAME defined. If 479 COMPAT is supported, have the SECCOMP_ARCH_COMPAT* defines too. 480 481config SECCOMP 482 prompt "Enable seccomp to safely execute untrusted bytecode" 483 def_bool y 484 depends on HAVE_ARCH_SECCOMP 485 help 486 This kernel feature is useful for number crunching applications 487 that may need to handle untrusted bytecode during their 488 execution. By using pipes or other transports made available 489 to the process as file descriptors supporting the read/write 490 syscalls, it's possible to isolate those applications in their 491 own address space using seccomp. Once seccomp is enabled via 492 prctl(PR_SET_SECCOMP) or the seccomp() syscall, it cannot be 493 disabled and the task is only allowed to execute a few safe 494 syscalls defined by each seccomp mode. 495 496 If unsure, say Y. 497 498config SECCOMP_FILTER 499 def_bool y 500 depends on HAVE_ARCH_SECCOMP_FILTER && SECCOMP && NET 501 help 502 Enable tasks to build secure computing environments defined 503 in terms of Berkeley Packet Filter programs which implement 504 task-defined system call filtering polices. 505 506 See Documentation/userspace-api/seccomp_filter.rst for details. 507 508config SECCOMP_CACHE_DEBUG 509 bool "Show seccomp filter cache status in /proc/pid/seccomp_cache" 510 depends on SECCOMP_FILTER && !HAVE_SPARSE_SYSCALL_NR 511 depends on PROC_FS 512 help 513 This enables the /proc/pid/seccomp_cache interface to monitor 514 seccomp cache data. The file format is subject to change. Reading 515 the file requires CAP_SYS_ADMIN. 516 517 This option is for debugging only. Enabling presents the risk that 518 an adversary may be able to infer the seccomp filter logic. 519 520 If unsure, say N. 521 522config HAVE_ARCH_STACKLEAK 523 bool 524 help 525 An architecture should select this if it has the code which 526 fills the used part of the kernel stack with the STACKLEAK_POISON 527 value before returning from system calls. 528 529config HAVE_STACKPROTECTOR 530 bool 531 help 532 An arch should select this symbol if: 533 - it has implemented a stack canary (e.g. __stack_chk_guard) 534 535config STACKPROTECTOR 536 bool "Stack Protector buffer overflow detection" 537 depends on HAVE_STACKPROTECTOR 538 depends on $(cc-option,-fstack-protector) 539 default y 540 help 541 This option turns on the "stack-protector" GCC feature. This 542 feature puts, at the beginning of functions, a canary value on 543 the stack just before the return address, and validates 544 the value just before actually returning. Stack based buffer 545 overflows (that need to overwrite this return address) now also 546 overwrite the canary, which gets detected and the attack is then 547 neutralized via a kernel panic. 548 549 Functions will have the stack-protector canary logic added if they 550 have an 8-byte or larger character array on the stack. 551 552 This feature requires gcc version 4.2 or above, or a distribution 553 gcc with the feature backported ("-fstack-protector"). 554 555 On an x86 "defconfig" build, this feature adds canary checks to 556 about 3% of all kernel functions, which increases kernel code size 557 by about 0.3%. 558 559config STACKPROTECTOR_STRONG 560 bool "Strong Stack Protector" 561 depends on STACKPROTECTOR 562 depends on $(cc-option,-fstack-protector-strong) 563 default y 564 help 565 Functions will have the stack-protector canary logic added in any 566 of the following conditions: 567 568 - local variable's address used as part of the right hand side of an 569 assignment or function argument 570 - local variable is an array (or union containing an array), 571 regardless of array type or length 572 - uses register local variables 573 574 This feature requires gcc version 4.9 or above, or a distribution 575 gcc with the feature backported ("-fstack-protector-strong"). 576 577 On an x86 "defconfig" build, this feature adds canary checks to 578 about 20% of all kernel functions, which increases the kernel code 579 size by about 2%. 580 581config ARCH_SUPPORTS_SHADOW_CALL_STACK 582 bool 583 help 584 An architecture should select this if it supports Clang's Shadow 585 Call Stack and implements runtime support for shadow stack 586 switching. 587 588config SHADOW_CALL_STACK 589 bool "Clang Shadow Call Stack" 590 depends on CC_IS_CLANG && ARCH_SUPPORTS_SHADOW_CALL_STACK 591 depends on DYNAMIC_FTRACE_WITH_REGS || !FUNCTION_GRAPH_TRACER 592 help 593 This option enables Clang's Shadow Call Stack, which uses a 594 shadow stack to protect function return addresses from being 595 overwritten by an attacker. More information can be found in 596 Clang's documentation: 597 598 https://clang.llvm.org/docs/ShadowCallStack.html 599 600 Note that security guarantees in the kernel differ from the 601 ones documented for user space. The kernel must store addresses 602 of shadow stacks in memory, which means an attacker capable of 603 reading and writing arbitrary memory may be able to locate them 604 and hijack control flow by modifying the stacks. 605 606config HAVE_ARCH_WITHIN_STACK_FRAMES 607 bool 608 help 609 An architecture should select this if it can walk the kernel stack 610 frames to determine if an object is part of either the arguments 611 or local variables (i.e. that it excludes saved return addresses, 612 and similar) by implementing an inline arch_within_stack_frames(), 613 which is used by CONFIG_HARDENED_USERCOPY. 614 615config HAVE_CONTEXT_TRACKING 616 bool 617 help 618 Provide kernel/user boundaries probes necessary for subsystems 619 that need it, such as userspace RCU extended quiescent state. 620 Syscalls need to be wrapped inside user_exit()-user_enter(), either 621 optimized behind static key or through the slow path using TIF_NOHZ 622 flag. Exceptions handlers must be wrapped as well. Irqs are already 623 protected inside rcu_irq_enter/rcu_irq_exit() but preemption or signal 624 handling on irq exit still need to be protected. 625 626config HAVE_CONTEXT_TRACKING_OFFSTACK 627 bool 628 help 629 Architecture neither relies on exception_enter()/exception_exit() 630 nor on schedule_user(). Also preempt_schedule_notrace() and 631 preempt_schedule_irq() can't be called in a preemptible section 632 while context tracking is CONTEXT_USER. This feature reflects a sane 633 entry implementation where the following requirements are met on 634 critical entry code, ie: before user_exit() or after user_enter(): 635 636 - Critical entry code isn't preemptible (or better yet: 637 not interruptible). 638 - No use of RCU read side critical sections, unless rcu_nmi_enter() 639 got called. 640 - No use of instrumentation, unless instrumentation_begin() got 641 called. 642 643config HAVE_TIF_NOHZ 644 bool 645 help 646 Arch relies on TIF_NOHZ and syscall slow path to implement context 647 tracking calls to user_enter()/user_exit(). 648 649config HAVE_VIRT_CPU_ACCOUNTING 650 bool 651 652config HAVE_VIRT_CPU_ACCOUNTING_IDLE 653 bool 654 help 655 Architecture has its own way to account idle CPU time and therefore 656 doesn't implement vtime_account_idle(). 657 658config ARCH_HAS_SCALED_CPUTIME 659 bool 660 661config HAVE_VIRT_CPU_ACCOUNTING_GEN 662 bool 663 default y if 64BIT 664 help 665 With VIRT_CPU_ACCOUNTING_GEN, cputime_t becomes 64-bit. 666 Before enabling this option, arch code must be audited 667 to ensure there are no races in concurrent read/write of 668 cputime_t. For example, reading/writing 64-bit cputime_t on 669 some 32-bit arches may require multiple accesses, so proper 670 locking is needed to protect against concurrent accesses. 671 672config HAVE_IRQ_TIME_ACCOUNTING 673 bool 674 help 675 Archs need to ensure they use a high enough resolution clock to 676 support irq time accounting and then call enable_sched_clock_irqtime(). 677 678config HAVE_MOVE_PUD 679 bool 680 help 681 Architectures that select this are able to move page tables at the 682 PUD level. If there are only 3 page table levels, the move effectively 683 happens at the PGD level. 684 685config HAVE_MOVE_PMD 686 bool 687 help 688 Archs that select this are able to move page tables at the PMD level. 689 690config HAVE_ARCH_TRANSPARENT_HUGEPAGE 691 bool 692 693config HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 694 bool 695 696config HAVE_ARCH_HUGE_VMAP 697 bool 698 699config ARCH_WANT_HUGE_PMD_SHARE 700 bool 701 702config HAVE_ARCH_SOFT_DIRTY 703 bool 704 705config HAVE_MOD_ARCH_SPECIFIC 706 bool 707 help 708 The arch uses struct mod_arch_specific to store data. Many arches 709 just need a simple module loader without arch specific data - those 710 should not enable this. 711 712config MODULES_USE_ELF_RELA 713 bool 714 help 715 Modules only use ELF RELA relocations. Modules with ELF REL 716 relocations will give an error. 717 718config MODULES_USE_ELF_REL 719 bool 720 help 721 Modules only use ELF REL relocations. Modules with ELF RELA 722 relocations will give an error. 723 724config HAVE_IRQ_EXIT_ON_IRQ_STACK 725 bool 726 help 727 Architecture doesn't only execute the irq handler on the irq stack 728 but also irq_exit(). This way we can process softirqs on this irq 729 stack instead of switching to a new one when we call __do_softirq() 730 in the end of an hardirq. 731 This spares a stack switch and improves cache usage on softirq 732 processing. 733 734config PGTABLE_LEVELS 735 int 736 default 2 737 738config ARCH_HAS_ELF_RANDOMIZE 739 bool 740 help 741 An architecture supports choosing randomized locations for 742 stack, mmap, brk, and ET_DYN. Defined functions: 743 - arch_mmap_rnd() 744 - arch_randomize_brk() 745 746config HAVE_ARCH_MMAP_RND_BITS 747 bool 748 help 749 An arch should select this symbol if it supports setting a variable 750 number of bits for use in establishing the base address for mmap 751 allocations, has MMU enabled and provides values for both: 752 - ARCH_MMAP_RND_BITS_MIN 753 - ARCH_MMAP_RND_BITS_MAX 754 755config HAVE_EXIT_THREAD 756 bool 757 help 758 An architecture implements exit_thread. 759 760config ARCH_MMAP_RND_BITS_MIN 761 int 762 763config ARCH_MMAP_RND_BITS_MAX 764 int 765 766config ARCH_MMAP_RND_BITS_DEFAULT 767 int 768 769config ARCH_MMAP_RND_BITS 770 int "Number of bits to use for ASLR of mmap base address" if EXPERT 771 range ARCH_MMAP_RND_BITS_MIN ARCH_MMAP_RND_BITS_MAX 772 default ARCH_MMAP_RND_BITS_DEFAULT if ARCH_MMAP_RND_BITS_DEFAULT 773 default ARCH_MMAP_RND_BITS_MIN 774 depends on HAVE_ARCH_MMAP_RND_BITS 775 help 776 This value can be used to select the number of bits to use to 777 determine the random offset to the base address of vma regions 778 resulting from mmap allocations. This value will be bounded 779 by the architecture's minimum and maximum supported values. 780 781 This value can be changed after boot using the 782 /proc/sys/vm/mmap_rnd_bits tunable 783 784config HAVE_ARCH_MMAP_RND_COMPAT_BITS 785 bool 786 help 787 An arch should select this symbol if it supports running applications 788 in compatibility mode, supports setting a variable number of bits for 789 use in establishing the base address for mmap allocations, has MMU 790 enabled and provides values for both: 791 - ARCH_MMAP_RND_COMPAT_BITS_MIN 792 - ARCH_MMAP_RND_COMPAT_BITS_MAX 793 794config ARCH_MMAP_RND_COMPAT_BITS_MIN 795 int 796 797config ARCH_MMAP_RND_COMPAT_BITS_MAX 798 int 799 800config ARCH_MMAP_RND_COMPAT_BITS_DEFAULT 801 int 802 803config ARCH_MMAP_RND_COMPAT_BITS 804 int "Number of bits to use for ASLR of mmap base address for compatible applications" if EXPERT 805 range ARCH_MMAP_RND_COMPAT_BITS_MIN ARCH_MMAP_RND_COMPAT_BITS_MAX 806 default ARCH_MMAP_RND_COMPAT_BITS_DEFAULT if ARCH_MMAP_RND_COMPAT_BITS_DEFAULT 807 default ARCH_MMAP_RND_COMPAT_BITS_MIN 808 depends on HAVE_ARCH_MMAP_RND_COMPAT_BITS 809 help 810 This value can be used to select the number of bits to use to 811 determine the random offset to the base address of vma regions 812 resulting from mmap allocations for compatible applications This 813 value will be bounded by the architecture's minimum and maximum 814 supported values. 815 816 This value can be changed after boot using the 817 /proc/sys/vm/mmap_rnd_compat_bits tunable 818 819config HAVE_ARCH_COMPAT_MMAP_BASES 820 bool 821 help 822 This allows 64bit applications to invoke 32-bit mmap() syscall 823 and vice-versa 32-bit applications to call 64-bit mmap(). 824 Required for applications doing different bitness syscalls. 825 826# This allows to use a set of generic functions to determine mmap base 827# address by giving priority to top-down scheme only if the process 828# is not in legacy mode (compat task, unlimited stack size or 829# sysctl_legacy_va_layout). 830# Architecture that selects this option can provide its own version of: 831# - STACK_RND_MASK 832config ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 833 bool 834 depends on MMU 835 select ARCH_HAS_ELF_RANDOMIZE 836 837config HAVE_STACK_VALIDATION 838 bool 839 help 840 Architecture supports the 'objtool check' host tool command, which 841 performs compile-time stack metadata validation. 842 843config HAVE_RELIABLE_STACKTRACE 844 bool 845 help 846 Architecture has either save_stack_trace_tsk_reliable() or 847 arch_stack_walk_reliable() function which only returns a stack trace 848 if it can guarantee the trace is reliable. 849 850config HAVE_ARCH_HASH 851 bool 852 default n 853 help 854 If this is set, the architecture provides an <asm/hash.h> 855 file which provides platform-specific implementations of some 856 functions in <linux/hash.h> or fs/namei.c. 857 858config HAVE_ARCH_NVRAM_OPS 859 bool 860 861config ISA_BUS_API 862 def_bool ISA 863 864# 865# ABI hall of shame 866# 867config CLONE_BACKWARDS 868 bool 869 help 870 Architecture has tls passed as the 4th argument of clone(2), 871 not the 5th one. 872 873config CLONE_BACKWARDS2 874 bool 875 help 876 Architecture has the first two arguments of clone(2) swapped. 877 878config CLONE_BACKWARDS3 879 bool 880 help 881 Architecture has tls passed as the 3rd argument of clone(2), 882 not the 5th one. 883 884config ODD_RT_SIGACTION 885 bool 886 help 887 Architecture has unusual rt_sigaction(2) arguments 888 889config OLD_SIGSUSPEND 890 bool 891 help 892 Architecture has old sigsuspend(2) syscall, of one-argument variety 893 894config OLD_SIGSUSPEND3 895 bool 896 help 897 Even weirder antique ABI - three-argument sigsuspend(2) 898 899config OLD_SIGACTION 900 bool 901 help 902 Architecture has old sigaction(2) syscall. Nope, not the same 903 as OLD_SIGSUSPEND | OLD_SIGSUSPEND3 - alpha has sigsuspend(2), 904 but fairly different variant of sigaction(2), thanks to OSF/1 905 compatibility... 906 907config COMPAT_OLD_SIGACTION 908 bool 909 910config COMPAT_32BIT_TIME 911 bool "Provide system calls for 32-bit time_t" 912 default !64BIT || COMPAT 913 help 914 This enables 32 bit time_t support in addition to 64 bit time_t support. 915 This is relevant on all 32-bit architectures, and 64-bit architectures 916 as part of compat syscall handling. 917 918config ARCH_NO_PREEMPT 919 bool 920 921config ARCH_SUPPORTS_RT 922 bool 923 924config CPU_NO_EFFICIENT_FFS 925 def_bool n 926 927config HAVE_ARCH_VMAP_STACK 928 def_bool n 929 help 930 An arch should select this symbol if it can support kernel stacks 931 in vmalloc space. This means: 932 933 - vmalloc space must be large enough to hold many kernel stacks. 934 This may rule out many 32-bit architectures. 935 936 - Stacks in vmalloc space need to work reliably. For example, if 937 vmap page tables are created on demand, either this mechanism 938 needs to work while the stack points to a virtual address with 939 unpopulated page tables or arch code (switch_to() and switch_mm(), 940 most likely) needs to ensure that the stack's page table entries 941 are populated before running on a possibly unpopulated stack. 942 943 - If the stack overflows into a guard page, something reasonable 944 should happen. The definition of "reasonable" is flexible, but 945 instantly rebooting without logging anything would be unfriendly. 946 947config VMAP_STACK 948 default y 949 bool "Use a virtually-mapped stack" 950 depends on HAVE_ARCH_VMAP_STACK 951 depends on !KASAN || KASAN_HW_TAGS || KASAN_VMALLOC 952 help 953 Enable this if you want the use virtually-mapped kernel stacks 954 with guard pages. This causes kernel stack overflows to be 955 caught immediately rather than causing difficult-to-diagnose 956 corruption. 957 958 To use this with software KASAN modes, the architecture must support 959 backing virtual mappings with real shadow memory, and KASAN_VMALLOC 960 must be enabled. 961 962config ARCH_OPTIONAL_KERNEL_RWX 963 def_bool n 964 965config ARCH_OPTIONAL_KERNEL_RWX_DEFAULT 966 def_bool n 967 968config ARCH_HAS_STRICT_KERNEL_RWX 969 def_bool n 970 971config STRICT_KERNEL_RWX 972 bool "Make kernel text and rodata read-only" if ARCH_OPTIONAL_KERNEL_RWX 973 depends on ARCH_HAS_STRICT_KERNEL_RWX 974 default !ARCH_OPTIONAL_KERNEL_RWX || ARCH_OPTIONAL_KERNEL_RWX_DEFAULT 975 help 976 If this is set, kernel text and rodata memory will be made read-only, 977 and non-text memory will be made non-executable. This provides 978 protection against certain security exploits (e.g. executing the heap 979 or modifying text) 980 981 These features are considered standard security practice these days. 982 You should say Y here in almost all cases. 983 984config ARCH_HAS_STRICT_MODULE_RWX 985 def_bool n 986 987config STRICT_MODULE_RWX 988 bool "Set loadable kernel module data as NX and text as RO" if ARCH_OPTIONAL_KERNEL_RWX 989 depends on ARCH_HAS_STRICT_MODULE_RWX && MODULES 990 default !ARCH_OPTIONAL_KERNEL_RWX || ARCH_OPTIONAL_KERNEL_RWX_DEFAULT 991 help 992 If this is set, module text and rodata memory will be made read-only, 993 and non-text memory will be made non-executable. This provides 994 protection against certain security exploits (e.g. writing to text) 995 996# select if the architecture provides an asm/dma-direct.h header 997config ARCH_HAS_PHYS_TO_DMA 998 bool 999 1000config HAVE_ARCH_COMPILER_H 1001 bool 1002 help 1003 An architecture can select this if it provides an 1004 asm/compiler.h header that should be included after 1005 linux/compiler-*.h in order to override macro definitions that those 1006 headers generally provide. 1007 1008config HAVE_ARCH_PREL32_RELOCATIONS 1009 bool 1010 help 1011 May be selected by an architecture if it supports place-relative 1012 32-bit relocations, both in the toolchain and in the module loader, 1013 in which case relative references can be used in special sections 1014 for PCI fixup, initcalls etc which are only half the size on 64 bit 1015 architectures, and don't require runtime relocation on relocatable 1016 kernels. 1017 1018config ARCH_USE_MEMREMAP_PROT 1019 bool 1020 1021config LOCK_EVENT_COUNTS 1022 bool "Locking event counts collection" 1023 depends on DEBUG_FS 1024 help 1025 Enable light-weight counting of various locking related events 1026 in the system with minimal performance impact. This reduces 1027 the chance of application behavior change because of timing 1028 differences. The counts are reported via debugfs. 1029 1030# Select if the architecture has support for applying RELR relocations. 1031config ARCH_HAS_RELR 1032 bool 1033 1034config RELR 1035 bool "Use RELR relocation packing" 1036 depends on ARCH_HAS_RELR && TOOLS_SUPPORT_RELR 1037 default y 1038 help 1039 Store the kernel's dynamic relocations in the RELR relocation packing 1040 format. Requires a compatible linker (LLD supports this feature), as 1041 well as compatible NM and OBJCOPY utilities (llvm-nm and llvm-objcopy 1042 are compatible). 1043 1044config ARCH_HAS_MEM_ENCRYPT 1045 bool 1046 1047config HAVE_SPARSE_SYSCALL_NR 1048 bool 1049 help 1050 An architecture should select this if its syscall numbering is sparse 1051 to save space. For example, MIPS architecture has a syscall array with 1052 entries at 4000, 5000 and 6000 locations. This option turns on syscall 1053 related optimizations for a given architecture. 1054 1055config ARCH_HAS_VDSO_DATA 1056 bool 1057 1058config HAVE_STATIC_CALL 1059 bool 1060 1061config HAVE_STATIC_CALL_INLINE 1062 bool 1063 depends on HAVE_STATIC_CALL 1064 1065config HAVE_PREEMPT_DYNAMIC 1066 bool 1067 depends on HAVE_STATIC_CALL 1068 depends on GENERIC_ENTRY 1069 help 1070 Select this if the architecture support boot time preempt setting 1071 on top of static calls. It is strongly advised to support inline 1072 static call to avoid any overhead. 1073 1074config ARCH_WANT_LD_ORPHAN_WARN 1075 bool 1076 help 1077 An arch should select this symbol once all linker sections are explicitly 1078 included, size-asserted, or discarded in the linker scripts. This is 1079 important because we never want expected sections to be placed heuristically 1080 by the linker, since the locations of such sections can change between linker 1081 versions. 1082 1083config HAVE_ARCH_PFN_VALID 1084 bool 1085 1086config ARCH_SUPPORTS_DEBUG_PAGEALLOC 1087 bool 1088 1089config ARCH_SPLIT_ARG64 1090 bool 1091 help 1092 If a 32-bit architecture requires 64-bit arguments to be split into 1093 pairs of 32-bit arguments, select this option. 1094 1095config ARCH_HAS_ELFCORE_COMPAT 1096 bool 1097 1098source "kernel/gcov/Kconfig" 1099 1100source "scripts/gcc-plugins/Kconfig" 1101 1102endmenu 1103