1*63893472SMauro Carvalho Chehab.. SPDX-License-Identifier: GPL-2.0 2*63893472SMauro Carvalho Chehab 3*63893472SMauro Carvalho Chehab============================================= 4*63893472SMauro Carvalho ChehabOpen vSwitch datapath developer documentation 5*63893472SMauro Carvalho Chehab============================================= 6*63893472SMauro Carvalho Chehab 7*63893472SMauro Carvalho ChehabThe Open vSwitch kernel module allows flexible userspace control over 8*63893472SMauro Carvalho Chehabflow-level packet processing on selected network devices. It can be 9*63893472SMauro Carvalho Chehabused to implement a plain Ethernet switch, network device bonding, 10*63893472SMauro Carvalho ChehabVLAN processing, network access control, flow-based network control, 11*63893472SMauro Carvalho Chehaband so on. 12*63893472SMauro Carvalho Chehab 13*63893472SMauro Carvalho ChehabThe kernel module implements multiple "datapaths" (analogous to 14*63893472SMauro Carvalho Chehabbridges), each of which can have multiple "vports" (analogous to ports 15*63893472SMauro Carvalho Chehabwithin a bridge). Each datapath also has associated with it a "flow 16*63893472SMauro Carvalho Chehabtable" that userspace populates with "flows" that map from keys based 17*63893472SMauro Carvalho Chehabon packet headers and metadata to sets of actions. The most common 18*63893472SMauro Carvalho Chehabaction forwards the packet to another vport; other actions are also 19*63893472SMauro Carvalho Chehabimplemented. 20*63893472SMauro Carvalho Chehab 21*63893472SMauro Carvalho ChehabWhen a packet arrives on a vport, the kernel module processes it by 22*63893472SMauro Carvalho Chehabextracting its flow key and looking it up in the flow table. If there 23*63893472SMauro Carvalho Chehabis a matching flow, it executes the associated actions. If there is 24*63893472SMauro Carvalho Chehabno match, it queues the packet to userspace for processing (as part of 25*63893472SMauro Carvalho Chehabits processing, userspace will likely set up a flow to handle further 26*63893472SMauro Carvalho Chehabpackets of the same type entirely in-kernel). 27*63893472SMauro Carvalho Chehab 28*63893472SMauro Carvalho Chehab 29*63893472SMauro Carvalho ChehabFlow key compatibility 30*63893472SMauro Carvalho Chehab---------------------- 31*63893472SMauro Carvalho Chehab 32*63893472SMauro Carvalho ChehabNetwork protocols evolve over time. New protocols become important 33*63893472SMauro Carvalho Chehaband existing protocols lose their prominence. For the Open vSwitch 34*63893472SMauro Carvalho Chehabkernel module to remain relevant, it must be possible for newer 35*63893472SMauro Carvalho Chehabversions to parse additional protocols as part of the flow key. It 36*63893472SMauro Carvalho Chehabmight even be desirable, someday, to drop support for parsing 37*63893472SMauro Carvalho Chehabprotocols that have become obsolete. Therefore, the Netlink interface 38*63893472SMauro Carvalho Chehabto Open vSwitch is designed to allow carefully written userspace 39*63893472SMauro Carvalho Chehabapplications to work with any version of the flow key, past or future. 40*63893472SMauro Carvalho Chehab 41*63893472SMauro Carvalho ChehabTo support this forward and backward compatibility, whenever the 42*63893472SMauro Carvalho Chehabkernel module passes a packet to userspace, it also passes along the 43*63893472SMauro Carvalho Chehabflow key that it parsed from the packet. Userspace then extracts its 44*63893472SMauro Carvalho Chehabown notion of a flow key from the packet and compares it against the 45*63893472SMauro Carvalho Chehabkernel-provided version: 46*63893472SMauro Carvalho Chehab 47*63893472SMauro Carvalho Chehab - If userspace's notion of the flow key for the packet matches the 48*63893472SMauro Carvalho Chehab kernel's, then nothing special is necessary. 49*63893472SMauro Carvalho Chehab 50*63893472SMauro Carvalho Chehab - If the kernel's flow key includes more fields than the userspace 51*63893472SMauro Carvalho Chehab version of the flow key, for example if the kernel decoded IPv6 52*63893472SMauro Carvalho Chehab headers but userspace stopped at the Ethernet type (because it 53*63893472SMauro Carvalho Chehab does not understand IPv6), then again nothing special is 54*63893472SMauro Carvalho Chehab necessary. Userspace can still set up a flow in the usual way, 55*63893472SMauro Carvalho Chehab as long as it uses the kernel-provided flow key to do it. 56*63893472SMauro Carvalho Chehab 57*63893472SMauro Carvalho Chehab - If the userspace flow key includes more fields than the 58*63893472SMauro Carvalho Chehab kernel's, for example if userspace decoded an IPv6 header but 59*63893472SMauro Carvalho Chehab the kernel stopped at the Ethernet type, then userspace can 60*63893472SMauro Carvalho Chehab forward the packet manually, without setting up a flow in the 61*63893472SMauro Carvalho Chehab kernel. This case is bad for performance because every packet 62*63893472SMauro Carvalho Chehab that the kernel considers part of the flow must go to userspace, 63*63893472SMauro Carvalho Chehab but the forwarding behavior is correct. (If userspace can 64*63893472SMauro Carvalho Chehab determine that the values of the extra fields would not affect 65*63893472SMauro Carvalho Chehab forwarding behavior, then it could set up a flow anyway.) 66*63893472SMauro Carvalho Chehab 67*63893472SMauro Carvalho ChehabHow flow keys evolve over time is important to making this work, so 68*63893472SMauro Carvalho Chehabthe following sections go into detail. 69*63893472SMauro Carvalho Chehab 70*63893472SMauro Carvalho Chehab 71*63893472SMauro Carvalho ChehabFlow key format 72*63893472SMauro Carvalho Chehab--------------- 73*63893472SMauro Carvalho Chehab 74*63893472SMauro Carvalho ChehabA flow key is passed over a Netlink socket as a sequence of Netlink 75*63893472SMauro Carvalho Chehabattributes. Some attributes represent packet metadata, defined as any 76*63893472SMauro Carvalho Chehabinformation about a packet that cannot be extracted from the packet 77*63893472SMauro Carvalho Chehabitself, e.g. the vport on which the packet was received. Most 78*63893472SMauro Carvalho Chehabattributes, however, are extracted from headers within the packet, 79*63893472SMauro Carvalho Chehabe.g. source and destination addresses from Ethernet, IP, or TCP 80*63893472SMauro Carvalho Chehabheaders. 81*63893472SMauro Carvalho Chehab 82*63893472SMauro Carvalho ChehabThe <linux/openvswitch.h> header file defines the exact format of the 83*63893472SMauro Carvalho Chehabflow key attributes. For informal explanatory purposes here, we write 84*63893472SMauro Carvalho Chehabthem as comma-separated strings, with parentheses indicating arguments 85*63893472SMauro Carvalho Chehaband nesting. For example, the following could represent a flow key 86*63893472SMauro Carvalho Chehabcorresponding to a TCP packet that arrived on vport 1:: 87*63893472SMauro Carvalho Chehab 88*63893472SMauro Carvalho Chehab in_port(1), eth(src=e0:91:f5:21:d0:b2, dst=00:02:e3:0f:80:a4), 89*63893472SMauro Carvalho Chehab eth_type(0x0800), ipv4(src=172.16.0.20, dst=172.18.0.52, proto=17, tos=0, 90*63893472SMauro Carvalho Chehab frag=no), tcp(src=49163, dst=80) 91*63893472SMauro Carvalho Chehab 92*63893472SMauro Carvalho ChehabOften we ellipsize arguments not important to the discussion, e.g.:: 93*63893472SMauro Carvalho Chehab 94*63893472SMauro Carvalho Chehab in_port(1), eth(...), eth_type(0x0800), ipv4(...), tcp(...) 95*63893472SMauro Carvalho Chehab 96*63893472SMauro Carvalho Chehab 97*63893472SMauro Carvalho ChehabWildcarded flow key format 98*63893472SMauro Carvalho Chehab-------------------------- 99*63893472SMauro Carvalho Chehab 100*63893472SMauro Carvalho ChehabA wildcarded flow is described with two sequences of Netlink attributes 101*63893472SMauro Carvalho Chehabpassed over the Netlink socket. A flow key, exactly as described above, and an 102*63893472SMauro Carvalho Chehaboptional corresponding flow mask. 103*63893472SMauro Carvalho Chehab 104*63893472SMauro Carvalho ChehabA wildcarded flow can represent a group of exact match flows. Each '1' bit 105*63893472SMauro Carvalho Chehabin the mask specifies a exact match with the corresponding bit in the flow key. 106*63893472SMauro Carvalho ChehabA '0' bit specifies a don't care bit, which will match either a '1' or '0' bit 107*63893472SMauro Carvalho Chehabof a incoming packet. Using wildcarded flow can improve the flow set up rate 108*63893472SMauro Carvalho Chehabby reduce the number of new flows need to be processed by the user space program. 109*63893472SMauro Carvalho Chehab 110*63893472SMauro Carvalho ChehabSupport for the mask Netlink attribute is optional for both the kernel and user 111*63893472SMauro Carvalho Chehabspace program. The kernel can ignore the mask attribute, installing an exact 112*63893472SMauro Carvalho Chehabmatch flow, or reduce the number of don't care bits in the kernel to less than 113*63893472SMauro Carvalho Chehabwhat was specified by the user space program. In this case, variations in bits 114*63893472SMauro Carvalho Chehabthat the kernel does not implement will simply result in additional flow setups. 115*63893472SMauro Carvalho ChehabThe kernel module will also work with user space programs that neither support 116*63893472SMauro Carvalho Chehabnor supply flow mask attributes. 117*63893472SMauro Carvalho Chehab 118*63893472SMauro Carvalho ChehabSince the kernel may ignore or modify wildcard bits, it can be difficult for 119*63893472SMauro Carvalho Chehabthe userspace program to know exactly what matches are installed. There are 120*63893472SMauro Carvalho Chehabtwo possible approaches: reactively install flows as they miss the kernel 121*63893472SMauro Carvalho Chehabflow table (and therefore not attempt to determine wildcard changes at all) 122*63893472SMauro Carvalho Chehabor use the kernel's response messages to determine the installed wildcards. 123*63893472SMauro Carvalho Chehab 124*63893472SMauro Carvalho ChehabWhen interacting with userspace, the kernel should maintain the match portion 125*63893472SMauro Carvalho Chehabof the key exactly as originally installed. This will provides a handle to 126*63893472SMauro Carvalho Chehabidentify the flow for all future operations. However, when reporting the 127*63893472SMauro Carvalho Chehabmask of an installed flow, the mask should include any restrictions imposed 128*63893472SMauro Carvalho Chehabby the kernel. 129*63893472SMauro Carvalho Chehab 130*63893472SMauro Carvalho ChehabThe behavior when using overlapping wildcarded flows is undefined. It is the 131*63893472SMauro Carvalho Chehabresponsibility of the user space program to ensure that any incoming packet 132*63893472SMauro Carvalho Chehabcan match at most one flow, wildcarded or not. The current implementation 133*63893472SMauro Carvalho Chehabperforms best-effort detection of overlapping wildcarded flows and may reject 134*63893472SMauro Carvalho Chehabsome but not all of them. However, this behavior may change in future versions. 135*63893472SMauro Carvalho Chehab 136*63893472SMauro Carvalho Chehab 137*63893472SMauro Carvalho ChehabUnique flow identifiers 138*63893472SMauro Carvalho Chehab----------------------- 139*63893472SMauro Carvalho Chehab 140*63893472SMauro Carvalho ChehabAn alternative to using the original match portion of a key as the handle for 141*63893472SMauro Carvalho Chehabflow identification is a unique flow identifier, or "UFID". UFIDs are optional 142*63893472SMauro Carvalho Chehabfor both the kernel and user space program. 143*63893472SMauro Carvalho Chehab 144*63893472SMauro Carvalho ChehabUser space programs that support UFID are expected to provide it during flow 145*63893472SMauro Carvalho Chehabsetup in addition to the flow, then refer to the flow using the UFID for all 146*63893472SMauro Carvalho Chehabfuture operations. The kernel is not required to index flows by the original 147*63893472SMauro Carvalho Chehabflow key if a UFID is specified. 148*63893472SMauro Carvalho Chehab 149*63893472SMauro Carvalho Chehab 150*63893472SMauro Carvalho ChehabBasic rule for evolving flow keys 151*63893472SMauro Carvalho Chehab--------------------------------- 152*63893472SMauro Carvalho Chehab 153*63893472SMauro Carvalho ChehabSome care is needed to really maintain forward and backward 154*63893472SMauro Carvalho Chehabcompatibility for applications that follow the rules listed under 155*63893472SMauro Carvalho Chehab"Flow key compatibility" above. 156*63893472SMauro Carvalho Chehab 157*63893472SMauro Carvalho ChehabThe basic rule is obvious:: 158*63893472SMauro Carvalho Chehab 159*63893472SMauro Carvalho Chehab ================================================================== 160*63893472SMauro Carvalho Chehab New network protocol support must only supplement existing flow 161*63893472SMauro Carvalho Chehab key attributes. It must not change the meaning of already defined 162*63893472SMauro Carvalho Chehab flow key attributes. 163*63893472SMauro Carvalho Chehab ================================================================== 164*63893472SMauro Carvalho Chehab 165*63893472SMauro Carvalho ChehabThis rule does have less-obvious consequences so it is worth working 166*63893472SMauro Carvalho Chehabthrough a few examples. Suppose, for example, that the kernel module 167*63893472SMauro Carvalho Chehabdid not already implement VLAN parsing. Instead, it just interpreted 168*63893472SMauro Carvalho Chehabthe 802.1Q TPID (0x8100) as the Ethertype then stopped parsing the 169*63893472SMauro Carvalho Chehabpacket. The flow key for any packet with an 802.1Q header would look 170*63893472SMauro Carvalho Chehabessentially like this, ignoring metadata:: 171*63893472SMauro Carvalho Chehab 172*63893472SMauro Carvalho Chehab eth(...), eth_type(0x8100) 173*63893472SMauro Carvalho Chehab 174*63893472SMauro Carvalho ChehabNaively, to add VLAN support, it makes sense to add a new "vlan" flow 175*63893472SMauro Carvalho Chehabkey attribute to contain the VLAN tag, then continue to decode the 176*63893472SMauro Carvalho Chehabencapsulated headers beyond the VLAN tag using the existing field 177*63893472SMauro Carvalho Chehabdefinitions. With this change, a TCP packet in VLAN 10 would have a 178*63893472SMauro Carvalho Chehabflow key much like this:: 179*63893472SMauro Carvalho Chehab 180*63893472SMauro Carvalho Chehab eth(...), vlan(vid=10, pcp=0), eth_type(0x0800), ip(proto=6, ...), tcp(...) 181*63893472SMauro Carvalho Chehab 182*63893472SMauro Carvalho ChehabBut this change would negatively affect a userspace application that 183*63893472SMauro Carvalho Chehabhas not been updated to understand the new "vlan" flow key attribute. 184*63893472SMauro Carvalho ChehabThe application could, following the flow compatibility rules above, 185*63893472SMauro Carvalho Chehabignore the "vlan" attribute that it does not understand and therefore 186*63893472SMauro Carvalho Chehabassume that the flow contained IP packets. This is a bad assumption 187*63893472SMauro Carvalho Chehab(the flow only contains IP packets if one parses and skips over the 188*63893472SMauro Carvalho Chehab802.1Q header) and it could cause the application's behavior to change 189*63893472SMauro Carvalho Chehabacross kernel versions even though it follows the compatibility rules. 190*63893472SMauro Carvalho Chehab 191*63893472SMauro Carvalho ChehabThe solution is to use a set of nested attributes. This is, for 192*63893472SMauro Carvalho Chehabexample, why 802.1Q support uses nested attributes. A TCP packet in 193*63893472SMauro Carvalho ChehabVLAN 10 is actually expressed as:: 194*63893472SMauro Carvalho Chehab 195*63893472SMauro Carvalho Chehab eth(...), eth_type(0x8100), vlan(vid=10, pcp=0), encap(eth_type(0x0800), 196*63893472SMauro Carvalho Chehab ip(proto=6, ...), tcp(...))) 197*63893472SMauro Carvalho Chehab 198*63893472SMauro Carvalho ChehabNotice how the "eth_type", "ip", and "tcp" flow key attributes are 199*63893472SMauro Carvalho Chehabnested inside the "encap" attribute. Thus, an application that does 200*63893472SMauro Carvalho Chehabnot understand the "vlan" key will not see either of those attributes 201*63893472SMauro Carvalho Chehaband therefore will not misinterpret them. (Also, the outer eth_type 202*63893472SMauro Carvalho Chehabis still 0x8100, not changed to 0x0800.) 203*63893472SMauro Carvalho Chehab 204*63893472SMauro Carvalho ChehabHandling malformed packets 205*63893472SMauro Carvalho Chehab-------------------------- 206*63893472SMauro Carvalho Chehab 207*63893472SMauro Carvalho ChehabDon't drop packets in the kernel for malformed protocol headers, bad 208*63893472SMauro Carvalho Chehabchecksums, etc. This would prevent userspace from implementing a 209*63893472SMauro Carvalho Chehabsimple Ethernet switch that forwards every packet. 210*63893472SMauro Carvalho Chehab 211*63893472SMauro Carvalho ChehabInstead, in such a case, include an attribute with "empty" content. 212*63893472SMauro Carvalho ChehabIt doesn't matter if the empty content could be valid protocol values, 213*63893472SMauro Carvalho Chehabas long as those values are rarely seen in practice, because userspace 214*63893472SMauro Carvalho Chehabcan always forward all packets with those values to userspace and 215*63893472SMauro Carvalho Chehabhandle them individually. 216*63893472SMauro Carvalho Chehab 217*63893472SMauro Carvalho ChehabFor example, consider a packet that contains an IP header that 218*63893472SMauro Carvalho Chehabindicates protocol 6 for TCP, but which is truncated just after the IP 219*63893472SMauro Carvalho Chehabheader, so that the TCP header is missing. The flow key for this 220*63893472SMauro Carvalho Chehabpacket would include a tcp attribute with all-zero src and dst, like 221*63893472SMauro Carvalho Chehabthis:: 222*63893472SMauro Carvalho Chehab 223*63893472SMauro Carvalho Chehab eth(...), eth_type(0x0800), ip(proto=6, ...), tcp(src=0, dst=0) 224*63893472SMauro Carvalho Chehab 225*63893472SMauro Carvalho ChehabAs another example, consider a packet with an Ethernet type of 0x8100, 226*63893472SMauro Carvalho Chehabindicating that a VLAN TCI should follow, but which is truncated just 227*63893472SMauro Carvalho Chehabafter the Ethernet type. The flow key for this packet would include 228*63893472SMauro Carvalho Chehaban all-zero-bits vlan and an empty encap attribute, like this:: 229*63893472SMauro Carvalho Chehab 230*63893472SMauro Carvalho Chehab eth(...), eth_type(0x8100), vlan(0), encap() 231*63893472SMauro Carvalho Chehab 232*63893472SMauro Carvalho ChehabUnlike a TCP packet with source and destination ports 0, an 233*63893472SMauro Carvalho Chehaball-zero-bits VLAN TCI is not that rare, so the CFI bit (aka 234*63893472SMauro Carvalho ChehabVLAN_TAG_PRESENT inside the kernel) is ordinarily set in a vlan 235*63893472SMauro Carvalho Chehabattribute expressly to allow this situation to be distinguished. 236*63893472SMauro Carvalho ChehabThus, the flow key in this second example unambiguously indicates a 237*63893472SMauro Carvalho Chehabmissing or malformed VLAN TCI. 238*63893472SMauro Carvalho Chehab 239*63893472SMauro Carvalho ChehabOther rules 240*63893472SMauro Carvalho Chehab----------- 241*63893472SMauro Carvalho Chehab 242*63893472SMauro Carvalho ChehabThe other rules for flow keys are much less subtle: 243*63893472SMauro Carvalho Chehab 244*63893472SMauro Carvalho Chehab - Duplicate attributes are not allowed at a given nesting level. 245*63893472SMauro Carvalho Chehab 246*63893472SMauro Carvalho Chehab - Ordering of attributes is not significant. 247*63893472SMauro Carvalho Chehab 248*63893472SMauro Carvalho Chehab - When the kernel sends a given flow key to userspace, it always 249*63893472SMauro Carvalho Chehab composes it the same way. This allows userspace to hash and 250*63893472SMauro Carvalho Chehab compare entire flow keys that it may not be able to fully 251*63893472SMauro Carvalho Chehab interpret. 252