1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 #include <linux/smp.h> 31 32 #include <asm/apic.h> 33 #include <asm/perf_event.h> 34 #include <asm/tlbflush.h> 35 #include <asm/desc.h> 36 #include <asm/debugreg.h> 37 #include <asm/kvm_para.h> 38 #include <asm/irq_remapping.h> 39 #include <asm/spec-ctrl.h> 40 #include <asm/cpu_device_id.h> 41 #include <asm/traps.h> 42 #include <asm/reboot.h> 43 #include <asm/fpu/api.h> 44 45 #include <trace/events/ipi.h> 46 47 #include "trace.h" 48 49 #include "svm.h" 50 #include "svm_ops.h" 51 52 #include "kvm_onhyperv.h" 53 #include "svm_onhyperv.h" 54 55 MODULE_AUTHOR("Qumranet"); 56 MODULE_LICENSE("GPL"); 57 58 #ifdef MODULE 59 static const struct x86_cpu_id svm_cpu_id[] = { 60 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 61 {} 62 }; 63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 64 #endif 65 66 #define SEG_TYPE_LDT 2 67 #define SEG_TYPE_BUSY_TSS16 3 68 69 static bool erratum_383_found __read_mostly; 70 71 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 72 73 /* 74 * Set osvw_len to higher value when updated Revision Guides 75 * are published and we know what the new status bits are 76 */ 77 static uint64_t osvw_len = 4, osvw_status; 78 79 static DEFINE_PER_CPU(u64, current_tsc_ratio); 80 81 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) 82 83 static const struct svm_direct_access_msrs { 84 u32 index; /* Index of the MSR */ 85 bool always; /* True if intercept is initially cleared */ 86 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 87 { .index = MSR_STAR, .always = true }, 88 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 89 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 90 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 91 #ifdef CONFIG_X86_64 92 { .index = MSR_GS_BASE, .always = true }, 93 { .index = MSR_FS_BASE, .always = true }, 94 { .index = MSR_KERNEL_GS_BASE, .always = true }, 95 { .index = MSR_LSTAR, .always = true }, 96 { .index = MSR_CSTAR, .always = true }, 97 { .index = MSR_SYSCALL_MASK, .always = true }, 98 #endif 99 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 100 { .index = MSR_IA32_PRED_CMD, .always = false }, 101 { .index = MSR_IA32_FLUSH_CMD, .always = false }, 102 { .index = MSR_IA32_DEBUGCTLMSR, .always = false }, 103 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 104 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 105 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 106 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 107 { .index = MSR_IA32_XSS, .always = false }, 108 { .index = MSR_EFER, .always = false }, 109 { .index = MSR_IA32_CR_PAT, .always = false }, 110 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 111 { .index = MSR_TSC_AUX, .always = false }, 112 { .index = X2APIC_MSR(APIC_ID), .always = false }, 113 { .index = X2APIC_MSR(APIC_LVR), .always = false }, 114 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, 115 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, 116 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, 117 { .index = X2APIC_MSR(APIC_EOI), .always = false }, 118 { .index = X2APIC_MSR(APIC_RRR), .always = false }, 119 { .index = X2APIC_MSR(APIC_LDR), .always = false }, 120 { .index = X2APIC_MSR(APIC_DFR), .always = false }, 121 { .index = X2APIC_MSR(APIC_SPIV), .always = false }, 122 { .index = X2APIC_MSR(APIC_ISR), .always = false }, 123 { .index = X2APIC_MSR(APIC_TMR), .always = false }, 124 { .index = X2APIC_MSR(APIC_IRR), .always = false }, 125 { .index = X2APIC_MSR(APIC_ESR), .always = false }, 126 { .index = X2APIC_MSR(APIC_ICR), .always = false }, 127 { .index = X2APIC_MSR(APIC_ICR2), .always = false }, 128 129 /* 130 * Note: 131 * AMD does not virtualize APIC TSC-deadline timer mode, but it is 132 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, 133 * the AVIC hardware would generate GP fault. Therefore, always 134 * intercept the MSR 0x832, and do not setup direct_access_msr. 135 */ 136 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, 137 { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, 138 { .index = X2APIC_MSR(APIC_LVT0), .always = false }, 139 { .index = X2APIC_MSR(APIC_LVT1), .always = false }, 140 { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, 141 { .index = X2APIC_MSR(APIC_TMICT), .always = false }, 142 { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, 143 { .index = X2APIC_MSR(APIC_TDCR), .always = false }, 144 { .index = MSR_INVALID, .always = false }, 145 }; 146 147 /* 148 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 149 * pause_filter_count: On processors that support Pause filtering(indicated 150 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 151 * count value. On VMRUN this value is loaded into an internal counter. 152 * Each time a pause instruction is executed, this counter is decremented 153 * until it reaches zero at which time a #VMEXIT is generated if pause 154 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 155 * Intercept Filtering for more details. 156 * This also indicate if ple logic enabled. 157 * 158 * pause_filter_thresh: In addition, some processor families support advanced 159 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 160 * the amount of time a guest is allowed to execute in a pause loop. 161 * In this mode, a 16-bit pause filter threshold field is added in the 162 * VMCB. The threshold value is a cycle count that is used to reset the 163 * pause counter. As with simple pause filtering, VMRUN loads the pause 164 * count value from VMCB into an internal counter. Then, on each pause 165 * instruction the hardware checks the elapsed number of cycles since 166 * the most recent pause instruction against the pause filter threshold. 167 * If the elapsed cycle count is greater than the pause filter threshold, 168 * then the internal pause count is reloaded from the VMCB and execution 169 * continues. If the elapsed cycle count is less than the pause filter 170 * threshold, then the internal pause count is decremented. If the count 171 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 172 * triggered. If advanced pause filtering is supported and pause filter 173 * threshold field is set to zero, the filter will operate in the simpler, 174 * count only mode. 175 */ 176 177 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 178 module_param(pause_filter_thresh, ushort, 0444); 179 180 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 181 module_param(pause_filter_count, ushort, 0444); 182 183 /* Default doubles per-vcpu window every exit. */ 184 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 185 module_param(pause_filter_count_grow, ushort, 0444); 186 187 /* Default resets per-vcpu window every exit to pause_filter_count. */ 188 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 189 module_param(pause_filter_count_shrink, ushort, 0444); 190 191 /* Default is to compute the maximum so we can never overflow. */ 192 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 193 module_param(pause_filter_count_max, ushort, 0444); 194 195 /* 196 * Use nested page tables by default. Note, NPT may get forced off by 197 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 198 */ 199 bool npt_enabled = true; 200 module_param_named(npt, npt_enabled, bool, 0444); 201 202 /* allow nested virtualization in KVM/SVM */ 203 static int nested = true; 204 module_param(nested, int, S_IRUGO); 205 206 /* enable/disable Next RIP Save */ 207 int nrips = true; 208 module_param(nrips, int, 0444); 209 210 /* enable/disable Virtual VMLOAD VMSAVE */ 211 static int vls = true; 212 module_param(vls, int, 0444); 213 214 /* enable/disable Virtual GIF */ 215 int vgif = true; 216 module_param(vgif, int, 0444); 217 218 /* enable/disable LBR virtualization */ 219 int lbrv = true; 220 module_param(lbrv, int, 0444); 221 222 static int tsc_scaling = true; 223 module_param(tsc_scaling, int, 0444); 224 225 /* 226 * enable / disable AVIC. Because the defaults differ for APICv 227 * support between VMX and SVM we cannot use module_param_named. 228 */ 229 static bool avic; 230 module_param(avic, bool, 0444); 231 232 bool __read_mostly dump_invalid_vmcb; 233 module_param(dump_invalid_vmcb, bool, 0644); 234 235 236 bool intercept_smi = true; 237 module_param(intercept_smi, bool, 0444); 238 239 bool vnmi = true; 240 module_param(vnmi, bool, 0444); 241 242 static bool svm_gp_erratum_intercept = true; 243 244 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 245 246 static unsigned long iopm_base; 247 248 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 249 250 /* 251 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 252 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 253 * 254 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 255 * defer the restoration of TSC_AUX until the CPU returns to userspace. 256 */ 257 static int tsc_aux_uret_slot __read_mostly = -1; 258 259 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 260 261 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 262 #define MSRS_RANGE_SIZE 2048 263 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 264 svm_msrpm_offset(u32 msr)265 u32 svm_msrpm_offset(u32 msr) 266 { 267 u32 offset; 268 int i; 269 270 for (i = 0; i < NUM_MSR_MAPS; i++) { 271 if (msr < msrpm_ranges[i] || 272 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 273 continue; 274 275 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 276 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 277 278 /* Now we have the u8 offset - but need the u32 offset */ 279 return offset / 4; 280 } 281 282 /* MSR not in any range */ 283 return MSR_INVALID; 284 } 285 286 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu); 287 get_npt_level(void)288 static int get_npt_level(void) 289 { 290 #ifdef CONFIG_X86_64 291 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 292 #else 293 return PT32E_ROOT_LEVEL; 294 #endif 295 } 296 svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)297 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 298 { 299 struct vcpu_svm *svm = to_svm(vcpu); 300 u64 old_efer = vcpu->arch.efer; 301 vcpu->arch.efer = efer; 302 303 if (!npt_enabled) { 304 /* Shadow paging assumes NX to be available. */ 305 efer |= EFER_NX; 306 307 if (!(efer & EFER_LMA)) 308 efer &= ~EFER_LME; 309 } 310 311 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 312 if (!(efer & EFER_SVME)) { 313 svm_leave_nested(vcpu); 314 svm_set_gif(svm, true); 315 /* #GP intercept is still needed for vmware backdoor */ 316 if (!enable_vmware_backdoor) 317 clr_exception_intercept(svm, GP_VECTOR); 318 319 /* 320 * Free the nested guest state, unless we are in SMM. 321 * In this case we will return to the nested guest 322 * as soon as we leave SMM. 323 */ 324 if (!is_smm(vcpu)) 325 svm_free_nested(svm); 326 327 } else { 328 int ret = svm_allocate_nested(svm); 329 330 if (ret) { 331 vcpu->arch.efer = old_efer; 332 return ret; 333 } 334 335 /* 336 * Never intercept #GP for SEV guests, KVM can't 337 * decrypt guest memory to workaround the erratum. 338 */ 339 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 340 set_exception_intercept(svm, GP_VECTOR); 341 } 342 } 343 344 svm->vmcb->save.efer = efer | EFER_SVME; 345 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 346 return 0; 347 } 348 svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)349 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 350 { 351 struct vcpu_svm *svm = to_svm(vcpu); 352 u32 ret = 0; 353 354 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 355 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 356 return ret; 357 } 358 svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)359 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 360 { 361 struct vcpu_svm *svm = to_svm(vcpu); 362 363 if (mask == 0) 364 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 365 else 366 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 367 368 } 369 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 370 void *insn, int insn_len); 371 __svm_skip_emulated_instruction(struct kvm_vcpu * vcpu,bool commit_side_effects)372 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 373 bool commit_side_effects) 374 { 375 struct vcpu_svm *svm = to_svm(vcpu); 376 unsigned long old_rflags; 377 378 /* 379 * SEV-ES does not expose the next RIP. The RIP update is controlled by 380 * the type of exit and the #VC handler in the guest. 381 */ 382 if (sev_es_guest(vcpu->kvm)) 383 goto done; 384 385 if (nrips && svm->vmcb->control.next_rip != 0) { 386 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 387 svm->next_rip = svm->vmcb->control.next_rip; 388 } 389 390 if (!svm->next_rip) { 391 /* 392 * FIXME: Drop this when kvm_emulate_instruction() does the 393 * right thing and treats "can't emulate" as outright failure 394 * for EMULTYPE_SKIP. 395 */ 396 if (!svm_can_emulate_instruction(vcpu, EMULTYPE_SKIP, NULL, 0)) 397 return 0; 398 399 if (unlikely(!commit_side_effects)) 400 old_rflags = svm->vmcb->save.rflags; 401 402 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 403 return 0; 404 405 if (unlikely(!commit_side_effects)) 406 svm->vmcb->save.rflags = old_rflags; 407 } else { 408 kvm_rip_write(vcpu, svm->next_rip); 409 } 410 411 done: 412 if (likely(commit_side_effects)) 413 svm_set_interrupt_shadow(vcpu, 0); 414 415 return 1; 416 } 417 svm_skip_emulated_instruction(struct kvm_vcpu * vcpu)418 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 419 { 420 return __svm_skip_emulated_instruction(vcpu, true); 421 } 422 svm_update_soft_interrupt_rip(struct kvm_vcpu * vcpu)423 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 424 { 425 unsigned long rip, old_rip = kvm_rip_read(vcpu); 426 struct vcpu_svm *svm = to_svm(vcpu); 427 428 /* 429 * Due to architectural shortcomings, the CPU doesn't always provide 430 * NextRIP, e.g. if KVM intercepted an exception that occurred while 431 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 432 * the instruction even if NextRIP is supported to acquire the next 433 * RIP so that it can be shoved into the NextRIP field, otherwise 434 * hardware will fail to advance guest RIP during event injection. 435 * Drop the exception/interrupt if emulation fails and effectively 436 * retry the instruction, it's the least awful option. If NRIPS is 437 * in use, the skip must not commit any side effects such as clearing 438 * the interrupt shadow or RFLAGS.RF. 439 */ 440 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 441 return -EIO; 442 443 rip = kvm_rip_read(vcpu); 444 445 /* 446 * Save the injection information, even when using next_rip, as the 447 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 448 * doesn't complete due to a VM-Exit occurring while the CPU is 449 * vectoring the event. Decoding the instruction isn't guaranteed to 450 * work as there may be no backing instruction, e.g. if the event is 451 * being injected by L1 for L2, or if the guest is patching INT3 into 452 * a different instruction. 453 */ 454 svm->soft_int_injected = true; 455 svm->soft_int_csbase = svm->vmcb->save.cs.base; 456 svm->soft_int_old_rip = old_rip; 457 svm->soft_int_next_rip = rip; 458 459 if (nrips) 460 kvm_rip_write(vcpu, old_rip); 461 462 if (static_cpu_has(X86_FEATURE_NRIPS)) 463 svm->vmcb->control.next_rip = rip; 464 465 return 0; 466 } 467 svm_inject_exception(struct kvm_vcpu * vcpu)468 static void svm_inject_exception(struct kvm_vcpu *vcpu) 469 { 470 struct kvm_queued_exception *ex = &vcpu->arch.exception; 471 struct vcpu_svm *svm = to_svm(vcpu); 472 473 kvm_deliver_exception_payload(vcpu, ex); 474 475 if (kvm_exception_is_soft(ex->vector) && 476 svm_update_soft_interrupt_rip(vcpu)) 477 return; 478 479 svm->vmcb->control.event_inj = ex->vector 480 | SVM_EVTINJ_VALID 481 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 482 | SVM_EVTINJ_TYPE_EXEPT; 483 svm->vmcb->control.event_inj_err = ex->error_code; 484 } 485 svm_init_erratum_383(void)486 static void svm_init_erratum_383(void) 487 { 488 u32 low, high; 489 int err; 490 u64 val; 491 492 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 493 return; 494 495 /* Use _safe variants to not break nested virtualization */ 496 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 497 if (err) 498 return; 499 500 val |= (1ULL << 47); 501 502 low = lower_32_bits(val); 503 high = upper_32_bits(val); 504 505 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 506 507 erratum_383_found = true; 508 } 509 svm_init_osvw(struct kvm_vcpu * vcpu)510 static void svm_init_osvw(struct kvm_vcpu *vcpu) 511 { 512 /* 513 * Guests should see errata 400 and 415 as fixed (assuming that 514 * HLT and IO instructions are intercepted). 515 */ 516 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 517 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 518 519 /* 520 * By increasing VCPU's osvw.length to 3 we are telling the guest that 521 * all osvw.status bits inside that length, including bit 0 (which is 522 * reserved for erratum 298), are valid. However, if host processor's 523 * osvw_len is 0 then osvw_status[0] carries no information. We need to 524 * be conservative here and therefore we tell the guest that erratum 298 525 * is present (because we really don't know). 526 */ 527 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 528 vcpu->arch.osvw.status |= 1; 529 } 530 __kvm_is_svm_supported(void)531 static bool __kvm_is_svm_supported(void) 532 { 533 int cpu = smp_processor_id(); 534 struct cpuinfo_x86 *c = &cpu_data(cpu); 535 536 u64 vm_cr; 537 538 if (c->x86_vendor != X86_VENDOR_AMD && 539 c->x86_vendor != X86_VENDOR_HYGON) { 540 pr_err("CPU %d isn't AMD or Hygon\n", cpu); 541 return false; 542 } 543 544 if (!cpu_has(c, X86_FEATURE_SVM)) { 545 pr_err("SVM not supported by CPU %d\n", cpu); 546 return false; 547 } 548 549 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 550 pr_info("KVM is unsupported when running as an SEV guest\n"); 551 return false; 552 } 553 554 rdmsrl(MSR_VM_CR, vm_cr); 555 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) { 556 pr_err("SVM disabled (by BIOS) in MSR_VM_CR on CPU %d\n", cpu); 557 return false; 558 } 559 560 return true; 561 } 562 kvm_is_svm_supported(void)563 static bool kvm_is_svm_supported(void) 564 { 565 bool supported; 566 567 migrate_disable(); 568 supported = __kvm_is_svm_supported(); 569 migrate_enable(); 570 571 return supported; 572 } 573 svm_check_processor_compat(void)574 static int svm_check_processor_compat(void) 575 { 576 if (!__kvm_is_svm_supported()) 577 return -EIO; 578 579 return 0; 580 } 581 __svm_write_tsc_multiplier(u64 multiplier)582 static void __svm_write_tsc_multiplier(u64 multiplier) 583 { 584 if (multiplier == __this_cpu_read(current_tsc_ratio)) 585 return; 586 587 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 588 __this_cpu_write(current_tsc_ratio, multiplier); 589 } 590 kvm_cpu_svm_disable(void)591 static inline void kvm_cpu_svm_disable(void) 592 { 593 uint64_t efer; 594 595 wrmsrl(MSR_VM_HSAVE_PA, 0); 596 rdmsrl(MSR_EFER, efer); 597 if (efer & EFER_SVME) { 598 /* 599 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and 600 * NMI aren't blocked. 601 */ 602 stgi(); 603 wrmsrl(MSR_EFER, efer & ~EFER_SVME); 604 } 605 } 606 svm_emergency_disable(void)607 static void svm_emergency_disable(void) 608 { 609 kvm_rebooting = true; 610 611 kvm_cpu_svm_disable(); 612 } 613 svm_hardware_disable(void)614 static void svm_hardware_disable(void) 615 { 616 /* Make sure we clean up behind us */ 617 if (tsc_scaling) 618 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 619 620 kvm_cpu_svm_disable(); 621 622 amd_pmu_disable_virt(); 623 } 624 svm_hardware_enable(void)625 static int svm_hardware_enable(void) 626 { 627 628 struct svm_cpu_data *sd; 629 uint64_t efer; 630 int me = raw_smp_processor_id(); 631 632 rdmsrl(MSR_EFER, efer); 633 if (efer & EFER_SVME) 634 return -EBUSY; 635 636 sd = per_cpu_ptr(&svm_data, me); 637 sd->asid_generation = 1; 638 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 639 sd->next_asid = sd->max_asid + 1; 640 sd->min_asid = max_sev_asid + 1; 641 642 wrmsrl(MSR_EFER, efer | EFER_SVME); 643 644 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa); 645 646 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 647 /* 648 * Set the default value, even if we don't use TSC scaling 649 * to avoid having stale value in the msr 650 */ 651 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 652 } 653 654 655 /* 656 * Get OSVW bits. 657 * 658 * Note that it is possible to have a system with mixed processor 659 * revisions and therefore different OSVW bits. If bits are not the same 660 * on different processors then choose the worst case (i.e. if erratum 661 * is present on one processor and not on another then assume that the 662 * erratum is present everywhere). 663 */ 664 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 665 uint64_t len, status = 0; 666 int err; 667 668 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 669 if (!err) 670 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 671 &err); 672 673 if (err) 674 osvw_status = osvw_len = 0; 675 else { 676 if (len < osvw_len) 677 osvw_len = len; 678 osvw_status |= status; 679 osvw_status &= (1ULL << osvw_len) - 1; 680 } 681 } else 682 osvw_status = osvw_len = 0; 683 684 svm_init_erratum_383(); 685 686 amd_pmu_enable_virt(); 687 688 /* 689 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type 690 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests. 691 * Since Linux does not change the value of TSC_AUX once set, prime the 692 * TSC_AUX field now to avoid a RDMSR on every vCPU run. 693 */ 694 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 695 struct sev_es_save_area *hostsa; 696 u32 __maybe_unused msr_hi; 697 698 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 699 700 rdmsr(MSR_TSC_AUX, hostsa->tsc_aux, msr_hi); 701 } 702 703 return 0; 704 } 705 svm_cpu_uninit(int cpu)706 static void svm_cpu_uninit(int cpu) 707 { 708 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 709 710 if (!sd->save_area) 711 return; 712 713 kfree(sd->sev_vmcbs); 714 __free_page(sd->save_area); 715 sd->save_area_pa = 0; 716 sd->save_area = NULL; 717 } 718 svm_cpu_init(int cpu)719 static int svm_cpu_init(int cpu) 720 { 721 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 722 int ret = -ENOMEM; 723 724 memset(sd, 0, sizeof(struct svm_cpu_data)); 725 sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO); 726 if (!sd->save_area) 727 return ret; 728 729 ret = sev_cpu_init(sd); 730 if (ret) 731 goto free_save_area; 732 733 sd->save_area_pa = __sme_page_pa(sd->save_area); 734 return 0; 735 736 free_save_area: 737 __free_page(sd->save_area); 738 sd->save_area = NULL; 739 return ret; 740 741 } 742 set_dr_intercepts(struct vcpu_svm * svm)743 static void set_dr_intercepts(struct vcpu_svm *svm) 744 { 745 struct vmcb *vmcb = svm->vmcb01.ptr; 746 747 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); 748 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); 749 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); 750 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); 751 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); 752 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); 753 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); 754 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); 755 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); 756 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); 757 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); 758 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); 759 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); 760 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); 761 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 762 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 763 764 recalc_intercepts(svm); 765 } 766 clr_dr_intercepts(struct vcpu_svm * svm)767 static void clr_dr_intercepts(struct vcpu_svm *svm) 768 { 769 struct vmcb *vmcb = svm->vmcb01.ptr; 770 771 vmcb->control.intercepts[INTERCEPT_DR] = 0; 772 773 recalc_intercepts(svm); 774 } 775 direct_access_msr_slot(u32 msr)776 static int direct_access_msr_slot(u32 msr) 777 { 778 u32 i; 779 780 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 781 if (direct_access_msrs[i].index == msr) 782 return i; 783 784 return -ENOENT; 785 } 786 set_shadow_msr_intercept(struct kvm_vcpu * vcpu,u32 msr,int read,int write)787 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 788 int write) 789 { 790 struct vcpu_svm *svm = to_svm(vcpu); 791 int slot = direct_access_msr_slot(msr); 792 793 if (slot == -ENOENT) 794 return; 795 796 /* Set the shadow bitmaps to the desired intercept states */ 797 if (read) 798 set_bit(slot, svm->shadow_msr_intercept.read); 799 else 800 clear_bit(slot, svm->shadow_msr_intercept.read); 801 802 if (write) 803 set_bit(slot, svm->shadow_msr_intercept.write); 804 else 805 clear_bit(slot, svm->shadow_msr_intercept.write); 806 } 807 valid_msr_intercept(u32 index)808 static bool valid_msr_intercept(u32 index) 809 { 810 return direct_access_msr_slot(index) != -ENOENT; 811 } 812 msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)813 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 814 { 815 u8 bit_write; 816 unsigned long tmp; 817 u32 offset; 818 u32 *msrpm; 819 820 /* 821 * For non-nested case: 822 * If the L01 MSR bitmap does not intercept the MSR, then we need to 823 * save it. 824 * 825 * For nested case: 826 * If the L02 MSR bitmap does not intercept the MSR, then we need to 827 * save it. 828 */ 829 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 830 to_svm(vcpu)->msrpm; 831 832 offset = svm_msrpm_offset(msr); 833 bit_write = 2 * (msr & 0x0f) + 1; 834 tmp = msrpm[offset]; 835 836 BUG_ON(offset == MSR_INVALID); 837 838 return test_bit(bit_write, &tmp); 839 } 840 set_msr_interception_bitmap(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)841 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 842 u32 msr, int read, int write) 843 { 844 struct vcpu_svm *svm = to_svm(vcpu); 845 u8 bit_read, bit_write; 846 unsigned long tmp; 847 u32 offset; 848 849 /* 850 * If this warning triggers extend the direct_access_msrs list at the 851 * beginning of the file 852 */ 853 WARN_ON(!valid_msr_intercept(msr)); 854 855 /* Enforce non allowed MSRs to trap */ 856 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 857 read = 0; 858 859 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 860 write = 0; 861 862 offset = svm_msrpm_offset(msr); 863 bit_read = 2 * (msr & 0x0f); 864 bit_write = 2 * (msr & 0x0f) + 1; 865 tmp = msrpm[offset]; 866 867 BUG_ON(offset == MSR_INVALID); 868 869 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 870 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 871 872 msrpm[offset] = tmp; 873 874 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 875 svm->nested.force_msr_bitmap_recalc = true; 876 } 877 set_msr_interception(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)878 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 879 int read, int write) 880 { 881 set_shadow_msr_intercept(vcpu, msr, read, write); 882 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 883 } 884 svm_vcpu_alloc_msrpm(void)885 u32 *svm_vcpu_alloc_msrpm(void) 886 { 887 unsigned int order = get_order(MSRPM_SIZE); 888 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 889 u32 *msrpm; 890 891 if (!pages) 892 return NULL; 893 894 msrpm = page_address(pages); 895 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 896 897 return msrpm; 898 } 899 svm_vcpu_init_msrpm(struct kvm_vcpu * vcpu,u32 * msrpm)900 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 901 { 902 int i; 903 904 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 905 if (!direct_access_msrs[i].always) 906 continue; 907 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 908 } 909 } 910 svm_set_x2apic_msr_interception(struct vcpu_svm * svm,bool intercept)911 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) 912 { 913 int i; 914 915 if (intercept == svm->x2avic_msrs_intercepted) 916 return; 917 918 if (!x2avic_enabled) 919 return; 920 921 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { 922 int index = direct_access_msrs[i].index; 923 924 if ((index < APIC_BASE_MSR) || 925 (index > APIC_BASE_MSR + 0xff)) 926 continue; 927 set_msr_interception(&svm->vcpu, svm->msrpm, index, 928 !intercept, !intercept); 929 } 930 931 svm->x2avic_msrs_intercepted = intercept; 932 } 933 svm_vcpu_free_msrpm(u32 * msrpm)934 void svm_vcpu_free_msrpm(u32 *msrpm) 935 { 936 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 937 } 938 svm_msr_filter_changed(struct kvm_vcpu * vcpu)939 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 940 { 941 struct vcpu_svm *svm = to_svm(vcpu); 942 u32 i; 943 944 /* 945 * Set intercept permissions for all direct access MSRs again. They 946 * will automatically get filtered through the MSR filter, so we are 947 * back in sync after this. 948 */ 949 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 950 u32 msr = direct_access_msrs[i].index; 951 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 952 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 953 954 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 955 } 956 } 957 add_msr_offset(u32 offset)958 static void add_msr_offset(u32 offset) 959 { 960 int i; 961 962 for (i = 0; i < MSRPM_OFFSETS; ++i) { 963 964 /* Offset already in list? */ 965 if (msrpm_offsets[i] == offset) 966 return; 967 968 /* Slot used by another offset? */ 969 if (msrpm_offsets[i] != MSR_INVALID) 970 continue; 971 972 /* Add offset to list */ 973 msrpm_offsets[i] = offset; 974 975 return; 976 } 977 978 /* 979 * If this BUG triggers the msrpm_offsets table has an overflow. Just 980 * increase MSRPM_OFFSETS in this case. 981 */ 982 BUG(); 983 } 984 init_msrpm_offsets(void)985 static void init_msrpm_offsets(void) 986 { 987 int i; 988 989 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 990 991 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 992 u32 offset; 993 994 offset = svm_msrpm_offset(direct_access_msrs[i].index); 995 BUG_ON(offset == MSR_INVALID); 996 997 add_msr_offset(offset); 998 } 999 } 1000 svm_copy_lbrs(struct vmcb * to_vmcb,struct vmcb * from_vmcb)1001 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 1002 { 1003 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 1004 to_vmcb->save.br_from = from_vmcb->save.br_from; 1005 to_vmcb->save.br_to = from_vmcb->save.br_to; 1006 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 1007 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 1008 1009 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 1010 } 1011 svm_enable_lbrv(struct kvm_vcpu * vcpu)1012 void svm_enable_lbrv(struct kvm_vcpu *vcpu) 1013 { 1014 struct vcpu_svm *svm = to_svm(vcpu); 1015 1016 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 1017 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 1018 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 1019 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 1020 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 1021 1022 if (sev_es_guest(vcpu->kvm)) 1023 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1); 1024 1025 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 1026 if (is_guest_mode(vcpu)) 1027 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 1028 } 1029 svm_disable_lbrv(struct kvm_vcpu * vcpu)1030 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 1031 { 1032 struct vcpu_svm *svm = to_svm(vcpu); 1033 1034 KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm); 1035 1036 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 1037 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 1038 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 1039 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 1040 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 1041 1042 /* 1043 * Move the LBR msrs back to the vmcb01 to avoid copying them 1044 * on nested guest entries. 1045 */ 1046 if (is_guest_mode(vcpu)) 1047 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 1048 } 1049 svm_get_lbr_vmcb(struct vcpu_svm * svm)1050 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm) 1051 { 1052 /* 1053 * If LBR virtualization is disabled, the LBR MSRs are always kept in 1054 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of 1055 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed. 1056 */ 1057 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb : 1058 svm->vmcb01.ptr; 1059 } 1060 svm_update_lbrv(struct kvm_vcpu * vcpu)1061 void svm_update_lbrv(struct kvm_vcpu *vcpu) 1062 { 1063 struct vcpu_svm *svm = to_svm(vcpu); 1064 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; 1065 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) || 1066 (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) && 1067 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); 1068 1069 if (enable_lbrv == current_enable_lbrv) 1070 return; 1071 1072 if (enable_lbrv) 1073 svm_enable_lbrv(vcpu); 1074 else 1075 svm_disable_lbrv(vcpu); 1076 } 1077 disable_nmi_singlestep(struct vcpu_svm * svm)1078 void disable_nmi_singlestep(struct vcpu_svm *svm) 1079 { 1080 svm->nmi_singlestep = false; 1081 1082 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 1083 /* Clear our flags if they were not set by the guest */ 1084 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1085 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 1086 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1087 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 1088 } 1089 } 1090 grow_ple_window(struct kvm_vcpu * vcpu)1091 static void grow_ple_window(struct kvm_vcpu *vcpu) 1092 { 1093 struct vcpu_svm *svm = to_svm(vcpu); 1094 struct vmcb_control_area *control = &svm->vmcb->control; 1095 int old = control->pause_filter_count; 1096 1097 if (kvm_pause_in_guest(vcpu->kvm)) 1098 return; 1099 1100 control->pause_filter_count = __grow_ple_window(old, 1101 pause_filter_count, 1102 pause_filter_count_grow, 1103 pause_filter_count_max); 1104 1105 if (control->pause_filter_count != old) { 1106 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1107 trace_kvm_ple_window_update(vcpu->vcpu_id, 1108 control->pause_filter_count, old); 1109 } 1110 } 1111 shrink_ple_window(struct kvm_vcpu * vcpu)1112 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1113 { 1114 struct vcpu_svm *svm = to_svm(vcpu); 1115 struct vmcb_control_area *control = &svm->vmcb->control; 1116 int old = control->pause_filter_count; 1117 1118 if (kvm_pause_in_guest(vcpu->kvm)) 1119 return; 1120 1121 control->pause_filter_count = 1122 __shrink_ple_window(old, 1123 pause_filter_count, 1124 pause_filter_count_shrink, 1125 pause_filter_count); 1126 if (control->pause_filter_count != old) { 1127 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1128 trace_kvm_ple_window_update(vcpu->vcpu_id, 1129 control->pause_filter_count, old); 1130 } 1131 } 1132 svm_hardware_unsetup(void)1133 static void svm_hardware_unsetup(void) 1134 { 1135 int cpu; 1136 1137 sev_hardware_unsetup(); 1138 1139 for_each_possible_cpu(cpu) 1140 svm_cpu_uninit(cpu); 1141 1142 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 1143 get_order(IOPM_SIZE)); 1144 iopm_base = 0; 1145 } 1146 init_seg(struct vmcb_seg * seg)1147 static void init_seg(struct vmcb_seg *seg) 1148 { 1149 seg->selector = 0; 1150 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1151 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1152 seg->limit = 0xffff; 1153 seg->base = 0; 1154 } 1155 init_sys_seg(struct vmcb_seg * seg,uint32_t type)1156 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1157 { 1158 seg->selector = 0; 1159 seg->attrib = SVM_SELECTOR_P_MASK | type; 1160 seg->limit = 0xffff; 1161 seg->base = 0; 1162 } 1163 svm_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1164 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1165 { 1166 struct vcpu_svm *svm = to_svm(vcpu); 1167 1168 return svm->nested.ctl.tsc_offset; 1169 } 1170 svm_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1171 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1172 { 1173 struct vcpu_svm *svm = to_svm(vcpu); 1174 1175 return svm->tsc_ratio_msr; 1176 } 1177 svm_write_tsc_offset(struct kvm_vcpu * vcpu)1178 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) 1179 { 1180 struct vcpu_svm *svm = to_svm(vcpu); 1181 1182 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1183 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; 1184 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1185 } 1186 svm_write_tsc_multiplier(struct kvm_vcpu * vcpu)1187 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1188 { 1189 preempt_disable(); 1190 if (to_svm(vcpu)->guest_state_loaded) 1191 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1192 preempt_enable(); 1193 } 1194 1195 /* Evaluate instruction intercepts that depend on guest CPUID features. */ svm_recalc_instruction_intercepts(struct kvm_vcpu * vcpu,struct vcpu_svm * svm)1196 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1197 struct vcpu_svm *svm) 1198 { 1199 /* 1200 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1201 * roots, or if INVPCID is disabled in the guest to inject #UD. 1202 */ 1203 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1204 if (!npt_enabled || 1205 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1206 svm_set_intercept(svm, INTERCEPT_INVPCID); 1207 else 1208 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1209 } 1210 1211 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1212 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1213 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1214 else 1215 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1216 } 1217 } 1218 init_vmcb_after_set_cpuid(struct kvm_vcpu * vcpu)1219 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1220 { 1221 struct vcpu_svm *svm = to_svm(vcpu); 1222 1223 if (guest_cpuid_is_intel(vcpu)) { 1224 /* 1225 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1226 * accesses because the processor only stores 32 bits. 1227 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1228 */ 1229 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1230 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1231 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1232 1233 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1234 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1235 } else { 1236 /* 1237 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1238 * in VMCB and clear intercepts to avoid #VMEXIT. 1239 */ 1240 if (vls) { 1241 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1242 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1243 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1244 } 1245 /* No need to intercept these MSRs */ 1246 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1247 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1248 } 1249 } 1250 init_vmcb(struct kvm_vcpu * vcpu)1251 static void init_vmcb(struct kvm_vcpu *vcpu) 1252 { 1253 struct vcpu_svm *svm = to_svm(vcpu); 1254 struct vmcb *vmcb = svm->vmcb01.ptr; 1255 struct vmcb_control_area *control = &vmcb->control; 1256 struct vmcb_save_area *save = &vmcb->save; 1257 1258 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1259 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1260 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1261 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1262 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1263 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1264 if (!kvm_vcpu_apicv_active(vcpu)) 1265 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1266 1267 set_dr_intercepts(svm); 1268 1269 set_exception_intercept(svm, PF_VECTOR); 1270 set_exception_intercept(svm, UD_VECTOR); 1271 set_exception_intercept(svm, MC_VECTOR); 1272 set_exception_intercept(svm, AC_VECTOR); 1273 set_exception_intercept(svm, DB_VECTOR); 1274 /* 1275 * Guest access to VMware backdoor ports could legitimately 1276 * trigger #GP because of TSS I/O permission bitmap. 1277 * We intercept those #GP and allow access to them anyway 1278 * as VMware does. 1279 */ 1280 if (enable_vmware_backdoor) 1281 set_exception_intercept(svm, GP_VECTOR); 1282 1283 svm_set_intercept(svm, INTERCEPT_INTR); 1284 svm_set_intercept(svm, INTERCEPT_NMI); 1285 1286 if (intercept_smi) 1287 svm_set_intercept(svm, INTERCEPT_SMI); 1288 1289 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1290 svm_set_intercept(svm, INTERCEPT_RDPMC); 1291 svm_set_intercept(svm, INTERCEPT_CPUID); 1292 svm_set_intercept(svm, INTERCEPT_INVD); 1293 svm_set_intercept(svm, INTERCEPT_INVLPG); 1294 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1295 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1296 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1297 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1298 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1299 svm_set_intercept(svm, INTERCEPT_VMRUN); 1300 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1301 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1302 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1303 svm_set_intercept(svm, INTERCEPT_STGI); 1304 svm_set_intercept(svm, INTERCEPT_CLGI); 1305 svm_set_intercept(svm, INTERCEPT_SKINIT); 1306 svm_set_intercept(svm, INTERCEPT_WBINVD); 1307 svm_set_intercept(svm, INTERCEPT_XSETBV); 1308 svm_set_intercept(svm, INTERCEPT_RDPRU); 1309 svm_set_intercept(svm, INTERCEPT_RSM); 1310 1311 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1312 svm_set_intercept(svm, INTERCEPT_MONITOR); 1313 svm_set_intercept(svm, INTERCEPT_MWAIT); 1314 } 1315 1316 if (!kvm_hlt_in_guest(vcpu->kvm)) 1317 svm_set_intercept(svm, INTERCEPT_HLT); 1318 1319 control->iopm_base_pa = __sme_set(iopm_base); 1320 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1321 control->int_ctl = V_INTR_MASKING_MASK; 1322 1323 init_seg(&save->es); 1324 init_seg(&save->ss); 1325 init_seg(&save->ds); 1326 init_seg(&save->fs); 1327 init_seg(&save->gs); 1328 1329 save->cs.selector = 0xf000; 1330 save->cs.base = 0xffff0000; 1331 /* Executable/Readable Code Segment */ 1332 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1333 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1334 save->cs.limit = 0xffff; 1335 1336 save->gdtr.base = 0; 1337 save->gdtr.limit = 0xffff; 1338 save->idtr.base = 0; 1339 save->idtr.limit = 0xffff; 1340 1341 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1342 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1343 1344 if (npt_enabled) { 1345 /* Setup VMCB for Nested Paging */ 1346 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1347 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1348 clr_exception_intercept(svm, PF_VECTOR); 1349 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1350 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1351 save->g_pat = vcpu->arch.pat; 1352 save->cr3 = 0; 1353 } 1354 svm->current_vmcb->asid_generation = 0; 1355 svm->asid = 0; 1356 1357 svm->nested.vmcb12_gpa = INVALID_GPA; 1358 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1359 1360 if (!kvm_pause_in_guest(vcpu->kvm)) { 1361 control->pause_filter_count = pause_filter_count; 1362 if (pause_filter_thresh) 1363 control->pause_filter_thresh = pause_filter_thresh; 1364 svm_set_intercept(svm, INTERCEPT_PAUSE); 1365 } else { 1366 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1367 } 1368 1369 svm_recalc_instruction_intercepts(vcpu, svm); 1370 1371 /* 1372 * If the host supports V_SPEC_CTRL then disable the interception 1373 * of MSR_IA32_SPEC_CTRL. 1374 */ 1375 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1376 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1377 1378 if (kvm_vcpu_apicv_active(vcpu)) 1379 avic_init_vmcb(svm, vmcb); 1380 1381 if (vnmi) 1382 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; 1383 1384 if (vgif) { 1385 svm_clr_intercept(svm, INTERCEPT_STGI); 1386 svm_clr_intercept(svm, INTERCEPT_CLGI); 1387 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1388 } 1389 1390 if (sev_guest(vcpu->kvm)) 1391 sev_init_vmcb(svm); 1392 1393 svm_hv_init_vmcb(vmcb); 1394 init_vmcb_after_set_cpuid(vcpu); 1395 1396 vmcb_mark_all_dirty(vmcb); 1397 1398 enable_gif(svm); 1399 } 1400 __svm_vcpu_reset(struct kvm_vcpu * vcpu)1401 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1402 { 1403 struct vcpu_svm *svm = to_svm(vcpu); 1404 1405 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1406 1407 svm_init_osvw(vcpu); 1408 vcpu->arch.microcode_version = 0x01000065; 1409 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1410 1411 svm->nmi_masked = false; 1412 svm->awaiting_iret_completion = false; 1413 1414 if (sev_es_guest(vcpu->kvm)) 1415 sev_es_vcpu_reset(svm); 1416 } 1417 svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1418 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1419 { 1420 struct vcpu_svm *svm = to_svm(vcpu); 1421 1422 svm->spec_ctrl = 0; 1423 svm->virt_spec_ctrl = 0; 1424 1425 init_vmcb(vcpu); 1426 1427 if (!init_event) 1428 __svm_vcpu_reset(vcpu); 1429 } 1430 svm_switch_vmcb(struct vcpu_svm * svm,struct kvm_vmcb_info * target_vmcb)1431 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1432 { 1433 svm->current_vmcb = target_vmcb; 1434 svm->vmcb = target_vmcb->ptr; 1435 } 1436 svm_vcpu_create(struct kvm_vcpu * vcpu)1437 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1438 { 1439 struct vcpu_svm *svm; 1440 struct page *vmcb01_page; 1441 struct page *vmsa_page = NULL; 1442 int err; 1443 1444 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1445 svm = to_svm(vcpu); 1446 1447 err = -ENOMEM; 1448 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1449 if (!vmcb01_page) 1450 goto out; 1451 1452 if (sev_es_guest(vcpu->kvm)) { 1453 /* 1454 * SEV-ES guests require a separate VMSA page used to contain 1455 * the encrypted register state of the guest. 1456 */ 1457 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1458 if (!vmsa_page) 1459 goto error_free_vmcb_page; 1460 1461 /* 1462 * SEV-ES guests maintain an encrypted version of their FPU 1463 * state which is restored and saved on VMRUN and VMEXIT. 1464 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 1465 * do xsave/xrstor on it. 1466 */ 1467 fpstate_set_confidential(&vcpu->arch.guest_fpu); 1468 } 1469 1470 err = avic_init_vcpu(svm); 1471 if (err) 1472 goto error_free_vmsa_page; 1473 1474 svm->msrpm = svm_vcpu_alloc_msrpm(); 1475 if (!svm->msrpm) { 1476 err = -ENOMEM; 1477 goto error_free_vmsa_page; 1478 } 1479 1480 svm->x2avic_msrs_intercepted = true; 1481 1482 svm->vmcb01.ptr = page_address(vmcb01_page); 1483 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1484 svm_switch_vmcb(svm, &svm->vmcb01); 1485 1486 if (vmsa_page) 1487 svm->sev_es.vmsa = page_address(vmsa_page); 1488 1489 svm->guest_state_loaded = false; 1490 1491 return 0; 1492 1493 error_free_vmsa_page: 1494 if (vmsa_page) 1495 __free_page(vmsa_page); 1496 error_free_vmcb_page: 1497 __free_page(vmcb01_page); 1498 out: 1499 return err; 1500 } 1501 svm_clear_current_vmcb(struct vmcb * vmcb)1502 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1503 { 1504 int i; 1505 1506 for_each_online_cpu(i) 1507 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL); 1508 } 1509 svm_vcpu_free(struct kvm_vcpu * vcpu)1510 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1511 { 1512 struct vcpu_svm *svm = to_svm(vcpu); 1513 1514 /* 1515 * The vmcb page can be recycled, causing a false negative in 1516 * svm_vcpu_load(). So, ensure that no logical CPU has this 1517 * vmcb page recorded as its current vmcb. 1518 */ 1519 svm_clear_current_vmcb(svm->vmcb); 1520 1521 svm_leave_nested(vcpu); 1522 svm_free_nested(svm); 1523 1524 sev_free_vcpu(vcpu); 1525 1526 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1527 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1528 } 1529 svm_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1530 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1531 { 1532 struct vcpu_svm *svm = to_svm(vcpu); 1533 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1534 1535 if (sev_es_guest(vcpu->kvm)) 1536 sev_es_unmap_ghcb(svm); 1537 1538 if (svm->guest_state_loaded) 1539 return; 1540 1541 /* 1542 * Save additional host state that will be restored on VMEXIT (sev-es) 1543 * or subsequent vmload of host save area. 1544 */ 1545 vmsave(sd->save_area_pa); 1546 if (sev_es_guest(vcpu->kvm)) { 1547 struct sev_es_save_area *hostsa; 1548 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 1549 1550 sev_es_prepare_switch_to_guest(hostsa); 1551 } 1552 1553 if (tsc_scaling) 1554 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1555 1556 /* 1557 * TSC_AUX is always virtualized for SEV-ES guests when the feature is 1558 * available. The user return MSR support is not required in this case 1559 * because TSC_AUX is restored on #VMEXIT from the host save area 1560 * (which has been initialized in svm_hardware_enable()). 1561 */ 1562 if (likely(tsc_aux_uret_slot >= 0) && 1563 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm))) 1564 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1565 1566 svm->guest_state_loaded = true; 1567 } 1568 svm_prepare_host_switch(struct kvm_vcpu * vcpu)1569 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1570 { 1571 to_svm(vcpu)->guest_state_loaded = false; 1572 } 1573 svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1574 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1575 { 1576 struct vcpu_svm *svm = to_svm(vcpu); 1577 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 1578 1579 if (sd->current_vmcb != svm->vmcb) { 1580 sd->current_vmcb = svm->vmcb; 1581 1582 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT)) 1583 indirect_branch_prediction_barrier(); 1584 } 1585 if (kvm_vcpu_apicv_active(vcpu)) 1586 avic_vcpu_load(vcpu, cpu); 1587 } 1588 svm_vcpu_put(struct kvm_vcpu * vcpu)1589 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1590 { 1591 if (kvm_vcpu_apicv_active(vcpu)) 1592 avic_vcpu_put(vcpu); 1593 1594 svm_prepare_host_switch(vcpu); 1595 1596 ++vcpu->stat.host_state_reload; 1597 } 1598 svm_get_rflags(struct kvm_vcpu * vcpu)1599 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1600 { 1601 struct vcpu_svm *svm = to_svm(vcpu); 1602 unsigned long rflags = svm->vmcb->save.rflags; 1603 1604 if (svm->nmi_singlestep) { 1605 /* Hide our flags if they were not set by the guest */ 1606 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1607 rflags &= ~X86_EFLAGS_TF; 1608 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1609 rflags &= ~X86_EFLAGS_RF; 1610 } 1611 return rflags; 1612 } 1613 svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1614 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1615 { 1616 if (to_svm(vcpu)->nmi_singlestep) 1617 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1618 1619 /* 1620 * Any change of EFLAGS.VM is accompanied by a reload of SS 1621 * (caused by either a task switch or an inter-privilege IRET), 1622 * so we do not need to update the CPL here. 1623 */ 1624 to_svm(vcpu)->vmcb->save.rflags = rflags; 1625 } 1626 svm_get_if_flag(struct kvm_vcpu * vcpu)1627 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1628 { 1629 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1630 1631 return sev_es_guest(vcpu->kvm) 1632 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1633 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1634 } 1635 svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1636 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1637 { 1638 kvm_register_mark_available(vcpu, reg); 1639 1640 switch (reg) { 1641 case VCPU_EXREG_PDPTR: 1642 /* 1643 * When !npt_enabled, mmu->pdptrs[] is already available since 1644 * it is always updated per SDM when moving to CRs. 1645 */ 1646 if (npt_enabled) 1647 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1648 break; 1649 default: 1650 KVM_BUG_ON(1, vcpu->kvm); 1651 } 1652 } 1653 svm_set_vintr(struct vcpu_svm * svm)1654 static void svm_set_vintr(struct vcpu_svm *svm) 1655 { 1656 struct vmcb_control_area *control; 1657 1658 /* 1659 * The following fields are ignored when AVIC is enabled 1660 */ 1661 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1662 1663 svm_set_intercept(svm, INTERCEPT_VINTR); 1664 1665 /* 1666 * Recalculating intercepts may have cleared the VINTR intercept. If 1667 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF 1668 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. 1669 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as 1670 * interrupts will never be unblocked while L2 is running. 1671 */ 1672 if (!svm_is_intercept(svm, INTERCEPT_VINTR)) 1673 return; 1674 1675 /* 1676 * This is just a dummy VINTR to actually cause a vmexit to happen. 1677 * Actual injection of virtual interrupts happens through EVENTINJ. 1678 */ 1679 control = &svm->vmcb->control; 1680 control->int_vector = 0x0; 1681 control->int_ctl &= ~V_INTR_PRIO_MASK; 1682 control->int_ctl |= V_IRQ_MASK | 1683 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1684 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1685 } 1686 svm_clear_vintr(struct vcpu_svm * svm)1687 static void svm_clear_vintr(struct vcpu_svm *svm) 1688 { 1689 svm_clr_intercept(svm, INTERCEPT_VINTR); 1690 1691 /* Drop int_ctl fields related to VINTR injection. */ 1692 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1693 if (is_guest_mode(&svm->vcpu)) { 1694 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1695 1696 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1697 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1698 1699 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1700 V_IRQ_INJECTION_BITS_MASK; 1701 1702 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1703 } 1704 1705 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1706 } 1707 svm_seg(struct kvm_vcpu * vcpu,int seg)1708 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1709 { 1710 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1711 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1712 1713 switch (seg) { 1714 case VCPU_SREG_CS: return &save->cs; 1715 case VCPU_SREG_DS: return &save->ds; 1716 case VCPU_SREG_ES: return &save->es; 1717 case VCPU_SREG_FS: return &save01->fs; 1718 case VCPU_SREG_GS: return &save01->gs; 1719 case VCPU_SREG_SS: return &save->ss; 1720 case VCPU_SREG_TR: return &save01->tr; 1721 case VCPU_SREG_LDTR: return &save01->ldtr; 1722 } 1723 BUG(); 1724 return NULL; 1725 } 1726 svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1727 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1728 { 1729 struct vmcb_seg *s = svm_seg(vcpu, seg); 1730 1731 return s->base; 1732 } 1733 svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1734 static void svm_get_segment(struct kvm_vcpu *vcpu, 1735 struct kvm_segment *var, int seg) 1736 { 1737 struct vmcb_seg *s = svm_seg(vcpu, seg); 1738 1739 var->base = s->base; 1740 var->limit = s->limit; 1741 var->selector = s->selector; 1742 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1743 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1744 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1745 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1746 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1747 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1748 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1749 1750 /* 1751 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1752 * However, the SVM spec states that the G bit is not observed by the 1753 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1754 * So let's synthesize a legal G bit for all segments, this helps 1755 * running KVM nested. It also helps cross-vendor migration, because 1756 * Intel's vmentry has a check on the 'G' bit. 1757 */ 1758 var->g = s->limit > 0xfffff; 1759 1760 /* 1761 * AMD's VMCB does not have an explicit unusable field, so emulate it 1762 * for cross vendor migration purposes by "not present" 1763 */ 1764 var->unusable = !var->present; 1765 1766 switch (seg) { 1767 case VCPU_SREG_TR: 1768 /* 1769 * Work around a bug where the busy flag in the tr selector 1770 * isn't exposed 1771 */ 1772 var->type |= 0x2; 1773 break; 1774 case VCPU_SREG_DS: 1775 case VCPU_SREG_ES: 1776 case VCPU_SREG_FS: 1777 case VCPU_SREG_GS: 1778 /* 1779 * The accessed bit must always be set in the segment 1780 * descriptor cache, although it can be cleared in the 1781 * descriptor, the cached bit always remains at 1. Since 1782 * Intel has a check on this, set it here to support 1783 * cross-vendor migration. 1784 */ 1785 if (!var->unusable) 1786 var->type |= 0x1; 1787 break; 1788 case VCPU_SREG_SS: 1789 /* 1790 * On AMD CPUs sometimes the DB bit in the segment 1791 * descriptor is left as 1, although the whole segment has 1792 * been made unusable. Clear it here to pass an Intel VMX 1793 * entry check when cross vendor migrating. 1794 */ 1795 if (var->unusable) 1796 var->db = 0; 1797 /* This is symmetric with svm_set_segment() */ 1798 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1799 break; 1800 } 1801 } 1802 svm_get_cpl(struct kvm_vcpu * vcpu)1803 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1804 { 1805 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1806 1807 return save->cpl; 1808 } 1809 svm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)1810 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1811 { 1812 struct kvm_segment cs; 1813 1814 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1815 *db = cs.db; 1816 *l = cs.l; 1817 } 1818 svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1819 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1820 { 1821 struct vcpu_svm *svm = to_svm(vcpu); 1822 1823 dt->size = svm->vmcb->save.idtr.limit; 1824 dt->address = svm->vmcb->save.idtr.base; 1825 } 1826 svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1827 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1828 { 1829 struct vcpu_svm *svm = to_svm(vcpu); 1830 1831 svm->vmcb->save.idtr.limit = dt->size; 1832 svm->vmcb->save.idtr.base = dt->address ; 1833 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1834 } 1835 svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1836 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1837 { 1838 struct vcpu_svm *svm = to_svm(vcpu); 1839 1840 dt->size = svm->vmcb->save.gdtr.limit; 1841 dt->address = svm->vmcb->save.gdtr.base; 1842 } 1843 svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1844 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1845 { 1846 struct vcpu_svm *svm = to_svm(vcpu); 1847 1848 svm->vmcb->save.gdtr.limit = dt->size; 1849 svm->vmcb->save.gdtr.base = dt->address ; 1850 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1851 } 1852 sev_post_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1853 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1854 { 1855 struct vcpu_svm *svm = to_svm(vcpu); 1856 1857 /* 1858 * For guests that don't set guest_state_protected, the cr3 update is 1859 * handled via kvm_mmu_load() while entering the guest. For guests 1860 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1861 * VMCB save area now, since the save area will become the initial 1862 * contents of the VMSA, and future VMCB save area updates won't be 1863 * seen. 1864 */ 1865 if (sev_es_guest(vcpu->kvm)) { 1866 svm->vmcb->save.cr3 = cr3; 1867 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1868 } 1869 } 1870 svm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1871 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1872 { 1873 return true; 1874 } 1875 svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1876 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1877 { 1878 struct vcpu_svm *svm = to_svm(vcpu); 1879 u64 hcr0 = cr0; 1880 bool old_paging = is_paging(vcpu); 1881 1882 #ifdef CONFIG_X86_64 1883 if (vcpu->arch.efer & EFER_LME) { 1884 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1885 vcpu->arch.efer |= EFER_LMA; 1886 if (!vcpu->arch.guest_state_protected) 1887 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1888 } 1889 1890 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1891 vcpu->arch.efer &= ~EFER_LMA; 1892 if (!vcpu->arch.guest_state_protected) 1893 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1894 } 1895 } 1896 #endif 1897 vcpu->arch.cr0 = cr0; 1898 1899 if (!npt_enabled) { 1900 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1901 if (old_paging != is_paging(vcpu)) 1902 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1903 } 1904 1905 /* 1906 * re-enable caching here because the QEMU bios 1907 * does not do it - this results in some delay at 1908 * reboot 1909 */ 1910 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1911 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1912 1913 svm->vmcb->save.cr0 = hcr0; 1914 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1915 1916 /* 1917 * SEV-ES guests must always keep the CR intercepts cleared. CR 1918 * tracking is done using the CR write traps. 1919 */ 1920 if (sev_es_guest(vcpu->kvm)) 1921 return; 1922 1923 if (hcr0 == cr0) { 1924 /* Selective CR0 write remains on. */ 1925 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1926 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1927 } else { 1928 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1929 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1930 } 1931 } 1932 svm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1933 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1934 { 1935 return true; 1936 } 1937 svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1938 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1939 { 1940 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1941 unsigned long old_cr4 = vcpu->arch.cr4; 1942 1943 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1944 svm_flush_tlb_current(vcpu); 1945 1946 vcpu->arch.cr4 = cr4; 1947 if (!npt_enabled) { 1948 cr4 |= X86_CR4_PAE; 1949 1950 if (!is_paging(vcpu)) 1951 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1952 } 1953 cr4 |= host_cr4_mce; 1954 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1955 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1956 1957 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1958 kvm_update_cpuid_runtime(vcpu); 1959 } 1960 svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1961 static void svm_set_segment(struct kvm_vcpu *vcpu, 1962 struct kvm_segment *var, int seg) 1963 { 1964 struct vcpu_svm *svm = to_svm(vcpu); 1965 struct vmcb_seg *s = svm_seg(vcpu, seg); 1966 1967 s->base = var->base; 1968 s->limit = var->limit; 1969 s->selector = var->selector; 1970 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1971 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1972 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1973 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1974 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1975 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1976 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1977 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1978 1979 /* 1980 * This is always accurate, except if SYSRET returned to a segment 1981 * with SS.DPL != 3. Intel does not have this quirk, and always 1982 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1983 * would entail passing the CPL to userspace and back. 1984 */ 1985 if (seg == VCPU_SREG_SS) 1986 /* This is symmetric with svm_get_segment() */ 1987 svm->vmcb->save.cpl = (var->dpl & 3); 1988 1989 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1990 } 1991 svm_update_exception_bitmap(struct kvm_vcpu * vcpu)1992 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1993 { 1994 struct vcpu_svm *svm = to_svm(vcpu); 1995 1996 clr_exception_intercept(svm, BP_VECTOR); 1997 1998 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1999 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 2000 set_exception_intercept(svm, BP_VECTOR); 2001 } 2002 } 2003 new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)2004 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 2005 { 2006 if (sd->next_asid > sd->max_asid) { 2007 ++sd->asid_generation; 2008 sd->next_asid = sd->min_asid; 2009 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 2010 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2011 } 2012 2013 svm->current_vmcb->asid_generation = sd->asid_generation; 2014 svm->asid = sd->next_asid++; 2015 } 2016 svm_set_dr6(struct vcpu_svm * svm,unsigned long value)2017 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 2018 { 2019 struct vmcb *vmcb = svm->vmcb; 2020 2021 if (svm->vcpu.arch.guest_state_protected) 2022 return; 2023 2024 if (unlikely(value != vmcb->save.dr6)) { 2025 vmcb->save.dr6 = value; 2026 vmcb_mark_dirty(vmcb, VMCB_DR); 2027 } 2028 } 2029 svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)2030 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 2031 { 2032 struct vcpu_svm *svm = to_svm(vcpu); 2033 2034 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) 2035 return; 2036 2037 get_debugreg(vcpu->arch.db[0], 0); 2038 get_debugreg(vcpu->arch.db[1], 1); 2039 get_debugreg(vcpu->arch.db[2], 2); 2040 get_debugreg(vcpu->arch.db[3], 3); 2041 /* 2042 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 2043 * because db_interception might need it. We can do it before vmentry. 2044 */ 2045 vcpu->arch.dr6 = svm->vmcb->save.dr6; 2046 vcpu->arch.dr7 = svm->vmcb->save.dr7; 2047 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 2048 set_dr_intercepts(svm); 2049 } 2050 svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)2051 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 2052 { 2053 struct vcpu_svm *svm = to_svm(vcpu); 2054 2055 if (vcpu->arch.guest_state_protected) 2056 return; 2057 2058 svm->vmcb->save.dr7 = value; 2059 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 2060 } 2061 pf_interception(struct kvm_vcpu * vcpu)2062 static int pf_interception(struct kvm_vcpu *vcpu) 2063 { 2064 struct vcpu_svm *svm = to_svm(vcpu); 2065 2066 u64 fault_address = svm->vmcb->control.exit_info_2; 2067 u64 error_code = svm->vmcb->control.exit_info_1; 2068 2069 return kvm_handle_page_fault(vcpu, error_code, fault_address, 2070 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2071 svm->vmcb->control.insn_bytes : NULL, 2072 svm->vmcb->control.insn_len); 2073 } 2074 npf_interception(struct kvm_vcpu * vcpu)2075 static int npf_interception(struct kvm_vcpu *vcpu) 2076 { 2077 struct vcpu_svm *svm = to_svm(vcpu); 2078 2079 u64 fault_address = svm->vmcb->control.exit_info_2; 2080 u64 error_code = svm->vmcb->control.exit_info_1; 2081 2082 trace_kvm_page_fault(vcpu, fault_address, error_code); 2083 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 2084 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2085 svm->vmcb->control.insn_bytes : NULL, 2086 svm->vmcb->control.insn_len); 2087 } 2088 db_interception(struct kvm_vcpu * vcpu)2089 static int db_interception(struct kvm_vcpu *vcpu) 2090 { 2091 struct kvm_run *kvm_run = vcpu->run; 2092 struct vcpu_svm *svm = to_svm(vcpu); 2093 2094 if (!(vcpu->guest_debug & 2095 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 2096 !svm->nmi_singlestep) { 2097 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 2098 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 2099 return 1; 2100 } 2101 2102 if (svm->nmi_singlestep) { 2103 disable_nmi_singlestep(svm); 2104 /* Make sure we check for pending NMIs upon entry */ 2105 kvm_make_request(KVM_REQ_EVENT, vcpu); 2106 } 2107 2108 if (vcpu->guest_debug & 2109 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 2110 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2111 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 2112 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 2113 kvm_run->debug.arch.pc = 2114 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2115 kvm_run->debug.arch.exception = DB_VECTOR; 2116 return 0; 2117 } 2118 2119 return 1; 2120 } 2121 bp_interception(struct kvm_vcpu * vcpu)2122 static int bp_interception(struct kvm_vcpu *vcpu) 2123 { 2124 struct vcpu_svm *svm = to_svm(vcpu); 2125 struct kvm_run *kvm_run = vcpu->run; 2126 2127 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2128 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2129 kvm_run->debug.arch.exception = BP_VECTOR; 2130 return 0; 2131 } 2132 ud_interception(struct kvm_vcpu * vcpu)2133 static int ud_interception(struct kvm_vcpu *vcpu) 2134 { 2135 return handle_ud(vcpu); 2136 } 2137 ac_interception(struct kvm_vcpu * vcpu)2138 static int ac_interception(struct kvm_vcpu *vcpu) 2139 { 2140 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2141 return 1; 2142 } 2143 is_erratum_383(void)2144 static bool is_erratum_383(void) 2145 { 2146 int err, i; 2147 u64 value; 2148 2149 if (!erratum_383_found) 2150 return false; 2151 2152 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 2153 if (err) 2154 return false; 2155 2156 /* Bit 62 may or may not be set for this mce */ 2157 value &= ~(1ULL << 62); 2158 2159 if (value != 0xb600000000010015ULL) 2160 return false; 2161 2162 /* Clear MCi_STATUS registers */ 2163 for (i = 0; i < 6; ++i) 2164 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 2165 2166 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2167 if (!err) { 2168 u32 low, high; 2169 2170 value &= ~(1ULL << 2); 2171 low = lower_32_bits(value); 2172 high = upper_32_bits(value); 2173 2174 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2175 } 2176 2177 /* Flush tlb to evict multi-match entries */ 2178 __flush_tlb_all(); 2179 2180 return true; 2181 } 2182 svm_handle_mce(struct kvm_vcpu * vcpu)2183 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2184 { 2185 if (is_erratum_383()) { 2186 /* 2187 * Erratum 383 triggered. Guest state is corrupt so kill the 2188 * guest. 2189 */ 2190 pr_err("Guest triggered AMD Erratum 383\n"); 2191 2192 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2193 2194 return; 2195 } 2196 2197 /* 2198 * On an #MC intercept the MCE handler is not called automatically in 2199 * the host. So do it by hand here. 2200 */ 2201 kvm_machine_check(); 2202 } 2203 mc_interception(struct kvm_vcpu * vcpu)2204 static int mc_interception(struct kvm_vcpu *vcpu) 2205 { 2206 return 1; 2207 } 2208 shutdown_interception(struct kvm_vcpu * vcpu)2209 static int shutdown_interception(struct kvm_vcpu *vcpu) 2210 { 2211 struct kvm_run *kvm_run = vcpu->run; 2212 struct vcpu_svm *svm = to_svm(vcpu); 2213 2214 /* 2215 * The VM save area has already been encrypted so it 2216 * cannot be reinitialized - just terminate. 2217 */ 2218 if (sev_es_guest(vcpu->kvm)) 2219 return -EINVAL; 2220 2221 /* 2222 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2223 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2224 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2225 * userspace. At a platform view, INIT is acceptable behavior as 2226 * there exist bare metal platforms that automatically INIT the CPU 2227 * in response to shutdown. 2228 */ 2229 clear_page(svm->vmcb); 2230 kvm_vcpu_reset(vcpu, true); 2231 2232 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2233 return 0; 2234 } 2235 io_interception(struct kvm_vcpu * vcpu)2236 static int io_interception(struct kvm_vcpu *vcpu) 2237 { 2238 struct vcpu_svm *svm = to_svm(vcpu); 2239 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2240 int size, in, string; 2241 unsigned port; 2242 2243 ++vcpu->stat.io_exits; 2244 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2245 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2246 port = io_info >> 16; 2247 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2248 2249 if (string) { 2250 if (sev_es_guest(vcpu->kvm)) 2251 return sev_es_string_io(svm, size, port, in); 2252 else 2253 return kvm_emulate_instruction(vcpu, 0); 2254 } 2255 2256 svm->next_rip = svm->vmcb->control.exit_info_2; 2257 2258 return kvm_fast_pio(vcpu, size, port, in); 2259 } 2260 nmi_interception(struct kvm_vcpu * vcpu)2261 static int nmi_interception(struct kvm_vcpu *vcpu) 2262 { 2263 return 1; 2264 } 2265 smi_interception(struct kvm_vcpu * vcpu)2266 static int smi_interception(struct kvm_vcpu *vcpu) 2267 { 2268 return 1; 2269 } 2270 intr_interception(struct kvm_vcpu * vcpu)2271 static int intr_interception(struct kvm_vcpu *vcpu) 2272 { 2273 ++vcpu->stat.irq_exits; 2274 return 1; 2275 } 2276 vmload_vmsave_interception(struct kvm_vcpu * vcpu,bool vmload)2277 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2278 { 2279 struct vcpu_svm *svm = to_svm(vcpu); 2280 struct vmcb *vmcb12; 2281 struct kvm_host_map map; 2282 int ret; 2283 2284 if (nested_svm_check_permissions(vcpu)) 2285 return 1; 2286 2287 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2288 if (ret) { 2289 if (ret == -EINVAL) 2290 kvm_inject_gp(vcpu, 0); 2291 return 1; 2292 } 2293 2294 vmcb12 = map.hva; 2295 2296 ret = kvm_skip_emulated_instruction(vcpu); 2297 2298 if (vmload) { 2299 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2300 svm->sysenter_eip_hi = 0; 2301 svm->sysenter_esp_hi = 0; 2302 } else { 2303 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2304 } 2305 2306 kvm_vcpu_unmap(vcpu, &map, true); 2307 2308 return ret; 2309 } 2310 vmload_interception(struct kvm_vcpu * vcpu)2311 static int vmload_interception(struct kvm_vcpu *vcpu) 2312 { 2313 return vmload_vmsave_interception(vcpu, true); 2314 } 2315 vmsave_interception(struct kvm_vcpu * vcpu)2316 static int vmsave_interception(struct kvm_vcpu *vcpu) 2317 { 2318 return vmload_vmsave_interception(vcpu, false); 2319 } 2320 vmrun_interception(struct kvm_vcpu * vcpu)2321 static int vmrun_interception(struct kvm_vcpu *vcpu) 2322 { 2323 if (nested_svm_check_permissions(vcpu)) 2324 return 1; 2325 2326 return nested_svm_vmrun(vcpu); 2327 } 2328 2329 enum { 2330 NONE_SVM_INSTR, 2331 SVM_INSTR_VMRUN, 2332 SVM_INSTR_VMLOAD, 2333 SVM_INSTR_VMSAVE, 2334 }; 2335 2336 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ svm_instr_opcode(struct kvm_vcpu * vcpu)2337 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2338 { 2339 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2340 2341 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2342 return NONE_SVM_INSTR; 2343 2344 switch (ctxt->modrm) { 2345 case 0xd8: /* VMRUN */ 2346 return SVM_INSTR_VMRUN; 2347 case 0xda: /* VMLOAD */ 2348 return SVM_INSTR_VMLOAD; 2349 case 0xdb: /* VMSAVE */ 2350 return SVM_INSTR_VMSAVE; 2351 default: 2352 break; 2353 } 2354 2355 return NONE_SVM_INSTR; 2356 } 2357 emulate_svm_instr(struct kvm_vcpu * vcpu,int opcode)2358 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2359 { 2360 const int guest_mode_exit_codes[] = { 2361 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2362 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2363 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2364 }; 2365 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2366 [SVM_INSTR_VMRUN] = vmrun_interception, 2367 [SVM_INSTR_VMLOAD] = vmload_interception, 2368 [SVM_INSTR_VMSAVE] = vmsave_interception, 2369 }; 2370 struct vcpu_svm *svm = to_svm(vcpu); 2371 int ret; 2372 2373 if (is_guest_mode(vcpu)) { 2374 /* Returns '1' or -errno on failure, '0' on success. */ 2375 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2376 if (ret) 2377 return ret; 2378 return 1; 2379 } 2380 return svm_instr_handlers[opcode](vcpu); 2381 } 2382 2383 /* 2384 * #GP handling code. Note that #GP can be triggered under the following two 2385 * cases: 2386 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2387 * some AMD CPUs when EAX of these instructions are in the reserved memory 2388 * regions (e.g. SMM memory on host). 2389 * 2) VMware backdoor 2390 */ gp_interception(struct kvm_vcpu * vcpu)2391 static int gp_interception(struct kvm_vcpu *vcpu) 2392 { 2393 struct vcpu_svm *svm = to_svm(vcpu); 2394 u32 error_code = svm->vmcb->control.exit_info_1; 2395 int opcode; 2396 2397 /* Both #GP cases have zero error_code */ 2398 if (error_code) 2399 goto reinject; 2400 2401 /* Decode the instruction for usage later */ 2402 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2403 goto reinject; 2404 2405 opcode = svm_instr_opcode(vcpu); 2406 2407 if (opcode == NONE_SVM_INSTR) { 2408 if (!enable_vmware_backdoor) 2409 goto reinject; 2410 2411 /* 2412 * VMware backdoor emulation on #GP interception only handles 2413 * IN{S}, OUT{S}, and RDPMC. 2414 */ 2415 if (!is_guest_mode(vcpu)) 2416 return kvm_emulate_instruction(vcpu, 2417 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2418 } else { 2419 /* All SVM instructions expect page aligned RAX */ 2420 if (svm->vmcb->save.rax & ~PAGE_MASK) 2421 goto reinject; 2422 2423 return emulate_svm_instr(vcpu, opcode); 2424 } 2425 2426 reinject: 2427 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2428 return 1; 2429 } 2430 svm_set_gif(struct vcpu_svm * svm,bool value)2431 void svm_set_gif(struct vcpu_svm *svm, bool value) 2432 { 2433 if (value) { 2434 /* 2435 * If VGIF is enabled, the STGI intercept is only added to 2436 * detect the opening of the SMI/NMI window; remove it now. 2437 * Likewise, clear the VINTR intercept, we will set it 2438 * again while processing KVM_REQ_EVENT if needed. 2439 */ 2440 if (vgif) 2441 svm_clr_intercept(svm, INTERCEPT_STGI); 2442 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2443 svm_clear_vintr(svm); 2444 2445 enable_gif(svm); 2446 if (svm->vcpu.arch.smi_pending || 2447 svm->vcpu.arch.nmi_pending || 2448 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2449 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2450 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2451 } else { 2452 disable_gif(svm); 2453 2454 /* 2455 * After a CLGI no interrupts should come. But if vGIF is 2456 * in use, we still rely on the VINTR intercept (rather than 2457 * STGI) to detect an open interrupt window. 2458 */ 2459 if (!vgif) 2460 svm_clear_vintr(svm); 2461 } 2462 } 2463 stgi_interception(struct kvm_vcpu * vcpu)2464 static int stgi_interception(struct kvm_vcpu *vcpu) 2465 { 2466 int ret; 2467 2468 if (nested_svm_check_permissions(vcpu)) 2469 return 1; 2470 2471 ret = kvm_skip_emulated_instruction(vcpu); 2472 svm_set_gif(to_svm(vcpu), true); 2473 return ret; 2474 } 2475 clgi_interception(struct kvm_vcpu * vcpu)2476 static int clgi_interception(struct kvm_vcpu *vcpu) 2477 { 2478 int ret; 2479 2480 if (nested_svm_check_permissions(vcpu)) 2481 return 1; 2482 2483 ret = kvm_skip_emulated_instruction(vcpu); 2484 svm_set_gif(to_svm(vcpu), false); 2485 return ret; 2486 } 2487 invlpga_interception(struct kvm_vcpu * vcpu)2488 static int invlpga_interception(struct kvm_vcpu *vcpu) 2489 { 2490 gva_t gva = kvm_rax_read(vcpu); 2491 u32 asid = kvm_rcx_read(vcpu); 2492 2493 /* FIXME: Handle an address size prefix. */ 2494 if (!is_long_mode(vcpu)) 2495 gva = (u32)gva; 2496 2497 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2498 2499 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2500 kvm_mmu_invlpg(vcpu, gva); 2501 2502 return kvm_skip_emulated_instruction(vcpu); 2503 } 2504 skinit_interception(struct kvm_vcpu * vcpu)2505 static int skinit_interception(struct kvm_vcpu *vcpu) 2506 { 2507 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2508 2509 kvm_queue_exception(vcpu, UD_VECTOR); 2510 return 1; 2511 } 2512 task_switch_interception(struct kvm_vcpu * vcpu)2513 static int task_switch_interception(struct kvm_vcpu *vcpu) 2514 { 2515 struct vcpu_svm *svm = to_svm(vcpu); 2516 u16 tss_selector; 2517 int reason; 2518 int int_type = svm->vmcb->control.exit_int_info & 2519 SVM_EXITINTINFO_TYPE_MASK; 2520 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2521 uint32_t type = 2522 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2523 uint32_t idt_v = 2524 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2525 bool has_error_code = false; 2526 u32 error_code = 0; 2527 2528 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2529 2530 if (svm->vmcb->control.exit_info_2 & 2531 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2532 reason = TASK_SWITCH_IRET; 2533 else if (svm->vmcb->control.exit_info_2 & 2534 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2535 reason = TASK_SWITCH_JMP; 2536 else if (idt_v) 2537 reason = TASK_SWITCH_GATE; 2538 else 2539 reason = TASK_SWITCH_CALL; 2540 2541 if (reason == TASK_SWITCH_GATE) { 2542 switch (type) { 2543 case SVM_EXITINTINFO_TYPE_NMI: 2544 vcpu->arch.nmi_injected = false; 2545 break; 2546 case SVM_EXITINTINFO_TYPE_EXEPT: 2547 if (svm->vmcb->control.exit_info_2 & 2548 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2549 has_error_code = true; 2550 error_code = 2551 (u32)svm->vmcb->control.exit_info_2; 2552 } 2553 kvm_clear_exception_queue(vcpu); 2554 break; 2555 case SVM_EXITINTINFO_TYPE_INTR: 2556 case SVM_EXITINTINFO_TYPE_SOFT: 2557 kvm_clear_interrupt_queue(vcpu); 2558 break; 2559 default: 2560 break; 2561 } 2562 } 2563 2564 if (reason != TASK_SWITCH_GATE || 2565 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2566 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2567 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2568 if (!svm_skip_emulated_instruction(vcpu)) 2569 return 0; 2570 } 2571 2572 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2573 int_vec = -1; 2574 2575 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2576 has_error_code, error_code); 2577 } 2578 svm_clr_iret_intercept(struct vcpu_svm * svm)2579 static void svm_clr_iret_intercept(struct vcpu_svm *svm) 2580 { 2581 if (!sev_es_guest(svm->vcpu.kvm)) 2582 svm_clr_intercept(svm, INTERCEPT_IRET); 2583 } 2584 svm_set_iret_intercept(struct vcpu_svm * svm)2585 static void svm_set_iret_intercept(struct vcpu_svm *svm) 2586 { 2587 if (!sev_es_guest(svm->vcpu.kvm)) 2588 svm_set_intercept(svm, INTERCEPT_IRET); 2589 } 2590 iret_interception(struct kvm_vcpu * vcpu)2591 static int iret_interception(struct kvm_vcpu *vcpu) 2592 { 2593 struct vcpu_svm *svm = to_svm(vcpu); 2594 2595 WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); 2596 2597 ++vcpu->stat.nmi_window_exits; 2598 svm->awaiting_iret_completion = true; 2599 2600 svm_clr_iret_intercept(svm); 2601 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2602 2603 kvm_make_request(KVM_REQ_EVENT, vcpu); 2604 return 1; 2605 } 2606 invlpg_interception(struct kvm_vcpu * vcpu)2607 static int invlpg_interception(struct kvm_vcpu *vcpu) 2608 { 2609 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2610 return kvm_emulate_instruction(vcpu, 0); 2611 2612 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2613 return kvm_skip_emulated_instruction(vcpu); 2614 } 2615 emulate_on_interception(struct kvm_vcpu * vcpu)2616 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2617 { 2618 return kvm_emulate_instruction(vcpu, 0); 2619 } 2620 rsm_interception(struct kvm_vcpu * vcpu)2621 static int rsm_interception(struct kvm_vcpu *vcpu) 2622 { 2623 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2624 } 2625 check_selective_cr0_intercepted(struct kvm_vcpu * vcpu,unsigned long val)2626 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2627 unsigned long val) 2628 { 2629 struct vcpu_svm *svm = to_svm(vcpu); 2630 unsigned long cr0 = vcpu->arch.cr0; 2631 bool ret = false; 2632 2633 if (!is_guest_mode(vcpu) || 2634 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2635 return false; 2636 2637 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2638 val &= ~SVM_CR0_SELECTIVE_MASK; 2639 2640 if (cr0 ^ val) { 2641 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2642 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2643 } 2644 2645 return ret; 2646 } 2647 2648 #define CR_VALID (1ULL << 63) 2649 cr_interception(struct kvm_vcpu * vcpu)2650 static int cr_interception(struct kvm_vcpu *vcpu) 2651 { 2652 struct vcpu_svm *svm = to_svm(vcpu); 2653 int reg, cr; 2654 unsigned long val; 2655 int err; 2656 2657 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2658 return emulate_on_interception(vcpu); 2659 2660 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2661 return emulate_on_interception(vcpu); 2662 2663 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2664 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2665 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2666 else 2667 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2668 2669 err = 0; 2670 if (cr >= 16) { /* mov to cr */ 2671 cr -= 16; 2672 val = kvm_register_read(vcpu, reg); 2673 trace_kvm_cr_write(cr, val); 2674 switch (cr) { 2675 case 0: 2676 if (!check_selective_cr0_intercepted(vcpu, val)) 2677 err = kvm_set_cr0(vcpu, val); 2678 else 2679 return 1; 2680 2681 break; 2682 case 3: 2683 err = kvm_set_cr3(vcpu, val); 2684 break; 2685 case 4: 2686 err = kvm_set_cr4(vcpu, val); 2687 break; 2688 case 8: 2689 err = kvm_set_cr8(vcpu, val); 2690 break; 2691 default: 2692 WARN(1, "unhandled write to CR%d", cr); 2693 kvm_queue_exception(vcpu, UD_VECTOR); 2694 return 1; 2695 } 2696 } else { /* mov from cr */ 2697 switch (cr) { 2698 case 0: 2699 val = kvm_read_cr0(vcpu); 2700 break; 2701 case 2: 2702 val = vcpu->arch.cr2; 2703 break; 2704 case 3: 2705 val = kvm_read_cr3(vcpu); 2706 break; 2707 case 4: 2708 val = kvm_read_cr4(vcpu); 2709 break; 2710 case 8: 2711 val = kvm_get_cr8(vcpu); 2712 break; 2713 default: 2714 WARN(1, "unhandled read from CR%d", cr); 2715 kvm_queue_exception(vcpu, UD_VECTOR); 2716 return 1; 2717 } 2718 kvm_register_write(vcpu, reg, val); 2719 trace_kvm_cr_read(cr, val); 2720 } 2721 return kvm_complete_insn_gp(vcpu, err); 2722 } 2723 cr_trap(struct kvm_vcpu * vcpu)2724 static int cr_trap(struct kvm_vcpu *vcpu) 2725 { 2726 struct vcpu_svm *svm = to_svm(vcpu); 2727 unsigned long old_value, new_value; 2728 unsigned int cr; 2729 int ret = 0; 2730 2731 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2732 2733 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2734 switch (cr) { 2735 case 0: 2736 old_value = kvm_read_cr0(vcpu); 2737 svm_set_cr0(vcpu, new_value); 2738 2739 kvm_post_set_cr0(vcpu, old_value, new_value); 2740 break; 2741 case 4: 2742 old_value = kvm_read_cr4(vcpu); 2743 svm_set_cr4(vcpu, new_value); 2744 2745 kvm_post_set_cr4(vcpu, old_value, new_value); 2746 break; 2747 case 8: 2748 ret = kvm_set_cr8(vcpu, new_value); 2749 break; 2750 default: 2751 WARN(1, "unhandled CR%d write trap", cr); 2752 kvm_queue_exception(vcpu, UD_VECTOR); 2753 return 1; 2754 } 2755 2756 return kvm_complete_insn_gp(vcpu, ret); 2757 } 2758 dr_interception(struct kvm_vcpu * vcpu)2759 static int dr_interception(struct kvm_vcpu *vcpu) 2760 { 2761 struct vcpu_svm *svm = to_svm(vcpu); 2762 int reg, dr; 2763 unsigned long val; 2764 int err = 0; 2765 2766 /* 2767 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT 2768 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. 2769 */ 2770 if (sev_es_guest(vcpu->kvm)) 2771 return 1; 2772 2773 if (vcpu->guest_debug == 0) { 2774 /* 2775 * No more DR vmexits; force a reload of the debug registers 2776 * and reenter on this instruction. The next vmexit will 2777 * retrieve the full state of the debug registers. 2778 */ 2779 clr_dr_intercepts(svm); 2780 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2781 return 1; 2782 } 2783 2784 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2785 return emulate_on_interception(vcpu); 2786 2787 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2788 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2789 if (dr >= 16) { /* mov to DRn */ 2790 dr -= 16; 2791 val = kvm_register_read(vcpu, reg); 2792 err = kvm_set_dr(vcpu, dr, val); 2793 } else { 2794 kvm_get_dr(vcpu, dr, &val); 2795 kvm_register_write(vcpu, reg, val); 2796 } 2797 2798 return kvm_complete_insn_gp(vcpu, err); 2799 } 2800 cr8_write_interception(struct kvm_vcpu * vcpu)2801 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2802 { 2803 int r; 2804 2805 u8 cr8_prev = kvm_get_cr8(vcpu); 2806 /* instruction emulation calls kvm_set_cr8() */ 2807 r = cr_interception(vcpu); 2808 if (lapic_in_kernel(vcpu)) 2809 return r; 2810 if (cr8_prev <= kvm_get_cr8(vcpu)) 2811 return r; 2812 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2813 return 0; 2814 } 2815 efer_trap(struct kvm_vcpu * vcpu)2816 static int efer_trap(struct kvm_vcpu *vcpu) 2817 { 2818 struct msr_data msr_info; 2819 int ret; 2820 2821 /* 2822 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2823 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2824 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2825 * the guest doesn't have X86_FEATURE_SVM. 2826 */ 2827 msr_info.host_initiated = false; 2828 msr_info.index = MSR_EFER; 2829 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2830 ret = kvm_set_msr_common(vcpu, &msr_info); 2831 2832 return kvm_complete_insn_gp(vcpu, ret); 2833 } 2834 svm_get_msr_feature(struct kvm_msr_entry * msr)2835 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2836 { 2837 msr->data = 0; 2838 2839 switch (msr->index) { 2840 case MSR_AMD64_DE_CFG: 2841 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2842 msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2843 break; 2844 default: 2845 return KVM_MSR_RET_INVALID; 2846 } 2847 2848 return 0; 2849 } 2850 svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2851 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2852 { 2853 struct vcpu_svm *svm = to_svm(vcpu); 2854 2855 switch (msr_info->index) { 2856 case MSR_AMD64_TSC_RATIO: 2857 if (!msr_info->host_initiated && 2858 !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) 2859 return 1; 2860 msr_info->data = svm->tsc_ratio_msr; 2861 break; 2862 case MSR_STAR: 2863 msr_info->data = svm->vmcb01.ptr->save.star; 2864 break; 2865 #ifdef CONFIG_X86_64 2866 case MSR_LSTAR: 2867 msr_info->data = svm->vmcb01.ptr->save.lstar; 2868 break; 2869 case MSR_CSTAR: 2870 msr_info->data = svm->vmcb01.ptr->save.cstar; 2871 break; 2872 case MSR_GS_BASE: 2873 msr_info->data = svm->vmcb01.ptr->save.gs.base; 2874 break; 2875 case MSR_FS_BASE: 2876 msr_info->data = svm->vmcb01.ptr->save.fs.base; 2877 break; 2878 case MSR_KERNEL_GS_BASE: 2879 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2880 break; 2881 case MSR_SYSCALL_MASK: 2882 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2883 break; 2884 #endif 2885 case MSR_IA32_SYSENTER_CS: 2886 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2887 break; 2888 case MSR_IA32_SYSENTER_EIP: 2889 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2890 if (guest_cpuid_is_intel(vcpu)) 2891 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2892 break; 2893 case MSR_IA32_SYSENTER_ESP: 2894 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2895 if (guest_cpuid_is_intel(vcpu)) 2896 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2897 break; 2898 case MSR_TSC_AUX: 2899 msr_info->data = svm->tsc_aux; 2900 break; 2901 case MSR_IA32_DEBUGCTLMSR: 2902 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl; 2903 break; 2904 case MSR_IA32_LASTBRANCHFROMIP: 2905 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from; 2906 break; 2907 case MSR_IA32_LASTBRANCHTOIP: 2908 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to; 2909 break; 2910 case MSR_IA32_LASTINTFROMIP: 2911 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from; 2912 break; 2913 case MSR_IA32_LASTINTTOIP: 2914 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to; 2915 break; 2916 case MSR_VM_HSAVE_PA: 2917 msr_info->data = svm->nested.hsave_msr; 2918 break; 2919 case MSR_VM_CR: 2920 msr_info->data = svm->nested.vm_cr_msr; 2921 break; 2922 case MSR_IA32_SPEC_CTRL: 2923 if (!msr_info->host_initiated && 2924 !guest_has_spec_ctrl_msr(vcpu)) 2925 return 1; 2926 2927 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2928 msr_info->data = svm->vmcb->save.spec_ctrl; 2929 else 2930 msr_info->data = svm->spec_ctrl; 2931 break; 2932 case MSR_AMD64_VIRT_SPEC_CTRL: 2933 if (!msr_info->host_initiated && 2934 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2935 return 1; 2936 2937 msr_info->data = svm->virt_spec_ctrl; 2938 break; 2939 case MSR_F15H_IC_CFG: { 2940 2941 int family, model; 2942 2943 family = guest_cpuid_family(vcpu); 2944 model = guest_cpuid_model(vcpu); 2945 2946 if (family < 0 || model < 0) 2947 return kvm_get_msr_common(vcpu, msr_info); 2948 2949 msr_info->data = 0; 2950 2951 if (family == 0x15 && 2952 (model >= 0x2 && model < 0x20)) 2953 msr_info->data = 0x1E; 2954 } 2955 break; 2956 case MSR_AMD64_DE_CFG: 2957 msr_info->data = svm->msr_decfg; 2958 break; 2959 default: 2960 return kvm_get_msr_common(vcpu, msr_info); 2961 } 2962 return 0; 2963 } 2964 svm_complete_emulated_msr(struct kvm_vcpu * vcpu,int err)2965 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2966 { 2967 struct vcpu_svm *svm = to_svm(vcpu); 2968 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2969 return kvm_complete_insn_gp(vcpu, err); 2970 2971 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); 2972 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 2973 X86_TRAP_GP | 2974 SVM_EVTINJ_TYPE_EXEPT | 2975 SVM_EVTINJ_VALID); 2976 return 1; 2977 } 2978 svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)2979 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2980 { 2981 struct vcpu_svm *svm = to_svm(vcpu); 2982 int svm_dis, chg_mask; 2983 2984 if (data & ~SVM_VM_CR_VALID_MASK) 2985 return 1; 2986 2987 chg_mask = SVM_VM_CR_VALID_MASK; 2988 2989 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2990 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2991 2992 svm->nested.vm_cr_msr &= ~chg_mask; 2993 svm->nested.vm_cr_msr |= (data & chg_mask); 2994 2995 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2996 2997 /* check for svm_disable while efer.svme is set */ 2998 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2999 return 1; 3000 3001 return 0; 3002 } 3003 svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)3004 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 3005 { 3006 struct vcpu_svm *svm = to_svm(vcpu); 3007 int ret = 0; 3008 3009 u32 ecx = msr->index; 3010 u64 data = msr->data; 3011 switch (ecx) { 3012 case MSR_AMD64_TSC_RATIO: 3013 3014 if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) { 3015 3016 if (!msr->host_initiated) 3017 return 1; 3018 /* 3019 * In case TSC scaling is not enabled, always 3020 * leave this MSR at the default value. 3021 * 3022 * Due to bug in qemu 6.2.0, it would try to set 3023 * this msr to 0 if tsc scaling is not enabled. 3024 * Ignore this value as well. 3025 */ 3026 if (data != 0 && data != svm->tsc_ratio_msr) 3027 return 1; 3028 break; 3029 } 3030 3031 if (data & SVM_TSC_RATIO_RSVD) 3032 return 1; 3033 3034 svm->tsc_ratio_msr = data; 3035 3036 if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) && 3037 is_guest_mode(vcpu)) 3038 nested_svm_update_tsc_ratio_msr(vcpu); 3039 3040 break; 3041 case MSR_IA32_CR_PAT: 3042 ret = kvm_set_msr_common(vcpu, msr); 3043 if (ret) 3044 break; 3045 3046 svm->vmcb01.ptr->save.g_pat = data; 3047 if (is_guest_mode(vcpu)) 3048 nested_vmcb02_compute_g_pat(svm); 3049 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3050 break; 3051 case MSR_IA32_SPEC_CTRL: 3052 if (!msr->host_initiated && 3053 !guest_has_spec_ctrl_msr(vcpu)) 3054 return 1; 3055 3056 if (kvm_spec_ctrl_test_value(data)) 3057 return 1; 3058 3059 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3060 svm->vmcb->save.spec_ctrl = data; 3061 else 3062 svm->spec_ctrl = data; 3063 if (!data) 3064 break; 3065 3066 /* 3067 * For non-nested: 3068 * When it's written (to non-zero) for the first time, pass 3069 * it through. 3070 * 3071 * For nested: 3072 * The handling of the MSR bitmap for L2 guests is done in 3073 * nested_svm_vmrun_msrpm. 3074 * We update the L1 MSR bit as well since it will end up 3075 * touching the MSR anyway now. 3076 */ 3077 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 3078 break; 3079 case MSR_AMD64_VIRT_SPEC_CTRL: 3080 if (!msr->host_initiated && 3081 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 3082 return 1; 3083 3084 if (data & ~SPEC_CTRL_SSBD) 3085 return 1; 3086 3087 svm->virt_spec_ctrl = data; 3088 break; 3089 case MSR_STAR: 3090 svm->vmcb01.ptr->save.star = data; 3091 break; 3092 #ifdef CONFIG_X86_64 3093 case MSR_LSTAR: 3094 svm->vmcb01.ptr->save.lstar = data; 3095 break; 3096 case MSR_CSTAR: 3097 svm->vmcb01.ptr->save.cstar = data; 3098 break; 3099 case MSR_GS_BASE: 3100 svm->vmcb01.ptr->save.gs.base = data; 3101 break; 3102 case MSR_FS_BASE: 3103 svm->vmcb01.ptr->save.fs.base = data; 3104 break; 3105 case MSR_KERNEL_GS_BASE: 3106 svm->vmcb01.ptr->save.kernel_gs_base = data; 3107 break; 3108 case MSR_SYSCALL_MASK: 3109 svm->vmcb01.ptr->save.sfmask = data; 3110 break; 3111 #endif 3112 case MSR_IA32_SYSENTER_CS: 3113 svm->vmcb01.ptr->save.sysenter_cs = data; 3114 break; 3115 case MSR_IA32_SYSENTER_EIP: 3116 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 3117 /* 3118 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 3119 * when we spoof an Intel vendor ID (for cross vendor migration). 3120 * In this case we use this intercept to track the high 3121 * 32 bit part of these msrs to support Intel's 3122 * implementation of SYSENTER/SYSEXIT. 3123 */ 3124 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3125 break; 3126 case MSR_IA32_SYSENTER_ESP: 3127 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 3128 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3129 break; 3130 case MSR_TSC_AUX: 3131 /* 3132 * TSC_AUX is always virtualized for SEV-ES guests when the 3133 * feature is available. The user return MSR support is not 3134 * required in this case because TSC_AUX is restored on #VMEXIT 3135 * from the host save area (which has been initialized in 3136 * svm_hardware_enable()). 3137 */ 3138 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm)) 3139 break; 3140 3141 /* 3142 * TSC_AUX is usually changed only during boot and never read 3143 * directly. Intercept TSC_AUX instead of exposing it to the 3144 * guest via direct_access_msrs, and switch it via user return. 3145 */ 3146 preempt_disable(); 3147 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 3148 preempt_enable(); 3149 if (ret) 3150 break; 3151 3152 svm->tsc_aux = data; 3153 break; 3154 case MSR_IA32_DEBUGCTLMSR: 3155 if (!lbrv) { 3156 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3157 break; 3158 } 3159 3160 /* 3161 * AMD changed the architectural behavior of bits 5:2. On CPUs 3162 * without BusLockTrap, bits 5:2 control "external pins", but 3163 * on CPUs that support BusLockDetect, bit 2 enables BusLockTrap 3164 * and bits 5:3 are reserved-to-zero. Sadly, old KVM allowed 3165 * the guest to set bits 5:2 despite not actually virtualizing 3166 * Performance-Monitoring/Breakpoint external pins. Drop bits 3167 * 5:2 for backwards compatibility. 3168 */ 3169 data &= ~GENMASK(5, 2); 3170 3171 /* 3172 * Suppress BTF as KVM doesn't virtualize BTF, but there's no 3173 * way to communicate lack of support to the guest. 3174 */ 3175 if (data & DEBUGCTLMSR_BTF) { 3176 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data); 3177 data &= ~DEBUGCTLMSR_BTF; 3178 } 3179 3180 if (data & DEBUGCTL_RESERVED_BITS) 3181 return 1; 3182 3183 svm_get_lbr_vmcb(svm)->save.dbgctl = data; 3184 svm_update_lbrv(vcpu); 3185 break; 3186 case MSR_VM_HSAVE_PA: 3187 /* 3188 * Old kernels did not validate the value written to 3189 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3190 * value to allow live migrating buggy or malicious guests 3191 * originating from those kernels. 3192 */ 3193 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3194 return 1; 3195 3196 svm->nested.hsave_msr = data & PAGE_MASK; 3197 break; 3198 case MSR_VM_CR: 3199 return svm_set_vm_cr(vcpu, data); 3200 case MSR_VM_IGNNE: 3201 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3202 break; 3203 case MSR_AMD64_DE_CFG: { 3204 struct kvm_msr_entry msr_entry; 3205 3206 msr_entry.index = msr->index; 3207 if (svm_get_msr_feature(&msr_entry)) 3208 return 1; 3209 3210 /* Check the supported bits */ 3211 if (data & ~msr_entry.data) 3212 return 1; 3213 3214 /* Don't allow the guest to change a bit, #GP */ 3215 if (!msr->host_initiated && (data ^ msr_entry.data)) 3216 return 1; 3217 3218 svm->msr_decfg = data; 3219 break; 3220 } 3221 default: 3222 return kvm_set_msr_common(vcpu, msr); 3223 } 3224 return ret; 3225 } 3226 msr_interception(struct kvm_vcpu * vcpu)3227 static int msr_interception(struct kvm_vcpu *vcpu) 3228 { 3229 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3230 return kvm_emulate_wrmsr(vcpu); 3231 else 3232 return kvm_emulate_rdmsr(vcpu); 3233 } 3234 interrupt_window_interception(struct kvm_vcpu * vcpu)3235 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3236 { 3237 kvm_make_request(KVM_REQ_EVENT, vcpu); 3238 svm_clear_vintr(to_svm(vcpu)); 3239 3240 /* 3241 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3242 * In this case AVIC was temporarily disabled for 3243 * requesting the IRQ window and we have to re-enable it. 3244 * 3245 * If running nested, still remove the VM wide AVIC inhibit to 3246 * support case in which the interrupt window was requested when the 3247 * vCPU was not running nested. 3248 3249 * All vCPUs which run still run nested, will remain to have their 3250 * AVIC still inhibited due to per-cpu AVIC inhibition. 3251 */ 3252 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3253 3254 ++vcpu->stat.irq_window_exits; 3255 return 1; 3256 } 3257 pause_interception(struct kvm_vcpu * vcpu)3258 static int pause_interception(struct kvm_vcpu *vcpu) 3259 { 3260 bool in_kernel; 3261 /* 3262 * CPL is not made available for an SEV-ES guest, therefore 3263 * vcpu->arch.preempted_in_kernel can never be true. Just 3264 * set in_kernel to false as well. 3265 */ 3266 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3267 3268 grow_ple_window(vcpu); 3269 3270 kvm_vcpu_on_spin(vcpu, in_kernel); 3271 return kvm_skip_emulated_instruction(vcpu); 3272 } 3273 invpcid_interception(struct kvm_vcpu * vcpu)3274 static int invpcid_interception(struct kvm_vcpu *vcpu) 3275 { 3276 struct vcpu_svm *svm = to_svm(vcpu); 3277 unsigned long type; 3278 gva_t gva; 3279 3280 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3281 kvm_queue_exception(vcpu, UD_VECTOR); 3282 return 1; 3283 } 3284 3285 /* 3286 * For an INVPCID intercept: 3287 * EXITINFO1 provides the linear address of the memory operand. 3288 * EXITINFO2 provides the contents of the register operand. 3289 */ 3290 type = svm->vmcb->control.exit_info_2; 3291 gva = svm->vmcb->control.exit_info_1; 3292 3293 return kvm_handle_invpcid(vcpu, type, gva); 3294 } 3295 3296 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3297 [SVM_EXIT_READ_CR0] = cr_interception, 3298 [SVM_EXIT_READ_CR3] = cr_interception, 3299 [SVM_EXIT_READ_CR4] = cr_interception, 3300 [SVM_EXIT_READ_CR8] = cr_interception, 3301 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3302 [SVM_EXIT_WRITE_CR0] = cr_interception, 3303 [SVM_EXIT_WRITE_CR3] = cr_interception, 3304 [SVM_EXIT_WRITE_CR4] = cr_interception, 3305 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3306 [SVM_EXIT_READ_DR0] = dr_interception, 3307 [SVM_EXIT_READ_DR1] = dr_interception, 3308 [SVM_EXIT_READ_DR2] = dr_interception, 3309 [SVM_EXIT_READ_DR3] = dr_interception, 3310 [SVM_EXIT_READ_DR4] = dr_interception, 3311 [SVM_EXIT_READ_DR5] = dr_interception, 3312 [SVM_EXIT_READ_DR6] = dr_interception, 3313 [SVM_EXIT_READ_DR7] = dr_interception, 3314 [SVM_EXIT_WRITE_DR0] = dr_interception, 3315 [SVM_EXIT_WRITE_DR1] = dr_interception, 3316 [SVM_EXIT_WRITE_DR2] = dr_interception, 3317 [SVM_EXIT_WRITE_DR3] = dr_interception, 3318 [SVM_EXIT_WRITE_DR4] = dr_interception, 3319 [SVM_EXIT_WRITE_DR5] = dr_interception, 3320 [SVM_EXIT_WRITE_DR6] = dr_interception, 3321 [SVM_EXIT_WRITE_DR7] = dr_interception, 3322 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3323 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3324 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3325 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3326 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3327 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3328 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3329 [SVM_EXIT_INTR] = intr_interception, 3330 [SVM_EXIT_NMI] = nmi_interception, 3331 [SVM_EXIT_SMI] = smi_interception, 3332 [SVM_EXIT_VINTR] = interrupt_window_interception, 3333 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3334 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3335 [SVM_EXIT_IRET] = iret_interception, 3336 [SVM_EXIT_INVD] = kvm_emulate_invd, 3337 [SVM_EXIT_PAUSE] = pause_interception, 3338 [SVM_EXIT_HLT] = kvm_emulate_halt, 3339 [SVM_EXIT_INVLPG] = invlpg_interception, 3340 [SVM_EXIT_INVLPGA] = invlpga_interception, 3341 [SVM_EXIT_IOIO] = io_interception, 3342 [SVM_EXIT_MSR] = msr_interception, 3343 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3344 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3345 [SVM_EXIT_VMRUN] = vmrun_interception, 3346 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3347 [SVM_EXIT_VMLOAD] = vmload_interception, 3348 [SVM_EXIT_VMSAVE] = vmsave_interception, 3349 [SVM_EXIT_STGI] = stgi_interception, 3350 [SVM_EXIT_CLGI] = clgi_interception, 3351 [SVM_EXIT_SKINIT] = skinit_interception, 3352 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3353 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3354 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3355 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3356 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3357 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3358 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3359 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3360 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3361 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3362 [SVM_EXIT_INVPCID] = invpcid_interception, 3363 [SVM_EXIT_NPF] = npf_interception, 3364 [SVM_EXIT_RSM] = rsm_interception, 3365 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3366 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3367 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3368 }; 3369 dump_vmcb(struct kvm_vcpu * vcpu)3370 static void dump_vmcb(struct kvm_vcpu *vcpu) 3371 { 3372 struct vcpu_svm *svm = to_svm(vcpu); 3373 struct vmcb_control_area *control = &svm->vmcb->control; 3374 struct vmcb_save_area *save = &svm->vmcb->save; 3375 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3376 3377 if (!dump_invalid_vmcb) { 3378 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3379 return; 3380 } 3381 3382 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3383 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3384 pr_err("VMCB Control Area:\n"); 3385 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3386 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3387 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3388 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3389 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3390 pr_err("%-20s%08x %08x\n", "intercepts:", 3391 control->intercepts[INTERCEPT_WORD3], 3392 control->intercepts[INTERCEPT_WORD4]); 3393 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3394 pr_err("%-20s%d\n", "pause filter threshold:", 3395 control->pause_filter_thresh); 3396 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3397 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3398 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3399 pr_err("%-20s%d\n", "asid:", control->asid); 3400 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3401 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3402 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3403 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3404 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3405 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3406 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3407 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3408 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3409 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3410 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3411 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3412 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3413 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3414 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3415 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3416 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3417 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3418 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3419 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3420 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3421 pr_err("VMCB State Save Area:\n"); 3422 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3423 "es:", 3424 save->es.selector, save->es.attrib, 3425 save->es.limit, save->es.base); 3426 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3427 "cs:", 3428 save->cs.selector, save->cs.attrib, 3429 save->cs.limit, save->cs.base); 3430 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3431 "ss:", 3432 save->ss.selector, save->ss.attrib, 3433 save->ss.limit, save->ss.base); 3434 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3435 "ds:", 3436 save->ds.selector, save->ds.attrib, 3437 save->ds.limit, save->ds.base); 3438 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3439 "fs:", 3440 save01->fs.selector, save01->fs.attrib, 3441 save01->fs.limit, save01->fs.base); 3442 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3443 "gs:", 3444 save01->gs.selector, save01->gs.attrib, 3445 save01->gs.limit, save01->gs.base); 3446 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3447 "gdtr:", 3448 save->gdtr.selector, save->gdtr.attrib, 3449 save->gdtr.limit, save->gdtr.base); 3450 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3451 "ldtr:", 3452 save01->ldtr.selector, save01->ldtr.attrib, 3453 save01->ldtr.limit, save01->ldtr.base); 3454 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3455 "idtr:", 3456 save->idtr.selector, save->idtr.attrib, 3457 save->idtr.limit, save->idtr.base); 3458 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3459 "tr:", 3460 save01->tr.selector, save01->tr.attrib, 3461 save01->tr.limit, save01->tr.base); 3462 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3463 save->vmpl, save->cpl, save->efer); 3464 pr_err("%-15s %016llx %-13s %016llx\n", 3465 "cr0:", save->cr0, "cr2:", save->cr2); 3466 pr_err("%-15s %016llx %-13s %016llx\n", 3467 "cr3:", save->cr3, "cr4:", save->cr4); 3468 pr_err("%-15s %016llx %-13s %016llx\n", 3469 "dr6:", save->dr6, "dr7:", save->dr7); 3470 pr_err("%-15s %016llx %-13s %016llx\n", 3471 "rip:", save->rip, "rflags:", save->rflags); 3472 pr_err("%-15s %016llx %-13s %016llx\n", 3473 "rsp:", save->rsp, "rax:", save->rax); 3474 pr_err("%-15s %016llx %-13s %016llx\n", 3475 "star:", save01->star, "lstar:", save01->lstar); 3476 pr_err("%-15s %016llx %-13s %016llx\n", 3477 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3478 pr_err("%-15s %016llx %-13s %016llx\n", 3479 "kernel_gs_base:", save01->kernel_gs_base, 3480 "sysenter_cs:", save01->sysenter_cs); 3481 pr_err("%-15s %016llx %-13s %016llx\n", 3482 "sysenter_esp:", save01->sysenter_esp, 3483 "sysenter_eip:", save01->sysenter_eip); 3484 pr_err("%-15s %016llx %-13s %016llx\n", 3485 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3486 pr_err("%-15s %016llx %-13s %016llx\n", 3487 "br_from:", save->br_from, "br_to:", save->br_to); 3488 pr_err("%-15s %016llx %-13s %016llx\n", 3489 "excp_from:", save->last_excp_from, 3490 "excp_to:", save->last_excp_to); 3491 } 3492 svm_check_exit_valid(u64 exit_code)3493 static bool svm_check_exit_valid(u64 exit_code) 3494 { 3495 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3496 svm_exit_handlers[exit_code]); 3497 } 3498 svm_handle_invalid_exit(struct kvm_vcpu * vcpu,u64 exit_code)3499 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3500 { 3501 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3502 dump_vmcb(vcpu); 3503 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3504 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3505 vcpu->run->internal.ndata = 2; 3506 vcpu->run->internal.data[0] = exit_code; 3507 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3508 return 0; 3509 } 3510 svm_invoke_exit_handler(struct kvm_vcpu * vcpu,u64 exit_code)3511 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3512 { 3513 if (!svm_check_exit_valid(exit_code)) 3514 return svm_handle_invalid_exit(vcpu, exit_code); 3515 3516 #ifdef CONFIG_RETPOLINE 3517 if (exit_code == SVM_EXIT_MSR) 3518 return msr_interception(vcpu); 3519 else if (exit_code == SVM_EXIT_VINTR) 3520 return interrupt_window_interception(vcpu); 3521 else if (exit_code == SVM_EXIT_INTR) 3522 return intr_interception(vcpu); 3523 else if (exit_code == SVM_EXIT_HLT) 3524 return kvm_emulate_halt(vcpu); 3525 else if (exit_code == SVM_EXIT_NPF) 3526 return npf_interception(vcpu); 3527 #endif 3528 return svm_exit_handlers[exit_code](vcpu); 3529 } 3530 svm_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)3531 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3532 u64 *info1, u64 *info2, 3533 u32 *intr_info, u32 *error_code) 3534 { 3535 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3536 3537 *reason = control->exit_code; 3538 *info1 = control->exit_info_1; 3539 *info2 = control->exit_info_2; 3540 *intr_info = control->exit_int_info; 3541 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3542 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3543 *error_code = control->exit_int_info_err; 3544 else 3545 *error_code = 0; 3546 } 3547 svm_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)3548 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3549 { 3550 struct vcpu_svm *svm = to_svm(vcpu); 3551 struct kvm_run *kvm_run = vcpu->run; 3552 u32 exit_code = svm->vmcb->control.exit_code; 3553 3554 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3555 if (!sev_es_guest(vcpu->kvm)) { 3556 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3557 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3558 if (npt_enabled) 3559 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3560 } 3561 3562 if (is_guest_mode(vcpu)) { 3563 int vmexit; 3564 3565 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3566 3567 vmexit = nested_svm_exit_special(svm); 3568 3569 if (vmexit == NESTED_EXIT_CONTINUE) 3570 vmexit = nested_svm_exit_handled(svm); 3571 3572 if (vmexit == NESTED_EXIT_DONE) 3573 return 1; 3574 } 3575 3576 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3577 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3578 kvm_run->fail_entry.hardware_entry_failure_reason 3579 = svm->vmcb->control.exit_code; 3580 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3581 dump_vmcb(vcpu); 3582 return 0; 3583 } 3584 3585 if (exit_fastpath != EXIT_FASTPATH_NONE) 3586 return 1; 3587 3588 return svm_invoke_exit_handler(vcpu, exit_code); 3589 } 3590 pre_svm_run(struct kvm_vcpu * vcpu)3591 static void pre_svm_run(struct kvm_vcpu *vcpu) 3592 { 3593 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3594 struct vcpu_svm *svm = to_svm(vcpu); 3595 3596 /* 3597 * If the previous vmrun of the vmcb occurred on a different physical 3598 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3599 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3600 */ 3601 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3602 svm->current_vmcb->asid_generation = 0; 3603 vmcb_mark_all_dirty(svm->vmcb); 3604 svm->current_vmcb->cpu = vcpu->cpu; 3605 } 3606 3607 if (sev_guest(vcpu->kvm)) 3608 return pre_sev_run(svm, vcpu->cpu); 3609 3610 /* FIXME: handle wraparound of asid_generation */ 3611 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3612 new_asid(svm, sd); 3613 } 3614 svm_inject_nmi(struct kvm_vcpu * vcpu)3615 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3616 { 3617 struct vcpu_svm *svm = to_svm(vcpu); 3618 3619 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3620 3621 if (svm->nmi_l1_to_l2) 3622 return; 3623 3624 svm->nmi_masked = true; 3625 svm_set_iret_intercept(svm); 3626 ++vcpu->stat.nmi_injections; 3627 } 3628 svm_is_vnmi_pending(struct kvm_vcpu * vcpu)3629 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) 3630 { 3631 struct vcpu_svm *svm = to_svm(vcpu); 3632 3633 if (!is_vnmi_enabled(svm)) 3634 return false; 3635 3636 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); 3637 } 3638 svm_set_vnmi_pending(struct kvm_vcpu * vcpu)3639 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) 3640 { 3641 struct vcpu_svm *svm = to_svm(vcpu); 3642 3643 if (!is_vnmi_enabled(svm)) 3644 return false; 3645 3646 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) 3647 return false; 3648 3649 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; 3650 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 3651 3652 /* 3653 * Because the pending NMI is serviced by hardware, KVM can't know when 3654 * the NMI is "injected", but for all intents and purposes, passing the 3655 * NMI off to hardware counts as injection. 3656 */ 3657 ++vcpu->stat.nmi_injections; 3658 3659 return true; 3660 } 3661 svm_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)3662 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3663 { 3664 struct vcpu_svm *svm = to_svm(vcpu); 3665 u32 type; 3666 3667 if (vcpu->arch.interrupt.soft) { 3668 if (svm_update_soft_interrupt_rip(vcpu)) 3669 return; 3670 3671 type = SVM_EVTINJ_TYPE_SOFT; 3672 } else { 3673 type = SVM_EVTINJ_TYPE_INTR; 3674 } 3675 3676 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3677 vcpu->arch.interrupt.soft, reinjected); 3678 ++vcpu->stat.irq_injections; 3679 3680 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3681 SVM_EVTINJ_VALID | type; 3682 } 3683 svm_complete_interrupt_delivery(struct kvm_vcpu * vcpu,int delivery_mode,int trig_mode,int vector)3684 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3685 int trig_mode, int vector) 3686 { 3687 /* 3688 * apic->apicv_active must be read after vcpu->mode. 3689 * Pairs with smp_store_release in vcpu_enter_guest. 3690 */ 3691 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3692 3693 /* Note, this is called iff the local APIC is in-kernel. */ 3694 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3695 /* Process the interrupt via kvm_check_and_inject_events(). */ 3696 kvm_make_request(KVM_REQ_EVENT, vcpu); 3697 kvm_vcpu_kick(vcpu); 3698 return; 3699 } 3700 3701 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3702 if (in_guest_mode) { 3703 /* 3704 * Signal the doorbell to tell hardware to inject the IRQ. If 3705 * the vCPU exits the guest before the doorbell chimes, hardware 3706 * will automatically process AVIC interrupts at the next VMRUN. 3707 */ 3708 avic_ring_doorbell(vcpu); 3709 } else { 3710 /* 3711 * Wake the vCPU if it was blocking. KVM will then detect the 3712 * pending IRQ when checking if the vCPU has a wake event. 3713 */ 3714 kvm_vcpu_wake_up(vcpu); 3715 } 3716 } 3717 svm_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)3718 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3719 int trig_mode, int vector) 3720 { 3721 kvm_lapic_set_irr(vector, apic); 3722 3723 /* 3724 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3725 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3726 * the read of guest_mode. This guarantees that either VMRUN will see 3727 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3728 * will signal the doorbell if the CPU has already entered the guest. 3729 */ 3730 smp_mb__after_atomic(); 3731 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3732 } 3733 svm_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3734 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3735 { 3736 struct vcpu_svm *svm = to_svm(vcpu); 3737 3738 /* 3739 * SEV-ES guests must always keep the CR intercepts cleared. CR 3740 * tracking is done using the CR write traps. 3741 */ 3742 if (sev_es_guest(vcpu->kvm)) 3743 return; 3744 3745 if (nested_svm_virtualize_tpr(vcpu)) 3746 return; 3747 3748 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3749 3750 if (irr == -1) 3751 return; 3752 3753 if (tpr >= irr) 3754 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3755 } 3756 svm_get_nmi_mask(struct kvm_vcpu * vcpu)3757 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3758 { 3759 struct vcpu_svm *svm = to_svm(vcpu); 3760 3761 if (is_vnmi_enabled(svm)) 3762 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; 3763 else 3764 return svm->nmi_masked; 3765 } 3766 svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3767 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3768 { 3769 struct vcpu_svm *svm = to_svm(vcpu); 3770 3771 if (is_vnmi_enabled(svm)) { 3772 if (masked) 3773 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; 3774 else 3775 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 3776 3777 } else { 3778 svm->nmi_masked = masked; 3779 if (masked) 3780 svm_set_iret_intercept(svm); 3781 else 3782 svm_clr_iret_intercept(svm); 3783 } 3784 } 3785 svm_nmi_blocked(struct kvm_vcpu * vcpu)3786 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3787 { 3788 struct vcpu_svm *svm = to_svm(vcpu); 3789 struct vmcb *vmcb = svm->vmcb; 3790 3791 if (!gif_set(svm)) 3792 return true; 3793 3794 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3795 return false; 3796 3797 if (svm_get_nmi_mask(vcpu)) 3798 return true; 3799 3800 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; 3801 } 3802 svm_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)3803 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3804 { 3805 struct vcpu_svm *svm = to_svm(vcpu); 3806 if (svm->nested.nested_run_pending) 3807 return -EBUSY; 3808 3809 if (svm_nmi_blocked(vcpu)) 3810 return 0; 3811 3812 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3813 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3814 return -EBUSY; 3815 return 1; 3816 } 3817 svm_interrupt_blocked(struct kvm_vcpu * vcpu)3818 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3819 { 3820 struct vcpu_svm *svm = to_svm(vcpu); 3821 struct vmcb *vmcb = svm->vmcb; 3822 3823 if (!gif_set(svm)) 3824 return true; 3825 3826 if (is_guest_mode(vcpu)) { 3827 /* As long as interrupts are being delivered... */ 3828 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3829 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3830 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3831 return true; 3832 3833 /* ... vmexits aren't blocked by the interrupt shadow */ 3834 if (nested_exit_on_intr(svm)) 3835 return false; 3836 } else { 3837 if (!svm_get_if_flag(vcpu)) 3838 return true; 3839 } 3840 3841 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3842 } 3843 svm_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)3844 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3845 { 3846 struct vcpu_svm *svm = to_svm(vcpu); 3847 3848 if (svm->nested.nested_run_pending) 3849 return -EBUSY; 3850 3851 if (svm_interrupt_blocked(vcpu)) 3852 return 0; 3853 3854 /* 3855 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3856 * e.g. if the IRQ arrived asynchronously after checking nested events. 3857 */ 3858 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3859 return -EBUSY; 3860 3861 return 1; 3862 } 3863 svm_enable_irq_window(struct kvm_vcpu * vcpu)3864 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3865 { 3866 struct vcpu_svm *svm = to_svm(vcpu); 3867 3868 /* 3869 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3870 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3871 * get that intercept, this function will be called again though and 3872 * we'll get the vintr intercept. However, if the vGIF feature is 3873 * enabled, the STGI interception will not occur. Enable the irq 3874 * window under the assumption that the hardware will set the GIF. 3875 */ 3876 if (vgif || gif_set(svm)) { 3877 /* 3878 * IRQ window is not needed when AVIC is enabled, 3879 * unless we have pending ExtINT since it cannot be injected 3880 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3881 * and fallback to injecting IRQ via V_IRQ. 3882 * 3883 * If running nested, AVIC is already locally inhibited 3884 * on this vCPU, therefore there is no need to request 3885 * the VM wide AVIC inhibition. 3886 */ 3887 if (!is_guest_mode(vcpu)) 3888 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3889 3890 svm_set_vintr(svm); 3891 } 3892 } 3893 svm_enable_nmi_window(struct kvm_vcpu * vcpu)3894 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3895 { 3896 struct vcpu_svm *svm = to_svm(vcpu); 3897 3898 /* 3899 * If NMIs are outright masked, i.e. the vCPU is already handling an 3900 * NMI, and KVM has not yet intercepted an IRET, then there is nothing 3901 * more to do at this time as KVM has already enabled IRET intercepts. 3902 * If KVM has already intercepted IRET, then single-step over the IRET, 3903 * as NMIs aren't architecturally unmasked until the IRET completes. 3904 * 3905 * If vNMI is enabled, KVM should never request an NMI window if NMIs 3906 * are masked, as KVM allows at most one to-be-injected NMI and one 3907 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one 3908 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are 3909 * unmasked. KVM _will_ request an NMI window in some situations, e.g. 3910 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately 3911 * inject the NMI. In those situations, KVM needs to single-step over 3912 * the STI shadow or intercept STGI. 3913 */ 3914 if (svm_get_nmi_mask(vcpu)) { 3915 WARN_ON_ONCE(is_vnmi_enabled(svm)); 3916 3917 if (!svm->awaiting_iret_completion) 3918 return; /* IRET will cause a vm exit */ 3919 } 3920 3921 /* 3922 * SEV-ES guests are responsible for signaling when a vCPU is ready to 3923 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. 3924 * KVM can't intercept and single-step IRET to detect when NMIs are 3925 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. 3926 * 3927 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware 3928 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not 3929 * supported NAEs in the GHCB protocol. 3930 */ 3931 if (sev_es_guest(vcpu->kvm)) 3932 return; 3933 3934 if (!gif_set(svm)) { 3935 if (vgif) 3936 svm_set_intercept(svm, INTERCEPT_STGI); 3937 return; /* STGI will cause a vm exit */ 3938 } 3939 3940 /* 3941 * Something prevents NMI from been injected. Single step over possible 3942 * problem (IRET or exception injection or interrupt shadow) 3943 */ 3944 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3945 svm->nmi_singlestep = true; 3946 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3947 } 3948 svm_flush_tlb_asid(struct kvm_vcpu * vcpu)3949 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) 3950 { 3951 struct vcpu_svm *svm = to_svm(vcpu); 3952 3953 /* 3954 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 3955 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 3956 * entries, and thus is a superset of Hyper-V's fine grained flushing. 3957 */ 3958 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3959 3960 /* 3961 * Flush only the current ASID even if the TLB flush was invoked via 3962 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3963 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3964 * unconditionally does a TLB flush on both nested VM-Enter and nested 3965 * VM-Exit (via kvm_mmu_reset_context()). 3966 */ 3967 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3968 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3969 else 3970 svm->current_vmcb->asid_generation--; 3971 } 3972 svm_flush_tlb_current(struct kvm_vcpu * vcpu)3973 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 3974 { 3975 hpa_t root_tdp = vcpu->arch.mmu->root.hpa; 3976 3977 /* 3978 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly 3979 * flush the NPT mappings via hypercall as flushing the ASID only 3980 * affects virtual to physical mappings, it does not invalidate guest 3981 * physical to host physical mappings. 3982 */ 3983 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) 3984 hyperv_flush_guest_mapping(root_tdp); 3985 3986 svm_flush_tlb_asid(vcpu); 3987 } 3988 svm_flush_tlb_all(struct kvm_vcpu * vcpu)3989 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) 3990 { 3991 /* 3992 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB 3993 * flushes should be routed to hv_flush_remote_tlbs() without requesting 3994 * a "regular" remote flush. Reaching this point means either there's 3995 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of 3996 * which might be fatal to the guest. Yell, but try to recover. 3997 */ 3998 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) 3999 hv_flush_remote_tlbs(vcpu->kvm); 4000 4001 svm_flush_tlb_asid(vcpu); 4002 } 4003 svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)4004 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 4005 { 4006 struct vcpu_svm *svm = to_svm(vcpu); 4007 4008 invlpga(gva, svm->vmcb->control.asid); 4009 } 4010 sync_cr8_to_lapic(struct kvm_vcpu * vcpu)4011 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 4012 { 4013 struct vcpu_svm *svm = to_svm(vcpu); 4014 4015 if (nested_svm_virtualize_tpr(vcpu)) 4016 return; 4017 4018 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 4019 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 4020 kvm_set_cr8(vcpu, cr8); 4021 } 4022 } 4023 sync_lapic_to_cr8(struct kvm_vcpu * vcpu)4024 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 4025 { 4026 struct vcpu_svm *svm = to_svm(vcpu); 4027 u64 cr8; 4028 4029 if (nested_svm_virtualize_tpr(vcpu) || 4030 kvm_vcpu_apicv_active(vcpu)) 4031 return; 4032 4033 cr8 = kvm_get_cr8(vcpu); 4034 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 4035 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 4036 } 4037 svm_complete_soft_interrupt(struct kvm_vcpu * vcpu,u8 vector,int type)4038 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 4039 int type) 4040 { 4041 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 4042 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 4043 struct vcpu_svm *svm = to_svm(vcpu); 4044 4045 /* 4046 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 4047 * associated with the original soft exception/interrupt. next_rip is 4048 * cleared on all exits that can occur while vectoring an event, so KVM 4049 * needs to manually set next_rip for re-injection. Unlike the !nrips 4050 * case below, this needs to be done if and only if KVM is re-injecting 4051 * the same event, i.e. if the event is a soft exception/interrupt, 4052 * otherwise next_rip is unused on VMRUN. 4053 */ 4054 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 4055 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 4056 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 4057 /* 4058 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 4059 * injecting the soft exception/interrupt. That advancement needs to 4060 * be unwound if vectoring didn't complete. Note, the new event may 4061 * not be the injected event, e.g. if KVM injected an INTn, the INTn 4062 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 4063 * be the reported vectored event, but RIP still needs to be unwound. 4064 */ 4065 else if (!nrips && (is_soft || is_exception) && 4066 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 4067 kvm_rip_write(vcpu, svm->soft_int_old_rip); 4068 } 4069 svm_complete_interrupts(struct kvm_vcpu * vcpu)4070 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 4071 { 4072 struct vcpu_svm *svm = to_svm(vcpu); 4073 u8 vector; 4074 int type; 4075 u32 exitintinfo = svm->vmcb->control.exit_int_info; 4076 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 4077 bool soft_int_injected = svm->soft_int_injected; 4078 4079 svm->nmi_l1_to_l2 = false; 4080 svm->soft_int_injected = false; 4081 4082 /* 4083 * If we've made progress since setting awaiting_iret_completion, we've 4084 * executed an IRET and can allow NMI injection. 4085 */ 4086 if (svm->awaiting_iret_completion && 4087 kvm_rip_read(vcpu) != svm->nmi_iret_rip) { 4088 svm->awaiting_iret_completion = false; 4089 svm->nmi_masked = false; 4090 kvm_make_request(KVM_REQ_EVENT, vcpu); 4091 } 4092 4093 vcpu->arch.nmi_injected = false; 4094 kvm_clear_exception_queue(vcpu); 4095 kvm_clear_interrupt_queue(vcpu); 4096 4097 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 4098 return; 4099 4100 kvm_make_request(KVM_REQ_EVENT, vcpu); 4101 4102 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 4103 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 4104 4105 if (soft_int_injected) 4106 svm_complete_soft_interrupt(vcpu, vector, type); 4107 4108 switch (type) { 4109 case SVM_EXITINTINFO_TYPE_NMI: 4110 vcpu->arch.nmi_injected = true; 4111 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 4112 break; 4113 case SVM_EXITINTINFO_TYPE_EXEPT: 4114 /* 4115 * Never re-inject a #VC exception. 4116 */ 4117 if (vector == X86_TRAP_VC) 4118 break; 4119 4120 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 4121 u32 err = svm->vmcb->control.exit_int_info_err; 4122 kvm_requeue_exception_e(vcpu, vector, err); 4123 4124 } else 4125 kvm_requeue_exception(vcpu, vector); 4126 break; 4127 case SVM_EXITINTINFO_TYPE_INTR: 4128 kvm_queue_interrupt(vcpu, vector, false); 4129 break; 4130 case SVM_EXITINTINFO_TYPE_SOFT: 4131 kvm_queue_interrupt(vcpu, vector, true); 4132 break; 4133 default: 4134 break; 4135 } 4136 4137 } 4138 svm_cancel_injection(struct kvm_vcpu * vcpu)4139 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 4140 { 4141 struct vcpu_svm *svm = to_svm(vcpu); 4142 struct vmcb_control_area *control = &svm->vmcb->control; 4143 4144 control->exit_int_info = control->event_inj; 4145 control->exit_int_info_err = control->event_inj_err; 4146 control->event_inj = 0; 4147 svm_complete_interrupts(vcpu); 4148 } 4149 svm_vcpu_pre_run(struct kvm_vcpu * vcpu)4150 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 4151 { 4152 return 1; 4153 } 4154 svm_exit_handlers_fastpath(struct kvm_vcpu * vcpu)4155 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 4156 { 4157 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 4158 to_svm(vcpu)->vmcb->control.exit_info_1) 4159 return handle_fastpath_set_msr_irqoff(vcpu); 4160 4161 return EXIT_FASTPATH_NONE; 4162 } 4163 svm_vcpu_enter_exit(struct kvm_vcpu * vcpu,bool spec_ctrl_intercepted)4164 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 4165 { 4166 struct vcpu_svm *svm = to_svm(vcpu); 4167 4168 guest_state_enter_irqoff(); 4169 4170 amd_clear_divider(); 4171 4172 if (sev_es_guest(vcpu->kvm)) 4173 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted); 4174 else 4175 __svm_vcpu_run(svm, spec_ctrl_intercepted); 4176 4177 guest_state_exit_irqoff(); 4178 } 4179 svm_vcpu_run(struct kvm_vcpu * vcpu)4180 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 4181 { 4182 struct vcpu_svm *svm = to_svm(vcpu); 4183 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 4184 4185 trace_kvm_entry(vcpu); 4186 4187 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4188 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4189 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4190 4191 /* 4192 * Disable singlestep if we're injecting an interrupt/exception. 4193 * We don't want our modified rflags to be pushed on the stack where 4194 * we might not be able to easily reset them if we disabled NMI 4195 * singlestep later. 4196 */ 4197 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 4198 /* 4199 * Event injection happens before external interrupts cause a 4200 * vmexit and interrupts are disabled here, so smp_send_reschedule 4201 * is enough to force an immediate vmexit. 4202 */ 4203 disable_nmi_singlestep(svm); 4204 smp_send_reschedule(vcpu->cpu); 4205 } 4206 4207 pre_svm_run(vcpu); 4208 4209 sync_lapic_to_cr8(vcpu); 4210 4211 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 4212 svm->vmcb->control.asid = svm->asid; 4213 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 4214 } 4215 svm->vmcb->save.cr2 = vcpu->arch.cr2; 4216 4217 svm_hv_update_vp_id(svm->vmcb, vcpu); 4218 4219 /* 4220 * Run with all-zero DR6 unless needed, so that we can get the exact cause 4221 * of a #DB. 4222 */ 4223 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 4224 svm_set_dr6(svm, vcpu->arch.dr6); 4225 else 4226 svm_set_dr6(svm, DR6_ACTIVE_LOW); 4227 4228 clgi(); 4229 kvm_load_guest_xsave_state(vcpu); 4230 4231 kvm_wait_lapic_expire(vcpu); 4232 4233 /* 4234 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 4235 * it's non-zero. Since vmentry is serialising on affected CPUs, there 4236 * is no need to worry about the conditional branch over the wrmsr 4237 * being speculatively taken. 4238 */ 4239 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4240 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 4241 4242 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 4243 4244 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4245 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 4246 4247 if (!sev_es_guest(vcpu->kvm)) { 4248 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4249 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4250 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4251 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4252 } 4253 vcpu->arch.regs_dirty = 0; 4254 4255 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4256 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4257 4258 kvm_load_host_xsave_state(vcpu); 4259 stgi(); 4260 4261 /* Any pending NMI will happen here */ 4262 4263 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4264 kvm_after_interrupt(vcpu); 4265 4266 sync_cr8_to_lapic(vcpu); 4267 4268 svm->next_rip = 0; 4269 if (is_guest_mode(vcpu)) { 4270 nested_sync_control_from_vmcb02(svm); 4271 4272 /* Track VMRUNs that have made past consistency checking */ 4273 if (svm->nested.nested_run_pending && 4274 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4275 ++vcpu->stat.nested_run; 4276 4277 svm->nested.nested_run_pending = 0; 4278 } 4279 4280 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4281 vmcb_mark_all_clean(svm->vmcb); 4282 4283 /* if exit due to PF check for async PF */ 4284 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4285 vcpu->arch.apf.host_apf_flags = 4286 kvm_read_and_reset_apf_flags(); 4287 4288 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4289 4290 /* 4291 * We need to handle MC intercepts here before the vcpu has a chance to 4292 * change the physical cpu 4293 */ 4294 if (unlikely(svm->vmcb->control.exit_code == 4295 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4296 svm_handle_mce(vcpu); 4297 4298 trace_kvm_exit(vcpu, KVM_ISA_SVM); 4299 4300 svm_complete_interrupts(vcpu); 4301 4302 if (is_guest_mode(vcpu)) 4303 return EXIT_FASTPATH_NONE; 4304 4305 return svm_exit_handlers_fastpath(vcpu); 4306 } 4307 svm_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)4308 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4309 int root_level) 4310 { 4311 struct vcpu_svm *svm = to_svm(vcpu); 4312 unsigned long cr3; 4313 4314 if (npt_enabled) { 4315 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4316 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4317 4318 hv_track_root_tdp(vcpu, root_hpa); 4319 4320 cr3 = vcpu->arch.cr3; 4321 } else if (root_level >= PT64_ROOT_4LEVEL) { 4322 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4323 } else { 4324 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4325 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4326 cr3 = root_hpa; 4327 } 4328 4329 svm->vmcb->save.cr3 = cr3; 4330 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4331 } 4332 4333 static void svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4334 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4335 { 4336 /* 4337 * Patch in the VMMCALL instruction: 4338 */ 4339 hypercall[0] = 0x0f; 4340 hypercall[1] = 0x01; 4341 hypercall[2] = 0xd9; 4342 } 4343 4344 /* 4345 * The kvm parameter can be NULL (module initialization, or invocation before 4346 * VM creation). Be sure to check the kvm parameter before using it. 4347 */ svm_has_emulated_msr(struct kvm * kvm,u32 index)4348 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4349 { 4350 switch (index) { 4351 case MSR_IA32_MCG_EXT_CTL: 4352 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 4353 return false; 4354 case MSR_IA32_SMBASE: 4355 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4356 return false; 4357 /* SEV-ES guests do not support SMM, so report false */ 4358 if (kvm && sev_es_guest(kvm)) 4359 return false; 4360 break; 4361 default: 4362 break; 4363 } 4364 4365 return true; 4366 } 4367 svm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)4368 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4369 { 4370 struct vcpu_svm *svm = to_svm(vcpu); 4371 4372 /* 4373 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM 4374 * can only disable all variants of by disallowing CR4.OSXSAVE from 4375 * being set. As a result, if the host has XSAVE and XSAVES, and the 4376 * guest has XSAVE enabled, the guest can execute XSAVES without 4377 * faulting. Treat XSAVES as enabled in this case regardless of 4378 * whether it's advertised to the guest so that KVM context switches 4379 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give 4380 * the guest read/write access to the host's XSS. 4381 */ 4382 if (boot_cpu_has(X86_FEATURE_XSAVE) && 4383 boot_cpu_has(X86_FEATURE_XSAVES) && 4384 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) 4385 kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES); 4386 4387 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS); 4388 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR); 4389 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV); 4390 4391 /* 4392 * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that 4393 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing 4394 * SVM on Intel is bonkers and extremely unlikely to work). 4395 */ 4396 if (!guest_cpuid_is_intel(vcpu)) 4397 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4398 4399 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER); 4400 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD); 4401 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF); 4402 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI); 4403 4404 svm_recalc_instruction_intercepts(vcpu, svm); 4405 4406 if (boot_cpu_has(X86_FEATURE_IBPB)) 4407 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 4408 !!guest_has_pred_cmd_msr(vcpu)); 4409 4410 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 4411 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0, 4412 !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 4413 4414 if (sev_guest(vcpu->kvm)) 4415 sev_vcpu_after_set_cpuid(svm); 4416 4417 init_vmcb_after_set_cpuid(vcpu); 4418 } 4419 svm_has_wbinvd_exit(void)4420 static bool svm_has_wbinvd_exit(void) 4421 { 4422 return true; 4423 } 4424 4425 #define PRE_EX(exit) { .exit_code = (exit), \ 4426 .stage = X86_ICPT_PRE_EXCEPT, } 4427 #define POST_EX(exit) { .exit_code = (exit), \ 4428 .stage = X86_ICPT_POST_EXCEPT, } 4429 #define POST_MEM(exit) { .exit_code = (exit), \ 4430 .stage = X86_ICPT_POST_MEMACCESS, } 4431 4432 static const struct __x86_intercept { 4433 u32 exit_code; 4434 enum x86_intercept_stage stage; 4435 } x86_intercept_map[] = { 4436 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4437 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4438 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4439 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4440 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4441 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4442 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4443 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4444 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4445 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4446 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4447 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4448 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4449 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4450 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4451 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4452 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4453 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4454 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4455 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4456 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4457 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4458 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4459 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4460 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4461 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4462 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4463 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4464 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4465 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4466 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4467 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4468 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4469 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4470 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4471 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4472 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4473 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4474 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4475 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4476 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4477 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4478 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4479 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4480 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4481 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4482 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4483 }; 4484 4485 #undef PRE_EX 4486 #undef POST_EX 4487 #undef POST_MEM 4488 svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)4489 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4490 struct x86_instruction_info *info, 4491 enum x86_intercept_stage stage, 4492 struct x86_exception *exception) 4493 { 4494 struct vcpu_svm *svm = to_svm(vcpu); 4495 int vmexit, ret = X86EMUL_CONTINUE; 4496 struct __x86_intercept icpt_info; 4497 struct vmcb *vmcb = svm->vmcb; 4498 4499 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4500 goto out; 4501 4502 icpt_info = x86_intercept_map[info->intercept]; 4503 4504 if (stage != icpt_info.stage) 4505 goto out; 4506 4507 switch (icpt_info.exit_code) { 4508 case SVM_EXIT_READ_CR0: 4509 if (info->intercept == x86_intercept_cr_read) 4510 icpt_info.exit_code += info->modrm_reg; 4511 break; 4512 case SVM_EXIT_WRITE_CR0: { 4513 unsigned long cr0, val; 4514 4515 if (info->intercept == x86_intercept_cr_write) 4516 icpt_info.exit_code += info->modrm_reg; 4517 4518 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4519 info->intercept == x86_intercept_clts) 4520 break; 4521 4522 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4523 INTERCEPT_SELECTIVE_CR0))) 4524 break; 4525 4526 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4527 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4528 4529 if (info->intercept == x86_intercept_lmsw) { 4530 cr0 &= 0xfUL; 4531 val &= 0xfUL; 4532 /* lmsw can't clear PE - catch this here */ 4533 if (cr0 & X86_CR0_PE) 4534 val |= X86_CR0_PE; 4535 } 4536 4537 if (cr0 ^ val) 4538 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4539 4540 break; 4541 } 4542 case SVM_EXIT_READ_DR0: 4543 case SVM_EXIT_WRITE_DR0: 4544 icpt_info.exit_code += info->modrm_reg; 4545 break; 4546 case SVM_EXIT_MSR: 4547 if (info->intercept == x86_intercept_wrmsr) 4548 vmcb->control.exit_info_1 = 1; 4549 else 4550 vmcb->control.exit_info_1 = 0; 4551 break; 4552 case SVM_EXIT_PAUSE: 4553 /* 4554 * We get this for NOP only, but pause 4555 * is rep not, check this here 4556 */ 4557 if (info->rep_prefix != REPE_PREFIX) 4558 goto out; 4559 break; 4560 case SVM_EXIT_IOIO: { 4561 u64 exit_info; 4562 u32 bytes; 4563 4564 if (info->intercept == x86_intercept_in || 4565 info->intercept == x86_intercept_ins) { 4566 exit_info = ((info->src_val & 0xffff) << 16) | 4567 SVM_IOIO_TYPE_MASK; 4568 bytes = info->dst_bytes; 4569 } else { 4570 exit_info = (info->dst_val & 0xffff) << 16; 4571 bytes = info->src_bytes; 4572 } 4573 4574 if (info->intercept == x86_intercept_outs || 4575 info->intercept == x86_intercept_ins) 4576 exit_info |= SVM_IOIO_STR_MASK; 4577 4578 if (info->rep_prefix) 4579 exit_info |= SVM_IOIO_REP_MASK; 4580 4581 bytes = min(bytes, 4u); 4582 4583 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4584 4585 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4586 4587 vmcb->control.exit_info_1 = exit_info; 4588 vmcb->control.exit_info_2 = info->next_rip; 4589 4590 break; 4591 } 4592 default: 4593 break; 4594 } 4595 4596 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4597 if (static_cpu_has(X86_FEATURE_NRIPS)) 4598 vmcb->control.next_rip = info->next_rip; 4599 vmcb->control.exit_code = icpt_info.exit_code; 4600 vmexit = nested_svm_exit_handled(svm); 4601 4602 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4603 : X86EMUL_CONTINUE; 4604 4605 out: 4606 return ret; 4607 } 4608 svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)4609 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4610 { 4611 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4612 vcpu->arch.at_instruction_boundary = true; 4613 } 4614 svm_sched_in(struct kvm_vcpu * vcpu,int cpu)4615 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4616 { 4617 if (!kvm_pause_in_guest(vcpu->kvm)) 4618 shrink_ple_window(vcpu); 4619 } 4620 svm_setup_mce(struct kvm_vcpu * vcpu)4621 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4622 { 4623 /* [63:9] are reserved. */ 4624 vcpu->arch.mcg_cap &= 0x1ff; 4625 } 4626 4627 #ifdef CONFIG_KVM_SMM svm_smi_blocked(struct kvm_vcpu * vcpu)4628 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4629 { 4630 struct vcpu_svm *svm = to_svm(vcpu); 4631 4632 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4633 if (!gif_set(svm)) 4634 return true; 4635 4636 return is_smm(vcpu); 4637 } 4638 svm_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4639 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4640 { 4641 struct vcpu_svm *svm = to_svm(vcpu); 4642 if (svm->nested.nested_run_pending) 4643 return -EBUSY; 4644 4645 if (svm_smi_blocked(vcpu)) 4646 return 0; 4647 4648 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4649 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4650 return -EBUSY; 4651 4652 return 1; 4653 } 4654 svm_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)4655 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4656 { 4657 struct vcpu_svm *svm = to_svm(vcpu); 4658 struct kvm_host_map map_save; 4659 int ret; 4660 4661 if (!is_guest_mode(vcpu)) 4662 return 0; 4663 4664 /* 4665 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4666 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4667 */ 4668 4669 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4670 return 1; 4671 4672 smram->smram64.svm_guest_flag = 1; 4673 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4674 4675 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4676 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4677 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4678 4679 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4680 if (ret) 4681 return ret; 4682 4683 /* 4684 * KVM uses VMCB01 to store L1 host state while L2 runs but 4685 * VMCB01 is going to be used during SMM and thus the state will 4686 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4687 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4688 * format of the area is identical to guest save area offsetted 4689 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4690 * within 'struct vmcb'). Note: HSAVE area may also be used by 4691 * L1 hypervisor to save additional host context (e.g. KVM does 4692 * that, see svm_prepare_switch_to_guest()) which must be 4693 * preserved. 4694 */ 4695 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4696 return 1; 4697 4698 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4699 4700 svm_copy_vmrun_state(map_save.hva + 0x400, 4701 &svm->vmcb01.ptr->save); 4702 4703 kvm_vcpu_unmap(vcpu, &map_save, true); 4704 return 0; 4705 } 4706 svm_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)4707 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4708 { 4709 struct vcpu_svm *svm = to_svm(vcpu); 4710 struct kvm_host_map map, map_save; 4711 struct vmcb *vmcb12; 4712 int ret; 4713 4714 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4715 4716 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4717 return 0; 4718 4719 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4720 if (!smram64->svm_guest_flag) 4721 return 0; 4722 4723 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4724 return 1; 4725 4726 if (!(smram64->efer & EFER_SVME)) 4727 return 1; 4728 4729 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4730 return 1; 4731 4732 ret = 1; 4733 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4734 goto unmap_map; 4735 4736 if (svm_allocate_nested(svm)) 4737 goto unmap_save; 4738 4739 /* 4740 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4741 * used during SMM (see svm_enter_smm()) 4742 */ 4743 4744 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4745 4746 /* 4747 * Enter the nested guest now 4748 */ 4749 4750 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4751 4752 vmcb12 = map.hva; 4753 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4754 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4755 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4756 4757 if (ret) 4758 goto unmap_save; 4759 4760 svm->nested.nested_run_pending = 1; 4761 4762 unmap_save: 4763 kvm_vcpu_unmap(vcpu, &map_save, true); 4764 unmap_map: 4765 kvm_vcpu_unmap(vcpu, &map, true); 4766 return ret; 4767 } 4768 svm_enable_smi_window(struct kvm_vcpu * vcpu)4769 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4770 { 4771 struct vcpu_svm *svm = to_svm(vcpu); 4772 4773 if (!gif_set(svm)) { 4774 if (vgif) 4775 svm_set_intercept(svm, INTERCEPT_STGI); 4776 /* STGI will cause a vm exit */ 4777 } else { 4778 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4779 } 4780 } 4781 #endif 4782 svm_can_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)4783 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4784 void *insn, int insn_len) 4785 { 4786 bool smep, smap, is_user; 4787 u64 error_code; 4788 4789 /* Emulation is always possible when KVM has access to all guest state. */ 4790 if (!sev_guest(vcpu->kvm)) 4791 return true; 4792 4793 /* #UD and #GP should never be intercepted for SEV guests. */ 4794 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4795 EMULTYPE_TRAP_UD_FORCED | 4796 EMULTYPE_VMWARE_GP)); 4797 4798 /* 4799 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4800 * to guest register state. 4801 */ 4802 if (sev_es_guest(vcpu->kvm)) 4803 return false; 4804 4805 /* 4806 * Emulation is possible if the instruction is already decoded, e.g. 4807 * when completing I/O after returning from userspace. 4808 */ 4809 if (emul_type & EMULTYPE_NO_DECODE) 4810 return true; 4811 4812 /* 4813 * Emulation is possible for SEV guests if and only if a prefilled 4814 * buffer containing the bytes of the intercepted instruction is 4815 * available. SEV guest memory is encrypted with a guest specific key 4816 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and 4817 * decode garbage. 4818 * 4819 * If KVM is NOT trying to simply skip an instruction, inject #UD if 4820 * KVM reached this point without an instruction buffer. In practice, 4821 * this path should never be hit by a well-behaved guest, e.g. KVM 4822 * doesn't intercept #UD or #GP for SEV guests, but this path is still 4823 * theoretically reachable, e.g. via unaccelerated fault-like AVIC 4824 * access, and needs to be handled by KVM to avoid putting the guest 4825 * into an infinite loop. Injecting #UD is somewhat arbitrary, but 4826 * its the least awful option given lack of insight into the guest. 4827 * 4828 * If KVM is trying to skip an instruction, simply resume the guest. 4829 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM 4830 * will attempt to re-inject the INT3/INTO and skip the instruction. 4831 * In that scenario, retrying the INT3/INTO and hoping the guest will 4832 * make forward progress is the only option that has a chance of 4833 * success (and in practice it will work the vast majority of the time). 4834 */ 4835 if (unlikely(!insn)) { 4836 if (!(emul_type & EMULTYPE_SKIP)) 4837 kvm_queue_exception(vcpu, UD_VECTOR); 4838 return false; 4839 } 4840 4841 /* 4842 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4843 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4844 * the faulting instruction because the code fetch itself faulted, e.g. 4845 * the guest attempted to fetch from emulated MMIO or a guest page 4846 * table used to translate CS:RIP resides in emulated MMIO. 4847 */ 4848 if (likely(insn_len)) 4849 return true; 4850 4851 /* 4852 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4853 * 4854 * Errata: 4855 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4856 * possible that CPU microcode implementing DecodeAssist will fail to 4857 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4858 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4859 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4860 * gives up and does not fill the instruction bytes buffer. 4861 * 4862 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4863 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4864 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4865 * GuestIntrBytes field of the VMCB. 4866 * 4867 * This does _not_ mean that the erratum has been encountered, as the 4868 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4869 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4870 * encountered a reserved/not-present #PF. 4871 * 4872 * To hit the erratum, the following conditions must be true: 4873 * 1. CR4.SMAP=1 (obviously). 4874 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4875 * have been hit as the guest would have encountered a SMEP 4876 * violation #PF, not a #NPF. 4877 * 3. The #NPF is not due to a code fetch, in which case failure to 4878 * retrieve the instruction bytes is legitimate (see abvoe). 4879 * 4880 * In addition, don't apply the erratum workaround if the #NPF occurred 4881 * while translating guest page tables (see below). 4882 */ 4883 error_code = to_svm(vcpu)->vmcb->control.exit_info_1; 4884 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4885 goto resume_guest; 4886 4887 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); 4888 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); 4889 is_user = svm_get_cpl(vcpu) == 3; 4890 if (smap && (!smep || is_user)) { 4891 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); 4892 4893 /* 4894 * If the fault occurred in userspace, arbitrarily inject #GP 4895 * to avoid killing the guest and to hopefully avoid confusing 4896 * the guest kernel too much, e.g. injecting #PF would not be 4897 * coherent with respect to the guest's page tables. Request 4898 * triple fault if the fault occurred in the kernel as there's 4899 * no fault that KVM can inject without confusing the guest. 4900 * In practice, the triple fault is moot as no sane SEV kernel 4901 * will execute from user memory while also running with SMAP=1. 4902 */ 4903 if (is_user) 4904 kvm_inject_gp(vcpu, 0); 4905 else 4906 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4907 } 4908 4909 resume_guest: 4910 /* 4911 * If the erratum was not hit, simply resume the guest and let it fault 4912 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4913 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4914 * userspace will kill the guest, and letting the emulator read garbage 4915 * will yield random behavior and potentially corrupt the guest. 4916 * 4917 * Simply resuming the guest is technically not a violation of the SEV 4918 * architecture. AMD's APM states that all code fetches and page table 4919 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4920 * APM also states that encrypted accesses to MMIO are "ignored", but 4921 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4922 * the guest spin is technically "ignoring" the access. 4923 */ 4924 return false; 4925 } 4926 svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)4927 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4928 { 4929 struct vcpu_svm *svm = to_svm(vcpu); 4930 4931 return !gif_set(svm); 4932 } 4933 svm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)4934 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4935 { 4936 if (!sev_es_guest(vcpu->kvm)) 4937 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4938 4939 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4940 } 4941 svm_vm_destroy(struct kvm * kvm)4942 static void svm_vm_destroy(struct kvm *kvm) 4943 { 4944 avic_vm_destroy(kvm); 4945 sev_vm_destroy(kvm); 4946 } 4947 svm_vm_init(struct kvm * kvm)4948 static int svm_vm_init(struct kvm *kvm) 4949 { 4950 if (!pause_filter_count || !pause_filter_thresh) 4951 kvm->arch.pause_in_guest = true; 4952 4953 if (enable_apicv) { 4954 int ret = avic_vm_init(kvm); 4955 if (ret) 4956 return ret; 4957 } 4958 4959 return 0; 4960 } 4961 4962 static struct kvm_x86_ops svm_x86_ops __initdata = { 4963 .name = KBUILD_MODNAME, 4964 4965 .check_processor_compatibility = svm_check_processor_compat, 4966 4967 .hardware_unsetup = svm_hardware_unsetup, 4968 .hardware_enable = svm_hardware_enable, 4969 .hardware_disable = svm_hardware_disable, 4970 .has_emulated_msr = svm_has_emulated_msr, 4971 4972 .vcpu_create = svm_vcpu_create, 4973 .vcpu_free = svm_vcpu_free, 4974 .vcpu_reset = svm_vcpu_reset, 4975 4976 .vm_size = sizeof(struct kvm_svm), 4977 .vm_init = svm_vm_init, 4978 .vm_destroy = svm_vm_destroy, 4979 4980 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 4981 .vcpu_load = svm_vcpu_load, 4982 .vcpu_put = svm_vcpu_put, 4983 .vcpu_blocking = avic_vcpu_blocking, 4984 .vcpu_unblocking = avic_vcpu_unblocking, 4985 4986 .update_exception_bitmap = svm_update_exception_bitmap, 4987 .get_msr_feature = svm_get_msr_feature, 4988 .get_msr = svm_get_msr, 4989 .set_msr = svm_set_msr, 4990 .get_segment_base = svm_get_segment_base, 4991 .get_segment = svm_get_segment, 4992 .set_segment = svm_set_segment, 4993 .get_cpl = svm_get_cpl, 4994 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 4995 .is_valid_cr0 = svm_is_valid_cr0, 4996 .set_cr0 = svm_set_cr0, 4997 .post_set_cr3 = sev_post_set_cr3, 4998 .is_valid_cr4 = svm_is_valid_cr4, 4999 .set_cr4 = svm_set_cr4, 5000 .set_efer = svm_set_efer, 5001 .get_idt = svm_get_idt, 5002 .set_idt = svm_set_idt, 5003 .get_gdt = svm_get_gdt, 5004 .set_gdt = svm_set_gdt, 5005 .set_dr7 = svm_set_dr7, 5006 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 5007 .cache_reg = svm_cache_reg, 5008 .get_rflags = svm_get_rflags, 5009 .set_rflags = svm_set_rflags, 5010 .get_if_flag = svm_get_if_flag, 5011 5012 .flush_tlb_all = svm_flush_tlb_all, 5013 .flush_tlb_current = svm_flush_tlb_current, 5014 .flush_tlb_gva = svm_flush_tlb_gva, 5015 .flush_tlb_guest = svm_flush_tlb_asid, 5016 5017 .vcpu_pre_run = svm_vcpu_pre_run, 5018 .vcpu_run = svm_vcpu_run, 5019 .handle_exit = svm_handle_exit, 5020 .skip_emulated_instruction = svm_skip_emulated_instruction, 5021 .update_emulated_instruction = NULL, 5022 .set_interrupt_shadow = svm_set_interrupt_shadow, 5023 .get_interrupt_shadow = svm_get_interrupt_shadow, 5024 .patch_hypercall = svm_patch_hypercall, 5025 .inject_irq = svm_inject_irq, 5026 .inject_nmi = svm_inject_nmi, 5027 .is_vnmi_pending = svm_is_vnmi_pending, 5028 .set_vnmi_pending = svm_set_vnmi_pending, 5029 .inject_exception = svm_inject_exception, 5030 .cancel_injection = svm_cancel_injection, 5031 .interrupt_allowed = svm_interrupt_allowed, 5032 .nmi_allowed = svm_nmi_allowed, 5033 .get_nmi_mask = svm_get_nmi_mask, 5034 .set_nmi_mask = svm_set_nmi_mask, 5035 .enable_nmi_window = svm_enable_nmi_window, 5036 .enable_irq_window = svm_enable_irq_window, 5037 .update_cr8_intercept = svm_update_cr8_intercept, 5038 5039 .x2apic_icr_is_split = true, 5040 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, 5041 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 5042 .apicv_post_state_restore = avic_apicv_post_state_restore, 5043 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, 5044 5045 .get_exit_info = svm_get_exit_info, 5046 5047 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 5048 5049 .has_wbinvd_exit = svm_has_wbinvd_exit, 5050 5051 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 5052 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 5053 .write_tsc_offset = svm_write_tsc_offset, 5054 .write_tsc_multiplier = svm_write_tsc_multiplier, 5055 5056 .load_mmu_pgd = svm_load_mmu_pgd, 5057 5058 .check_intercept = svm_check_intercept, 5059 .handle_exit_irqoff = svm_handle_exit_irqoff, 5060 5061 .request_immediate_exit = __kvm_request_immediate_exit, 5062 5063 .sched_in = svm_sched_in, 5064 5065 .nested_ops = &svm_nested_ops, 5066 5067 .deliver_interrupt = svm_deliver_interrupt, 5068 .pi_update_irte = avic_pi_update_irte, 5069 .setup_mce = svm_setup_mce, 5070 5071 #ifdef CONFIG_KVM_SMM 5072 .smi_allowed = svm_smi_allowed, 5073 .enter_smm = svm_enter_smm, 5074 .leave_smm = svm_leave_smm, 5075 .enable_smi_window = svm_enable_smi_window, 5076 #endif 5077 5078 .mem_enc_ioctl = sev_mem_enc_ioctl, 5079 .mem_enc_register_region = sev_mem_enc_register_region, 5080 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 5081 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 5082 5083 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 5084 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 5085 5086 .can_emulate_instruction = svm_can_emulate_instruction, 5087 5088 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 5089 5090 .msr_filter_changed = svm_msr_filter_changed, 5091 .complete_emulated_msr = svm_complete_emulated_msr, 5092 5093 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 5094 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 5095 }; 5096 5097 /* 5098 * The default MMIO mask is a single bit (excluding the present bit), 5099 * which could conflict with the memory encryption bit. Check for 5100 * memory encryption support and override the default MMIO mask if 5101 * memory encryption is enabled. 5102 */ svm_adjust_mmio_mask(void)5103 static __init void svm_adjust_mmio_mask(void) 5104 { 5105 unsigned int enc_bit, mask_bit; 5106 u64 msr, mask; 5107 5108 /* If there is no memory encryption support, use existing mask */ 5109 if (cpuid_eax(0x80000000) < 0x8000001f) 5110 return; 5111 5112 /* If memory encryption is not enabled, use existing mask */ 5113 rdmsrl(MSR_AMD64_SYSCFG, msr); 5114 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 5115 return; 5116 5117 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 5118 mask_bit = boot_cpu_data.x86_phys_bits; 5119 5120 /* Increment the mask bit if it is the same as the encryption bit */ 5121 if (enc_bit == mask_bit) 5122 mask_bit++; 5123 5124 /* 5125 * If the mask bit location is below 52, then some bits above the 5126 * physical addressing limit will always be reserved, so use the 5127 * rsvd_bits() function to generate the mask. This mask, along with 5128 * the present bit, will be used to generate a page fault with 5129 * PFER.RSV = 1. 5130 * 5131 * If the mask bit location is 52 (or above), then clear the mask. 5132 */ 5133 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 5134 5135 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 5136 } 5137 svm_set_cpu_caps(void)5138 static __init void svm_set_cpu_caps(void) 5139 { 5140 kvm_set_cpu_caps(); 5141 5142 kvm_caps.supported_perf_cap = 0; 5143 kvm_caps.supported_xss = 0; 5144 5145 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 5146 if (nested) { 5147 kvm_cpu_cap_set(X86_FEATURE_SVM); 5148 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 5149 5150 if (nrips) 5151 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 5152 5153 if (npt_enabled) 5154 kvm_cpu_cap_set(X86_FEATURE_NPT); 5155 5156 if (tsc_scaling) 5157 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 5158 5159 if (vls) 5160 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 5161 if (lbrv) 5162 kvm_cpu_cap_set(X86_FEATURE_LBRV); 5163 5164 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 5165 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 5166 5167 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 5168 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 5169 5170 if (vgif) 5171 kvm_cpu_cap_set(X86_FEATURE_VGIF); 5172 5173 if (vnmi) 5174 kvm_cpu_cap_set(X86_FEATURE_VNMI); 5175 5176 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 5177 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 5178 } 5179 5180 /* CPUID 0x80000008 */ 5181 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 5182 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 5183 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 5184 5185 if (enable_pmu) { 5186 /* 5187 * Enumerate support for PERFCTR_CORE if and only if KVM has 5188 * access to enough counters to virtualize "core" support, 5189 * otherwise limit vPMU support to the legacy number of counters. 5190 */ 5191 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) 5192 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, 5193 kvm_pmu_cap.num_counters_gp); 5194 else 5195 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); 5196 5197 if (kvm_pmu_cap.version != 2 || 5198 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) 5199 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); 5200 } 5201 5202 /* CPUID 0x8000001F (SME/SEV features) */ 5203 sev_set_cpu_caps(); 5204 5205 /* Don't advertise Bus Lock Detect to guest if SVM support is absent */ 5206 kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT); 5207 } 5208 svm_hardware_setup(void)5209 static __init int svm_hardware_setup(void) 5210 { 5211 int cpu; 5212 struct page *iopm_pages; 5213 void *iopm_va; 5214 int r; 5215 unsigned int order = get_order(IOPM_SIZE); 5216 5217 /* 5218 * NX is required for shadow paging and for NPT if the NX huge pages 5219 * mitigation is enabled. 5220 */ 5221 if (!boot_cpu_has(X86_FEATURE_NX)) { 5222 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 5223 return -EOPNOTSUPP; 5224 } 5225 kvm_enable_efer_bits(EFER_NX); 5226 5227 iopm_pages = alloc_pages(GFP_KERNEL, order); 5228 5229 if (!iopm_pages) 5230 return -ENOMEM; 5231 5232 iopm_va = page_address(iopm_pages); 5233 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 5234 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 5235 5236 init_msrpm_offsets(); 5237 5238 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 5239 XFEATURE_MASK_BNDCSR); 5240 5241 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 5242 kvm_enable_efer_bits(EFER_FFXSR); 5243 5244 if (tsc_scaling) { 5245 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 5246 tsc_scaling = false; 5247 } else { 5248 pr_info("TSC scaling supported\n"); 5249 kvm_caps.has_tsc_control = true; 5250 } 5251 } 5252 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 5253 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 5254 5255 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 5256 5257 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) 5258 kvm_enable_efer_bits(EFER_AUTOIBRS); 5259 5260 /* Check for pause filtering support */ 5261 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 5262 pause_filter_count = 0; 5263 pause_filter_thresh = 0; 5264 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 5265 pause_filter_thresh = 0; 5266 } 5267 5268 if (nested) { 5269 pr_info("Nested Virtualization enabled\n"); 5270 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 5271 } 5272 5273 /* 5274 * KVM's MMU doesn't support using 2-level paging for itself, and thus 5275 * NPT isn't supported if the host is using 2-level paging since host 5276 * CR4 is unchanged on VMRUN. 5277 */ 5278 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 5279 npt_enabled = false; 5280 5281 if (!boot_cpu_has(X86_FEATURE_NPT)) 5282 npt_enabled = false; 5283 5284 /* Force VM NPT level equal to the host's paging level */ 5285 kvm_configure_mmu(npt_enabled, get_npt_level(), 5286 get_npt_level(), PG_LEVEL_1G); 5287 pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 5288 5289 /* Setup shadow_me_value and shadow_me_mask */ 5290 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5291 5292 svm_adjust_mmio_mask(); 5293 5294 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); 5295 5296 if (lbrv) { 5297 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5298 lbrv = false; 5299 else 5300 pr_info("LBR virtualization supported\n"); 5301 } 5302 /* 5303 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5304 * may be modified by svm_adjust_mmio_mask()), as well as nrips. 5305 */ 5306 sev_hardware_setup(); 5307 5308 svm_hv_hardware_setup(); 5309 5310 for_each_possible_cpu(cpu) { 5311 r = svm_cpu_init(cpu); 5312 if (r) 5313 goto err; 5314 } 5315 5316 enable_apicv = avic = avic && avic_hardware_setup(); 5317 5318 if (!enable_apicv) { 5319 svm_x86_ops.vcpu_blocking = NULL; 5320 svm_x86_ops.vcpu_unblocking = NULL; 5321 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5322 } else if (!x2avic_enabled) { 5323 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true; 5324 } 5325 5326 if (vls) { 5327 if (!npt_enabled || 5328 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5329 !IS_ENABLED(CONFIG_X86_64)) { 5330 vls = false; 5331 } else { 5332 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5333 } 5334 } 5335 5336 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5337 svm_gp_erratum_intercept = false; 5338 5339 if (vgif) { 5340 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5341 vgif = false; 5342 else 5343 pr_info("Virtual GIF supported\n"); 5344 } 5345 5346 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); 5347 if (vnmi) 5348 pr_info("Virtual NMI enabled\n"); 5349 5350 if (!vnmi) { 5351 svm_x86_ops.is_vnmi_pending = NULL; 5352 svm_x86_ops.set_vnmi_pending = NULL; 5353 } 5354 5355 if (!enable_pmu) 5356 pr_info("PMU virtualization is disabled\n"); 5357 5358 svm_set_cpu_caps(); 5359 5360 /* 5361 * It seems that on AMD processors PTE's accessed bit is 5362 * being set by the CPU hardware before the NPF vmexit. 5363 * This is not expected behaviour and our tests fail because 5364 * of it. 5365 * A workaround here is to disable support for 5366 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5367 * In this case userspace can know if there is support using 5368 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5369 * it 5370 * If future AMD CPU models change the behaviour described above, 5371 * this variable can be changed accordingly 5372 */ 5373 allow_smaller_maxphyaddr = !npt_enabled; 5374 5375 return 0; 5376 5377 err: 5378 svm_hardware_unsetup(); 5379 return r; 5380 } 5381 5382 5383 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5384 .hardware_setup = svm_hardware_setup, 5385 5386 .runtime_ops = &svm_x86_ops, 5387 .pmu_ops = &amd_pmu_ops, 5388 }; 5389 __svm_exit(void)5390 static void __svm_exit(void) 5391 { 5392 kvm_x86_vendor_exit(); 5393 5394 cpu_emergency_unregister_virt_callback(svm_emergency_disable); 5395 } 5396 svm_init(void)5397 static int __init svm_init(void) 5398 { 5399 int r; 5400 5401 __unused_size_checks(); 5402 5403 if (!kvm_is_svm_supported()) 5404 return -EOPNOTSUPP; 5405 5406 r = kvm_x86_vendor_init(&svm_init_ops); 5407 if (r) 5408 return r; 5409 5410 cpu_emergency_register_virt_callback(svm_emergency_disable); 5411 5412 /* 5413 * Common KVM initialization _must_ come last, after this, /dev/kvm is 5414 * exposed to userspace! 5415 */ 5416 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), 5417 THIS_MODULE); 5418 if (r) 5419 goto err_kvm_init; 5420 5421 return 0; 5422 5423 err_kvm_init: 5424 __svm_exit(); 5425 return r; 5426 } 5427 svm_exit(void)5428 static void __exit svm_exit(void) 5429 { 5430 kvm_exit(); 5431 __svm_exit(); 5432 } 5433 5434 module_init(svm_init) 5435 module_exit(svm_exit) 5436