xref: /openbmc/linux/mm/swap_state.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  linux/mm/swap_state.c
4   *
5   *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6   *  Swap reorganised 29.12.95, Stephen Tweedie
7   *
8   *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9   */
10  #include <linux/mm.h>
11  #include <linux/gfp.h>
12  #include <linux/kernel_stat.h>
13  #include <linux/swap.h>
14  #include <linux/swapops.h>
15  #include <linux/init.h>
16  #include <linux/pagemap.h>
17  #include <linux/backing-dev.h>
18  #include <linux/blkdev.h>
19  #include <linux/migrate.h>
20  #include <linux/vmalloc.h>
21  #include <linux/swap_slots.h>
22  #include <linux/huge_mm.h>
23  #include <linux/shmem_fs.h>
24  #include "internal.h"
25  #include "swap.h"
26  
27  /*
28   * swapper_space is a fiction, retained to simplify the path through
29   * vmscan's shrink_page_list.
30   */
31  static const struct address_space_operations swap_aops = {
32  	.writepage	= swap_writepage,
33  	.dirty_folio	= noop_dirty_folio,
34  #ifdef CONFIG_MIGRATION
35  	.migrate_folio	= migrate_folio,
36  #endif
37  };
38  
39  struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40  static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
41  static bool enable_vma_readahead __read_mostly = true;
42  
43  #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
44  #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
45  #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
46  #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47  
48  #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
49  #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50  #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
51  
52  #define SWAP_RA_VAL(addr, win, hits)				\
53  	(((addr) & PAGE_MASK) |					\
54  	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
55  	 ((hits) & SWAP_RA_HITS_MASK))
56  
57  /* Initial readahead hits is 4 to start up with a small window */
58  #define GET_SWAP_RA_VAL(vma)					\
59  	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
60  
61  static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
62  
show_swap_cache_info(void)63  void show_swap_cache_info(void)
64  {
65  	printk("%lu pages in swap cache\n", total_swapcache_pages());
66  	printk("Free swap  = %ldkB\n", K(get_nr_swap_pages()));
67  	printk("Total swap = %lukB\n", K(total_swap_pages));
68  }
69  
get_shadow_from_swap_cache(swp_entry_t entry)70  void *get_shadow_from_swap_cache(swp_entry_t entry)
71  {
72  	struct address_space *address_space = swap_address_space(entry);
73  	pgoff_t idx = swp_offset(entry);
74  	struct page *page;
75  
76  	page = xa_load(&address_space->i_pages, idx);
77  	if (xa_is_value(page))
78  		return page;
79  	return NULL;
80  }
81  
82  /*
83   * add_to_swap_cache resembles filemap_add_folio on swapper_space,
84   * but sets SwapCache flag and private instead of mapping and index.
85   */
add_to_swap_cache(struct folio * folio,swp_entry_t entry,gfp_t gfp,void ** shadowp)86  int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
87  			gfp_t gfp, void **shadowp)
88  {
89  	struct address_space *address_space = swap_address_space(entry);
90  	pgoff_t idx = swp_offset(entry);
91  	XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
92  	unsigned long i, nr = folio_nr_pages(folio);
93  	void *old;
94  
95  	xas_set_update(&xas, workingset_update_node);
96  
97  	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
98  	VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
99  	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
100  
101  	folio_ref_add(folio, nr);
102  	folio_set_swapcache(folio);
103  	folio->swap = entry;
104  
105  	do {
106  		xas_lock_irq(&xas);
107  		xas_create_range(&xas);
108  		if (xas_error(&xas))
109  			goto unlock;
110  		for (i = 0; i < nr; i++) {
111  			VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
112  			old = xas_load(&xas);
113  			if (xa_is_value(old)) {
114  				if (shadowp)
115  					*shadowp = old;
116  			}
117  			xas_store(&xas, folio);
118  			xas_next(&xas);
119  		}
120  		address_space->nrpages += nr;
121  		__node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
122  		__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
123  unlock:
124  		xas_unlock_irq(&xas);
125  	} while (xas_nomem(&xas, gfp));
126  
127  	if (!xas_error(&xas))
128  		return 0;
129  
130  	folio_clear_swapcache(folio);
131  	folio_ref_sub(folio, nr);
132  	return xas_error(&xas);
133  }
134  
135  /*
136   * This must be called only on folios that have
137   * been verified to be in the swap cache.
138   */
__delete_from_swap_cache(struct folio * folio,swp_entry_t entry,void * shadow)139  void __delete_from_swap_cache(struct folio *folio,
140  			swp_entry_t entry, void *shadow)
141  {
142  	struct address_space *address_space = swap_address_space(entry);
143  	int i;
144  	long nr = folio_nr_pages(folio);
145  	pgoff_t idx = swp_offset(entry);
146  	XA_STATE(xas, &address_space->i_pages, idx);
147  
148  	xas_set_update(&xas, workingset_update_node);
149  
150  	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
151  	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
152  	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
153  
154  	for (i = 0; i < nr; i++) {
155  		void *entry = xas_store(&xas, shadow);
156  		VM_BUG_ON_PAGE(entry != folio, entry);
157  		xas_next(&xas);
158  	}
159  	folio->swap.val = 0;
160  	folio_clear_swapcache(folio);
161  	address_space->nrpages -= nr;
162  	__node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
163  	__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
164  }
165  
166  /**
167   * add_to_swap - allocate swap space for a folio
168   * @folio: folio we want to move to swap
169   *
170   * Allocate swap space for the folio and add the folio to the
171   * swap cache.
172   *
173   * Context: Caller needs to hold the folio lock.
174   * Return: Whether the folio was added to the swap cache.
175   */
add_to_swap(struct folio * folio)176  bool add_to_swap(struct folio *folio)
177  {
178  	swp_entry_t entry;
179  	int err;
180  
181  	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
182  	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
183  
184  	entry = folio_alloc_swap(folio);
185  	if (!entry.val)
186  		return false;
187  
188  	/*
189  	 * XArray node allocations from PF_MEMALLOC contexts could
190  	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
191  	 * stops emergency reserves from being allocated.
192  	 *
193  	 * TODO: this could cause a theoretical memory reclaim
194  	 * deadlock in the swap out path.
195  	 */
196  	/*
197  	 * Add it to the swap cache.
198  	 */
199  	err = add_to_swap_cache(folio, entry,
200  			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
201  	if (err)
202  		/*
203  		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
204  		 * clear SWAP_HAS_CACHE flag.
205  		 */
206  		goto fail;
207  	/*
208  	 * Normally the folio will be dirtied in unmap because its
209  	 * pte should be dirty. A special case is MADV_FREE page. The
210  	 * page's pte could have dirty bit cleared but the folio's
211  	 * SwapBacked flag is still set because clearing the dirty bit
212  	 * and SwapBacked flag has no lock protected. For such folio,
213  	 * unmap will not set dirty bit for it, so folio reclaim will
214  	 * not write the folio out. This can cause data corruption when
215  	 * the folio is swapped in later. Always setting the dirty flag
216  	 * for the folio solves the problem.
217  	 */
218  	folio_mark_dirty(folio);
219  
220  	return true;
221  
222  fail:
223  	put_swap_folio(folio, entry);
224  	return false;
225  }
226  
227  /*
228   * This must be called only on folios that have
229   * been verified to be in the swap cache and locked.
230   * It will never put the folio into the free list,
231   * the caller has a reference on the folio.
232   */
delete_from_swap_cache(struct folio * folio)233  void delete_from_swap_cache(struct folio *folio)
234  {
235  	swp_entry_t entry = folio->swap;
236  	struct address_space *address_space = swap_address_space(entry);
237  
238  	xa_lock_irq(&address_space->i_pages);
239  	__delete_from_swap_cache(folio, entry, NULL);
240  	xa_unlock_irq(&address_space->i_pages);
241  
242  	put_swap_folio(folio, entry);
243  	folio_ref_sub(folio, folio_nr_pages(folio));
244  }
245  
clear_shadow_from_swap_cache(int type,unsigned long begin,unsigned long end)246  void clear_shadow_from_swap_cache(int type, unsigned long begin,
247  				unsigned long end)
248  {
249  	unsigned long curr = begin;
250  	void *old;
251  
252  	for (;;) {
253  		swp_entry_t entry = swp_entry(type, curr);
254  		struct address_space *address_space = swap_address_space(entry);
255  		XA_STATE(xas, &address_space->i_pages, curr);
256  
257  		xas_set_update(&xas, workingset_update_node);
258  
259  		xa_lock_irq(&address_space->i_pages);
260  		xas_for_each(&xas, old, end) {
261  			if (!xa_is_value(old))
262  				continue;
263  			xas_store(&xas, NULL);
264  		}
265  		xa_unlock_irq(&address_space->i_pages);
266  
267  		/* search the next swapcache until we meet end */
268  		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
269  		curr++;
270  		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
271  		if (curr > end)
272  			break;
273  	}
274  }
275  
276  /*
277   * If we are the only user, then try to free up the swap cache.
278   *
279   * Its ok to check the swapcache flag without the folio lock
280   * here because we are going to recheck again inside
281   * folio_free_swap() _with_ the lock.
282   * 					- Marcelo
283   */
free_swap_cache(struct page * page)284  void free_swap_cache(struct page *page)
285  {
286  	struct folio *folio = page_folio(page);
287  
288  	if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
289  	    folio_trylock(folio)) {
290  		folio_free_swap(folio);
291  		folio_unlock(folio);
292  	}
293  }
294  
295  /*
296   * Perform a free_page(), also freeing any swap cache associated with
297   * this page if it is the last user of the page.
298   */
free_page_and_swap_cache(struct page * page)299  void free_page_and_swap_cache(struct page *page)
300  {
301  	free_swap_cache(page);
302  	if (!is_huge_zero_page(page))
303  		put_page(page);
304  }
305  
306  /*
307   * Passed an array of pages, drop them all from swapcache and then release
308   * them.  They are removed from the LRU and freed if this is their last use.
309   */
free_pages_and_swap_cache(struct encoded_page ** pages,int nr)310  void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
311  {
312  	lru_add_drain();
313  	for (int i = 0; i < nr; i++)
314  		free_swap_cache(encoded_page_ptr(pages[i]));
315  	release_pages(pages, nr);
316  }
317  
swap_use_vma_readahead(void)318  static inline bool swap_use_vma_readahead(void)
319  {
320  	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
321  }
322  
323  /*
324   * Lookup a swap entry in the swap cache. A found folio will be returned
325   * unlocked and with its refcount incremented - we rely on the kernel
326   * lock getting page table operations atomic even if we drop the folio
327   * lock before returning.
328   *
329   * Caller must lock the swap device or hold a reference to keep it valid.
330   */
swap_cache_get_folio(swp_entry_t entry,struct vm_area_struct * vma,unsigned long addr)331  struct folio *swap_cache_get_folio(swp_entry_t entry,
332  		struct vm_area_struct *vma, unsigned long addr)
333  {
334  	struct folio *folio;
335  
336  	folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
337  	if (!IS_ERR(folio)) {
338  		bool vma_ra = swap_use_vma_readahead();
339  		bool readahead;
340  
341  		/*
342  		 * At the moment, we don't support PG_readahead for anon THP
343  		 * so let's bail out rather than confusing the readahead stat.
344  		 */
345  		if (unlikely(folio_test_large(folio)))
346  			return folio;
347  
348  		readahead = folio_test_clear_readahead(folio);
349  		if (vma && vma_ra) {
350  			unsigned long ra_val;
351  			int win, hits;
352  
353  			ra_val = GET_SWAP_RA_VAL(vma);
354  			win = SWAP_RA_WIN(ra_val);
355  			hits = SWAP_RA_HITS(ra_val);
356  			if (readahead)
357  				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
358  			atomic_long_set(&vma->swap_readahead_info,
359  					SWAP_RA_VAL(addr, win, hits));
360  		}
361  
362  		if (readahead) {
363  			count_vm_event(SWAP_RA_HIT);
364  			if (!vma || !vma_ra)
365  				atomic_inc(&swapin_readahead_hits);
366  		}
367  	} else {
368  		folio = NULL;
369  	}
370  
371  	return folio;
372  }
373  
374  /**
375   * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
376   * @mapping: The address_space to search.
377   * @index: The page cache index.
378   *
379   * This differs from filemap_get_folio() in that it will also look for the
380   * folio in the swap cache.
381   *
382   * Return: The found folio or %NULL.
383   */
filemap_get_incore_folio(struct address_space * mapping,pgoff_t index)384  struct folio *filemap_get_incore_folio(struct address_space *mapping,
385  		pgoff_t index)
386  {
387  	swp_entry_t swp;
388  	struct swap_info_struct *si;
389  	struct folio *folio = filemap_get_entry(mapping, index);
390  
391  	if (!folio)
392  		return ERR_PTR(-ENOENT);
393  	if (!xa_is_value(folio))
394  		return folio;
395  	if (!shmem_mapping(mapping))
396  		return ERR_PTR(-ENOENT);
397  
398  	swp = radix_to_swp_entry(folio);
399  	/* There might be swapin error entries in shmem mapping. */
400  	if (non_swap_entry(swp))
401  		return ERR_PTR(-ENOENT);
402  	/* Prevent swapoff from happening to us */
403  	si = get_swap_device(swp);
404  	if (!si)
405  		return ERR_PTR(-ENOENT);
406  	index = swp_offset(swp);
407  	folio = filemap_get_folio(swap_address_space(swp), index);
408  	put_swap_device(si);
409  	return folio;
410  }
411  
__read_swap_cache_async(swp_entry_t entry,gfp_t gfp_mask,struct vm_area_struct * vma,unsigned long addr,bool * new_page_allocated)412  struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
413  			struct vm_area_struct *vma, unsigned long addr,
414  			bool *new_page_allocated)
415  {
416  	struct swap_info_struct *si;
417  	struct folio *folio;
418  	struct page *page;
419  	void *shadow = NULL;
420  
421  	*new_page_allocated = false;
422  	si = get_swap_device(entry);
423  	if (!si)
424  		return NULL;
425  
426  	for (;;) {
427  		int err;
428  		/*
429  		 * First check the swap cache.  Since this is normally
430  		 * called after swap_cache_get_folio() failed, re-calling
431  		 * that would confuse statistics.
432  		 */
433  		folio = filemap_get_folio(swap_address_space(entry),
434  						swp_offset(entry));
435  		if (!IS_ERR(folio)) {
436  			page = folio_file_page(folio, swp_offset(entry));
437  			goto got_page;
438  		}
439  
440  		/*
441  		 * Just skip read ahead for unused swap slot.
442  		 * During swap_off when swap_slot_cache is disabled,
443  		 * we have to handle the race between putting
444  		 * swap entry in swap cache and marking swap slot
445  		 * as SWAP_HAS_CACHE.  That's done in later part of code or
446  		 * else swap_off will be aborted if we return NULL.
447  		 */
448  		if (!swap_swapcount(si, entry) && swap_slot_cache_enabled)
449  			goto fail_put_swap;
450  
451  		/*
452  		 * Get a new page to read into from swap.  Allocate it now,
453  		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
454  		 * cause any racers to loop around until we add it to cache.
455  		 */
456  		folio = vma_alloc_folio(gfp_mask, 0, vma, addr, false);
457  		if (!folio)
458                          goto fail_put_swap;
459  
460  		/*
461  		 * Swap entry may have been freed since our caller observed it.
462  		 */
463  		err = swapcache_prepare(entry);
464  		if (!err)
465  			break;
466  
467  		folio_put(folio);
468  		if (err != -EEXIST)
469  			goto fail_put_swap;
470  
471  		/*
472  		 * We might race against __delete_from_swap_cache(), and
473  		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
474  		 * has not yet been cleared.  Or race against another
475  		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
476  		 * in swap_map, but not yet added its page to swap cache.
477  		 */
478  		schedule_timeout_uninterruptible(1);
479  	}
480  
481  	/*
482  	 * The swap entry is ours to swap in. Prepare the new page.
483  	 */
484  
485  	__folio_set_locked(folio);
486  	__folio_set_swapbacked(folio);
487  
488  	if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
489  		goto fail_unlock;
490  
491  	/* May fail (-ENOMEM) if XArray node allocation failed. */
492  	if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
493  		goto fail_unlock;
494  
495  	mem_cgroup_swapin_uncharge_swap(entry);
496  
497  	if (shadow)
498  		workingset_refault(folio, shadow);
499  
500  	/* Caller will initiate read into locked folio */
501  	folio_add_lru(folio);
502  	*new_page_allocated = true;
503  	page = &folio->page;
504  got_page:
505  	put_swap_device(si);
506  	return page;
507  
508  fail_unlock:
509  	put_swap_folio(folio, entry);
510  	folio_unlock(folio);
511  	folio_put(folio);
512  fail_put_swap:
513  	put_swap_device(si);
514  	return NULL;
515  }
516  
517  /*
518   * Locate a page of swap in physical memory, reserving swap cache space
519   * and reading the disk if it is not already cached.
520   * A failure return means that either the page allocation failed or that
521   * the swap entry is no longer in use.
522   *
523   * get/put_swap_device() aren't needed to call this function, because
524   * __read_swap_cache_async() call them and swap_readpage() holds the
525   * swap cache folio lock.
526   */
read_swap_cache_async(swp_entry_t entry,gfp_t gfp_mask,struct vm_area_struct * vma,unsigned long addr,struct swap_iocb ** plug)527  struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
528  				   struct vm_area_struct *vma,
529  				   unsigned long addr, struct swap_iocb **plug)
530  {
531  	bool page_was_allocated;
532  	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
533  			vma, addr, &page_was_allocated);
534  
535  	if (page_was_allocated)
536  		swap_readpage(retpage, false, plug);
537  
538  	return retpage;
539  }
540  
__swapin_nr_pages(unsigned long prev_offset,unsigned long offset,int hits,int max_pages,int prev_win)541  static unsigned int __swapin_nr_pages(unsigned long prev_offset,
542  				      unsigned long offset,
543  				      int hits,
544  				      int max_pages,
545  				      int prev_win)
546  {
547  	unsigned int pages, last_ra;
548  
549  	/*
550  	 * This heuristic has been found to work well on both sequential and
551  	 * random loads, swapping to hard disk or to SSD: please don't ask
552  	 * what the "+ 2" means, it just happens to work well, that's all.
553  	 */
554  	pages = hits + 2;
555  	if (pages == 2) {
556  		/*
557  		 * We can have no readahead hits to judge by: but must not get
558  		 * stuck here forever, so check for an adjacent offset instead
559  		 * (and don't even bother to check whether swap type is same).
560  		 */
561  		if (offset != prev_offset + 1 && offset != prev_offset - 1)
562  			pages = 1;
563  	} else {
564  		unsigned int roundup = 4;
565  		while (roundup < pages)
566  			roundup <<= 1;
567  		pages = roundup;
568  	}
569  
570  	if (pages > max_pages)
571  		pages = max_pages;
572  
573  	/* Don't shrink readahead too fast */
574  	last_ra = prev_win / 2;
575  	if (pages < last_ra)
576  		pages = last_ra;
577  
578  	return pages;
579  }
580  
swapin_nr_pages(unsigned long offset)581  static unsigned long swapin_nr_pages(unsigned long offset)
582  {
583  	static unsigned long prev_offset;
584  	unsigned int hits, pages, max_pages;
585  	static atomic_t last_readahead_pages;
586  
587  	max_pages = 1 << READ_ONCE(page_cluster);
588  	if (max_pages <= 1)
589  		return 1;
590  
591  	hits = atomic_xchg(&swapin_readahead_hits, 0);
592  	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
593  				  max_pages,
594  				  atomic_read(&last_readahead_pages));
595  	if (!hits)
596  		WRITE_ONCE(prev_offset, offset);
597  	atomic_set(&last_readahead_pages, pages);
598  
599  	return pages;
600  }
601  
602  /**
603   * swap_cluster_readahead - swap in pages in hope we need them soon
604   * @entry: swap entry of this memory
605   * @gfp_mask: memory allocation flags
606   * @vmf: fault information
607   *
608   * Returns the struct page for entry and addr, after queueing swapin.
609   *
610   * Primitive swap readahead code. We simply read an aligned block of
611   * (1 << page_cluster) entries in the swap area. This method is chosen
612   * because it doesn't cost us any seek time.  We also make sure to queue
613   * the 'original' request together with the readahead ones...
614   *
615   * This has been extended to use the NUMA policies from the mm triggering
616   * the readahead.
617   *
618   * Caller must hold read mmap_lock if vmf->vma is not NULL.
619   */
swap_cluster_readahead(swp_entry_t entry,gfp_t gfp_mask,struct vm_fault * vmf)620  struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
621  				struct vm_fault *vmf)
622  {
623  	struct page *page;
624  	unsigned long entry_offset = swp_offset(entry);
625  	unsigned long offset = entry_offset;
626  	unsigned long start_offset, end_offset;
627  	unsigned long mask;
628  	struct swap_info_struct *si = swp_swap_info(entry);
629  	struct blk_plug plug;
630  	struct swap_iocb *splug = NULL;
631  	bool page_allocated;
632  	struct vm_area_struct *vma = vmf->vma;
633  	unsigned long addr = vmf->address;
634  
635  	mask = swapin_nr_pages(offset) - 1;
636  	if (!mask)
637  		goto skip;
638  
639  	/* Read a page_cluster sized and aligned cluster around offset. */
640  	start_offset = offset & ~mask;
641  	end_offset = offset | mask;
642  	if (!start_offset)	/* First page is swap header. */
643  		start_offset++;
644  	if (end_offset >= si->max)
645  		end_offset = si->max - 1;
646  
647  	blk_start_plug(&plug);
648  	for (offset = start_offset; offset <= end_offset ; offset++) {
649  		/* Ok, do the async read-ahead now */
650  		page = __read_swap_cache_async(
651  			swp_entry(swp_type(entry), offset),
652  			gfp_mask, vma, addr, &page_allocated);
653  		if (!page)
654  			continue;
655  		if (page_allocated) {
656  			swap_readpage(page, false, &splug);
657  			if (offset != entry_offset) {
658  				SetPageReadahead(page);
659  				count_vm_event(SWAP_RA);
660  			}
661  		}
662  		put_page(page);
663  	}
664  	blk_finish_plug(&plug);
665  	swap_read_unplug(splug);
666  
667  	lru_add_drain();	/* Push any new pages onto the LRU now */
668  skip:
669  	/* The page was likely read above, so no need for plugging here */
670  	return read_swap_cache_async(entry, gfp_mask, vma, addr, NULL);
671  }
672  
init_swap_address_space(unsigned int type,unsigned long nr_pages)673  int init_swap_address_space(unsigned int type, unsigned long nr_pages)
674  {
675  	struct address_space *spaces, *space;
676  	unsigned int i, nr;
677  
678  	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
679  	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
680  	if (!spaces)
681  		return -ENOMEM;
682  	for (i = 0; i < nr; i++) {
683  		space = spaces + i;
684  		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
685  		atomic_set(&space->i_mmap_writable, 0);
686  		space->a_ops = &swap_aops;
687  		/* swap cache doesn't use writeback related tags */
688  		mapping_set_no_writeback_tags(space);
689  	}
690  	nr_swapper_spaces[type] = nr;
691  	swapper_spaces[type] = spaces;
692  
693  	return 0;
694  }
695  
exit_swap_address_space(unsigned int type)696  void exit_swap_address_space(unsigned int type)
697  {
698  	int i;
699  	struct address_space *spaces = swapper_spaces[type];
700  
701  	for (i = 0; i < nr_swapper_spaces[type]; i++)
702  		VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
703  	kvfree(spaces);
704  	nr_swapper_spaces[type] = 0;
705  	swapper_spaces[type] = NULL;
706  }
707  
708  #define SWAP_RA_ORDER_CEILING	5
709  
710  struct vma_swap_readahead {
711  	unsigned short win;
712  	unsigned short offset;
713  	unsigned short nr_pte;
714  };
715  
swap_ra_info(struct vm_fault * vmf,struct vma_swap_readahead * ra_info)716  static void swap_ra_info(struct vm_fault *vmf,
717  			 struct vma_swap_readahead *ra_info)
718  {
719  	struct vm_area_struct *vma = vmf->vma;
720  	unsigned long ra_val;
721  	unsigned long faddr, pfn, fpfn, lpfn, rpfn;
722  	unsigned long start, end;
723  	unsigned int max_win, hits, prev_win, win;
724  
725  	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
726  			     SWAP_RA_ORDER_CEILING);
727  	if (max_win == 1) {
728  		ra_info->win = 1;
729  		return;
730  	}
731  
732  	faddr = vmf->address;
733  	fpfn = PFN_DOWN(faddr);
734  	ra_val = GET_SWAP_RA_VAL(vma);
735  	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
736  	prev_win = SWAP_RA_WIN(ra_val);
737  	hits = SWAP_RA_HITS(ra_val);
738  	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
739  					       max_win, prev_win);
740  	atomic_long_set(&vma->swap_readahead_info,
741  			SWAP_RA_VAL(faddr, win, 0));
742  	if (win == 1)
743  		return;
744  
745  	if (fpfn == pfn + 1) {
746  		lpfn = fpfn;
747  		rpfn = fpfn + win;
748  	} else if (pfn == fpfn + 1) {
749  		lpfn = fpfn - win + 1;
750  		rpfn = fpfn + 1;
751  	} else {
752  		unsigned int left = (win - 1) / 2;
753  
754  		lpfn = fpfn - left;
755  		rpfn = fpfn + win - left;
756  	}
757  	start = max3(lpfn, PFN_DOWN(vma->vm_start),
758  		     PFN_DOWN(faddr & PMD_MASK));
759  	end = min3(rpfn, PFN_DOWN(vma->vm_end),
760  		   PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
761  
762  	ra_info->nr_pte = end - start;
763  	ra_info->offset = fpfn - start;
764  }
765  
766  /**
767   * swap_vma_readahead - swap in pages in hope we need them soon
768   * @fentry: swap entry of this memory
769   * @gfp_mask: memory allocation flags
770   * @vmf: fault information
771   *
772   * Returns the struct page for entry and addr, after queueing swapin.
773   *
774   * Primitive swap readahead code. We simply read in a few pages whose
775   * virtual addresses are around the fault address in the same vma.
776   *
777   * Caller must hold read mmap_lock if vmf->vma is not NULL.
778   *
779   */
swap_vma_readahead(swp_entry_t fentry,gfp_t gfp_mask,struct vm_fault * vmf)780  static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
781  				       struct vm_fault *vmf)
782  {
783  	struct blk_plug plug;
784  	struct swap_iocb *splug = NULL;
785  	struct vm_area_struct *vma = vmf->vma;
786  	struct page *page;
787  	pte_t *pte = NULL, pentry;
788  	unsigned long addr;
789  	swp_entry_t entry;
790  	unsigned int i;
791  	bool page_allocated;
792  	struct vma_swap_readahead ra_info = {
793  		.win = 1,
794  	};
795  
796  	swap_ra_info(vmf, &ra_info);
797  	if (ra_info.win == 1)
798  		goto skip;
799  
800  	addr = vmf->address - (ra_info.offset * PAGE_SIZE);
801  
802  	blk_start_plug(&plug);
803  	for (i = 0; i < ra_info.nr_pte; i++, addr += PAGE_SIZE) {
804  		if (!pte++) {
805  			pte = pte_offset_map(vmf->pmd, addr);
806  			if (!pte)
807  				break;
808  		}
809  		pentry = ptep_get_lockless(pte);
810  		if (!is_swap_pte(pentry))
811  			continue;
812  		entry = pte_to_swp_entry(pentry);
813  		if (unlikely(non_swap_entry(entry)))
814  			continue;
815  		pte_unmap(pte);
816  		pte = NULL;
817  		page = __read_swap_cache_async(entry, gfp_mask, vma,
818  					       addr, &page_allocated);
819  		if (!page)
820  			continue;
821  		if (page_allocated) {
822  			swap_readpage(page, false, &splug);
823  			if (i != ra_info.offset) {
824  				SetPageReadahead(page);
825  				count_vm_event(SWAP_RA);
826  			}
827  		}
828  		put_page(page);
829  	}
830  	if (pte)
831  		pte_unmap(pte);
832  	blk_finish_plug(&plug);
833  	swap_read_unplug(splug);
834  	lru_add_drain();
835  skip:
836  	/* The page was likely read above, so no need for plugging here */
837  	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
838  				     NULL);
839  }
840  
841  /**
842   * swapin_readahead - swap in pages in hope we need them soon
843   * @entry: swap entry of this memory
844   * @gfp_mask: memory allocation flags
845   * @vmf: fault information
846   *
847   * Returns the struct page for entry and addr, after queueing swapin.
848   *
849   * It's a main entry function for swap readahead. By the configuration,
850   * it will read ahead blocks by cluster-based(ie, physical disk based)
851   * or vma-based(ie, virtual address based on faulty address) readahead.
852   */
swapin_readahead(swp_entry_t entry,gfp_t gfp_mask,struct vm_fault * vmf)853  struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
854  				struct vm_fault *vmf)
855  {
856  	return swap_use_vma_readahead() ?
857  			swap_vma_readahead(entry, gfp_mask, vmf) :
858  			swap_cluster_readahead(entry, gfp_mask, vmf);
859  }
860  
861  #ifdef CONFIG_SYSFS
vma_ra_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)862  static ssize_t vma_ra_enabled_show(struct kobject *kobj,
863  				     struct kobj_attribute *attr, char *buf)
864  {
865  	return sysfs_emit(buf, "%s\n",
866  			  enable_vma_readahead ? "true" : "false");
867  }
vma_ra_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)868  static ssize_t vma_ra_enabled_store(struct kobject *kobj,
869  				      struct kobj_attribute *attr,
870  				      const char *buf, size_t count)
871  {
872  	ssize_t ret;
873  
874  	ret = kstrtobool(buf, &enable_vma_readahead);
875  	if (ret)
876  		return ret;
877  
878  	return count;
879  }
880  static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
881  
882  static struct attribute *swap_attrs[] = {
883  	&vma_ra_enabled_attr.attr,
884  	NULL,
885  };
886  
887  static const struct attribute_group swap_attr_group = {
888  	.attrs = swap_attrs,
889  };
890  
swap_init_sysfs(void)891  static int __init swap_init_sysfs(void)
892  {
893  	int err;
894  	struct kobject *swap_kobj;
895  
896  	swap_kobj = kobject_create_and_add("swap", mm_kobj);
897  	if (!swap_kobj) {
898  		pr_err("failed to create swap kobject\n");
899  		return -ENOMEM;
900  	}
901  	err = sysfs_create_group(swap_kobj, &swap_attr_group);
902  	if (err) {
903  		pr_err("failed to register swap group\n");
904  		goto delete_obj;
905  	}
906  	return 0;
907  
908  delete_obj:
909  	kobject_put(swap_kobj);
910  	return err;
911  }
912  subsys_initcall(swap_init_sysfs);
913  #endif
914