xref: /openbmc/linux/arch/sparc/kernel/traps_64.c (revision c1e01cdbe0312d95b8c1542abd67fe786b534f57)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /* arch/sparc64/kernel/traps.c
3   *
4   * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
5   * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
6   */
7  
8  /*
9   * I like traps on v9, :))))
10   */
11  
12  #include <linux/extable.h>
13  #include <linux/sched/mm.h>
14  #include <linux/sched/debug.h>
15  #include <linux/linkage.h>
16  #include <linux/kernel.h>
17  #include <linux/signal.h>
18  #include <linux/smp.h>
19  #include <linux/mm.h>
20  #include <linux/init.h>
21  #include <linux/kallsyms.h>
22  #include <linux/kdebug.h>
23  #include <linux/ftrace.h>
24  #include <linux/reboot.h>
25  #include <linux/gfp.h>
26  #include <linux/context_tracking.h>
27  
28  #include <asm/smp.h>
29  #include <asm/delay.h>
30  #include <asm/ptrace.h>
31  #include <asm/oplib.h>
32  #include <asm/page.h>
33  #include <asm/unistd.h>
34  #include <linux/uaccess.h>
35  #include <asm/fpumacro.h>
36  #include <asm/lsu.h>
37  #include <asm/dcu.h>
38  #include <asm/estate.h>
39  #include <asm/chafsr.h>
40  #include <asm/sfafsr.h>
41  #include <asm/psrcompat.h>
42  #include <asm/processor.h>
43  #include <asm/timer.h>
44  #include <asm/head.h>
45  #include <asm/prom.h>
46  #include <asm/memctrl.h>
47  #include <asm/cacheflush.h>
48  #include <asm/setup.h>
49  
50  #include "entry.h"
51  #include "kernel.h"
52  #include "kstack.h"
53  
54  /* When an irrecoverable trap occurs at tl > 0, the trap entry
55   * code logs the trap state registers at every level in the trap
56   * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
57   * is as follows:
58   */
59  struct tl1_traplog {
60  	struct {
61  		unsigned long tstate;
62  		unsigned long tpc;
63  		unsigned long tnpc;
64  		unsigned long tt;
65  	} trapstack[4];
66  	unsigned long tl;
67  };
68  
dump_tl1_traplog(struct tl1_traplog * p)69  static void dump_tl1_traplog(struct tl1_traplog *p)
70  {
71  	int i, limit;
72  
73  	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
74  	       "dumping track stack.\n", p->tl);
75  
76  	limit = (tlb_type == hypervisor) ? 2 : 4;
77  	for (i = 0; i < limit; i++) {
78  		printk(KERN_EMERG
79  		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
80  		       "TNPC[%016lx] TT[%lx]\n",
81  		       i + 1,
82  		       p->trapstack[i].tstate, p->trapstack[i].tpc,
83  		       p->trapstack[i].tnpc, p->trapstack[i].tt);
84  		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
85  	}
86  }
87  
bad_trap(struct pt_regs * regs,long lvl)88  void bad_trap(struct pt_regs *regs, long lvl)
89  {
90  	char buffer[36];
91  
92  	if (notify_die(DIE_TRAP, "bad trap", regs,
93  		       0, lvl, SIGTRAP) == NOTIFY_STOP)
94  		return;
95  
96  	if (lvl < 0x100) {
97  		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
98  		die_if_kernel(buffer, regs);
99  	}
100  
101  	lvl -= 0x100;
102  	if (regs->tstate & TSTATE_PRIV) {
103  		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
104  		die_if_kernel(buffer, regs);
105  	}
106  	if (test_thread_flag(TIF_32BIT)) {
107  		regs->tpc &= 0xffffffff;
108  		regs->tnpc &= 0xffffffff;
109  	}
110  	force_sig_fault_trapno(SIGILL, ILL_ILLTRP,
111  			       (void __user *)regs->tpc, lvl);
112  }
113  
bad_trap_tl1(struct pt_regs * regs,long lvl)114  void bad_trap_tl1(struct pt_regs *regs, long lvl)
115  {
116  	char buffer[36];
117  
118  	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
119  		       0, lvl, SIGTRAP) == NOTIFY_STOP)
120  		return;
121  
122  	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
123  
124  	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
125  	die_if_kernel (buffer, regs);
126  }
127  
128  #ifdef CONFIG_DEBUG_BUGVERBOSE
do_BUG(const char * file,int line)129  void do_BUG(const char *file, int line)
130  {
131  	bust_spinlocks(1);
132  	printk("kernel BUG at %s:%d!\n", file, line);
133  }
134  EXPORT_SYMBOL(do_BUG);
135  #endif
136  
137  static DEFINE_SPINLOCK(dimm_handler_lock);
138  static dimm_printer_t dimm_handler;
139  
sprintf_dimm(int synd_code,unsigned long paddr,char * buf,int buflen)140  static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
141  {
142  	unsigned long flags;
143  	int ret = -ENODEV;
144  
145  	spin_lock_irqsave(&dimm_handler_lock, flags);
146  	if (dimm_handler) {
147  		ret = dimm_handler(synd_code, paddr, buf, buflen);
148  	} else if (tlb_type == spitfire) {
149  		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
150  			ret = -EINVAL;
151  		else
152  			ret = 0;
153  	} else
154  		ret = -ENODEV;
155  	spin_unlock_irqrestore(&dimm_handler_lock, flags);
156  
157  	return ret;
158  }
159  
register_dimm_printer(dimm_printer_t func)160  int register_dimm_printer(dimm_printer_t func)
161  {
162  	unsigned long flags;
163  	int ret = 0;
164  
165  	spin_lock_irqsave(&dimm_handler_lock, flags);
166  	if (!dimm_handler)
167  		dimm_handler = func;
168  	else
169  		ret = -EEXIST;
170  	spin_unlock_irqrestore(&dimm_handler_lock, flags);
171  
172  	return ret;
173  }
174  EXPORT_SYMBOL_GPL(register_dimm_printer);
175  
unregister_dimm_printer(dimm_printer_t func)176  void unregister_dimm_printer(dimm_printer_t func)
177  {
178  	unsigned long flags;
179  
180  	spin_lock_irqsave(&dimm_handler_lock, flags);
181  	if (dimm_handler == func)
182  		dimm_handler = NULL;
183  	spin_unlock_irqrestore(&dimm_handler_lock, flags);
184  }
185  EXPORT_SYMBOL_GPL(unregister_dimm_printer);
186  
spitfire_insn_access_exception(struct pt_regs * regs,unsigned long sfsr,unsigned long sfar)187  void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
188  {
189  	enum ctx_state prev_state = exception_enter();
190  
191  	if (notify_die(DIE_TRAP, "instruction access exception", regs,
192  		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
193  		goto out;
194  
195  	if (regs->tstate & TSTATE_PRIV) {
196  		printk("spitfire_insn_access_exception: SFSR[%016lx] "
197  		       "SFAR[%016lx], going.\n", sfsr, sfar);
198  		die_if_kernel("Iax", regs);
199  	}
200  	if (test_thread_flag(TIF_32BIT)) {
201  		regs->tpc &= 0xffffffff;
202  		regs->tnpc &= 0xffffffff;
203  	}
204  	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)regs->tpc);
205  out:
206  	exception_exit(prev_state);
207  }
208  
spitfire_insn_access_exception_tl1(struct pt_regs * regs,unsigned long sfsr,unsigned long sfar)209  void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
210  {
211  	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
212  		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
213  		return;
214  
215  	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
216  	spitfire_insn_access_exception(regs, sfsr, sfar);
217  }
218  
sun4v_insn_access_exception(struct pt_regs * regs,unsigned long addr,unsigned long type_ctx)219  void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
220  {
221  	unsigned short type = (type_ctx >> 16);
222  	unsigned short ctx  = (type_ctx & 0xffff);
223  
224  	if (notify_die(DIE_TRAP, "instruction access exception", regs,
225  		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
226  		return;
227  
228  	if (regs->tstate & TSTATE_PRIV) {
229  		printk("sun4v_insn_access_exception: ADDR[%016lx] "
230  		       "CTX[%04x] TYPE[%04x], going.\n",
231  		       addr, ctx, type);
232  		die_if_kernel("Iax", regs);
233  	}
234  
235  	if (test_thread_flag(TIF_32BIT)) {
236  		regs->tpc &= 0xffffffff;
237  		regs->tnpc &= 0xffffffff;
238  	}
239  	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr);
240  }
241  
sun4v_insn_access_exception_tl1(struct pt_regs * regs,unsigned long addr,unsigned long type_ctx)242  void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
243  {
244  	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
245  		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
246  		return;
247  
248  	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
249  	sun4v_insn_access_exception(regs, addr, type_ctx);
250  }
251  
is_no_fault_exception(struct pt_regs * regs)252  bool is_no_fault_exception(struct pt_regs *regs)
253  {
254  	unsigned char asi;
255  	u32 insn;
256  
257  	if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
258  		return false;
259  
260  	/*
261  	 * Must do a little instruction decoding here in order to
262  	 * decide on a course of action. The bits of interest are:
263  	 *  insn[31:30] = op, where 3 indicates the load/store group
264  	 *  insn[24:19] = op3, which identifies individual opcodes
265  	 *  insn[13] indicates an immediate offset
266  	 *  op3[4]=1 identifies alternate space instructions
267  	 *  op3[5:4]=3 identifies floating point instructions
268  	 *  op3[2]=1 identifies stores
269  	 * See "Opcode Maps" in the appendix of any Sparc V9
270  	 * architecture spec for full details.
271  	 */
272  	if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
273  		if (insn & 0x2000)		    /* immediate offset */
274  			asi = (regs->tstate >> 24); /* saved %asi       */
275  		else
276  			asi = (insn >> 5);	    /* immediate asi    */
277  		if ((asi & 0xf6) == ASI_PNF) {
278  			if (insn & 0x200000)        /* op3[2], stores   */
279  				return false;
280  			if (insn & 0x1000000)       /* op3[5:4]=3 (fp)  */
281  				handle_ldf_stq(insn, regs);
282  			else
283  				handle_ld_nf(insn, regs);
284  			return true;
285  		}
286  	}
287  	return false;
288  }
289  
spitfire_data_access_exception(struct pt_regs * regs,unsigned long sfsr,unsigned long sfar)290  void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
291  {
292  	enum ctx_state prev_state = exception_enter();
293  
294  	if (notify_die(DIE_TRAP, "data access exception", regs,
295  		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
296  		goto out;
297  
298  	if (regs->tstate & TSTATE_PRIV) {
299  		/* Test if this comes from uaccess places. */
300  		const struct exception_table_entry *entry;
301  
302  		entry = search_exception_tables(regs->tpc);
303  		if (entry) {
304  			/* Ouch, somebody is trying VM hole tricks on us... */
305  #ifdef DEBUG_EXCEPTIONS
306  			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
307  			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
308  			       regs->tpc, entry->fixup);
309  #endif
310  			regs->tpc = entry->fixup;
311  			regs->tnpc = regs->tpc + 4;
312  			goto out;
313  		}
314  		/* Shit... */
315  		printk("spitfire_data_access_exception: SFSR[%016lx] "
316  		       "SFAR[%016lx], going.\n", sfsr, sfar);
317  		die_if_kernel("Dax", regs);
318  	}
319  
320  	if (is_no_fault_exception(regs))
321  		return;
322  
323  	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar);
324  out:
325  	exception_exit(prev_state);
326  }
327  
spitfire_data_access_exception_tl1(struct pt_regs * regs,unsigned long sfsr,unsigned long sfar)328  void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
329  {
330  	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
331  		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
332  		return;
333  
334  	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
335  	spitfire_data_access_exception(regs, sfsr, sfar);
336  }
337  
sun4v_data_access_exception(struct pt_regs * regs,unsigned long addr,unsigned long type_ctx)338  void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
339  {
340  	unsigned short type = (type_ctx >> 16);
341  	unsigned short ctx  = (type_ctx & 0xffff);
342  
343  	if (notify_die(DIE_TRAP, "data access exception", regs,
344  		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
345  		return;
346  
347  	if (regs->tstate & TSTATE_PRIV) {
348  		/* Test if this comes from uaccess places. */
349  		const struct exception_table_entry *entry;
350  
351  		entry = search_exception_tables(regs->tpc);
352  		if (entry) {
353  			/* Ouch, somebody is trying VM hole tricks on us... */
354  #ifdef DEBUG_EXCEPTIONS
355  			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
356  			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
357  			       regs->tpc, entry->fixup);
358  #endif
359  			regs->tpc = entry->fixup;
360  			regs->tnpc = regs->tpc + 4;
361  			return;
362  		}
363  		printk("sun4v_data_access_exception: ADDR[%016lx] "
364  		       "CTX[%04x] TYPE[%04x], going.\n",
365  		       addr, ctx, type);
366  		die_if_kernel("Dax", regs);
367  	}
368  
369  	if (test_thread_flag(TIF_32BIT)) {
370  		regs->tpc &= 0xffffffff;
371  		regs->tnpc &= 0xffffffff;
372  	}
373  	if (is_no_fault_exception(regs))
374  		return;
375  
376  	/* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
377  	 * is vectored thorugh data access exception trap with fault type
378  	 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
379  	 * Accessing an address with invalid ASI for the address, for
380  	 * example setting an ADI tag on an address with ASI_MCD_PRIMARY
381  	 * when TTE.mcd is not set for the VA, is also vectored into
382  	 * kerbel by HV as data access exception with fault type set to
383  	 * HV_FAULT_TYPE_INV_ASI.
384  	 */
385  	switch (type) {
386  	case HV_FAULT_TYPE_INV_ASI:
387  		force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr);
388  		break;
389  	case HV_FAULT_TYPE_MCD_DIS:
390  		force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr);
391  		break;
392  	default:
393  		force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr);
394  		break;
395  	}
396  }
397  
sun4v_data_access_exception_tl1(struct pt_regs * regs,unsigned long addr,unsigned long type_ctx)398  void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
399  {
400  	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
401  		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
402  		return;
403  
404  	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
405  	sun4v_data_access_exception(regs, addr, type_ctx);
406  }
407  
408  #ifdef CONFIG_PCI
409  #include "pci_impl.h"
410  #endif
411  
412  /* When access exceptions happen, we must do this. */
spitfire_clean_and_reenable_l1_caches(void)413  static void spitfire_clean_and_reenable_l1_caches(void)
414  {
415  	unsigned long va;
416  
417  	if (tlb_type != spitfire)
418  		BUG();
419  
420  	/* Clean 'em. */
421  	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
422  		spitfire_put_icache_tag(va, 0x0);
423  		spitfire_put_dcache_tag(va, 0x0);
424  	}
425  
426  	/* Re-enable in LSU. */
427  	__asm__ __volatile__("flush %%g6\n\t"
428  			     "membar #Sync\n\t"
429  			     "stxa %0, [%%g0] %1\n\t"
430  			     "membar #Sync"
431  			     : /* no outputs */
432  			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
433  				    LSU_CONTROL_IM | LSU_CONTROL_DM),
434  			     "i" (ASI_LSU_CONTROL)
435  			     : "memory");
436  }
437  
spitfire_enable_estate_errors(void)438  static void spitfire_enable_estate_errors(void)
439  {
440  	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
441  			     "membar	#Sync"
442  			     : /* no outputs */
443  			     : "r" (ESTATE_ERR_ALL),
444  			       "i" (ASI_ESTATE_ERROR_EN));
445  }
446  
447  static char ecc_syndrome_table[] = {
448  	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
449  	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
450  	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
451  	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
452  	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
453  	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
454  	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
455  	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
456  	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
457  	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
458  	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
459  	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
460  	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
461  	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
462  	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
463  	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
464  	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
465  	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
466  	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
467  	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
468  	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
469  	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
470  	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
471  	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
472  	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
473  	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
474  	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
475  	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
476  	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
477  	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
478  	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
479  	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
480  };
481  
482  static char *syndrome_unknown = "<Unknown>";
483  
spitfire_log_udb_syndrome(unsigned long afar,unsigned long udbh,unsigned long udbl,unsigned long bit)484  static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
485  {
486  	unsigned short scode;
487  	char memmod_str[64], *p;
488  
489  	if (udbl & bit) {
490  		scode = ecc_syndrome_table[udbl & 0xff];
491  		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
492  			p = syndrome_unknown;
493  		else
494  			p = memmod_str;
495  		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
496  		       "Memory Module \"%s\"\n",
497  		       smp_processor_id(), scode, p);
498  	}
499  
500  	if (udbh & bit) {
501  		scode = ecc_syndrome_table[udbh & 0xff];
502  		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
503  			p = syndrome_unknown;
504  		else
505  			p = memmod_str;
506  		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
507  		       "Memory Module \"%s\"\n",
508  		       smp_processor_id(), scode, p);
509  	}
510  
511  }
512  
spitfire_cee_log(unsigned long afsr,unsigned long afar,unsigned long udbh,unsigned long udbl,int tl1,struct pt_regs * regs)513  static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
514  {
515  
516  	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
517  	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
518  	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
519  
520  	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
521  
522  	/* We always log it, even if someone is listening for this
523  	 * trap.
524  	 */
525  	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
526  		   0, TRAP_TYPE_CEE, SIGTRAP);
527  
528  	/* The Correctable ECC Error trap does not disable I/D caches.  So
529  	 * we only have to restore the ESTATE Error Enable register.
530  	 */
531  	spitfire_enable_estate_errors();
532  }
533  
spitfire_ue_log(unsigned long afsr,unsigned long afar,unsigned long udbh,unsigned long udbl,unsigned long tt,int tl1,struct pt_regs * regs)534  static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
535  {
536  	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
537  	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
538  	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
539  
540  	/* XXX add more human friendly logging of the error status
541  	 * XXX as is implemented for cheetah
542  	 */
543  
544  	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
545  
546  	/* We always log it, even if someone is listening for this
547  	 * trap.
548  	 */
549  	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
550  		   0, tt, SIGTRAP);
551  
552  	if (regs->tstate & TSTATE_PRIV) {
553  		if (tl1)
554  			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
555  		die_if_kernel("UE", regs);
556  	}
557  
558  	/* XXX need more intelligent processing here, such as is implemented
559  	 * XXX for cheetah errors, in fact if the E-cache still holds the
560  	 * XXX line with bad parity this will loop
561  	 */
562  
563  	spitfire_clean_and_reenable_l1_caches();
564  	spitfire_enable_estate_errors();
565  
566  	if (test_thread_flag(TIF_32BIT)) {
567  		regs->tpc &= 0xffffffff;
568  		regs->tnpc &= 0xffffffff;
569  	}
570  	force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0);
571  }
572  
spitfire_access_error(struct pt_regs * regs,unsigned long status_encoded,unsigned long afar)573  void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
574  {
575  	unsigned long afsr, tt, udbh, udbl;
576  	int tl1;
577  
578  	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
579  	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
580  	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
581  	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
582  	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
583  
584  #ifdef CONFIG_PCI
585  	if (tt == TRAP_TYPE_DAE &&
586  	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
587  		spitfire_clean_and_reenable_l1_caches();
588  		spitfire_enable_estate_errors();
589  
590  		pci_poke_faulted = 1;
591  		regs->tnpc = regs->tpc + 4;
592  		return;
593  	}
594  #endif
595  
596  	if (afsr & SFAFSR_UE)
597  		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
598  
599  	if (tt == TRAP_TYPE_CEE) {
600  		/* Handle the case where we took a CEE trap, but ACK'd
601  		 * only the UE state in the UDB error registers.
602  		 */
603  		if (afsr & SFAFSR_UE) {
604  			if (udbh & UDBE_CE) {
605  				__asm__ __volatile__(
606  					"stxa	%0, [%1] %2\n\t"
607  					"membar	#Sync"
608  					: /* no outputs */
609  					: "r" (udbh & UDBE_CE),
610  					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
611  			}
612  			if (udbl & UDBE_CE) {
613  				__asm__ __volatile__(
614  					"stxa	%0, [%1] %2\n\t"
615  					"membar	#Sync"
616  					: /* no outputs */
617  					: "r" (udbl & UDBE_CE),
618  					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
619  			}
620  		}
621  
622  		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
623  	}
624  }
625  
626  int cheetah_pcache_forced_on;
627  
cheetah_enable_pcache(void)628  void cheetah_enable_pcache(void)
629  {
630  	unsigned long dcr;
631  
632  	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
633  	       smp_processor_id());
634  
635  	__asm__ __volatile__("ldxa [%%g0] %1, %0"
636  			     : "=r" (dcr)
637  			     : "i" (ASI_DCU_CONTROL_REG));
638  	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
639  	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
640  			     "membar #Sync"
641  			     : /* no outputs */
642  			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
643  }
644  
645  /* Cheetah error trap handling. */
646  static unsigned long ecache_flush_physbase;
647  static unsigned long ecache_flush_linesize;
648  static unsigned long ecache_flush_size;
649  
650  /* This table is ordered in priority of errors and matches the
651   * AFAR overwrite policy as well.
652   */
653  
654  struct afsr_error_table {
655  	unsigned long mask;
656  	const char *name;
657  };
658  
659  static const char CHAFSR_PERR_msg[] =
660  	"System interface protocol error";
661  static const char CHAFSR_IERR_msg[] =
662  	"Internal processor error";
663  static const char CHAFSR_ISAP_msg[] =
664  	"System request parity error on incoming address";
665  static const char CHAFSR_UCU_msg[] =
666  	"Uncorrectable E-cache ECC error for ifetch/data";
667  static const char CHAFSR_UCC_msg[] =
668  	"SW Correctable E-cache ECC error for ifetch/data";
669  static const char CHAFSR_UE_msg[] =
670  	"Uncorrectable system bus data ECC error for read";
671  static const char CHAFSR_EDU_msg[] =
672  	"Uncorrectable E-cache ECC error for stmerge/blkld";
673  static const char CHAFSR_EMU_msg[] =
674  	"Uncorrectable system bus MTAG error";
675  static const char CHAFSR_WDU_msg[] =
676  	"Uncorrectable E-cache ECC error for writeback";
677  static const char CHAFSR_CPU_msg[] =
678  	"Uncorrectable ECC error for copyout";
679  static const char CHAFSR_CE_msg[] =
680  	"HW corrected system bus data ECC error for read";
681  static const char CHAFSR_EDC_msg[] =
682  	"HW corrected E-cache ECC error for stmerge/blkld";
683  static const char CHAFSR_EMC_msg[] =
684  	"HW corrected system bus MTAG ECC error";
685  static const char CHAFSR_WDC_msg[] =
686  	"HW corrected E-cache ECC error for writeback";
687  static const char CHAFSR_CPC_msg[] =
688  	"HW corrected ECC error for copyout";
689  static const char CHAFSR_TO_msg[] =
690  	"Unmapped error from system bus";
691  static const char CHAFSR_BERR_msg[] =
692  	"Bus error response from system bus";
693  static const char CHAFSR_IVC_msg[] =
694  	"HW corrected system bus data ECC error for ivec read";
695  static const char CHAFSR_IVU_msg[] =
696  	"Uncorrectable system bus data ECC error for ivec read";
697  static struct afsr_error_table __cheetah_error_table[] = {
698  	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
699  	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
700  	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
701  	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
702  	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
703  	{	CHAFSR_UE,	CHAFSR_UE_msg		},
704  	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
705  	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
706  	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
707  	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
708  	{	CHAFSR_CE,	CHAFSR_CE_msg		},
709  	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
710  	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
711  	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
712  	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
713  	{	CHAFSR_TO,	CHAFSR_TO_msg		},
714  	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
715  	/* These two do not update the AFAR. */
716  	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
717  	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
718  	{	0,		NULL			},
719  };
720  static const char CHPAFSR_DTO_msg[] =
721  	"System bus unmapped error for prefetch/storequeue-read";
722  static const char CHPAFSR_DBERR_msg[] =
723  	"System bus error for prefetch/storequeue-read";
724  static const char CHPAFSR_THCE_msg[] =
725  	"Hardware corrected E-cache Tag ECC error";
726  static const char CHPAFSR_TSCE_msg[] =
727  	"SW handled correctable E-cache Tag ECC error";
728  static const char CHPAFSR_TUE_msg[] =
729  	"Uncorrectable E-cache Tag ECC error";
730  static const char CHPAFSR_DUE_msg[] =
731  	"System bus uncorrectable data ECC error due to prefetch/store-fill";
732  static struct afsr_error_table __cheetah_plus_error_table[] = {
733  	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
734  	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
735  	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
736  	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
737  	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
738  	{	CHAFSR_UE,	CHAFSR_UE_msg		},
739  	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
740  	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
741  	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
742  	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
743  	{	CHAFSR_CE,	CHAFSR_CE_msg		},
744  	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
745  	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
746  	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
747  	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
748  	{	CHAFSR_TO,	CHAFSR_TO_msg		},
749  	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
750  	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
751  	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
752  	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
753  	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
754  	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
755  	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
756  	/* These two do not update the AFAR. */
757  	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
758  	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
759  	{	0,		NULL			},
760  };
761  static const char JPAFSR_JETO_msg[] =
762  	"System interface protocol error, hw timeout caused";
763  static const char JPAFSR_SCE_msg[] =
764  	"Parity error on system snoop results";
765  static const char JPAFSR_JEIC_msg[] =
766  	"System interface protocol error, illegal command detected";
767  static const char JPAFSR_JEIT_msg[] =
768  	"System interface protocol error, illegal ADTYPE detected";
769  static const char JPAFSR_OM_msg[] =
770  	"Out of range memory error has occurred";
771  static const char JPAFSR_ETP_msg[] =
772  	"Parity error on L2 cache tag SRAM";
773  static const char JPAFSR_UMS_msg[] =
774  	"Error due to unsupported store";
775  static const char JPAFSR_RUE_msg[] =
776  	"Uncorrectable ECC error from remote cache/memory";
777  static const char JPAFSR_RCE_msg[] =
778  	"Correctable ECC error from remote cache/memory";
779  static const char JPAFSR_BP_msg[] =
780  	"JBUS parity error on returned read data";
781  static const char JPAFSR_WBP_msg[] =
782  	"JBUS parity error on data for writeback or block store";
783  static const char JPAFSR_FRC_msg[] =
784  	"Foreign read to DRAM incurring correctable ECC error";
785  static const char JPAFSR_FRU_msg[] =
786  	"Foreign read to DRAM incurring uncorrectable ECC error";
787  static struct afsr_error_table __jalapeno_error_table[] = {
788  	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
789  	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
790  	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
791  	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
792  	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
793  	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
794  	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
795  	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
796  	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
797  	{	CHAFSR_UE,	CHAFSR_UE_msg		},
798  	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
799  	{	JPAFSR_OM,	JPAFSR_OM_msg		},
800  	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
801  	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
802  	{	CHAFSR_CE,	CHAFSR_CE_msg		},
803  	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
804  	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
805  	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
806  	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
807  	{	CHAFSR_TO,	CHAFSR_TO_msg		},
808  	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
809  	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
810  	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
811  	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
812  	{	JPAFSR_BP,	JPAFSR_BP_msg		},
813  	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
814  	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
815  	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
816  	/* These two do not update the AFAR. */
817  	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
818  	{	0,		NULL			},
819  };
820  static struct afsr_error_table *cheetah_error_table;
821  static unsigned long cheetah_afsr_errors;
822  
823  struct cheetah_err_info *cheetah_error_log;
824  
cheetah_get_error_log(unsigned long afsr)825  static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
826  {
827  	struct cheetah_err_info *p;
828  	int cpu = smp_processor_id();
829  
830  	if (!cheetah_error_log)
831  		return NULL;
832  
833  	p = cheetah_error_log + (cpu * 2);
834  	if ((afsr & CHAFSR_TL1) != 0UL)
835  		p++;
836  
837  	return p;
838  }
839  
840  extern unsigned int tl0_icpe[], tl1_icpe[];
841  extern unsigned int tl0_dcpe[], tl1_dcpe[];
842  extern unsigned int tl0_fecc[], tl1_fecc[];
843  extern unsigned int tl0_cee[], tl1_cee[];
844  extern unsigned int tl0_iae[], tl1_iae[];
845  extern unsigned int tl0_dae[], tl1_dae[];
846  extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
847  extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
848  extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
849  extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
850  extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
851  
cheetah_ecache_flush_init(void)852  void __init cheetah_ecache_flush_init(void)
853  {
854  	unsigned long largest_size, smallest_linesize, order, ver;
855  	int i, sz;
856  
857  	/* Scan all cpu device tree nodes, note two values:
858  	 * 1) largest E-cache size
859  	 * 2) smallest E-cache line size
860  	 */
861  	largest_size = 0UL;
862  	smallest_linesize = ~0UL;
863  
864  	for (i = 0; i < NR_CPUS; i++) {
865  		unsigned long val;
866  
867  		val = cpu_data(i).ecache_size;
868  		if (!val)
869  			continue;
870  
871  		if (val > largest_size)
872  			largest_size = val;
873  
874  		val = cpu_data(i).ecache_line_size;
875  		if (val < smallest_linesize)
876  			smallest_linesize = val;
877  
878  	}
879  
880  	if (largest_size == 0UL || smallest_linesize == ~0UL) {
881  		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
882  			    "parameters.\n");
883  		prom_halt();
884  	}
885  
886  	ecache_flush_size = (2 * largest_size);
887  	ecache_flush_linesize = smallest_linesize;
888  
889  	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
890  
891  	if (ecache_flush_physbase == ~0UL) {
892  		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
893  			    "contiguous physical memory.\n",
894  			    ecache_flush_size);
895  		prom_halt();
896  	}
897  
898  	/* Now allocate error trap reporting scoreboard. */
899  	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
900  	for (order = 0; order < NR_PAGE_ORDERS; order++) {
901  		if ((PAGE_SIZE << order) >= sz)
902  			break;
903  	}
904  	cheetah_error_log = (struct cheetah_err_info *)
905  		__get_free_pages(GFP_KERNEL, order);
906  	if (!cheetah_error_log) {
907  		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
908  			    "error logging scoreboard (%d bytes).\n", sz);
909  		prom_halt();
910  	}
911  	memset(cheetah_error_log, 0, PAGE_SIZE << order);
912  
913  	/* Mark all AFSRs as invalid so that the trap handler will
914  	 * log new new information there.
915  	 */
916  	for (i = 0; i < 2 * NR_CPUS; i++)
917  		cheetah_error_log[i].afsr = CHAFSR_INVALID;
918  
919  	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
920  	if ((ver >> 32) == __JALAPENO_ID ||
921  	    (ver >> 32) == __SERRANO_ID) {
922  		cheetah_error_table = &__jalapeno_error_table[0];
923  		cheetah_afsr_errors = JPAFSR_ERRORS;
924  	} else if ((ver >> 32) == 0x003e0015) {
925  		cheetah_error_table = &__cheetah_plus_error_table[0];
926  		cheetah_afsr_errors = CHPAFSR_ERRORS;
927  	} else {
928  		cheetah_error_table = &__cheetah_error_table[0];
929  		cheetah_afsr_errors = CHAFSR_ERRORS;
930  	}
931  
932  	/* Now patch trap tables. */
933  	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
934  	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
935  	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
936  	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
937  	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
938  	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
939  	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
940  	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
941  	if (tlb_type == cheetah_plus) {
942  		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
943  		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
944  		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
945  		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
946  	}
947  	flushi(PAGE_OFFSET);
948  }
949  
cheetah_flush_ecache(void)950  static void cheetah_flush_ecache(void)
951  {
952  	unsigned long flush_base = ecache_flush_physbase;
953  	unsigned long flush_linesize = ecache_flush_linesize;
954  	unsigned long flush_size = ecache_flush_size;
955  
956  	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
957  			     "   bne,pt	%%xcc, 1b\n\t"
958  			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
959  			     : "=&r" (flush_size)
960  			     : "0" (flush_size), "r" (flush_base),
961  			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
962  }
963  
cheetah_flush_ecache_line(unsigned long physaddr)964  static void cheetah_flush_ecache_line(unsigned long physaddr)
965  {
966  	unsigned long alias;
967  
968  	physaddr &= ~(8UL - 1UL);
969  	physaddr = (ecache_flush_physbase +
970  		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
971  	alias = physaddr + (ecache_flush_size >> 1UL);
972  	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
973  			     "ldxa [%1] %2, %%g0\n\t"
974  			     "membar #Sync"
975  			     : /* no outputs */
976  			     : "r" (physaddr), "r" (alias),
977  			       "i" (ASI_PHYS_USE_EC));
978  }
979  
980  /* Unfortunately, the diagnostic access to the I-cache tags we need to
981   * use to clear the thing interferes with I-cache coherency transactions.
982   *
983   * So we must only flush the I-cache when it is disabled.
984   */
__cheetah_flush_icache(void)985  static void __cheetah_flush_icache(void)
986  {
987  	unsigned int icache_size, icache_line_size;
988  	unsigned long addr;
989  
990  	icache_size = local_cpu_data().icache_size;
991  	icache_line_size = local_cpu_data().icache_line_size;
992  
993  	/* Clear the valid bits in all the tags. */
994  	for (addr = 0; addr < icache_size; addr += icache_line_size) {
995  		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
996  				     "membar #Sync"
997  				     : /* no outputs */
998  				     : "r" (addr | (2 << 3)),
999  				       "i" (ASI_IC_TAG));
1000  	}
1001  }
1002  
cheetah_flush_icache(void)1003  static void cheetah_flush_icache(void)
1004  {
1005  	unsigned long dcu_save;
1006  
1007  	/* Save current DCU, disable I-cache. */
1008  	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1009  			     "or %0, %2, %%g1\n\t"
1010  			     "stxa %%g1, [%%g0] %1\n\t"
1011  			     "membar #Sync"
1012  			     : "=r" (dcu_save)
1013  			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1014  			     : "g1");
1015  
1016  	__cheetah_flush_icache();
1017  
1018  	/* Restore DCU register */
1019  	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1020  			     "membar #Sync"
1021  			     : /* no outputs */
1022  			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1023  }
1024  
cheetah_flush_dcache(void)1025  static void cheetah_flush_dcache(void)
1026  {
1027  	unsigned int dcache_size, dcache_line_size;
1028  	unsigned long addr;
1029  
1030  	dcache_size = local_cpu_data().dcache_size;
1031  	dcache_line_size = local_cpu_data().dcache_line_size;
1032  
1033  	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1034  		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1035  				     "membar #Sync"
1036  				     : /* no outputs */
1037  				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1038  	}
1039  }
1040  
1041  /* In order to make the even parity correct we must do two things.
1042   * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1043   * Next, we clear out all 32-bytes of data for that line.  Data of
1044   * all-zero + tag parity value of zero == correct parity.
1045   */
cheetah_plus_zap_dcache_parity(void)1046  static void cheetah_plus_zap_dcache_parity(void)
1047  {
1048  	unsigned int dcache_size, dcache_line_size;
1049  	unsigned long addr;
1050  
1051  	dcache_size = local_cpu_data().dcache_size;
1052  	dcache_line_size = local_cpu_data().dcache_line_size;
1053  
1054  	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1055  		unsigned long tag = (addr >> 14);
1056  		unsigned long line;
1057  
1058  		__asm__ __volatile__("membar	#Sync\n\t"
1059  				     "stxa	%0, [%1] %2\n\t"
1060  				     "membar	#Sync"
1061  				     : /* no outputs */
1062  				     : "r" (tag), "r" (addr),
1063  				       "i" (ASI_DCACHE_UTAG));
1064  		for (line = addr; line < addr + dcache_line_size; line += 8)
1065  			__asm__ __volatile__("membar	#Sync\n\t"
1066  					     "stxa	%%g0, [%0] %1\n\t"
1067  					     "membar	#Sync"
1068  					     : /* no outputs */
1069  					     : "r" (line),
1070  					       "i" (ASI_DCACHE_DATA));
1071  	}
1072  }
1073  
1074  /* Conversion tables used to frob Cheetah AFSR syndrome values into
1075   * something palatable to the memory controller driver get_unumber
1076   * routine.
1077   */
1078  #define MT0	137
1079  #define MT1	138
1080  #define MT2	139
1081  #define NONE	254
1082  #define MTC0	140
1083  #define MTC1	141
1084  #define MTC2	142
1085  #define MTC3	143
1086  #define C0	128
1087  #define C1	129
1088  #define C2	130
1089  #define C3	131
1090  #define C4	132
1091  #define C5	133
1092  #define C6	134
1093  #define C7	135
1094  #define C8	136
1095  #define M2	144
1096  #define M3	145
1097  #define M4	146
1098  #define M	147
1099  static unsigned char cheetah_ecc_syntab[] = {
1100  /*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1101  /*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1102  /*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1103  /*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1104  /*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1105  /*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1106  /*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1107  /*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1108  /*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1109  /*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1110  /*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1111  /*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1112  /*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1113  /*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1114  /*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1115  /*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1116  /*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1117  /*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1118  /*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1119  /*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1120  /*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1121  /*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1122  /*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1123  /*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1124  /*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1125  /*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1126  /*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1127  /*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1128  /*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1129  /*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1130  /*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1131  /*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1132  };
1133  static unsigned char cheetah_mtag_syntab[] = {
1134         NONE, MTC0,
1135         MTC1, NONE,
1136         MTC2, NONE,
1137         NONE, MT0,
1138         MTC3, NONE,
1139         NONE, MT1,
1140         NONE, MT2,
1141         NONE, NONE
1142  };
1143  
1144  /* Return the highest priority error conditon mentioned. */
cheetah_get_hipri(unsigned long afsr)1145  static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1146  {
1147  	unsigned long tmp = 0;
1148  	int i;
1149  
1150  	for (i = 0; cheetah_error_table[i].mask; i++) {
1151  		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1152  			return tmp;
1153  	}
1154  	return tmp;
1155  }
1156  
cheetah_get_string(unsigned long bit)1157  static const char *cheetah_get_string(unsigned long bit)
1158  {
1159  	int i;
1160  
1161  	for (i = 0; cheetah_error_table[i].mask; i++) {
1162  		if ((bit & cheetah_error_table[i].mask) != 0UL)
1163  			return cheetah_error_table[i].name;
1164  	}
1165  	return "???";
1166  }
1167  
cheetah_log_errors(struct pt_regs * regs,struct cheetah_err_info * info,unsigned long afsr,unsigned long afar,int recoverable)1168  static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1169  			       unsigned long afsr, unsigned long afar, int recoverable)
1170  {
1171  	unsigned long hipri;
1172  	char unum[256];
1173  
1174  	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1175  	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1176  	       afsr, afar,
1177  	       (afsr & CHAFSR_TL1) ? 1 : 0);
1178  	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1179  	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1180  	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1181  	printk("%s" "ERROR(%d): ",
1182  	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1183  	printk("TPC<%pS>\n", (void *) regs->tpc);
1184  	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1185  	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1186  	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1187  	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1188  	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1189  	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1190  	hipri = cheetah_get_hipri(afsr);
1191  	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1192  	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1193  	       hipri, cheetah_get_string(hipri));
1194  
1195  	/* Try to get unumber if relevant. */
1196  #define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1197  			 CHAFSR_CPC | CHAFSR_CPU | \
1198  			 CHAFSR_UE  | CHAFSR_CE  | \
1199  			 CHAFSR_EDC | CHAFSR_EDU  | \
1200  			 CHAFSR_UCC | CHAFSR_UCU  | \
1201  			 CHAFSR_WDU | CHAFSR_WDC)
1202  #define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1203  	if (afsr & ESYND_ERRORS) {
1204  		int syndrome;
1205  		int ret;
1206  
1207  		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1208  		syndrome = cheetah_ecc_syntab[syndrome];
1209  		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1210  		if (ret != -1)
1211  			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1212  			       (recoverable ? KERN_WARNING : KERN_CRIT),
1213  			       smp_processor_id(), unum);
1214  	} else if (afsr & MSYND_ERRORS) {
1215  		int syndrome;
1216  		int ret;
1217  
1218  		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1219  		syndrome = cheetah_mtag_syntab[syndrome];
1220  		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1221  		if (ret != -1)
1222  			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1223  			       (recoverable ? KERN_WARNING : KERN_CRIT),
1224  			       smp_processor_id(), unum);
1225  	}
1226  
1227  	/* Now dump the cache snapshots. */
1228  	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1229  	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1230  	       (int) info->dcache_index,
1231  	       info->dcache_tag,
1232  	       info->dcache_utag,
1233  	       info->dcache_stag);
1234  	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1235  	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1236  	       info->dcache_data[0],
1237  	       info->dcache_data[1],
1238  	       info->dcache_data[2],
1239  	       info->dcache_data[3]);
1240  	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1241  	       "u[%016llx] l[%016llx]\n",
1242  	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1243  	       (int) info->icache_index,
1244  	       info->icache_tag,
1245  	       info->icache_utag,
1246  	       info->icache_stag,
1247  	       info->icache_upper,
1248  	       info->icache_lower);
1249  	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1250  	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1251  	       info->icache_data[0],
1252  	       info->icache_data[1],
1253  	       info->icache_data[2],
1254  	       info->icache_data[3]);
1255  	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1256  	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1257  	       info->icache_data[4],
1258  	       info->icache_data[5],
1259  	       info->icache_data[6],
1260  	       info->icache_data[7]);
1261  	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1262  	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1263  	       (int) info->ecache_index, info->ecache_tag);
1264  	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1265  	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1266  	       info->ecache_data[0],
1267  	       info->ecache_data[1],
1268  	       info->ecache_data[2],
1269  	       info->ecache_data[3]);
1270  
1271  	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1272  	while (afsr != 0UL) {
1273  		unsigned long bit = cheetah_get_hipri(afsr);
1274  
1275  		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1276  		       (recoverable ? KERN_WARNING : KERN_CRIT),
1277  		       bit, cheetah_get_string(bit));
1278  
1279  		afsr &= ~bit;
1280  	}
1281  
1282  	if (!recoverable)
1283  		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1284  }
1285  
cheetah_recheck_errors(struct cheetah_err_info * logp)1286  static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1287  {
1288  	unsigned long afsr, afar;
1289  	int ret = 0;
1290  
1291  	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1292  			     : "=r" (afsr)
1293  			     : "i" (ASI_AFSR));
1294  	if ((afsr & cheetah_afsr_errors) != 0) {
1295  		if (logp != NULL) {
1296  			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1297  					     : "=r" (afar)
1298  					     : "i" (ASI_AFAR));
1299  			logp->afsr = afsr;
1300  			logp->afar = afar;
1301  		}
1302  		ret = 1;
1303  	}
1304  	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1305  			     "membar #Sync\n\t"
1306  			     : : "r" (afsr), "i" (ASI_AFSR));
1307  
1308  	return ret;
1309  }
1310  
cheetah_fecc_handler(struct pt_regs * regs,unsigned long afsr,unsigned long afar)1311  void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1312  {
1313  	struct cheetah_err_info local_snapshot, *p;
1314  	int recoverable;
1315  
1316  	/* Flush E-cache */
1317  	cheetah_flush_ecache();
1318  
1319  	p = cheetah_get_error_log(afsr);
1320  	if (!p) {
1321  		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1322  			    afsr, afar);
1323  		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1324  			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1325  		prom_halt();
1326  	}
1327  
1328  	/* Grab snapshot of logged error. */
1329  	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1330  
1331  	/* If the current trap snapshot does not match what the
1332  	 * trap handler passed along into our args, big trouble.
1333  	 * In such a case, mark the local copy as invalid.
1334  	 *
1335  	 * Else, it matches and we mark the afsr in the non-local
1336  	 * copy as invalid so we may log new error traps there.
1337  	 */
1338  	if (p->afsr != afsr || p->afar != afar)
1339  		local_snapshot.afsr = CHAFSR_INVALID;
1340  	else
1341  		p->afsr = CHAFSR_INVALID;
1342  
1343  	cheetah_flush_icache();
1344  	cheetah_flush_dcache();
1345  
1346  	/* Re-enable I-cache/D-cache */
1347  	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1348  			     "or %%g1, %1, %%g1\n\t"
1349  			     "stxa %%g1, [%%g0] %0\n\t"
1350  			     "membar #Sync"
1351  			     : /* no outputs */
1352  			     : "i" (ASI_DCU_CONTROL_REG),
1353  			       "i" (DCU_DC | DCU_IC)
1354  			     : "g1");
1355  
1356  	/* Re-enable error reporting */
1357  	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1358  			     "or %%g1, %1, %%g1\n\t"
1359  			     "stxa %%g1, [%%g0] %0\n\t"
1360  			     "membar #Sync"
1361  			     : /* no outputs */
1362  			     : "i" (ASI_ESTATE_ERROR_EN),
1363  			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1364  			     : "g1");
1365  
1366  	/* Decide if we can continue after handling this trap and
1367  	 * logging the error.
1368  	 */
1369  	recoverable = 1;
1370  	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1371  		recoverable = 0;
1372  
1373  	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1374  	 * error was logged while we had error reporting traps disabled.
1375  	 */
1376  	if (cheetah_recheck_errors(&local_snapshot)) {
1377  		unsigned long new_afsr = local_snapshot.afsr;
1378  
1379  		/* If we got a new asynchronous error, die... */
1380  		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1381  				CHAFSR_WDU | CHAFSR_CPU |
1382  				CHAFSR_IVU | CHAFSR_UE |
1383  				CHAFSR_BERR | CHAFSR_TO))
1384  			recoverable = 0;
1385  	}
1386  
1387  	/* Log errors. */
1388  	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1389  
1390  	if (!recoverable)
1391  		panic("Irrecoverable Fast-ECC error trap.\n");
1392  
1393  	/* Flush E-cache to kick the error trap handlers out. */
1394  	cheetah_flush_ecache();
1395  }
1396  
1397  /* Try to fix a correctable error by pushing the line out from
1398   * the E-cache.  Recheck error reporting registers to see if the
1399   * problem is intermittent.
1400   */
cheetah_fix_ce(unsigned long physaddr)1401  static int cheetah_fix_ce(unsigned long physaddr)
1402  {
1403  	unsigned long orig_estate;
1404  	unsigned long alias1, alias2;
1405  	int ret;
1406  
1407  	/* Make sure correctable error traps are disabled. */
1408  	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1409  			     "andn	%0, %1, %%g1\n\t"
1410  			     "stxa	%%g1, [%%g0] %2\n\t"
1411  			     "membar	#Sync"
1412  			     : "=&r" (orig_estate)
1413  			     : "i" (ESTATE_ERROR_CEEN),
1414  			       "i" (ASI_ESTATE_ERROR_EN)
1415  			     : "g1");
1416  
1417  	/* We calculate alias addresses that will force the
1418  	 * cache line in question out of the E-cache.  Then
1419  	 * we bring it back in with an atomic instruction so
1420  	 * that we get it in some modified/exclusive state,
1421  	 * then we displace it again to try and get proper ECC
1422  	 * pushed back into the system.
1423  	 */
1424  	physaddr &= ~(8UL - 1UL);
1425  	alias1 = (ecache_flush_physbase +
1426  		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1427  	alias2 = alias1 + (ecache_flush_size >> 1);
1428  	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1429  			     "ldxa	[%1] %3, %%g0\n\t"
1430  			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1431  			     "ldxa	[%0] %3, %%g0\n\t"
1432  			     "ldxa	[%1] %3, %%g0\n\t"
1433  			     "membar	#Sync"
1434  			     : /* no outputs */
1435  			     : "r" (alias1), "r" (alias2),
1436  			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1437  
1438  	/* Did that trigger another error? */
1439  	if (cheetah_recheck_errors(NULL)) {
1440  		/* Try one more time. */
1441  		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1442  				     "membar #Sync"
1443  				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1444  		if (cheetah_recheck_errors(NULL))
1445  			ret = 2;
1446  		else
1447  			ret = 1;
1448  	} else {
1449  		/* No new error, intermittent problem. */
1450  		ret = 0;
1451  	}
1452  
1453  	/* Restore error enables. */
1454  	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1455  			     "membar	#Sync"
1456  			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1457  
1458  	return ret;
1459  }
1460  
1461  /* Return non-zero if PADDR is a valid physical memory address. */
cheetah_check_main_memory(unsigned long paddr)1462  static int cheetah_check_main_memory(unsigned long paddr)
1463  {
1464  	unsigned long vaddr = PAGE_OFFSET + paddr;
1465  
1466  	if (vaddr > (unsigned long) high_memory)
1467  		return 0;
1468  
1469  	return kern_addr_valid(vaddr);
1470  }
1471  
cheetah_cee_handler(struct pt_regs * regs,unsigned long afsr,unsigned long afar)1472  void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1473  {
1474  	struct cheetah_err_info local_snapshot, *p;
1475  	int recoverable, is_memory;
1476  
1477  	p = cheetah_get_error_log(afsr);
1478  	if (!p) {
1479  		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1480  			    afsr, afar);
1481  		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1482  			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1483  		prom_halt();
1484  	}
1485  
1486  	/* Grab snapshot of logged error. */
1487  	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1488  
1489  	/* If the current trap snapshot does not match what the
1490  	 * trap handler passed along into our args, big trouble.
1491  	 * In such a case, mark the local copy as invalid.
1492  	 *
1493  	 * Else, it matches and we mark the afsr in the non-local
1494  	 * copy as invalid so we may log new error traps there.
1495  	 */
1496  	if (p->afsr != afsr || p->afar != afar)
1497  		local_snapshot.afsr = CHAFSR_INVALID;
1498  	else
1499  		p->afsr = CHAFSR_INVALID;
1500  
1501  	is_memory = cheetah_check_main_memory(afar);
1502  
1503  	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1504  		/* XXX Might want to log the results of this operation
1505  		 * XXX somewhere... -DaveM
1506  		 */
1507  		cheetah_fix_ce(afar);
1508  	}
1509  
1510  	{
1511  		int flush_all, flush_line;
1512  
1513  		flush_all = flush_line = 0;
1514  		if ((afsr & CHAFSR_EDC) != 0UL) {
1515  			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1516  				flush_line = 1;
1517  			else
1518  				flush_all = 1;
1519  		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1520  			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1521  				flush_line = 1;
1522  			else
1523  				flush_all = 1;
1524  		}
1525  
1526  		/* Trap handler only disabled I-cache, flush it. */
1527  		cheetah_flush_icache();
1528  
1529  		/* Re-enable I-cache */
1530  		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1531  				     "or %%g1, %1, %%g1\n\t"
1532  				     "stxa %%g1, [%%g0] %0\n\t"
1533  				     "membar #Sync"
1534  				     : /* no outputs */
1535  				     : "i" (ASI_DCU_CONTROL_REG),
1536  				     "i" (DCU_IC)
1537  				     : "g1");
1538  
1539  		if (flush_all)
1540  			cheetah_flush_ecache();
1541  		else if (flush_line)
1542  			cheetah_flush_ecache_line(afar);
1543  	}
1544  
1545  	/* Re-enable error reporting */
1546  	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1547  			     "or %%g1, %1, %%g1\n\t"
1548  			     "stxa %%g1, [%%g0] %0\n\t"
1549  			     "membar #Sync"
1550  			     : /* no outputs */
1551  			     : "i" (ASI_ESTATE_ERROR_EN),
1552  			       "i" (ESTATE_ERROR_CEEN)
1553  			     : "g1");
1554  
1555  	/* Decide if we can continue after handling this trap and
1556  	 * logging the error.
1557  	 */
1558  	recoverable = 1;
1559  	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1560  		recoverable = 0;
1561  
1562  	/* Re-check AFSR/AFAR */
1563  	(void) cheetah_recheck_errors(&local_snapshot);
1564  
1565  	/* Log errors. */
1566  	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1567  
1568  	if (!recoverable)
1569  		panic("Irrecoverable Correctable-ECC error trap.\n");
1570  }
1571  
cheetah_deferred_handler(struct pt_regs * regs,unsigned long afsr,unsigned long afar)1572  void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1573  {
1574  	struct cheetah_err_info local_snapshot, *p;
1575  	int recoverable, is_memory;
1576  
1577  #ifdef CONFIG_PCI
1578  	/* Check for the special PCI poke sequence. */
1579  	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1580  		cheetah_flush_icache();
1581  		cheetah_flush_dcache();
1582  
1583  		/* Re-enable I-cache/D-cache */
1584  		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1585  				     "or %%g1, %1, %%g1\n\t"
1586  				     "stxa %%g1, [%%g0] %0\n\t"
1587  				     "membar #Sync"
1588  				     : /* no outputs */
1589  				     : "i" (ASI_DCU_CONTROL_REG),
1590  				       "i" (DCU_DC | DCU_IC)
1591  				     : "g1");
1592  
1593  		/* Re-enable error reporting */
1594  		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1595  				     "or %%g1, %1, %%g1\n\t"
1596  				     "stxa %%g1, [%%g0] %0\n\t"
1597  				     "membar #Sync"
1598  				     : /* no outputs */
1599  				     : "i" (ASI_ESTATE_ERROR_EN),
1600  				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1601  				     : "g1");
1602  
1603  		(void) cheetah_recheck_errors(NULL);
1604  
1605  		pci_poke_faulted = 1;
1606  		regs->tpc += 4;
1607  		regs->tnpc = regs->tpc + 4;
1608  		return;
1609  	}
1610  #endif
1611  
1612  	p = cheetah_get_error_log(afsr);
1613  	if (!p) {
1614  		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1615  			    afsr, afar);
1616  		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1617  			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1618  		prom_halt();
1619  	}
1620  
1621  	/* Grab snapshot of logged error. */
1622  	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1623  
1624  	/* If the current trap snapshot does not match what the
1625  	 * trap handler passed along into our args, big trouble.
1626  	 * In such a case, mark the local copy as invalid.
1627  	 *
1628  	 * Else, it matches and we mark the afsr in the non-local
1629  	 * copy as invalid so we may log new error traps there.
1630  	 */
1631  	if (p->afsr != afsr || p->afar != afar)
1632  		local_snapshot.afsr = CHAFSR_INVALID;
1633  	else
1634  		p->afsr = CHAFSR_INVALID;
1635  
1636  	is_memory = cheetah_check_main_memory(afar);
1637  
1638  	{
1639  		int flush_all, flush_line;
1640  
1641  		flush_all = flush_line = 0;
1642  		if ((afsr & CHAFSR_EDU) != 0UL) {
1643  			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1644  				flush_line = 1;
1645  			else
1646  				flush_all = 1;
1647  		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1648  			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1649  				flush_line = 1;
1650  			else
1651  				flush_all = 1;
1652  		}
1653  
1654  		cheetah_flush_icache();
1655  		cheetah_flush_dcache();
1656  
1657  		/* Re-enable I/D caches */
1658  		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1659  				     "or %%g1, %1, %%g1\n\t"
1660  				     "stxa %%g1, [%%g0] %0\n\t"
1661  				     "membar #Sync"
1662  				     : /* no outputs */
1663  				     : "i" (ASI_DCU_CONTROL_REG),
1664  				     "i" (DCU_IC | DCU_DC)
1665  				     : "g1");
1666  
1667  		if (flush_all)
1668  			cheetah_flush_ecache();
1669  		else if (flush_line)
1670  			cheetah_flush_ecache_line(afar);
1671  	}
1672  
1673  	/* Re-enable error reporting */
1674  	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1675  			     "or %%g1, %1, %%g1\n\t"
1676  			     "stxa %%g1, [%%g0] %0\n\t"
1677  			     "membar #Sync"
1678  			     : /* no outputs */
1679  			     : "i" (ASI_ESTATE_ERROR_EN),
1680  			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1681  			     : "g1");
1682  
1683  	/* Decide if we can continue after handling this trap and
1684  	 * logging the error.
1685  	 */
1686  	recoverable = 1;
1687  	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1688  		recoverable = 0;
1689  
1690  	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1691  	 * error was logged while we had error reporting traps disabled.
1692  	 */
1693  	if (cheetah_recheck_errors(&local_snapshot)) {
1694  		unsigned long new_afsr = local_snapshot.afsr;
1695  
1696  		/* If we got a new asynchronous error, die... */
1697  		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1698  				CHAFSR_WDU | CHAFSR_CPU |
1699  				CHAFSR_IVU | CHAFSR_UE |
1700  				CHAFSR_BERR | CHAFSR_TO))
1701  			recoverable = 0;
1702  	}
1703  
1704  	/* Log errors. */
1705  	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1706  
1707  	/* "Recoverable" here means we try to yank the page from ever
1708  	 * being newly used again.  This depends upon a few things:
1709  	 * 1) Must be main memory, and AFAR must be valid.
1710  	 * 2) If we trapped from user, OK.
1711  	 * 3) Else, if we trapped from kernel we must find exception
1712  	 *    table entry (ie. we have to have been accessing user
1713  	 *    space).
1714  	 *
1715  	 * If AFAR is not in main memory, or we trapped from kernel
1716  	 * and cannot find an exception table entry, it is unacceptable
1717  	 * to try and continue.
1718  	 */
1719  	if (recoverable && is_memory) {
1720  		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1721  			/* OK, usermode access. */
1722  			recoverable = 1;
1723  		} else {
1724  			const struct exception_table_entry *entry;
1725  
1726  			entry = search_exception_tables(regs->tpc);
1727  			if (entry) {
1728  				/* OK, kernel access to userspace. */
1729  				recoverable = 1;
1730  
1731  			} else {
1732  				/* BAD, privileged state is corrupted. */
1733  				recoverable = 0;
1734  			}
1735  
1736  			if (recoverable) {
1737  				if (pfn_valid(afar >> PAGE_SHIFT))
1738  					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1739  				else
1740  					recoverable = 0;
1741  
1742  				/* Only perform fixup if we still have a
1743  				 * recoverable condition.
1744  				 */
1745  				if (recoverable) {
1746  					regs->tpc = entry->fixup;
1747  					regs->tnpc = regs->tpc + 4;
1748  				}
1749  			}
1750  		}
1751  	} else {
1752  		recoverable = 0;
1753  	}
1754  
1755  	if (!recoverable)
1756  		panic("Irrecoverable deferred error trap.\n");
1757  }
1758  
1759  /* Handle a D/I cache parity error trap.  TYPE is encoded as:
1760   *
1761   * Bit0:	0=dcache,1=icache
1762   * Bit1:	0=recoverable,1=unrecoverable
1763   *
1764   * The hardware has disabled both the I-cache and D-cache in
1765   * the %dcr register.
1766   */
cheetah_plus_parity_error(int type,struct pt_regs * regs)1767  void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1768  {
1769  	if (type & 0x1)
1770  		__cheetah_flush_icache();
1771  	else
1772  		cheetah_plus_zap_dcache_parity();
1773  	cheetah_flush_dcache();
1774  
1775  	/* Re-enable I-cache/D-cache */
1776  	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1777  			     "or %%g1, %1, %%g1\n\t"
1778  			     "stxa %%g1, [%%g0] %0\n\t"
1779  			     "membar #Sync"
1780  			     : /* no outputs */
1781  			     : "i" (ASI_DCU_CONTROL_REG),
1782  			       "i" (DCU_DC | DCU_IC)
1783  			     : "g1");
1784  
1785  	if (type & 0x2) {
1786  		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1787  		       smp_processor_id(),
1788  		       (type & 0x1) ? 'I' : 'D',
1789  		       regs->tpc);
1790  		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1791  		panic("Irrecoverable Cheetah+ parity error.");
1792  	}
1793  
1794  	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1795  	       smp_processor_id(),
1796  	       (type & 0x1) ? 'I' : 'D',
1797  	       regs->tpc);
1798  	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1799  }
1800  
1801  struct sun4v_error_entry {
1802  	/* Unique error handle */
1803  /*0x00*/u64		err_handle;
1804  
1805  	/* %stick value at the time of the error */
1806  /*0x08*/u64		err_stick;
1807  
1808  /*0x10*/u8		reserved_1[3];
1809  
1810  	/* Error type */
1811  /*0x13*/u8		err_type;
1812  #define SUN4V_ERR_TYPE_UNDEFINED	0
1813  #define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1814  #define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1815  #define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1816  #define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1817  #define SUN4V_ERR_TYPE_DUMP_CORE	5
1818  #define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1819  #define SUN4V_ERR_TYPE_NUM		7
1820  
1821  	/* Error attributes */
1822  /*0x14*/u32		err_attrs;
1823  #define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1824  #define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1825  #define SUN4V_ERR_ATTRS_PIO		0x00000004
1826  #define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1827  #define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1828  #define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1829  #define SUN4V_ERR_ATTRS_ASR		0x00000040
1830  #define SUN4V_ERR_ATTRS_ASI		0x00000080
1831  #define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1832  #define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
1833  #define SUN4V_ERR_ATTRS_MCD		0x00000800
1834  #define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1835  #define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1836  #define SUN4V_ERR_ATTRS_MODE_SHFT	24
1837  #define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1838  
1839  #define SUN4V_ERR_SPSTATE_FAULTED	0
1840  #define SUN4V_ERR_SPSTATE_AVAILABLE	1
1841  #define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1842  
1843  #define SUN4V_ERR_MODE_USER		1
1844  #define SUN4V_ERR_MODE_PRIV		2
1845  
1846  	/* Real address of the memory region or PIO transaction */
1847  /*0x18*/u64		err_raddr;
1848  
1849  	/* Size of the operation triggering the error, in bytes */
1850  /*0x20*/u32		err_size;
1851  
1852  	/* ID of the CPU */
1853  /*0x24*/u16		err_cpu;
1854  
1855  	/* Grace periof for shutdown, in seconds */
1856  /*0x26*/u16		err_secs;
1857  
1858  	/* Value of the %asi register */
1859  /*0x28*/u8		err_asi;
1860  
1861  /*0x29*/u8		reserved_2;
1862  
1863  	/* Value of the ASR register number */
1864  /*0x2a*/u16		err_asr;
1865  #define SUN4V_ERR_ASR_VALID		0x8000
1866  
1867  /*0x2c*/u32		reserved_3;
1868  /*0x30*/u64		reserved_4;
1869  /*0x38*/u64		reserved_5;
1870  };
1871  
1872  static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1873  static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1874  
sun4v_err_type_to_str(u8 type)1875  static const char *sun4v_err_type_to_str(u8 type)
1876  {
1877  	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1878  		"undefined",
1879  		"uncorrected resumable",
1880  		"precise nonresumable",
1881  		"deferred nonresumable",
1882  		"shutdown request",
1883  		"dump core",
1884  		"SP state change",
1885  	};
1886  
1887  	if (type < SUN4V_ERR_TYPE_NUM)
1888  		return types[type];
1889  
1890  	return "unknown";
1891  }
1892  
sun4v_emit_err_attr_strings(u32 attrs)1893  static void sun4v_emit_err_attr_strings(u32 attrs)
1894  {
1895  	static const char *attr_names[] = {
1896  		"processor",
1897  		"memory",
1898  		"PIO",
1899  		"int-registers",
1900  		"fpu-registers",
1901  		"shutdown-request",
1902  		"ASR",
1903  		"ASI",
1904  		"priv-reg",
1905  	};
1906  	static const char *sp_states[] = {
1907  		"sp-faulted",
1908  		"sp-available",
1909  		"sp-not-present",
1910  		"sp-state-reserved",
1911  	};
1912  	static const char *modes[] = {
1913  		"mode-reserved0",
1914  		"user",
1915  		"priv",
1916  		"mode-reserved1",
1917  	};
1918  	u32 sp_state, mode;
1919  	int i;
1920  
1921  	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1922  		if (attrs & (1U << i)) {
1923  			const char *s = attr_names[i];
1924  
1925  			pr_cont("%s ", s);
1926  		}
1927  	}
1928  
1929  	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1930  		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1931  	pr_cont("%s ", sp_states[sp_state]);
1932  
1933  	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1934  		SUN4V_ERR_ATTRS_MODE_SHFT);
1935  	pr_cont("%s ", modes[mode]);
1936  
1937  	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1938  		pr_cont("res-queue-full ");
1939  }
1940  
1941  /* When the report contains a real-address of "-1" it means that the
1942   * hardware did not provide the address.  So we compute the effective
1943   * address of the load or store instruction at regs->tpc and report
1944   * that.  Usually when this happens it's a PIO and in such a case we
1945   * are using physical addresses with bypass ASIs anyways, so what we
1946   * report here is exactly what we want.
1947   */
sun4v_report_real_raddr(const char * pfx,struct pt_regs * regs)1948  static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1949  {
1950  	unsigned int insn;
1951  	u64 addr;
1952  
1953  	if (!(regs->tstate & TSTATE_PRIV))
1954  		return;
1955  
1956  	insn = *(unsigned int *) regs->tpc;
1957  
1958  	addr = compute_effective_address(regs, insn, 0);
1959  
1960  	printk("%s: insn effective address [0x%016llx]\n",
1961  	       pfx, addr);
1962  }
1963  
sun4v_log_error(struct pt_regs * regs,struct sun4v_error_entry * ent,int cpu,const char * pfx,atomic_t * ocnt)1964  static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1965  			    int cpu, const char *pfx, atomic_t *ocnt)
1966  {
1967  	u64 *raw_ptr = (u64 *) ent;
1968  	u32 attrs;
1969  	int cnt;
1970  
1971  	printk("%s: Reporting on cpu %d\n", pfx, cpu);
1972  	printk("%s: TPC [0x%016lx] <%pS>\n",
1973  	       pfx, regs->tpc, (void *) regs->tpc);
1974  
1975  	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1976  	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1977  	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1978  	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1979  
1980  	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1981  	       pfx, ent->err_handle, ent->err_stick);
1982  
1983  	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1984  
1985  	attrs = ent->err_attrs;
1986  	printk("%s: attrs [0x%08x] < ", pfx, attrs);
1987  	sun4v_emit_err_attr_strings(attrs);
1988  	pr_cont(">\n");
1989  
1990  	/* Various fields in the error report are only valid if
1991  	 * certain attribute bits are set.
1992  	 */
1993  	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1994  		     SUN4V_ERR_ATTRS_PIO |
1995  		     SUN4V_ERR_ATTRS_ASI)) {
1996  		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1997  
1998  		if (ent->err_raddr == ~(u64)0)
1999  			sun4v_report_real_raddr(pfx, regs);
2000  	}
2001  
2002  	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2003  		printk("%s: size [0x%x]\n", pfx, ent->err_size);
2004  
2005  	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2006  		     SUN4V_ERR_ATTRS_INT_REGISTERS |
2007  		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
2008  		     SUN4V_ERR_ATTRS_PRIV_REG))
2009  		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2010  
2011  	if (attrs & SUN4V_ERR_ATTRS_ASI)
2012  		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2013  
2014  	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2015  		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2016  		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
2017  	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2018  		printk("%s: reg [0x%04x]\n",
2019  		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2020  
2021  	show_regs(regs);
2022  
2023  	if ((cnt = atomic_read(ocnt)) != 0) {
2024  		atomic_set(ocnt, 0);
2025  		wmb();
2026  		printk("%s: Queue overflowed %d times.\n",
2027  		       pfx, cnt);
2028  	}
2029  }
2030  
2031  /* Handle memory corruption detected error which is vectored in
2032   * through resumable error trap.
2033   */
do_mcd_err(struct pt_regs * regs,struct sun4v_error_entry ent)2034  void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2035  {
2036  	if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2037  		       SIGSEGV) == NOTIFY_STOP)
2038  		return;
2039  
2040  	if (regs->tstate & TSTATE_PRIV) {
2041  		/* MCD exception could happen because the task was
2042  		 * running a system call with MCD enabled and passed a
2043  		 * non-versioned pointer or pointer with bad version
2044  		 * tag to the system call. In such cases, hypervisor
2045  		 * places the address of offending instruction in the
2046  		 * resumable error report. This is a deferred error,
2047  		 * so the read/write that caused the trap was potentially
2048  		 * retired long time back and we may have no choice
2049  		 * but to send SIGSEGV to the process.
2050  		 */
2051  		const struct exception_table_entry *entry;
2052  
2053  		entry = search_exception_tables(regs->tpc);
2054  		if (entry) {
2055  			/* Looks like a bad syscall parameter */
2056  #ifdef DEBUG_EXCEPTIONS
2057  			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2058  				 regs->tpc);
2059  			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2060  				 ent.err_raddr, entry->fixup);
2061  #endif
2062  			regs->tpc = entry->fixup;
2063  			regs->tnpc = regs->tpc + 4;
2064  			return;
2065  		}
2066  	}
2067  
2068  	/* Send SIGSEGV to the userspace process with the right signal
2069  	 * code
2070  	 */
2071  	force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr);
2072  }
2073  
2074  /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2075   * Log the event and clear the first word of the entry.
2076   */
sun4v_resum_error(struct pt_regs * regs,unsigned long offset)2077  void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2078  {
2079  	enum ctx_state prev_state = exception_enter();
2080  	struct sun4v_error_entry *ent, local_copy;
2081  	struct trap_per_cpu *tb;
2082  	unsigned long paddr;
2083  	int cpu;
2084  
2085  	cpu = get_cpu();
2086  
2087  	tb = &trap_block[cpu];
2088  	paddr = tb->resum_kernel_buf_pa + offset;
2089  	ent = __va(paddr);
2090  
2091  	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2092  
2093  	/* We have a local copy now, so release the entry.  */
2094  	ent->err_handle = 0;
2095  	wmb();
2096  
2097  	put_cpu();
2098  
2099  	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2100  		/* We should really take the seconds field of
2101  		 * the error report and use it for the shutdown
2102  		 * invocation, but for now do the same thing we
2103  		 * do for a DS shutdown request.
2104  		 */
2105  		pr_info("Shutdown request, %u seconds...\n",
2106  			local_copy.err_secs);
2107  		orderly_poweroff(true);
2108  		goto out;
2109  	}
2110  
2111  	/* If this is a memory corruption detected error vectored in
2112  	 * by HV through resumable error trap, call the handler
2113  	 */
2114  	if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2115  		do_mcd_err(regs, local_copy);
2116  		return;
2117  	}
2118  
2119  	sun4v_log_error(regs, &local_copy, cpu,
2120  			KERN_ERR "RESUMABLE ERROR",
2121  			&sun4v_resum_oflow_cnt);
2122  out:
2123  	exception_exit(prev_state);
2124  }
2125  
2126  /* If we try to printk() we'll probably make matters worse, by trying
2127   * to retake locks this cpu already holds or causing more errors. So
2128   * just bump a counter, and we'll report these counter bumps above.
2129   */
sun4v_resum_overflow(struct pt_regs * regs)2130  void sun4v_resum_overflow(struct pt_regs *regs)
2131  {
2132  	atomic_inc(&sun4v_resum_oflow_cnt);
2133  }
2134  
2135  /* Given a set of registers, get the virtual addressi that was being accessed
2136   * by the faulting instructions at tpc.
2137   */
sun4v_get_vaddr(struct pt_regs * regs)2138  static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2139  {
2140  	unsigned int insn;
2141  
2142  	if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2143  		return compute_effective_address(regs, insn,
2144  						 (insn >> 25) & 0x1f);
2145  	}
2146  	return 0;
2147  }
2148  
2149  /* Attempt to handle non-resumable errors generated from userspace.
2150   * Returns true if the signal was handled, false otherwise.
2151   */
sun4v_nonresum_error_user_handled(struct pt_regs * regs,struct sun4v_error_entry * ent)2152  bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2153  				  struct sun4v_error_entry *ent) {
2154  
2155  	unsigned int attrs = ent->err_attrs;
2156  
2157  	if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2158  		unsigned long addr = ent->err_raddr;
2159  
2160  		if (addr == ~(u64)0) {
2161  			/* This seems highly unlikely to ever occur */
2162  			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2163  		} else {
2164  			unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2165  							      PAGE_SIZE);
2166  
2167  			/* Break the unfortunate news. */
2168  			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2169  				 addr);
2170  			pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2171  				 page_cnt);
2172  
2173  			while (page_cnt-- > 0) {
2174  				if (pfn_valid(addr >> PAGE_SHIFT))
2175  					get_page(pfn_to_page(addr >> PAGE_SHIFT));
2176  				addr += PAGE_SIZE;
2177  			}
2178  		}
2179  		force_sig(SIGKILL);
2180  
2181  		return true;
2182  	}
2183  	if (attrs & SUN4V_ERR_ATTRS_PIO) {
2184  		force_sig_fault(SIGBUS, BUS_ADRERR,
2185  				(void __user *)sun4v_get_vaddr(regs));
2186  		return true;
2187  	}
2188  
2189  	/* Default to doing nothing */
2190  	return false;
2191  }
2192  
2193  /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2194   * Log the event, clear the first word of the entry, and die.
2195   */
sun4v_nonresum_error(struct pt_regs * regs,unsigned long offset)2196  void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2197  {
2198  	struct sun4v_error_entry *ent, local_copy;
2199  	struct trap_per_cpu *tb;
2200  	unsigned long paddr;
2201  	int cpu;
2202  
2203  	cpu = get_cpu();
2204  
2205  	tb = &trap_block[cpu];
2206  	paddr = tb->nonresum_kernel_buf_pa + offset;
2207  	ent = __va(paddr);
2208  
2209  	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2210  
2211  	/* We have a local copy now, so release the entry.  */
2212  	ent->err_handle = 0;
2213  	wmb();
2214  
2215  	put_cpu();
2216  
2217  	if (!(regs->tstate & TSTATE_PRIV) &&
2218  	    sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2219  		/* DON'T PANIC: This userspace error was handled. */
2220  		return;
2221  	}
2222  
2223  #ifdef CONFIG_PCI
2224  	/* Check for the special PCI poke sequence. */
2225  	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2226  		pci_poke_faulted = 1;
2227  		regs->tpc += 4;
2228  		regs->tnpc = regs->tpc + 4;
2229  		return;
2230  	}
2231  #endif
2232  
2233  	sun4v_log_error(regs, &local_copy, cpu,
2234  			KERN_EMERG "NON-RESUMABLE ERROR",
2235  			&sun4v_nonresum_oflow_cnt);
2236  
2237  	panic("Non-resumable error.");
2238  }
2239  
2240  /* If we try to printk() we'll probably make matters worse, by trying
2241   * to retake locks this cpu already holds or causing more errors. So
2242   * just bump a counter, and we'll report these counter bumps above.
2243   */
sun4v_nonresum_overflow(struct pt_regs * regs)2244  void sun4v_nonresum_overflow(struct pt_regs *regs)
2245  {
2246  	/* XXX Actually even this can make not that much sense.  Perhaps
2247  	 * XXX we should just pull the plug and panic directly from here?
2248  	 */
2249  	atomic_inc(&sun4v_nonresum_oflow_cnt);
2250  }
2251  
sun4v_tlb_error(struct pt_regs * regs)2252  static void sun4v_tlb_error(struct pt_regs *regs)
2253  {
2254  	die_if_kernel("TLB/TSB error", regs);
2255  }
2256  
2257  unsigned long sun4v_err_itlb_vaddr;
2258  unsigned long sun4v_err_itlb_ctx;
2259  unsigned long sun4v_err_itlb_pte;
2260  unsigned long sun4v_err_itlb_error;
2261  
sun4v_itlb_error_report(struct pt_regs * regs,int tl)2262  void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2263  {
2264  	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2265  
2266  	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2267  	       regs->tpc, tl);
2268  	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2269  	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2270  	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2271  	       (void *) regs->u_regs[UREG_I7]);
2272  	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2273  	       "pte[%lx] error[%lx]\n",
2274  	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2275  	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2276  
2277  	sun4v_tlb_error(regs);
2278  }
2279  
2280  unsigned long sun4v_err_dtlb_vaddr;
2281  unsigned long sun4v_err_dtlb_ctx;
2282  unsigned long sun4v_err_dtlb_pte;
2283  unsigned long sun4v_err_dtlb_error;
2284  
sun4v_dtlb_error_report(struct pt_regs * regs,int tl)2285  void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2286  {
2287  	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2288  
2289  	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2290  	       regs->tpc, tl);
2291  	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2292  	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2293  	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2294  	       (void *) regs->u_regs[UREG_I7]);
2295  	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2296  	       "pte[%lx] error[%lx]\n",
2297  	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2298  	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2299  
2300  	sun4v_tlb_error(regs);
2301  }
2302  
hypervisor_tlbop_error(unsigned long err,unsigned long op)2303  void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2304  {
2305  	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2306  	       err, op);
2307  }
2308  
hypervisor_tlbop_error_xcall(unsigned long err,unsigned long op)2309  void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2310  {
2311  	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2312  	       err, op);
2313  }
2314  
do_fpe_common(struct pt_regs * regs)2315  static void do_fpe_common(struct pt_regs *regs)
2316  {
2317  	if (regs->tstate & TSTATE_PRIV) {
2318  		regs->tpc = regs->tnpc;
2319  		regs->tnpc += 4;
2320  	} else {
2321  		unsigned long fsr = current_thread_info()->xfsr[0];
2322  		int code;
2323  
2324  		if (test_thread_flag(TIF_32BIT)) {
2325  			regs->tpc &= 0xffffffff;
2326  			regs->tnpc &= 0xffffffff;
2327  		}
2328  		code = FPE_FLTUNK;
2329  		if ((fsr & 0x1c000) == (1 << 14)) {
2330  			if (fsr & 0x10)
2331  				code = FPE_FLTINV;
2332  			else if (fsr & 0x08)
2333  				code = FPE_FLTOVF;
2334  			else if (fsr & 0x04)
2335  				code = FPE_FLTUND;
2336  			else if (fsr & 0x02)
2337  				code = FPE_FLTDIV;
2338  			else if (fsr & 0x01)
2339  				code = FPE_FLTRES;
2340  		}
2341  		force_sig_fault(SIGFPE, code, (void __user *)regs->tpc);
2342  	}
2343  }
2344  
do_fpieee(struct pt_regs * regs)2345  void do_fpieee(struct pt_regs *regs)
2346  {
2347  	enum ctx_state prev_state = exception_enter();
2348  
2349  	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2350  		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2351  		goto out;
2352  
2353  	do_fpe_common(regs);
2354  out:
2355  	exception_exit(prev_state);
2356  }
2357  
do_fpother(struct pt_regs * regs)2358  void do_fpother(struct pt_regs *regs)
2359  {
2360  	enum ctx_state prev_state = exception_enter();
2361  	struct fpustate *f = FPUSTATE;
2362  	int ret = 0;
2363  
2364  	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2365  		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2366  		goto out;
2367  
2368  	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2369  	case (2 << 14): /* unfinished_FPop */
2370  	case (3 << 14): /* unimplemented_FPop */
2371  		ret = do_mathemu(regs, f, false);
2372  		break;
2373  	}
2374  	if (ret)
2375  		goto out;
2376  	do_fpe_common(regs);
2377  out:
2378  	exception_exit(prev_state);
2379  }
2380  
do_tof(struct pt_regs * regs)2381  void do_tof(struct pt_regs *regs)
2382  {
2383  	enum ctx_state prev_state = exception_enter();
2384  
2385  	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2386  		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2387  		goto out;
2388  
2389  	if (regs->tstate & TSTATE_PRIV)
2390  		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2391  	if (test_thread_flag(TIF_32BIT)) {
2392  		regs->tpc &= 0xffffffff;
2393  		regs->tnpc &= 0xffffffff;
2394  	}
2395  	force_sig_fault(SIGEMT, EMT_TAGOVF, (void __user *)regs->tpc);
2396  out:
2397  	exception_exit(prev_state);
2398  }
2399  
do_div0(struct pt_regs * regs)2400  void do_div0(struct pt_regs *regs)
2401  {
2402  	enum ctx_state prev_state = exception_enter();
2403  
2404  	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2405  		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2406  		goto out;
2407  
2408  	if (regs->tstate & TSTATE_PRIV)
2409  		die_if_kernel("TL0: Kernel divide by zero.", regs);
2410  	if (test_thread_flag(TIF_32BIT)) {
2411  		regs->tpc &= 0xffffffff;
2412  		regs->tnpc &= 0xffffffff;
2413  	}
2414  	force_sig_fault(SIGFPE, FPE_INTDIV, (void __user *)regs->tpc);
2415  out:
2416  	exception_exit(prev_state);
2417  }
2418  
instruction_dump(unsigned int * pc)2419  static void instruction_dump(unsigned int *pc)
2420  {
2421  	int i;
2422  
2423  	if ((((unsigned long) pc) & 3))
2424  		return;
2425  
2426  	printk("Instruction DUMP:");
2427  	for (i = -3; i < 6; i++)
2428  		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2429  	printk("\n");
2430  }
2431  
user_instruction_dump(unsigned int __user * pc)2432  static void user_instruction_dump(unsigned int __user *pc)
2433  {
2434  	int i;
2435  	unsigned int buf[9];
2436  
2437  	if ((((unsigned long) pc) & 3))
2438  		return;
2439  
2440  	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2441  		return;
2442  
2443  	printk("Instruction DUMP:");
2444  	for (i = 0; i < 9; i++)
2445  		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2446  	printk("\n");
2447  }
2448  
show_stack(struct task_struct * tsk,unsigned long * _ksp,const char * loglvl)2449  void show_stack(struct task_struct *tsk, unsigned long *_ksp, const char *loglvl)
2450  {
2451  	unsigned long fp, ksp;
2452  	struct thread_info *tp;
2453  	int count = 0;
2454  #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2455  	int graph = 0;
2456  #endif
2457  
2458  	ksp = (unsigned long) _ksp;
2459  	if (!tsk)
2460  		tsk = current;
2461  	tp = task_thread_info(tsk);
2462  	if (ksp == 0UL) {
2463  		if (tsk == current)
2464  			asm("mov %%fp, %0" : "=r" (ksp));
2465  		else
2466  			ksp = tp->ksp;
2467  	}
2468  	if (tp == current_thread_info())
2469  		flushw_all();
2470  
2471  	fp = ksp + STACK_BIAS;
2472  
2473  	printk("%sCall Trace:\n", loglvl);
2474  	do {
2475  		struct sparc_stackf *sf;
2476  		struct pt_regs *regs;
2477  		unsigned long pc;
2478  
2479  		if (!kstack_valid(tp, fp))
2480  			break;
2481  		sf = (struct sparc_stackf *) fp;
2482  		regs = (struct pt_regs *) (sf + 1);
2483  
2484  		if (kstack_is_trap_frame(tp, regs)) {
2485  			if (!(regs->tstate & TSTATE_PRIV))
2486  				break;
2487  			pc = regs->tpc;
2488  			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2489  		} else {
2490  			pc = sf->callers_pc;
2491  			fp = (unsigned long)sf->fp + STACK_BIAS;
2492  		}
2493  
2494  		print_ip_sym(loglvl, pc);
2495  #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2496  		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2497  			struct ftrace_ret_stack *ret_stack;
2498  			ret_stack = ftrace_graph_get_ret_stack(tsk, graph);
2499  			if (ret_stack) {
2500  				pc = ret_stack->ret;
2501  				print_ip_sym(loglvl, pc);
2502  				graph++;
2503  			}
2504  		}
2505  #endif
2506  	} while (++count < 16);
2507  }
2508  
kernel_stack_up(struct reg_window * rw)2509  static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2510  {
2511  	unsigned long fp = rw->ins[6];
2512  
2513  	if (!fp)
2514  		return NULL;
2515  
2516  	return (struct reg_window *) (fp + STACK_BIAS);
2517  }
2518  
die_if_kernel(char * str,struct pt_regs * regs)2519  void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2520  {
2521  	static int die_counter;
2522  	int count = 0;
2523  
2524  	/* Amuse the user. */
2525  	printk(
2526  "              \\|/ ____ \\|/\n"
2527  "              \"@'/ .. \\`@\"\n"
2528  "              /_| \\__/ |_\\\n"
2529  "                 \\__U_/\n");
2530  
2531  	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2532  	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2533  	__asm__ __volatile__("flushw");
2534  	show_regs(regs);
2535  	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2536  	if (regs->tstate & TSTATE_PRIV) {
2537  		struct thread_info *tp = current_thread_info();
2538  		struct reg_window *rw = (struct reg_window *)
2539  			(regs->u_regs[UREG_FP] + STACK_BIAS);
2540  
2541  		/* Stop the back trace when we hit userland or we
2542  		 * find some badly aligned kernel stack.
2543  		 */
2544  		while (rw &&
2545  		       count++ < 30 &&
2546  		       kstack_valid(tp, (unsigned long) rw)) {
2547  			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2548  			       (void *) rw->ins[7]);
2549  
2550  			rw = kernel_stack_up(rw);
2551  		}
2552  		instruction_dump ((unsigned int *) regs->tpc);
2553  	} else {
2554  		if (test_thread_flag(TIF_32BIT)) {
2555  			regs->tpc &= 0xffffffff;
2556  			regs->tnpc &= 0xffffffff;
2557  		}
2558  		user_instruction_dump ((unsigned int __user *) regs->tpc);
2559  	}
2560  	if (panic_on_oops)
2561  		panic("Fatal exception");
2562  	make_task_dead((regs->tstate & TSTATE_PRIV)? SIGKILL : SIGSEGV);
2563  }
2564  EXPORT_SYMBOL(die_if_kernel);
2565  
2566  #define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2567  #define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2568  
do_illegal_instruction(struct pt_regs * regs)2569  void do_illegal_instruction(struct pt_regs *regs)
2570  {
2571  	enum ctx_state prev_state = exception_enter();
2572  	unsigned long pc = regs->tpc;
2573  	unsigned long tstate = regs->tstate;
2574  	u32 insn;
2575  
2576  	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2577  		       0, 0x10, SIGILL) == NOTIFY_STOP)
2578  		goto out;
2579  
2580  	if (tstate & TSTATE_PRIV)
2581  		die_if_kernel("Kernel illegal instruction", regs);
2582  	if (test_thread_flag(TIF_32BIT))
2583  		pc = (u32)pc;
2584  	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2585  		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2586  			if (handle_popc(insn, regs))
2587  				goto out;
2588  		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2589  			if (handle_ldf_stq(insn, regs))
2590  				goto out;
2591  		} else if (tlb_type == hypervisor) {
2592  			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2593  				if (!vis_emul(regs, insn))
2594  					goto out;
2595  			} else {
2596  				struct fpustate *f = FPUSTATE;
2597  
2598  				/* On UltraSPARC T2 and later, FPU insns which
2599  				 * are not implemented in HW signal an illegal
2600  				 * instruction trap and do not set the FP Trap
2601  				 * Trap in the %fsr to unimplemented_FPop.
2602  				 */
2603  				if (do_mathemu(regs, f, true))
2604  					goto out;
2605  			}
2606  		}
2607  	}
2608  	force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc);
2609  out:
2610  	exception_exit(prev_state);
2611  }
2612  
mem_address_unaligned(struct pt_regs * regs,unsigned long sfar,unsigned long sfsr)2613  void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2614  {
2615  	enum ctx_state prev_state = exception_enter();
2616  
2617  	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2618  		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2619  		goto out;
2620  
2621  	if (regs->tstate & TSTATE_PRIV) {
2622  		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2623  		goto out;
2624  	}
2625  	if (is_no_fault_exception(regs))
2626  		return;
2627  
2628  	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar);
2629  out:
2630  	exception_exit(prev_state);
2631  }
2632  
sun4v_do_mna(struct pt_regs * regs,unsigned long addr,unsigned long type_ctx)2633  void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2634  {
2635  	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2636  		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2637  		return;
2638  
2639  	if (regs->tstate & TSTATE_PRIV) {
2640  		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2641  		return;
2642  	}
2643  	if (is_no_fault_exception(regs))
2644  		return;
2645  
2646  	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr);
2647  }
2648  
2649  /* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2650   * tag mismatch.
2651   *
2652   * ADI version tag mismatch on a load from memory always results in a
2653   * precise exception. Tag mismatch on a store to memory will result in
2654   * precise exception if MCDPER or PMCDPER is set to 1.
2655   */
sun4v_mem_corrupt_detect_precise(struct pt_regs * regs,unsigned long addr,unsigned long context)2656  void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2657  				      unsigned long context)
2658  {
2659  	if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2660  		       0, 0x8, SIGSEGV) == NOTIFY_STOP)
2661  		return;
2662  
2663  	if (regs->tstate & TSTATE_PRIV) {
2664  		/* MCD exception could happen because the task was running
2665  		 * a system call with MCD enabled and passed a non-versioned
2666  		 * pointer or pointer with bad version tag to  the system
2667  		 * call.
2668  		 */
2669  		const struct exception_table_entry *entry;
2670  
2671  		entry = search_exception_tables(regs->tpc);
2672  		if (entry) {
2673  			/* Looks like a bad syscall parameter */
2674  #ifdef DEBUG_EXCEPTIONS
2675  			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2676  				 regs->tpc);
2677  			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2678  				 regs->tpc, entry->fixup);
2679  #endif
2680  			regs->tpc = entry->fixup;
2681  			regs->tnpc = regs->tpc + 4;
2682  			return;
2683  		}
2684  		pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2685  			 __func__, addr, context);
2686  		die_if_kernel("MCD precise", regs);
2687  	}
2688  
2689  	if (test_thread_flag(TIF_32BIT)) {
2690  		regs->tpc &= 0xffffffff;
2691  		regs->tnpc &= 0xffffffff;
2692  	}
2693  	force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr);
2694  }
2695  
do_privop(struct pt_regs * regs)2696  void do_privop(struct pt_regs *regs)
2697  {
2698  	enum ctx_state prev_state = exception_enter();
2699  
2700  	if (notify_die(DIE_TRAP, "privileged operation", regs,
2701  		       0, 0x11, SIGILL) == NOTIFY_STOP)
2702  		goto out;
2703  
2704  	if (test_thread_flag(TIF_32BIT)) {
2705  		regs->tpc &= 0xffffffff;
2706  		regs->tnpc &= 0xffffffff;
2707  	}
2708  	force_sig_fault(SIGILL, ILL_PRVOPC, (void __user *)regs->tpc);
2709  out:
2710  	exception_exit(prev_state);
2711  }
2712  
do_privact(struct pt_regs * regs)2713  void do_privact(struct pt_regs *regs)
2714  {
2715  	do_privop(regs);
2716  }
2717  
2718  /* Trap level 1 stuff or other traps we should never see... */
do_cee(struct pt_regs * regs)2719  void do_cee(struct pt_regs *regs)
2720  {
2721  	exception_enter();
2722  	die_if_kernel("TL0: Cache Error Exception", regs);
2723  }
2724  
do_div0_tl1(struct pt_regs * regs)2725  void do_div0_tl1(struct pt_regs *regs)
2726  {
2727  	exception_enter();
2728  	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2729  	die_if_kernel("TL1: DIV0 Exception", regs);
2730  }
2731  
do_fpieee_tl1(struct pt_regs * regs)2732  void do_fpieee_tl1(struct pt_regs *regs)
2733  {
2734  	exception_enter();
2735  	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2736  	die_if_kernel("TL1: FPU IEEE Exception", regs);
2737  }
2738  
do_fpother_tl1(struct pt_regs * regs)2739  void do_fpother_tl1(struct pt_regs *regs)
2740  {
2741  	exception_enter();
2742  	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2743  	die_if_kernel("TL1: FPU Other Exception", regs);
2744  }
2745  
do_ill_tl1(struct pt_regs * regs)2746  void do_ill_tl1(struct pt_regs *regs)
2747  {
2748  	exception_enter();
2749  	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2750  	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2751  }
2752  
do_irq_tl1(struct pt_regs * regs)2753  void do_irq_tl1(struct pt_regs *regs)
2754  {
2755  	exception_enter();
2756  	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2757  	die_if_kernel("TL1: IRQ Exception", regs);
2758  }
2759  
do_lddfmna_tl1(struct pt_regs * regs)2760  void do_lddfmna_tl1(struct pt_regs *regs)
2761  {
2762  	exception_enter();
2763  	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2764  	die_if_kernel("TL1: LDDF Exception", regs);
2765  }
2766  
do_stdfmna_tl1(struct pt_regs * regs)2767  void do_stdfmna_tl1(struct pt_regs *regs)
2768  {
2769  	exception_enter();
2770  	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2771  	die_if_kernel("TL1: STDF Exception", regs);
2772  }
2773  
do_paw(struct pt_regs * regs)2774  void do_paw(struct pt_regs *regs)
2775  {
2776  	exception_enter();
2777  	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2778  }
2779  
do_paw_tl1(struct pt_regs * regs)2780  void do_paw_tl1(struct pt_regs *regs)
2781  {
2782  	exception_enter();
2783  	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2784  	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2785  }
2786  
do_vaw(struct pt_regs * regs)2787  void do_vaw(struct pt_regs *regs)
2788  {
2789  	exception_enter();
2790  	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2791  }
2792  
do_vaw_tl1(struct pt_regs * regs)2793  void do_vaw_tl1(struct pt_regs *regs)
2794  {
2795  	exception_enter();
2796  	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2797  	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2798  }
2799  
do_tof_tl1(struct pt_regs * regs)2800  void do_tof_tl1(struct pt_regs *regs)
2801  {
2802  	exception_enter();
2803  	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2804  	die_if_kernel("TL1: Tag Overflow Exception", regs);
2805  }
2806  
do_getpsr(struct pt_regs * regs)2807  void do_getpsr(struct pt_regs *regs)
2808  {
2809  	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2810  	regs->tpc   = regs->tnpc;
2811  	regs->tnpc += 4;
2812  	if (test_thread_flag(TIF_32BIT)) {
2813  		regs->tpc &= 0xffffffff;
2814  		regs->tnpc &= 0xffffffff;
2815  	}
2816  }
2817  
2818  u64 cpu_mondo_counter[NR_CPUS] = {0};
2819  struct trap_per_cpu trap_block[NR_CPUS];
2820  EXPORT_SYMBOL(trap_block);
2821  
2822  /* This can get invoked before sched_init() so play it super safe
2823   * and use hard_smp_processor_id().
2824   */
init_cur_cpu_trap(struct thread_info * t)2825  void notrace init_cur_cpu_trap(struct thread_info *t)
2826  {
2827  	int cpu = hard_smp_processor_id();
2828  	struct trap_per_cpu *p = &trap_block[cpu];
2829  
2830  	p->thread = t;
2831  	p->pgd_paddr = 0;
2832  }
2833  
2834  extern void thread_info_offsets_are_bolixed_dave(void);
2835  extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2836  extern void tsb_config_offsets_are_bolixed_dave(void);
2837  
2838  /* Only invoked on boot processor. */
trap_init(void)2839  void __init trap_init(void)
2840  {
2841  	/* Compile time sanity check. */
2842  	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2843  		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2844  		     TI_CPU != offsetof(struct thread_info, cpu) ||
2845  		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2846  		     TI_KSP != offsetof(struct thread_info, ksp) ||
2847  		     TI_FAULT_ADDR != offsetof(struct thread_info,
2848  					       fault_address) ||
2849  		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2850  		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2851  		     TI_REG_WINDOW != offsetof(struct thread_info,
2852  					       reg_window) ||
2853  		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2854  					       rwbuf_stkptrs) ||
2855  		     TI_GSR != offsetof(struct thread_info, gsr) ||
2856  		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2857  		     TI_PRE_COUNT != offsetof(struct thread_info,
2858  					      preempt_count) ||
2859  		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2860  		     TI_KUNA_REGS != offsetof(struct thread_info,
2861  					      kern_una_regs) ||
2862  		     TI_KUNA_INSN != offsetof(struct thread_info,
2863  					      kern_una_insn) ||
2864  		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2865  		     (TI_FPREGS & (64 - 1)));
2866  
2867  	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2868  						     thread) ||
2869  		     (TRAP_PER_CPU_PGD_PADDR !=
2870  		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2871  		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2872  		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2873  		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2874  		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2875  		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2876  		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2877  		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2878  		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2879  		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2880  		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2881  		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2882  		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2883  		     (TRAP_PER_CPU_FAULT_INFO !=
2884  		      offsetof(struct trap_per_cpu, fault_info)) ||
2885  		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2886  		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2887  		     (TRAP_PER_CPU_CPU_LIST_PA !=
2888  		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2889  		     (TRAP_PER_CPU_TSB_HUGE !=
2890  		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2891  		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2892  		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2893  		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2894  		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2895  		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2896  		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2897  		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2898  		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2899  		     (TRAP_PER_CPU_RESUM_QMASK !=
2900  		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2901  		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2902  		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2903  		     (TRAP_PER_CPU_PER_CPU_BASE !=
2904  		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2905  
2906  	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2907  		      offsetof(struct tsb_config, tsb)) ||
2908  		     (TSB_CONFIG_RSS_LIMIT !=
2909  		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2910  		     (TSB_CONFIG_NENTRIES !=
2911  		      offsetof(struct tsb_config, tsb_nentries)) ||
2912  		     (TSB_CONFIG_REG_VAL !=
2913  		      offsetof(struct tsb_config, tsb_reg_val)) ||
2914  		     (TSB_CONFIG_MAP_VADDR !=
2915  		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
2916  		     (TSB_CONFIG_MAP_PTE !=
2917  		      offsetof(struct tsb_config, tsb_map_pte)));
2918  
2919  	/* Attach to the address space of init_task.  On SMP we
2920  	 * do this in smp.c:smp_callin for other cpus.
2921  	 */
2922  	mmgrab(&init_mm);
2923  	current->active_mm = &init_mm;
2924  }
2925