xref: /openbmc/linux/arch/powerpc/include/asm/book3s/64/mmu-hash.h (revision 4f2c0a4acffbec01079c28f839422e64ddeff004)
1  /* SPDX-License-Identifier: GPL-2.0-or-later */
2  #ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
3  #define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
4  /*
5   * PowerPC64 memory management structures
6   *
7   * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
8   *   PPC64 rework.
9   */
10  
11  #include <asm/page.h>
12  #include <asm/bug.h>
13  #include <asm/asm-const.h>
14  
15  /*
16   * This is necessary to get the definition of PGTABLE_RANGE which we
17   * need for various slices related matters. Note that this isn't the
18   * complete pgtable.h but only a portion of it.
19   */
20  #include <asm/book3s/64/pgtable.h>
21  #include <asm/book3s/64/slice.h>
22  #include <asm/task_size_64.h>
23  #include <asm/cpu_has_feature.h>
24  
25  /*
26   * SLB
27   */
28  
29  #define SLB_NUM_BOLTED		2
30  #define SLB_CACHE_ENTRIES	8
31  #define SLB_MIN_SIZE		32
32  
33  /* Bits in the SLB ESID word */
34  #define SLB_ESID_V		ASM_CONST(0x0000000008000000) /* valid */
35  
36  /* Bits in the SLB VSID word */
37  #define SLB_VSID_SHIFT		12
38  #define SLB_VSID_SHIFT_256M	SLB_VSID_SHIFT
39  #define SLB_VSID_SHIFT_1T	24
40  #define SLB_VSID_SSIZE_SHIFT	62
41  #define SLB_VSID_B		ASM_CONST(0xc000000000000000)
42  #define SLB_VSID_B_256M		ASM_CONST(0x0000000000000000)
43  #define SLB_VSID_B_1T		ASM_CONST(0x4000000000000000)
44  #define SLB_VSID_KS		ASM_CONST(0x0000000000000800)
45  #define SLB_VSID_KP		ASM_CONST(0x0000000000000400)
46  #define SLB_VSID_N		ASM_CONST(0x0000000000000200) /* no-execute */
47  #define SLB_VSID_L		ASM_CONST(0x0000000000000100)
48  #define SLB_VSID_C		ASM_CONST(0x0000000000000080) /* class */
49  #define SLB_VSID_LP		ASM_CONST(0x0000000000000030)
50  #define SLB_VSID_LP_00		ASM_CONST(0x0000000000000000)
51  #define SLB_VSID_LP_01		ASM_CONST(0x0000000000000010)
52  #define SLB_VSID_LP_10		ASM_CONST(0x0000000000000020)
53  #define SLB_VSID_LP_11		ASM_CONST(0x0000000000000030)
54  #define SLB_VSID_LLP		(SLB_VSID_L|SLB_VSID_LP)
55  
56  #define SLB_VSID_KERNEL		(SLB_VSID_KP)
57  #define SLB_VSID_USER		(SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
58  
59  #define SLBIE_C			(0x08000000)
60  #define SLBIE_SSIZE_SHIFT	25
61  
62  /*
63   * Hash table
64   */
65  
66  #define HPTES_PER_GROUP 8
67  
68  #define HPTE_V_SSIZE_SHIFT	62
69  #define HPTE_V_AVPN_SHIFT	7
70  #define HPTE_V_COMMON_BITS	ASM_CONST(0x000fffffffffffff)
71  #define HPTE_V_AVPN		ASM_CONST(0x3fffffffffffff80)
72  #define HPTE_V_AVPN_3_0		ASM_CONST(0x000fffffffffff80)
73  #define HPTE_V_AVPN_VAL(x)	(((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
74  #define HPTE_V_COMPARE(x,y)	(!(((x) ^ (y)) & 0xffffffffffffff80UL))
75  #define HPTE_V_BOLTED		ASM_CONST(0x0000000000000010)
76  #define HPTE_V_LOCK		ASM_CONST(0x0000000000000008)
77  #define HPTE_V_LARGE		ASM_CONST(0x0000000000000004)
78  #define HPTE_V_SECONDARY	ASM_CONST(0x0000000000000002)
79  #define HPTE_V_VALID		ASM_CONST(0x0000000000000001)
80  
81  /*
82   * ISA 3.0 has a different HPTE format.
83   */
84  #define HPTE_R_3_0_SSIZE_SHIFT	58
85  #define HPTE_R_3_0_SSIZE_MASK	(3ull << HPTE_R_3_0_SSIZE_SHIFT)
86  #define HPTE_R_PP0		ASM_CONST(0x8000000000000000)
87  #define HPTE_R_TS		ASM_CONST(0x4000000000000000)
88  #define HPTE_R_KEY_HI		ASM_CONST(0x3000000000000000)
89  #define HPTE_R_KEY_BIT4		ASM_CONST(0x2000000000000000)
90  #define HPTE_R_KEY_BIT3		ASM_CONST(0x1000000000000000)
91  #define HPTE_R_RPN_SHIFT	12
92  #define HPTE_R_RPN		ASM_CONST(0x0ffffffffffff000)
93  #define HPTE_R_RPN_3_0		ASM_CONST(0x01fffffffffff000)
94  #define HPTE_R_PP		ASM_CONST(0x0000000000000003)
95  #define HPTE_R_PPP		ASM_CONST(0x8000000000000003)
96  #define HPTE_R_N		ASM_CONST(0x0000000000000004)
97  #define HPTE_R_G		ASM_CONST(0x0000000000000008)
98  #define HPTE_R_M		ASM_CONST(0x0000000000000010)
99  #define HPTE_R_I		ASM_CONST(0x0000000000000020)
100  #define HPTE_R_W		ASM_CONST(0x0000000000000040)
101  #define HPTE_R_WIMG		ASM_CONST(0x0000000000000078)
102  #define HPTE_R_C		ASM_CONST(0x0000000000000080)
103  #define HPTE_R_R		ASM_CONST(0x0000000000000100)
104  #define HPTE_R_KEY_LO		ASM_CONST(0x0000000000000e00)
105  #define HPTE_R_KEY_BIT2		ASM_CONST(0x0000000000000800)
106  #define HPTE_R_KEY_BIT1		ASM_CONST(0x0000000000000400)
107  #define HPTE_R_KEY_BIT0		ASM_CONST(0x0000000000000200)
108  #define HPTE_R_KEY		(HPTE_R_KEY_LO | HPTE_R_KEY_HI)
109  
110  #define HPTE_V_1TB_SEG		ASM_CONST(0x4000000000000000)
111  #define HPTE_V_VRMA_MASK	ASM_CONST(0x4001ffffff000000)
112  
113  /* Values for PP (assumes Ks=0, Kp=1) */
114  #define PP_RWXX	0	/* Supervisor read/write, User none */
115  #define PP_RWRX 1	/* Supervisor read/write, User read */
116  #define PP_RWRW 2	/* Supervisor read/write, User read/write */
117  #define PP_RXRX 3	/* Supervisor read,       User read */
118  #define PP_RXXX	(HPTE_R_PP0 | 2)	/* Supervisor read, user none */
119  
120  /* Fields for tlbiel instruction in architecture 2.06 */
121  #define TLBIEL_INVAL_SEL_MASK	0xc00	/* invalidation selector */
122  #define  TLBIEL_INVAL_PAGE	0x000	/* invalidate a single page */
123  #define  TLBIEL_INVAL_SET_LPID	0x800	/* invalidate a set for current LPID */
124  #define  TLBIEL_INVAL_SET	0xc00	/* invalidate a set for all LPIDs */
125  #define TLBIEL_INVAL_SET_MASK	0xfff000	/* set number to inval. */
126  #define TLBIEL_INVAL_SET_SHIFT	12
127  
128  #define POWER7_TLB_SETS		128	/* # sets in POWER7 TLB */
129  #define POWER8_TLB_SETS		512	/* # sets in POWER8 TLB */
130  #define POWER9_TLB_SETS_HASH	256	/* # sets in POWER9 TLB Hash mode */
131  #define POWER9_TLB_SETS_RADIX	128	/* # sets in POWER9 TLB Radix mode */
132  
133  #ifndef __ASSEMBLY__
134  
135  struct mmu_hash_ops {
136  	void            (*hpte_invalidate)(unsigned long slot,
137  					   unsigned long vpn,
138  					   int bpsize, int apsize,
139  					   int ssize, int local);
140  	long		(*hpte_updatepp)(unsigned long slot,
141  					 unsigned long newpp,
142  					 unsigned long vpn,
143  					 int bpsize, int apsize,
144  					 int ssize, unsigned long flags);
145  	void            (*hpte_updateboltedpp)(unsigned long newpp,
146  					       unsigned long ea,
147  					       int psize, int ssize);
148  	long		(*hpte_insert)(unsigned long hpte_group,
149  				       unsigned long vpn,
150  				       unsigned long prpn,
151  				       unsigned long rflags,
152  				       unsigned long vflags,
153  				       int psize, int apsize,
154  				       int ssize);
155  	long		(*hpte_remove)(unsigned long hpte_group);
156  	int             (*hpte_removebolted)(unsigned long ea,
157  					     int psize, int ssize);
158  	void		(*flush_hash_range)(unsigned long number, int local);
159  	void		(*hugepage_invalidate)(unsigned long vsid,
160  					       unsigned long addr,
161  					       unsigned char *hpte_slot_array,
162  					       int psize, int ssize, int local);
163  	int		(*resize_hpt)(unsigned long shift);
164  	/*
165  	 * Special for kexec.
166  	 * To be called in real mode with interrupts disabled. No locks are
167  	 * taken as such, concurrent access on pre POWER5 hardware could result
168  	 * in a deadlock.
169  	 * The linear mapping is destroyed as well.
170  	 */
171  	void		(*hpte_clear_all)(void);
172  };
173  extern struct mmu_hash_ops mmu_hash_ops;
174  
175  struct hash_pte {
176  	__be64 v;
177  	__be64 r;
178  };
179  
180  extern struct hash_pte *htab_address;
181  extern unsigned long htab_size_bytes;
182  extern unsigned long htab_hash_mask;
183  
184  
shift_to_mmu_psize(unsigned int shift)185  static inline int shift_to_mmu_psize(unsigned int shift)
186  {
187  	int psize;
188  
189  	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
190  		if (mmu_psize_defs[psize].shift == shift)
191  			return psize;
192  	return -1;
193  }
194  
mmu_psize_to_shift(unsigned int mmu_psize)195  static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
196  {
197  	if (mmu_psize_defs[mmu_psize].shift)
198  		return mmu_psize_defs[mmu_psize].shift;
199  	BUG();
200  }
201  
ap_to_shift(unsigned long ap)202  static inline unsigned int ap_to_shift(unsigned long ap)
203  {
204  	int psize;
205  
206  	for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
207  		if (mmu_psize_defs[psize].ap == ap)
208  			return mmu_psize_defs[psize].shift;
209  	}
210  
211  	return -1;
212  }
213  
get_sllp_encoding(int psize)214  static inline unsigned long get_sllp_encoding(int psize)
215  {
216  	unsigned long sllp;
217  
218  	sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) |
219  		((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4);
220  	return sllp;
221  }
222  
223  #endif /* __ASSEMBLY__ */
224  
225  /*
226   * Segment sizes.
227   * These are the values used by hardware in the B field of
228   * SLB entries and the first dword of MMU hashtable entries.
229   * The B field is 2 bits; the values 2 and 3 are unused and reserved.
230   */
231  #define MMU_SEGSIZE_256M	0
232  #define MMU_SEGSIZE_1T		1
233  
234  /*
235   * encode page number shift.
236   * in order to fit the 78 bit va in a 64 bit variable we shift the va by
237   * 12 bits. This enable us to address upto 76 bit va.
238   * For hpt hash from a va we can ignore the page size bits of va and for
239   * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
240   * we work in all cases including 4k page size.
241   */
242  #define VPN_SHIFT	12
243  
244  /*
245   * HPTE Large Page (LP) details
246   */
247  #define LP_SHIFT	12
248  #define LP_BITS		8
249  #define LP_MASK(i)	((0xFF >> (i)) << LP_SHIFT)
250  
251  #ifndef __ASSEMBLY__
252  
slb_vsid_shift(int ssize)253  static inline int slb_vsid_shift(int ssize)
254  {
255  	if (ssize == MMU_SEGSIZE_256M)
256  		return SLB_VSID_SHIFT;
257  	return SLB_VSID_SHIFT_1T;
258  }
259  
segment_shift(int ssize)260  static inline int segment_shift(int ssize)
261  {
262  	if (ssize == MMU_SEGSIZE_256M)
263  		return SID_SHIFT;
264  	return SID_SHIFT_1T;
265  }
266  
267  /*
268   * This array is indexed by the LP field of the HPTE second dword.
269   * Since this field may contain some RPN bits, some entries are
270   * replicated so that we get the same value irrespective of RPN.
271   * The top 4 bits are the page size index (MMU_PAGE_*) for the
272   * actual page size, the bottom 4 bits are the base page size.
273   */
274  extern u8 hpte_page_sizes[1 << LP_BITS];
275  
__hpte_page_size(unsigned long h,unsigned long l,bool is_base_size)276  static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
277  					     bool is_base_size)
278  {
279  	unsigned int i, lp;
280  
281  	if (!(h & HPTE_V_LARGE))
282  		return 1ul << 12;
283  
284  	/* Look at the 8 bit LP value */
285  	lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
286  	i = hpte_page_sizes[lp];
287  	if (!i)
288  		return 0;
289  	if (!is_base_size)
290  		i >>= 4;
291  	return 1ul << mmu_psize_defs[i & 0xf].shift;
292  }
293  
hpte_page_size(unsigned long h,unsigned long l)294  static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
295  {
296  	return __hpte_page_size(h, l, 0);
297  }
298  
hpte_base_page_size(unsigned long h,unsigned long l)299  static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
300  {
301  	return __hpte_page_size(h, l, 1);
302  }
303  
304  /*
305   * The current system page and segment sizes
306   */
307  extern int mmu_kernel_ssize;
308  extern int mmu_highuser_ssize;
309  extern u16 mmu_slb_size;
310  extern unsigned long tce_alloc_start, tce_alloc_end;
311  
312  /*
313   * If the processor supports 64k normal pages but not 64k cache
314   * inhibited pages, we have to be prepared to switch processes
315   * to use 4k pages when they create cache-inhibited mappings.
316   * If this is the case, mmu_ci_restrictions will be set to 1.
317   */
318  extern int mmu_ci_restrictions;
319  
320  /*
321   * This computes the AVPN and B fields of the first dword of a HPTE,
322   * for use when we want to match an existing PTE.  The bottom 7 bits
323   * of the returned value are zero.
324   */
hpte_encode_avpn(unsigned long vpn,int psize,int ssize)325  static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
326  					     int ssize)
327  {
328  	unsigned long v;
329  	/*
330  	 * The AVA field omits the low-order 23 bits of the 78 bits VA.
331  	 * These bits are not needed in the PTE, because the
332  	 * low-order b of these bits are part of the byte offset
333  	 * into the virtual page and, if b < 23, the high-order
334  	 * 23-b of these bits are always used in selecting the
335  	 * PTEGs to be searched
336  	 */
337  	v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
338  	v <<= HPTE_V_AVPN_SHIFT;
339  	v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
340  	return v;
341  }
342  
343  /*
344   * ISA v3.0 defines a new HPTE format, which differs from the old
345   * format in having smaller AVPN and ARPN fields, and the B field
346   * in the second dword instead of the first.
347   */
hpte_old_to_new_v(unsigned long v)348  static inline unsigned long hpte_old_to_new_v(unsigned long v)
349  {
350  	/* trim AVPN, drop B */
351  	return v & HPTE_V_COMMON_BITS;
352  }
353  
hpte_old_to_new_r(unsigned long v,unsigned long r)354  static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)
355  {
356  	/* move B field from 1st to 2nd dword, trim ARPN */
357  	return (r & ~HPTE_R_3_0_SSIZE_MASK) |
358  		(((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);
359  }
360  
hpte_new_to_old_v(unsigned long v,unsigned long r)361  static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)
362  {
363  	/* insert B field */
364  	return (v & HPTE_V_COMMON_BITS) |
365  		((r & HPTE_R_3_0_SSIZE_MASK) <<
366  		 (HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));
367  }
368  
hpte_new_to_old_r(unsigned long r)369  static inline unsigned long hpte_new_to_old_r(unsigned long r)
370  {
371  	/* clear out B field */
372  	return r & ~HPTE_R_3_0_SSIZE_MASK;
373  }
374  
hpte_get_old_v(struct hash_pte * hptep)375  static inline unsigned long hpte_get_old_v(struct hash_pte *hptep)
376  {
377  	unsigned long hpte_v;
378  
379  	hpte_v = be64_to_cpu(hptep->v);
380  	if (cpu_has_feature(CPU_FTR_ARCH_300))
381  		hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r));
382  	return hpte_v;
383  }
384  
385  /*
386   * This function sets the AVPN and L fields of the HPTE  appropriately
387   * using the base page size and actual page size.
388   */
hpte_encode_v(unsigned long vpn,int base_psize,int actual_psize,int ssize)389  static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
390  					  int actual_psize, int ssize)
391  {
392  	unsigned long v;
393  	v = hpte_encode_avpn(vpn, base_psize, ssize);
394  	if (actual_psize != MMU_PAGE_4K)
395  		v |= HPTE_V_LARGE;
396  	return v;
397  }
398  
399  /*
400   * This function sets the ARPN, and LP fields of the HPTE appropriately
401   * for the page size. We assume the pa is already "clean" that is properly
402   * aligned for the requested page size
403   */
hpte_encode_r(unsigned long pa,int base_psize,int actual_psize)404  static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
405  					  int actual_psize)
406  {
407  	/* A 4K page needs no special encoding */
408  	if (actual_psize == MMU_PAGE_4K)
409  		return pa & HPTE_R_RPN;
410  	else {
411  		unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
412  		unsigned int shift = mmu_psize_defs[actual_psize].shift;
413  		return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
414  	}
415  }
416  
417  /*
418   * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
419   */
hpt_vpn(unsigned long ea,unsigned long vsid,int ssize)420  static inline unsigned long hpt_vpn(unsigned long ea,
421  				    unsigned long vsid, int ssize)
422  {
423  	unsigned long mask;
424  	int s_shift = segment_shift(ssize);
425  
426  	mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
427  	return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
428  }
429  
430  /*
431   * This hashes a virtual address
432   */
hpt_hash(unsigned long vpn,unsigned int shift,int ssize)433  static inline unsigned long hpt_hash(unsigned long vpn,
434  				     unsigned int shift, int ssize)
435  {
436  	unsigned long mask;
437  	unsigned long hash, vsid;
438  
439  	/* VPN_SHIFT can be atmost 12 */
440  	if (ssize == MMU_SEGSIZE_256M) {
441  		mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
442  		hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
443  			((vpn & mask) >> (shift - VPN_SHIFT));
444  	} else {
445  		mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
446  		vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
447  		hash = vsid ^ (vsid << 25) ^
448  			((vpn & mask) >> (shift - VPN_SHIFT)) ;
449  	}
450  	return hash & 0x7fffffffffUL;
451  }
452  
453  #define HPTE_LOCAL_UPDATE	0x1
454  #define HPTE_NOHPTE_UPDATE	0x2
455  #define HPTE_USE_KERNEL_KEY	0x4
456  
457  long hpte_insert_repeating(unsigned long hash, unsigned long vpn, unsigned long pa,
458  			   unsigned long rlags, unsigned long vflags, int psize, int ssize);
459  extern int __hash_page_4K(unsigned long ea, unsigned long access,
460  			  unsigned long vsid, pte_t *ptep, unsigned long trap,
461  			  unsigned long flags, int ssize, int subpage_prot);
462  extern int __hash_page_64K(unsigned long ea, unsigned long access,
463  			   unsigned long vsid, pte_t *ptep, unsigned long trap,
464  			   unsigned long flags, int ssize);
465  struct mm_struct;
466  unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
467  extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
468  			unsigned long access, unsigned long trap,
469  			unsigned long flags);
470  extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
471  		     unsigned long dsisr);
472  void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc);
473  int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr, unsigned long msr);
474  int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
475  		     pte_t *ptep, unsigned long trap, unsigned long flags,
476  		     int ssize, unsigned int shift, unsigned int mmu_psize);
477  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
478  extern int __hash_page_thp(unsigned long ea, unsigned long access,
479  			   unsigned long vsid, pmd_t *pmdp, unsigned long trap,
480  			   unsigned long flags, int ssize, unsigned int psize);
481  #else
__hash_page_thp(unsigned long ea,unsigned long access,unsigned long vsid,pmd_t * pmdp,unsigned long trap,unsigned long flags,int ssize,unsigned int psize)482  static inline int __hash_page_thp(unsigned long ea, unsigned long access,
483  				  unsigned long vsid, pmd_t *pmdp,
484  				  unsigned long trap, unsigned long flags,
485  				  int ssize, unsigned int psize)
486  {
487  	BUG();
488  	return -1;
489  }
490  #endif
491  extern void hash_failure_debug(unsigned long ea, unsigned long access,
492  			       unsigned long vsid, unsigned long trap,
493  			       int ssize, int psize, int lpsize,
494  			       unsigned long pte);
495  extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
496  			     unsigned long pstart, unsigned long prot,
497  			     int psize, int ssize);
498  int htab_remove_mapping(unsigned long vstart, unsigned long vend,
499  			int psize, int ssize);
500  extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
501  extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
502  
503  extern void hash__setup_new_exec(void);
504  
505  #ifdef CONFIG_PPC_PSERIES
506  void hpte_init_pseries(void);
507  #else
hpte_init_pseries(void)508  static inline void hpte_init_pseries(void) { }
509  #endif
510  
511  extern void hpte_init_native(void);
512  
513  struct slb_entry {
514  	u64	esid;
515  	u64	vsid;
516  };
517  
518  extern void slb_initialize(void);
519  void slb_flush_and_restore_bolted(void);
520  void slb_flush_all_realmode(void);
521  void __slb_restore_bolted_realmode(void);
522  void slb_restore_bolted_realmode(void);
523  void slb_save_contents(struct slb_entry *slb_ptr);
524  void slb_dump_contents(struct slb_entry *slb_ptr);
525  
526  extern void slb_vmalloc_update(void);
527  void preload_new_slb_context(unsigned long start, unsigned long sp);
528  
529  #ifdef CONFIG_PPC_64S_HASH_MMU
530  void slb_set_size(u16 size);
531  #else
slb_set_size(u16 size)532  static inline void slb_set_size(u16 size) { }
533  #endif
534  
535  #endif /* __ASSEMBLY__ */
536  
537  /*
538   * VSID allocation (256MB segment)
539   *
540   * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
541   * from mmu context id and effective segment id of the address.
542   *
543   * For user processes max context id is limited to MAX_USER_CONTEXT.
544   * more details in get_user_context
545   *
546   * For kernel space get_kernel_context
547   *
548   * The proto-VSIDs are then scrambled into real VSIDs with the
549   * multiplicative hash:
550   *
551   *	VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
552   *
553   * VSID_MULTIPLIER is prime, so in particular it is
554   * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
555   * Because the modulus is 2^n-1 we can compute it efficiently without
556   * a divide or extra multiply (see below). The scramble function gives
557   * robust scattering in the hash table (at least based on some initial
558   * results).
559   *
560   * We use VSID 0 to indicate an invalid VSID. The means we can't use context id
561   * 0, because a context id of 0 and an EA of 0 gives a proto-VSID of 0, which
562   * will produce a VSID of 0.
563   *
564   * We also need to avoid the last segment of the last context, because that
565   * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
566   * because of the modulo operation in vsid scramble.
567   */
568  
569  /*
570   * Max Va bits we support as of now is 68 bits. We want 19 bit
571   * context ID.
572   * Restrictions:
573   * GPU has restrictions of not able to access beyond 128TB
574   * (47 bit effective address). We also cannot do more than 20bit PID.
575   * For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS
576   * to 16 bits (ie, we can only have 2^16 pids at the same time).
577   */
578  #define VA_BITS			68
579  #define CONTEXT_BITS		19
580  #define ESID_BITS		(VA_BITS - (SID_SHIFT + CONTEXT_BITS))
581  #define ESID_BITS_1T		(VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS))
582  
583  #define ESID_BITS_MASK		((1 << ESID_BITS) - 1)
584  #define ESID_BITS_1T_MASK	((1 << ESID_BITS_1T) - 1)
585  
586  /*
587   * Now certain config support MAX_PHYSMEM more than 512TB. Hence we will need
588   * to use more than one context for linear mapping the kernel.
589   * For vmalloc and memmap, we use just one context with 512TB. With 64 byte
590   * struct page size, we need ony 32 TB in memmap for 2PB (51 bits (MAX_PHYSMEM_BITS)).
591   */
592  #if (H_MAX_PHYSMEM_BITS > MAX_EA_BITS_PER_CONTEXT)
593  #define MAX_KERNEL_CTX_CNT	(1UL << (H_MAX_PHYSMEM_BITS - MAX_EA_BITS_PER_CONTEXT))
594  #else
595  #define MAX_KERNEL_CTX_CNT	1
596  #endif
597  
598  #define MAX_VMALLOC_CTX_CNT	1
599  #define MAX_IO_CTX_CNT		1
600  #define MAX_VMEMMAP_CTX_CNT	1
601  
602  /*
603   * 256MB segment
604   * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
605   * available for user + kernel mapping. VSID 0 is reserved as invalid, contexts
606   * 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each
607   * context maps 2^49 bytes (512TB).
608   *
609   * We also need to avoid the last segment of the last context, because that
610   * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
611   * because of the modulo operation in vsid scramble.
612   *
613   */
614  #define MAX_USER_CONTEXT	((ASM_CONST(1) << CONTEXT_BITS) - 2)
615  
616  // The + 2 accounts for INVALID_REGION and 1 more to avoid overlap with kernel
617  #define MIN_USER_CONTEXT	(MAX_KERNEL_CTX_CNT + MAX_VMALLOC_CTX_CNT + \
618  				 MAX_IO_CTX_CNT + MAX_VMEMMAP_CTX_CNT + 2)
619  
620  /*
621   * For platforms that support on 65bit VA we limit the context bits
622   */
623  #define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2)
624  
625  /*
626   * This should be computed such that protovosid * vsid_mulitplier
627   * doesn't overflow 64 bits. The vsid_mutliplier should also be
628   * co-prime to vsid_modulus. We also need to make sure that number
629   * of bits in multiplied result (dividend) is less than twice the number of
630   * protovsid bits for our modulus optmization to work.
631   *
632   * The below table shows the current values used.
633   * |-------+------------+----------------------+------------+-------------------|
634   * |       | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS |
635   * |-------+------------+----------------------+------------+-------------------|
636   * | 1T    |         24 |                   25 |         49 |                50 |
637   * |-------+------------+----------------------+------------+-------------------|
638   * | 256MB |         24 |                   37 |         61 |                74 |
639   * |-------+------------+----------------------+------------+-------------------|
640   *
641   * |-------+------------+----------------------+------------+--------------------|
642   * |       | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS |
643   * |-------+------------+----------------------+------------+--------------------|
644   * | 1T    |         24 |                   28 |         52 |                 56 |
645   * |-------+------------+----------------------+------------+--------------------|
646   * | 256MB |         24 |                   40 |         64 |                 80 |
647   * |-------+------------+----------------------+------------+--------------------|
648   *
649   */
650  #define VSID_MULTIPLIER_256M	ASM_CONST(12538073)	/* 24-bit prime */
651  #define VSID_BITS_256M		(VA_BITS - SID_SHIFT)
652  #define VSID_BITS_65_256M	(65 - SID_SHIFT)
653  /*
654   * Modular multiplicative inverse of VSID_MULTIPLIER under modulo VSID_MODULUS
655   */
656  #define VSID_MULINV_256M	ASM_CONST(665548017062)
657  
658  #define VSID_MULTIPLIER_1T	ASM_CONST(12538073)	/* 24-bit prime */
659  #define VSID_BITS_1T		(VA_BITS - SID_SHIFT_1T)
660  #define VSID_BITS_65_1T		(65 - SID_SHIFT_1T)
661  #define VSID_MULINV_1T		ASM_CONST(209034062)
662  
663  /* 1TB VSID reserved for VRMA */
664  #define VRMA_VSID	0x1ffffffUL
665  #define USER_VSID_RANGE	(1UL << (ESID_BITS + SID_SHIFT))
666  
667  /* 4 bits per slice and we have one slice per 1TB */
668  #define SLICE_ARRAY_SIZE	(H_PGTABLE_RANGE >> 41)
669  #define LOW_SLICE_ARRAY_SZ	(BITS_PER_LONG / BITS_PER_BYTE)
670  #define TASK_SLICE_ARRAY_SZ(x)	((x)->hash_context->slb_addr_limit >> 41)
671  #ifndef __ASSEMBLY__
672  
673  #ifdef CONFIG_PPC_SUBPAGE_PROT
674  /*
675   * For the sub-page protection option, we extend the PGD with one of
676   * these.  Basically we have a 3-level tree, with the top level being
677   * the protptrs array.  To optimize speed and memory consumption when
678   * only addresses < 4GB are being protected, pointers to the first
679   * four pages of sub-page protection words are stored in the low_prot
680   * array.
681   * Each page of sub-page protection words protects 1GB (4 bytes
682   * protects 64k).  For the 3-level tree, each page of pointers then
683   * protects 8TB.
684   */
685  struct subpage_prot_table {
686  	unsigned long maxaddr;	/* only addresses < this are protected */
687  	unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
688  	unsigned int *low_prot[4];
689  };
690  
691  #define SBP_L1_BITS		(PAGE_SHIFT - 2)
692  #define SBP_L2_BITS		(PAGE_SHIFT - 3)
693  #define SBP_L1_COUNT		(1 << SBP_L1_BITS)
694  #define SBP_L2_COUNT		(1 << SBP_L2_BITS)
695  #define SBP_L2_SHIFT		(PAGE_SHIFT + SBP_L1_BITS)
696  #define SBP_L3_SHIFT		(SBP_L2_SHIFT + SBP_L2_BITS)
697  
698  extern void subpage_prot_free(struct mm_struct *mm);
699  #else
subpage_prot_free(struct mm_struct * mm)700  static inline void subpage_prot_free(struct mm_struct *mm) {}
701  #endif /* CONFIG_PPC_SUBPAGE_PROT */
702  
703  /*
704   * One bit per slice. We have lower slices which cover 256MB segments
705   * upto 4G range. That gets us 16 low slices. For the rest we track slices
706   * in 1TB size.
707   */
708  struct slice_mask {
709  	u64 low_slices;
710  	DECLARE_BITMAP(high_slices, SLICE_NUM_HIGH);
711  };
712  
713  struct hash_mm_context {
714  	u16 user_psize; /* page size index */
715  
716  	/* SLB page size encodings*/
717  	unsigned char low_slices_psize[LOW_SLICE_ARRAY_SZ];
718  	unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
719  	unsigned long slb_addr_limit;
720  #ifdef CONFIG_PPC_64K_PAGES
721  	struct slice_mask mask_64k;
722  #endif
723  	struct slice_mask mask_4k;
724  #ifdef CONFIG_HUGETLB_PAGE
725  	struct slice_mask mask_16m;
726  	struct slice_mask mask_16g;
727  #endif
728  
729  #ifdef CONFIG_PPC_SUBPAGE_PROT
730  	struct subpage_prot_table *spt;
731  #endif /* CONFIG_PPC_SUBPAGE_PROT */
732  };
733  
734  #if 0
735  /*
736   * The code below is equivalent to this function for arguments
737   * < 2^VSID_BITS, which is all this should ever be called
738   * with.  However gcc is not clever enough to compute the
739   * modulus (2^n-1) without a second multiply.
740   */
741  #define vsid_scramble(protovsid, size) \
742  	((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
743  
744  /* simplified form avoiding mod operation */
745  #define vsid_scramble(protovsid, size) \
746  	({								 \
747  		unsigned long x;					 \
748  		x = (protovsid) * VSID_MULTIPLIER_##size;		 \
749  		x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
750  		(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
751  	})
752  
753  #else /* 1 */
vsid_scramble(unsigned long protovsid,unsigned long vsid_multiplier,int vsid_bits)754  static inline unsigned long vsid_scramble(unsigned long protovsid,
755  				  unsigned long vsid_multiplier, int vsid_bits)
756  {
757  	unsigned long vsid;
758  	unsigned long vsid_modulus = ((1UL << vsid_bits) - 1);
759  	/*
760  	 * We have same multipler for both 256 and 1T segements now
761  	 */
762  	vsid = protovsid * vsid_multiplier;
763  	vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus);
764  	return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus;
765  }
766  
767  #endif /* 1 */
768  
769  /* Returns the segment size indicator for a user address */
user_segment_size(unsigned long addr)770  static inline int user_segment_size(unsigned long addr)
771  {
772  	/* Use 1T segments if possible for addresses >= 1T */
773  	if (addr >= (1UL << SID_SHIFT_1T))
774  		return mmu_highuser_ssize;
775  	return MMU_SEGSIZE_256M;
776  }
777  
get_vsid(unsigned long context,unsigned long ea,int ssize)778  static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
779  				     int ssize)
780  {
781  	unsigned long va_bits = VA_BITS;
782  	unsigned long vsid_bits;
783  	unsigned long protovsid;
784  
785  	/*
786  	 * Bad address. We return VSID 0 for that
787  	 */
788  	if ((ea & EA_MASK)  >= H_PGTABLE_RANGE)
789  		return 0;
790  
791  	if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
792  		va_bits = 65;
793  
794  	if (ssize == MMU_SEGSIZE_256M) {
795  		vsid_bits = va_bits - SID_SHIFT;
796  		protovsid = (context << ESID_BITS) |
797  			((ea >> SID_SHIFT) & ESID_BITS_MASK);
798  		return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits);
799  	}
800  	/* 1T segment */
801  	vsid_bits = va_bits - SID_SHIFT_1T;
802  	protovsid = (context << ESID_BITS_1T) |
803  		((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK);
804  	return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits);
805  }
806  
807  /*
808   * For kernel space, we use context ids as
809   * below. Range is 512TB per context.
810   *
811   * 0x00001 -  [ 0xc000000000000000 - 0xc001ffffffffffff]
812   * 0x00002 -  [ 0xc002000000000000 - 0xc003ffffffffffff]
813   * 0x00003 -  [ 0xc004000000000000 - 0xc005ffffffffffff]
814   * 0x00004 -  [ 0xc006000000000000 - 0xc007ffffffffffff]
815   *
816   * vmap, IO, vmemap
817   *
818   * 0x00005 -  [ 0xc008000000000000 - 0xc009ffffffffffff]
819   * 0x00006 -  [ 0xc00a000000000000 - 0xc00bffffffffffff]
820   * 0x00007 -  [ 0xc00c000000000000 - 0xc00dffffffffffff]
821   *
822   */
get_kernel_context(unsigned long ea)823  static inline unsigned long get_kernel_context(unsigned long ea)
824  {
825  	unsigned long region_id = get_region_id(ea);
826  	unsigned long ctx;
827  	/*
828  	 * Depending on Kernel config, kernel region can have one context
829  	 * or more.
830  	 */
831  	if (region_id == LINEAR_MAP_REGION_ID) {
832  		/*
833  		 * We already verified ea to be not beyond the addr limit.
834  		 */
835  		ctx =  1 + ((ea & EA_MASK) >> MAX_EA_BITS_PER_CONTEXT);
836  	} else
837  		ctx = region_id + MAX_KERNEL_CTX_CNT - 1;
838  	return ctx;
839  }
840  
841  /*
842   * This is only valid for addresses >= PAGE_OFFSET
843   */
get_kernel_vsid(unsigned long ea,int ssize)844  static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
845  {
846  	unsigned long context;
847  
848  	if (!is_kernel_addr(ea))
849  		return 0;
850  
851  	context = get_kernel_context(ea);
852  	return get_vsid(context, ea, ssize);
853  }
854  
855  unsigned htab_shift_for_mem_size(unsigned long mem_size);
856  
857  enum slb_index {
858  	LINEAR_INDEX	= 0, /* Kernel linear map  (0xc000000000000000) */
859  	KSTACK_INDEX	= 1, /* Kernel stack map */
860  };
861  
862  #define slb_esid_mask(ssize)	\
863  	(((ssize) == MMU_SEGSIZE_256M) ? ESID_MASK : ESID_MASK_1T)
864  
mk_esid_data(unsigned long ea,int ssize,enum slb_index index)865  static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
866  					 enum slb_index index)
867  {
868  	return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
869  }
870  
__mk_vsid_data(unsigned long vsid,int ssize,unsigned long flags)871  static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,
872  					   unsigned long flags)
873  {
874  	return (vsid << slb_vsid_shift(ssize)) | flags |
875  		((unsigned long)ssize << SLB_VSID_SSIZE_SHIFT);
876  }
877  
mk_vsid_data(unsigned long ea,int ssize,unsigned long flags)878  static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
879  					 unsigned long flags)
880  {
881  	return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);
882  }
883  
884  #endif /* __ASSEMBLY__ */
885  #endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */
886