1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/blk-integrity.h> 25 #include <linux/ratelimit.h> 26 #include <asm/unaligned.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_cmnd.h> 30 #include <scsi/scsi_dbg.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_driver.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 36 #include <scsi/scsi_dh.h> 37 38 #include <trace/events/scsi.h> 39 40 #include "scsi_debugfs.h" 41 #include "scsi_priv.h" 42 #include "scsi_logging.h" 43 44 /* 45 * Size of integrity metadata is usually small, 1 inline sg should 46 * cover normal cases. 47 */ 48 #ifdef CONFIG_ARCH_NO_SG_CHAIN 49 #define SCSI_INLINE_PROT_SG_CNT 0 50 #define SCSI_INLINE_SG_CNT 0 51 #else 52 #define SCSI_INLINE_PROT_SG_CNT 1 53 #define SCSI_INLINE_SG_CNT 2 54 #endif 55 56 static struct kmem_cache *scsi_sense_cache; 57 static DEFINE_MUTEX(scsi_sense_cache_mutex); 58 59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 60 scsi_init_sense_cache(struct Scsi_Host * shost)61 int scsi_init_sense_cache(struct Scsi_Host *shost) 62 { 63 int ret = 0; 64 65 mutex_lock(&scsi_sense_cache_mutex); 66 if (!scsi_sense_cache) { 67 scsi_sense_cache = 68 kmem_cache_create_usercopy("scsi_sense_cache", 69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 70 0, SCSI_SENSE_BUFFERSIZE, NULL); 71 if (!scsi_sense_cache) 72 ret = -ENOMEM; 73 } 74 mutex_unlock(&scsi_sense_cache_mutex); 75 return ret; 76 } 77 78 static void scsi_set_blocked(struct scsi_cmnd * cmd,int reason)79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 80 { 81 struct Scsi_Host *host = cmd->device->host; 82 struct scsi_device *device = cmd->device; 83 struct scsi_target *starget = scsi_target(device); 84 85 /* 86 * Set the appropriate busy bit for the device/host. 87 * 88 * If the host/device isn't busy, assume that something actually 89 * completed, and that we should be able to queue a command now. 90 * 91 * Note that the prior mid-layer assumption that any host could 92 * always queue at least one command is now broken. The mid-layer 93 * will implement a user specifiable stall (see 94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 95 * if a command is requeued with no other commands outstanding 96 * either for the device or for the host. 97 */ 98 switch (reason) { 99 case SCSI_MLQUEUE_HOST_BUSY: 100 atomic_set(&host->host_blocked, host->max_host_blocked); 101 break; 102 case SCSI_MLQUEUE_DEVICE_BUSY: 103 case SCSI_MLQUEUE_EH_RETRY: 104 atomic_set(&device->device_blocked, 105 device->max_device_blocked); 106 break; 107 case SCSI_MLQUEUE_TARGET_BUSY: 108 atomic_set(&starget->target_blocked, 109 starget->max_target_blocked); 110 break; 111 } 112 } 113 scsi_mq_requeue_cmd(struct scsi_cmnd * cmd,unsigned long msecs)114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs) 115 { 116 struct request *rq = scsi_cmd_to_rq(cmd); 117 118 if (rq->rq_flags & RQF_DONTPREP) { 119 rq->rq_flags &= ~RQF_DONTPREP; 120 scsi_mq_uninit_cmd(cmd); 121 } else { 122 WARN_ON_ONCE(true); 123 } 124 125 blk_mq_requeue_request(rq, false); 126 if (!scsi_host_in_recovery(cmd->device->host)) 127 blk_mq_delay_kick_requeue_list(rq->q, msecs); 128 } 129 130 /** 131 * __scsi_queue_insert - private queue insertion 132 * @cmd: The SCSI command being requeued 133 * @reason: The reason for the requeue 134 * @unbusy: Whether the queue should be unbusied 135 * 136 * This is a private queue insertion. The public interface 137 * scsi_queue_insert() always assumes the queue should be unbusied 138 * because it's always called before the completion. This function is 139 * for a requeue after completion, which should only occur in this 140 * file. 141 */ __scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 143 { 144 struct scsi_device *device = cmd->device; 145 146 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 147 "Inserting command %p into mlqueue\n", cmd)); 148 149 scsi_set_blocked(cmd, reason); 150 151 /* 152 * Decrement the counters, since these commands are no longer 153 * active on the host/device. 154 */ 155 if (unbusy) 156 scsi_device_unbusy(device, cmd); 157 158 /* 159 * Requeue this command. It will go before all other commands 160 * that are already in the queue. Schedule requeue work under 161 * lock such that the kblockd_schedule_work() call happens 162 * before blk_mq_destroy_queue() finishes. 163 */ 164 cmd->result = 0; 165 166 blk_mq_requeue_request(scsi_cmd_to_rq(cmd), 167 !scsi_host_in_recovery(cmd->device->host)); 168 } 169 170 /** 171 * scsi_queue_insert - Reinsert a command in the queue. 172 * @cmd: command that we are adding to queue. 173 * @reason: why we are inserting command to queue. 174 * 175 * We do this for one of two cases. Either the host is busy and it cannot accept 176 * any more commands for the time being, or the device returned QUEUE_FULL and 177 * can accept no more commands. 178 * 179 * Context: This could be called either from an interrupt context or a normal 180 * process context. 181 */ scsi_queue_insert(struct scsi_cmnd * cmd,int reason)182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 183 { 184 __scsi_queue_insert(cmd, reason, true); 185 } 186 187 /** 188 * scsi_execute_cmd - insert request and wait for the result 189 * @sdev: scsi_device 190 * @cmd: scsi command 191 * @opf: block layer request cmd_flags 192 * @buffer: data buffer 193 * @bufflen: len of buffer 194 * @timeout: request timeout in HZ 195 * @retries: number of times to retry request 196 * @args: Optional args. See struct definition for field descriptions 197 * 198 * Returns the scsi_cmnd result field if a command was executed, or a negative 199 * Linux error code if we didn't get that far. 200 */ scsi_execute_cmd(struct scsi_device * sdev,const unsigned char * cmd,blk_opf_t opf,void * buffer,unsigned int bufflen,int timeout,int retries,const struct scsi_exec_args * args)201 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd, 202 blk_opf_t opf, void *buffer, unsigned int bufflen, 203 int timeout, int retries, 204 const struct scsi_exec_args *args) 205 { 206 static const struct scsi_exec_args default_args; 207 struct request *req; 208 struct scsi_cmnd *scmd; 209 int ret; 210 211 if (!args) 212 args = &default_args; 213 else if (WARN_ON_ONCE(args->sense && 214 args->sense_len != SCSI_SENSE_BUFFERSIZE)) 215 return -EINVAL; 216 217 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags); 218 if (IS_ERR(req)) 219 return PTR_ERR(req); 220 221 if (bufflen) { 222 ret = blk_rq_map_kern(sdev->request_queue, req, 223 buffer, bufflen, GFP_NOIO); 224 if (ret) 225 goto out; 226 } 227 scmd = blk_mq_rq_to_pdu(req); 228 scmd->cmd_len = COMMAND_SIZE(cmd[0]); 229 memcpy(scmd->cmnd, cmd, scmd->cmd_len); 230 scmd->allowed = retries; 231 scmd->flags |= args->scmd_flags; 232 req->timeout = timeout; 233 req->rq_flags |= RQF_QUIET; 234 235 /* 236 * head injection *required* here otherwise quiesce won't work 237 */ 238 blk_execute_rq(req, true); 239 240 /* 241 * Some devices (USB mass-storage in particular) may transfer 242 * garbage data together with a residue indicating that the data 243 * is invalid. Prevent the garbage from being misinterpreted 244 * and prevent security leaks by zeroing out the excess data. 245 */ 246 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen)) 247 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len); 248 249 if (args->resid) 250 *args->resid = scmd->resid_len; 251 if (args->sense) 252 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE); 253 if (args->sshdr) 254 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len, 255 args->sshdr); 256 257 ret = scmd->result; 258 out: 259 blk_mq_free_request(req); 260 261 return ret; 262 } 263 EXPORT_SYMBOL(scsi_execute_cmd); 264 265 /* 266 * Wake up the error handler if necessary. Avoid as follows that the error 267 * handler is not woken up if host in-flight requests number == 268 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 269 * with an RCU read lock in this function to ensure that this function in 270 * its entirety either finishes before scsi_eh_scmd_add() increases the 271 * host_failed counter or that it notices the shost state change made by 272 * scsi_eh_scmd_add(). 273 */ scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)274 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 275 { 276 unsigned long flags; 277 278 rcu_read_lock(); 279 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 280 if (unlikely(scsi_host_in_recovery(shost))) { 281 unsigned int busy = scsi_host_busy(shost); 282 283 spin_lock_irqsave(shost->host_lock, flags); 284 if (shost->host_failed || shost->host_eh_scheduled) 285 scsi_eh_wakeup(shost, busy); 286 spin_unlock_irqrestore(shost->host_lock, flags); 287 } 288 rcu_read_unlock(); 289 } 290 scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)291 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 292 { 293 struct Scsi_Host *shost = sdev->host; 294 struct scsi_target *starget = scsi_target(sdev); 295 296 scsi_dec_host_busy(shost, cmd); 297 298 if (starget->can_queue > 0) 299 atomic_dec(&starget->target_busy); 300 301 sbitmap_put(&sdev->budget_map, cmd->budget_token); 302 cmd->budget_token = -1; 303 } 304 305 /* 306 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with 307 * interrupts disabled. 308 */ scsi_kick_sdev_queue(struct scsi_device * sdev,void * data)309 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data) 310 { 311 struct scsi_device *current_sdev = data; 312 313 if (sdev != current_sdev) 314 blk_mq_run_hw_queues(sdev->request_queue, true); 315 } 316 317 /* 318 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 319 * and call blk_run_queue for all the scsi_devices on the target - 320 * including current_sdev first. 321 * 322 * Called with *no* scsi locks held. 323 */ scsi_single_lun_run(struct scsi_device * current_sdev)324 static void scsi_single_lun_run(struct scsi_device *current_sdev) 325 { 326 struct Scsi_Host *shost = current_sdev->host; 327 struct scsi_target *starget = scsi_target(current_sdev); 328 unsigned long flags; 329 330 spin_lock_irqsave(shost->host_lock, flags); 331 starget->starget_sdev_user = NULL; 332 spin_unlock_irqrestore(shost->host_lock, flags); 333 334 /* 335 * Call blk_run_queue for all LUNs on the target, starting with 336 * current_sdev. We race with others (to set starget_sdev_user), 337 * but in most cases, we will be first. Ideally, each LU on the 338 * target would get some limited time or requests on the target. 339 */ 340 blk_mq_run_hw_queues(current_sdev->request_queue, 341 shost->queuecommand_may_block); 342 343 spin_lock_irqsave(shost->host_lock, flags); 344 if (!starget->starget_sdev_user) 345 __starget_for_each_device(starget, current_sdev, 346 scsi_kick_sdev_queue); 347 spin_unlock_irqrestore(shost->host_lock, flags); 348 } 349 scsi_device_is_busy(struct scsi_device * sdev)350 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 351 { 352 if (scsi_device_busy(sdev) >= sdev->queue_depth) 353 return true; 354 if (atomic_read(&sdev->device_blocked) > 0) 355 return true; 356 return false; 357 } 358 scsi_target_is_busy(struct scsi_target * starget)359 static inline bool scsi_target_is_busy(struct scsi_target *starget) 360 { 361 if (starget->can_queue > 0) { 362 if (atomic_read(&starget->target_busy) >= starget->can_queue) 363 return true; 364 if (atomic_read(&starget->target_blocked) > 0) 365 return true; 366 } 367 return false; 368 } 369 scsi_host_is_busy(struct Scsi_Host * shost)370 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 371 { 372 if (atomic_read(&shost->host_blocked) > 0) 373 return true; 374 if (shost->host_self_blocked) 375 return true; 376 return false; 377 } 378 scsi_starved_list_run(struct Scsi_Host * shost)379 static void scsi_starved_list_run(struct Scsi_Host *shost) 380 { 381 LIST_HEAD(starved_list); 382 struct scsi_device *sdev; 383 unsigned long flags; 384 385 spin_lock_irqsave(shost->host_lock, flags); 386 list_splice_init(&shost->starved_list, &starved_list); 387 388 while (!list_empty(&starved_list)) { 389 struct request_queue *slq; 390 391 /* 392 * As long as shost is accepting commands and we have 393 * starved queues, call blk_run_queue. scsi_request_fn 394 * drops the queue_lock and can add us back to the 395 * starved_list. 396 * 397 * host_lock protects the starved_list and starved_entry. 398 * scsi_request_fn must get the host_lock before checking 399 * or modifying starved_list or starved_entry. 400 */ 401 if (scsi_host_is_busy(shost)) 402 break; 403 404 sdev = list_entry(starved_list.next, 405 struct scsi_device, starved_entry); 406 list_del_init(&sdev->starved_entry); 407 if (scsi_target_is_busy(scsi_target(sdev))) { 408 list_move_tail(&sdev->starved_entry, 409 &shost->starved_list); 410 continue; 411 } 412 413 /* 414 * Once we drop the host lock, a racing scsi_remove_device() 415 * call may remove the sdev from the starved list and destroy 416 * it and the queue. Mitigate by taking a reference to the 417 * queue and never touching the sdev again after we drop the 418 * host lock. Note: if __scsi_remove_device() invokes 419 * blk_mq_destroy_queue() before the queue is run from this 420 * function then blk_run_queue() will return immediately since 421 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING. 422 */ 423 slq = sdev->request_queue; 424 if (!blk_get_queue(slq)) 425 continue; 426 spin_unlock_irqrestore(shost->host_lock, flags); 427 428 blk_mq_run_hw_queues(slq, false); 429 blk_put_queue(slq); 430 431 spin_lock_irqsave(shost->host_lock, flags); 432 } 433 /* put any unprocessed entries back */ 434 list_splice(&starved_list, &shost->starved_list); 435 spin_unlock_irqrestore(shost->host_lock, flags); 436 } 437 438 /** 439 * scsi_run_queue - Select a proper request queue to serve next. 440 * @q: last request's queue 441 * 442 * The previous command was completely finished, start a new one if possible. 443 */ scsi_run_queue(struct request_queue * q)444 static void scsi_run_queue(struct request_queue *q) 445 { 446 struct scsi_device *sdev = q->queuedata; 447 448 if (scsi_target(sdev)->single_lun) 449 scsi_single_lun_run(sdev); 450 if (!list_empty(&sdev->host->starved_list)) 451 scsi_starved_list_run(sdev->host); 452 453 /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */ 454 blk_mq_kick_requeue_list(q); 455 } 456 scsi_requeue_run_queue(struct work_struct * work)457 void scsi_requeue_run_queue(struct work_struct *work) 458 { 459 struct scsi_device *sdev; 460 struct request_queue *q; 461 462 sdev = container_of(work, struct scsi_device, requeue_work); 463 q = sdev->request_queue; 464 scsi_run_queue(q); 465 } 466 scsi_run_host_queues(struct Scsi_Host * shost)467 void scsi_run_host_queues(struct Scsi_Host *shost) 468 { 469 struct scsi_device *sdev; 470 471 shost_for_each_device(sdev, shost) 472 scsi_run_queue(sdev->request_queue); 473 } 474 scsi_uninit_cmd(struct scsi_cmnd * cmd)475 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 476 { 477 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) { 478 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 479 480 if (drv->uninit_command) 481 drv->uninit_command(cmd); 482 } 483 } 484 scsi_free_sgtables(struct scsi_cmnd * cmd)485 void scsi_free_sgtables(struct scsi_cmnd *cmd) 486 { 487 if (cmd->sdb.table.nents) 488 sg_free_table_chained(&cmd->sdb.table, 489 SCSI_INLINE_SG_CNT); 490 if (scsi_prot_sg_count(cmd)) 491 sg_free_table_chained(&cmd->prot_sdb->table, 492 SCSI_INLINE_PROT_SG_CNT); 493 } 494 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 495 scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)496 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 497 { 498 scsi_free_sgtables(cmd); 499 scsi_uninit_cmd(cmd); 500 } 501 scsi_run_queue_async(struct scsi_device * sdev)502 static void scsi_run_queue_async(struct scsi_device *sdev) 503 { 504 if (scsi_host_in_recovery(sdev->host)) 505 return; 506 507 if (scsi_target(sdev)->single_lun || 508 !list_empty(&sdev->host->starved_list)) { 509 kblockd_schedule_work(&sdev->requeue_work); 510 } else { 511 /* 512 * smp_mb() present in sbitmap_queue_clear() or implied in 513 * .end_io is for ordering writing .device_busy in 514 * scsi_device_unbusy() and reading sdev->restarts. 515 */ 516 int old = atomic_read(&sdev->restarts); 517 518 /* 519 * ->restarts has to be kept as non-zero if new budget 520 * contention occurs. 521 * 522 * No need to run queue when either another re-run 523 * queue wins in updating ->restarts or a new budget 524 * contention occurs. 525 */ 526 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 527 blk_mq_run_hw_queues(sdev->request_queue, true); 528 } 529 } 530 531 /* Returns false when no more bytes to process, true if there are more */ scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)532 static bool scsi_end_request(struct request *req, blk_status_t error, 533 unsigned int bytes) 534 { 535 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 536 struct scsi_device *sdev = cmd->device; 537 struct request_queue *q = sdev->request_queue; 538 539 if (blk_update_request(req, error, bytes)) 540 return true; 541 542 // XXX: 543 if (blk_queue_add_random(q)) 544 add_disk_randomness(req->q->disk); 545 546 WARN_ON_ONCE(!blk_rq_is_passthrough(req) && 547 !(cmd->flags & SCMD_INITIALIZED)); 548 cmd->flags = 0; 549 550 /* 551 * Calling rcu_barrier() is not necessary here because the 552 * SCSI error handler guarantees that the function called by 553 * call_rcu() has been called before scsi_end_request() is 554 * called. 555 */ 556 destroy_rcu_head(&cmd->rcu); 557 558 /* 559 * In the MQ case the command gets freed by __blk_mq_end_request, 560 * so we have to do all cleanup that depends on it earlier. 561 * 562 * We also can't kick the queues from irq context, so we 563 * will have to defer it to a workqueue. 564 */ 565 scsi_mq_uninit_cmd(cmd); 566 567 /* 568 * queue is still alive, so grab the ref for preventing it 569 * from being cleaned up during running queue. 570 */ 571 percpu_ref_get(&q->q_usage_counter); 572 573 __blk_mq_end_request(req, error); 574 575 scsi_run_queue_async(sdev); 576 577 percpu_ref_put(&q->q_usage_counter); 578 return false; 579 } 580 581 /** 582 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 583 * @result: scsi error code 584 * 585 * Translate a SCSI result code into a blk_status_t value. 586 */ scsi_result_to_blk_status(int result)587 static blk_status_t scsi_result_to_blk_status(int result) 588 { 589 /* 590 * Check the scsi-ml byte first in case we converted a host or status 591 * byte. 592 */ 593 switch (scsi_ml_byte(result)) { 594 case SCSIML_STAT_OK: 595 break; 596 case SCSIML_STAT_RESV_CONFLICT: 597 return BLK_STS_RESV_CONFLICT; 598 case SCSIML_STAT_NOSPC: 599 return BLK_STS_NOSPC; 600 case SCSIML_STAT_MED_ERROR: 601 return BLK_STS_MEDIUM; 602 case SCSIML_STAT_TGT_FAILURE: 603 return BLK_STS_TARGET; 604 case SCSIML_STAT_DL_TIMEOUT: 605 return BLK_STS_DURATION_LIMIT; 606 } 607 608 switch (host_byte(result)) { 609 case DID_OK: 610 if (scsi_status_is_good(result)) 611 return BLK_STS_OK; 612 return BLK_STS_IOERR; 613 case DID_TRANSPORT_FAILFAST: 614 case DID_TRANSPORT_MARGINAL: 615 return BLK_STS_TRANSPORT; 616 default: 617 return BLK_STS_IOERR; 618 } 619 } 620 621 /** 622 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary 623 * @rq: request to examine 624 * 625 * Description: 626 * A request could be merge of IOs which require different failure 627 * handling. This function determines the number of bytes which 628 * can be failed from the beginning of the request without 629 * crossing into area which need to be retried further. 630 * 631 * Return: 632 * The number of bytes to fail. 633 */ scsi_rq_err_bytes(const struct request * rq)634 static unsigned int scsi_rq_err_bytes(const struct request *rq) 635 { 636 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 637 unsigned int bytes = 0; 638 struct bio *bio; 639 640 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 641 return blk_rq_bytes(rq); 642 643 /* 644 * Currently the only 'mixing' which can happen is between 645 * different fastfail types. We can safely fail portions 646 * which have all the failfast bits that the first one has - 647 * the ones which are at least as eager to fail as the first 648 * one. 649 */ 650 for (bio = rq->bio; bio; bio = bio->bi_next) { 651 if ((bio->bi_opf & ff) != ff) 652 break; 653 bytes += bio->bi_iter.bi_size; 654 } 655 656 /* this could lead to infinite loop */ 657 BUG_ON(blk_rq_bytes(rq) && !bytes); 658 return bytes; 659 } 660 scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)661 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 662 { 663 struct request *req = scsi_cmd_to_rq(cmd); 664 unsigned long wait_for; 665 666 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 667 return false; 668 669 wait_for = (cmd->allowed + 1) * req->timeout; 670 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 671 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 672 wait_for/HZ); 673 return true; 674 } 675 return false; 676 } 677 678 /* 679 * When ALUA transition state is returned, reprep the cmd to 680 * use the ALUA handler's transition timeout. Delay the reprep 681 * 1 sec to avoid aggressive retries of the target in that 682 * state. 683 */ 684 #define ALUA_TRANSITION_REPREP_DELAY 1000 685 686 /* Helper for scsi_io_completion() when special action required. */ scsi_io_completion_action(struct scsi_cmnd * cmd,int result)687 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 688 { 689 struct request *req = scsi_cmd_to_rq(cmd); 690 int level = 0; 691 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP, 692 ACTION_RETRY, ACTION_DELAYED_RETRY} action; 693 struct scsi_sense_hdr sshdr; 694 bool sense_valid; 695 bool sense_current = true; /* false implies "deferred sense" */ 696 blk_status_t blk_stat; 697 698 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 699 if (sense_valid) 700 sense_current = !scsi_sense_is_deferred(&sshdr); 701 702 blk_stat = scsi_result_to_blk_status(result); 703 704 if (host_byte(result) == DID_RESET) { 705 /* Third party bus reset or reset for error recovery 706 * reasons. Just retry the command and see what 707 * happens. 708 */ 709 action = ACTION_RETRY; 710 } else if (sense_valid && sense_current) { 711 switch (sshdr.sense_key) { 712 case UNIT_ATTENTION: 713 if (cmd->device->removable) { 714 /* Detected disc change. Set a bit 715 * and quietly refuse further access. 716 */ 717 cmd->device->changed = 1; 718 action = ACTION_FAIL; 719 } else { 720 /* Must have been a power glitch, or a 721 * bus reset. Could not have been a 722 * media change, so we just retry the 723 * command and see what happens. 724 */ 725 action = ACTION_RETRY; 726 } 727 break; 728 case ILLEGAL_REQUEST: 729 /* If we had an ILLEGAL REQUEST returned, then 730 * we may have performed an unsupported 731 * command. The only thing this should be 732 * would be a ten byte read where only a six 733 * byte read was supported. Also, on a system 734 * where READ CAPACITY failed, we may have 735 * read past the end of the disk. 736 */ 737 if ((cmd->device->use_10_for_rw && 738 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 739 (cmd->cmnd[0] == READ_10 || 740 cmd->cmnd[0] == WRITE_10)) { 741 /* This will issue a new 6-byte command. */ 742 cmd->device->use_10_for_rw = 0; 743 action = ACTION_REPREP; 744 } else if (sshdr.asc == 0x10) /* DIX */ { 745 action = ACTION_FAIL; 746 blk_stat = BLK_STS_PROTECTION; 747 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 748 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 749 action = ACTION_FAIL; 750 blk_stat = BLK_STS_TARGET; 751 } else 752 action = ACTION_FAIL; 753 break; 754 case ABORTED_COMMAND: 755 action = ACTION_FAIL; 756 if (sshdr.asc == 0x10) /* DIF */ 757 blk_stat = BLK_STS_PROTECTION; 758 break; 759 case NOT_READY: 760 /* If the device is in the process of becoming 761 * ready, or has a temporary blockage, retry. 762 */ 763 if (sshdr.asc == 0x04) { 764 switch (sshdr.ascq) { 765 case 0x01: /* becoming ready */ 766 case 0x04: /* format in progress */ 767 case 0x05: /* rebuild in progress */ 768 case 0x06: /* recalculation in progress */ 769 case 0x07: /* operation in progress */ 770 case 0x08: /* Long write in progress */ 771 case 0x09: /* self test in progress */ 772 case 0x11: /* notify (enable spinup) required */ 773 case 0x14: /* space allocation in progress */ 774 case 0x1a: /* start stop unit in progress */ 775 case 0x1b: /* sanitize in progress */ 776 case 0x1d: /* configuration in progress */ 777 action = ACTION_DELAYED_RETRY; 778 break; 779 case 0x0a: /* ALUA state transition */ 780 action = ACTION_DELAYED_REPREP; 781 break; 782 /* 783 * Depopulation might take many hours, 784 * thus it is not worthwhile to retry. 785 */ 786 case 0x24: /* depopulation in progress */ 787 case 0x25: /* depopulation restore in progress */ 788 fallthrough; 789 default: 790 action = ACTION_FAIL; 791 break; 792 } 793 } else 794 action = ACTION_FAIL; 795 break; 796 case VOLUME_OVERFLOW: 797 /* See SSC3rXX or current. */ 798 action = ACTION_FAIL; 799 break; 800 case DATA_PROTECT: 801 action = ACTION_FAIL; 802 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 803 (sshdr.asc == 0x55 && 804 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 805 /* Insufficient zone resources */ 806 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 807 } 808 break; 809 case COMPLETED: 810 fallthrough; 811 default: 812 action = ACTION_FAIL; 813 break; 814 } 815 } else 816 action = ACTION_FAIL; 817 818 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 819 action = ACTION_FAIL; 820 821 switch (action) { 822 case ACTION_FAIL: 823 /* Give up and fail the remainder of the request */ 824 if (!(req->rq_flags & RQF_QUIET)) { 825 static DEFINE_RATELIMIT_STATE(_rs, 826 DEFAULT_RATELIMIT_INTERVAL, 827 DEFAULT_RATELIMIT_BURST); 828 829 if (unlikely(scsi_logging_level)) 830 level = 831 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 832 SCSI_LOG_MLCOMPLETE_BITS); 833 834 /* 835 * if logging is enabled the failure will be printed 836 * in scsi_log_completion(), so avoid duplicate messages 837 */ 838 if (!level && __ratelimit(&_rs)) { 839 scsi_print_result(cmd, NULL, FAILED); 840 if (sense_valid) 841 scsi_print_sense(cmd); 842 scsi_print_command(cmd); 843 } 844 } 845 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req))) 846 return; 847 fallthrough; 848 case ACTION_REPREP: 849 scsi_mq_requeue_cmd(cmd, 0); 850 break; 851 case ACTION_DELAYED_REPREP: 852 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY); 853 break; 854 case ACTION_RETRY: 855 /* Retry the same command immediately */ 856 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 857 break; 858 case ACTION_DELAYED_RETRY: 859 /* Retry the same command after a delay */ 860 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 861 break; 862 } 863 } 864 865 /* 866 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 867 * new result that may suppress further error checking. Also modifies 868 * *blk_statp in some cases. 869 */ scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)870 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 871 blk_status_t *blk_statp) 872 { 873 bool sense_valid; 874 bool sense_current = true; /* false implies "deferred sense" */ 875 struct request *req = scsi_cmd_to_rq(cmd); 876 struct scsi_sense_hdr sshdr; 877 878 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 879 if (sense_valid) 880 sense_current = !scsi_sense_is_deferred(&sshdr); 881 882 if (blk_rq_is_passthrough(req)) { 883 if (sense_valid) { 884 /* 885 * SG_IO wants current and deferred errors 886 */ 887 cmd->sense_len = min(8 + cmd->sense_buffer[7], 888 SCSI_SENSE_BUFFERSIZE); 889 } 890 if (sense_current) 891 *blk_statp = scsi_result_to_blk_status(result); 892 } else if (blk_rq_bytes(req) == 0 && sense_current) { 893 /* 894 * Flush commands do not transfers any data, and thus cannot use 895 * good_bytes != blk_rq_bytes(req) as the signal for an error. 896 * This sets *blk_statp explicitly for the problem case. 897 */ 898 *blk_statp = scsi_result_to_blk_status(result); 899 } 900 /* 901 * Recovered errors need reporting, but they're always treated as 902 * success, so fiddle the result code here. For passthrough requests 903 * we already took a copy of the original into sreq->result which 904 * is what gets returned to the user 905 */ 906 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 907 bool do_print = true; 908 /* 909 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 910 * skip print since caller wants ATA registers. Only occurs 911 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 912 */ 913 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 914 do_print = false; 915 else if (req->rq_flags & RQF_QUIET) 916 do_print = false; 917 if (do_print) 918 scsi_print_sense(cmd); 919 result = 0; 920 /* for passthrough, *blk_statp may be set */ 921 *blk_statp = BLK_STS_OK; 922 } 923 /* 924 * Another corner case: the SCSI status byte is non-zero but 'good'. 925 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 926 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 927 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 928 * intermediate statuses (both obsolete in SAM-4) as good. 929 */ 930 if ((result & 0xff) && scsi_status_is_good(result)) { 931 result = 0; 932 *blk_statp = BLK_STS_OK; 933 } 934 return result; 935 } 936 937 /** 938 * scsi_io_completion - Completion processing for SCSI commands. 939 * @cmd: command that is finished. 940 * @good_bytes: number of processed bytes. 941 * 942 * We will finish off the specified number of sectors. If we are done, the 943 * command block will be released and the queue function will be goosed. If we 944 * are not done then we have to figure out what to do next: 945 * 946 * a) We can call scsi_mq_requeue_cmd(). The request will be 947 * unprepared and put back on the queue. Then a new command will 948 * be created for it. This should be used if we made forward 949 * progress, or if we want to switch from READ(10) to READ(6) for 950 * example. 951 * 952 * b) We can call scsi_io_completion_action(). The request will be 953 * put back on the queue and retried using the same command as 954 * before, possibly after a delay. 955 * 956 * c) We can call scsi_end_request() with blk_stat other than 957 * BLK_STS_OK, to fail the remainder of the request. 958 */ scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)959 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 960 { 961 int result = cmd->result; 962 struct request *req = scsi_cmd_to_rq(cmd); 963 blk_status_t blk_stat = BLK_STS_OK; 964 965 if (unlikely(result)) /* a nz result may or may not be an error */ 966 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 967 968 /* 969 * Next deal with any sectors which we were able to correctly 970 * handle. 971 */ 972 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 973 "%u sectors total, %d bytes done.\n", 974 blk_rq_sectors(req), good_bytes)); 975 976 /* 977 * Failed, zero length commands always need to drop down 978 * to retry code. Fast path should return in this block. 979 */ 980 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 981 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 982 return; /* no bytes remaining */ 983 } 984 985 /* Kill remainder if no retries. */ 986 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 987 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 988 WARN_ONCE(true, 989 "Bytes remaining after failed, no-retry command"); 990 return; 991 } 992 993 /* 994 * If there had been no error, but we have leftover bytes in the 995 * request just queue the command up again. 996 */ 997 if (likely(result == 0)) 998 scsi_mq_requeue_cmd(cmd, 0); 999 else 1000 scsi_io_completion_action(cmd, result); 1001 } 1002 scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)1003 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 1004 struct request *rq) 1005 { 1006 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 1007 !op_is_write(req_op(rq)) && 1008 sdev->host->hostt->dma_need_drain(rq); 1009 } 1010 1011 /** 1012 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists 1013 * @cmd: SCSI command data structure to initialize. 1014 * 1015 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled 1016 * for @cmd. 1017 * 1018 * Returns: 1019 * * BLK_STS_OK - on success 1020 * * BLK_STS_RESOURCE - if the failure is retryable 1021 * * BLK_STS_IOERR - if the failure is fatal 1022 */ scsi_alloc_sgtables(struct scsi_cmnd * cmd)1023 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 1024 { 1025 struct scsi_device *sdev = cmd->device; 1026 struct request *rq = scsi_cmd_to_rq(cmd); 1027 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 1028 struct scatterlist *last_sg = NULL; 1029 blk_status_t ret; 1030 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 1031 int count; 1032 1033 if (WARN_ON_ONCE(!nr_segs)) 1034 return BLK_STS_IOERR; 1035 1036 /* 1037 * Make sure there is space for the drain. The driver must adjust 1038 * max_hw_segments to be prepared for this. 1039 */ 1040 if (need_drain) 1041 nr_segs++; 1042 1043 /* 1044 * If sg table allocation fails, requeue request later. 1045 */ 1046 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1047 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1048 return BLK_STS_RESOURCE; 1049 1050 /* 1051 * Next, walk the list, and fill in the addresses and sizes of 1052 * each segment. 1053 */ 1054 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1055 1056 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1057 unsigned int pad_len = 1058 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1059 1060 last_sg->length += pad_len; 1061 cmd->extra_len += pad_len; 1062 } 1063 1064 if (need_drain) { 1065 sg_unmark_end(last_sg); 1066 last_sg = sg_next(last_sg); 1067 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1068 sg_mark_end(last_sg); 1069 1070 cmd->extra_len += sdev->dma_drain_len; 1071 count++; 1072 } 1073 1074 BUG_ON(count > cmd->sdb.table.nents); 1075 cmd->sdb.table.nents = count; 1076 cmd->sdb.length = blk_rq_payload_bytes(rq); 1077 1078 if (blk_integrity_rq(rq)) { 1079 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1080 int ivecs; 1081 1082 if (WARN_ON_ONCE(!prot_sdb)) { 1083 /* 1084 * This can happen if someone (e.g. multipath) 1085 * queues a command to a device on an adapter 1086 * that does not support DIX. 1087 */ 1088 ret = BLK_STS_IOERR; 1089 goto out_free_sgtables; 1090 } 1091 1092 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1093 1094 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1095 prot_sdb->table.sgl, 1096 SCSI_INLINE_PROT_SG_CNT)) { 1097 ret = BLK_STS_RESOURCE; 1098 goto out_free_sgtables; 1099 } 1100 1101 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1102 prot_sdb->table.sgl); 1103 BUG_ON(count > ivecs); 1104 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1105 1106 cmd->prot_sdb = prot_sdb; 1107 cmd->prot_sdb->table.nents = count; 1108 } 1109 1110 return BLK_STS_OK; 1111 out_free_sgtables: 1112 scsi_free_sgtables(cmd); 1113 return ret; 1114 } 1115 EXPORT_SYMBOL(scsi_alloc_sgtables); 1116 1117 /** 1118 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1119 * @rq: Request associated with the SCSI command to be initialized. 1120 * 1121 * This function initializes the members of struct scsi_cmnd that must be 1122 * initialized before request processing starts and that won't be 1123 * reinitialized if a SCSI command is requeued. 1124 */ scsi_initialize_rq(struct request * rq)1125 static void scsi_initialize_rq(struct request *rq) 1126 { 1127 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1128 1129 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1130 cmd->cmd_len = MAX_COMMAND_SIZE; 1131 cmd->sense_len = 0; 1132 init_rcu_head(&cmd->rcu); 1133 cmd->jiffies_at_alloc = jiffies; 1134 cmd->retries = 0; 1135 } 1136 scsi_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)1137 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf, 1138 blk_mq_req_flags_t flags) 1139 { 1140 struct request *rq; 1141 1142 rq = blk_mq_alloc_request(q, opf, flags); 1143 if (!IS_ERR(rq)) 1144 scsi_initialize_rq(rq); 1145 return rq; 1146 } 1147 EXPORT_SYMBOL_GPL(scsi_alloc_request); 1148 1149 /* 1150 * Only called when the request isn't completed by SCSI, and not freed by 1151 * SCSI 1152 */ scsi_cleanup_rq(struct request * rq)1153 static void scsi_cleanup_rq(struct request *rq) 1154 { 1155 if (rq->rq_flags & RQF_DONTPREP) { 1156 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1157 rq->rq_flags &= ~RQF_DONTPREP; 1158 } 1159 } 1160 1161 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1162 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1163 { 1164 struct request *rq = scsi_cmd_to_rq(cmd); 1165 1166 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) { 1167 cmd->flags |= SCMD_INITIALIZED; 1168 scsi_initialize_rq(rq); 1169 } 1170 1171 cmd->device = dev; 1172 INIT_LIST_HEAD(&cmd->eh_entry); 1173 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1174 } 1175 scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1176 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1177 struct request *req) 1178 { 1179 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1180 1181 /* 1182 * Passthrough requests may transfer data, in which case they must 1183 * a bio attached to them. Or they might contain a SCSI command 1184 * that does not transfer data, in which case they may optionally 1185 * submit a request without an attached bio. 1186 */ 1187 if (req->bio) { 1188 blk_status_t ret = scsi_alloc_sgtables(cmd); 1189 if (unlikely(ret != BLK_STS_OK)) 1190 return ret; 1191 } else { 1192 BUG_ON(blk_rq_bytes(req)); 1193 1194 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1195 } 1196 1197 cmd->transfersize = blk_rq_bytes(req); 1198 return BLK_STS_OK; 1199 } 1200 1201 static blk_status_t scsi_device_state_check(struct scsi_device * sdev,struct request * req)1202 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1203 { 1204 switch (sdev->sdev_state) { 1205 case SDEV_CREATED: 1206 return BLK_STS_OK; 1207 case SDEV_OFFLINE: 1208 case SDEV_TRANSPORT_OFFLINE: 1209 /* 1210 * If the device is offline we refuse to process any 1211 * commands. The device must be brought online 1212 * before trying any recovery commands. 1213 */ 1214 if (!sdev->offline_already) { 1215 sdev->offline_already = true; 1216 sdev_printk(KERN_ERR, sdev, 1217 "rejecting I/O to offline device\n"); 1218 } 1219 return BLK_STS_IOERR; 1220 case SDEV_DEL: 1221 /* 1222 * If the device is fully deleted, we refuse to 1223 * process any commands as well. 1224 */ 1225 sdev_printk(KERN_ERR, sdev, 1226 "rejecting I/O to dead device\n"); 1227 return BLK_STS_IOERR; 1228 case SDEV_BLOCK: 1229 case SDEV_CREATED_BLOCK: 1230 return BLK_STS_RESOURCE; 1231 case SDEV_QUIESCE: 1232 /* 1233 * If the device is blocked we only accept power management 1234 * commands. 1235 */ 1236 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1237 return BLK_STS_RESOURCE; 1238 return BLK_STS_OK; 1239 default: 1240 /* 1241 * For any other not fully online state we only allow 1242 * power management commands. 1243 */ 1244 if (req && !(req->rq_flags & RQF_PM)) 1245 return BLK_STS_OFFLINE; 1246 return BLK_STS_OK; 1247 } 1248 } 1249 1250 /* 1251 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token 1252 * and return the token else return -1. 1253 */ scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1254 static inline int scsi_dev_queue_ready(struct request_queue *q, 1255 struct scsi_device *sdev) 1256 { 1257 int token; 1258 1259 token = sbitmap_get(&sdev->budget_map); 1260 if (atomic_read(&sdev->device_blocked)) { 1261 if (token < 0) 1262 goto out; 1263 1264 if (scsi_device_busy(sdev) > 1) 1265 goto out_dec; 1266 1267 /* 1268 * unblock after device_blocked iterates to zero 1269 */ 1270 if (atomic_dec_return(&sdev->device_blocked) > 0) 1271 goto out_dec; 1272 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1273 "unblocking device at zero depth\n")); 1274 } 1275 1276 return token; 1277 out_dec: 1278 if (token >= 0) 1279 sbitmap_put(&sdev->budget_map, token); 1280 out: 1281 return -1; 1282 } 1283 1284 /* 1285 * scsi_target_queue_ready: checks if there we can send commands to target 1286 * @sdev: scsi device on starget to check. 1287 */ scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1288 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1289 struct scsi_device *sdev) 1290 { 1291 struct scsi_target *starget = scsi_target(sdev); 1292 unsigned int busy; 1293 1294 if (starget->single_lun) { 1295 spin_lock_irq(shost->host_lock); 1296 if (starget->starget_sdev_user && 1297 starget->starget_sdev_user != sdev) { 1298 spin_unlock_irq(shost->host_lock); 1299 return 0; 1300 } 1301 starget->starget_sdev_user = sdev; 1302 spin_unlock_irq(shost->host_lock); 1303 } 1304 1305 if (starget->can_queue <= 0) 1306 return 1; 1307 1308 busy = atomic_inc_return(&starget->target_busy) - 1; 1309 if (atomic_read(&starget->target_blocked) > 0) { 1310 if (busy) 1311 goto starved; 1312 1313 /* 1314 * unblock after target_blocked iterates to zero 1315 */ 1316 if (atomic_dec_return(&starget->target_blocked) > 0) 1317 goto out_dec; 1318 1319 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1320 "unblocking target at zero depth\n")); 1321 } 1322 1323 if (busy >= starget->can_queue) 1324 goto starved; 1325 1326 return 1; 1327 1328 starved: 1329 spin_lock_irq(shost->host_lock); 1330 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1331 spin_unlock_irq(shost->host_lock); 1332 out_dec: 1333 if (starget->can_queue > 0) 1334 atomic_dec(&starget->target_busy); 1335 return 0; 1336 } 1337 1338 /* 1339 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1340 * return 0. We must end up running the queue again whenever 0 is 1341 * returned, else IO can hang. 1342 */ scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1343 static inline int scsi_host_queue_ready(struct request_queue *q, 1344 struct Scsi_Host *shost, 1345 struct scsi_device *sdev, 1346 struct scsi_cmnd *cmd) 1347 { 1348 if (atomic_read(&shost->host_blocked) > 0) { 1349 if (scsi_host_busy(shost) > 0) 1350 goto starved; 1351 1352 /* 1353 * unblock after host_blocked iterates to zero 1354 */ 1355 if (atomic_dec_return(&shost->host_blocked) > 0) 1356 goto out_dec; 1357 1358 SCSI_LOG_MLQUEUE(3, 1359 shost_printk(KERN_INFO, shost, 1360 "unblocking host at zero depth\n")); 1361 } 1362 1363 if (shost->host_self_blocked) 1364 goto starved; 1365 1366 /* We're OK to process the command, so we can't be starved */ 1367 if (!list_empty(&sdev->starved_entry)) { 1368 spin_lock_irq(shost->host_lock); 1369 if (!list_empty(&sdev->starved_entry)) 1370 list_del_init(&sdev->starved_entry); 1371 spin_unlock_irq(shost->host_lock); 1372 } 1373 1374 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1375 1376 return 1; 1377 1378 starved: 1379 spin_lock_irq(shost->host_lock); 1380 if (list_empty(&sdev->starved_entry)) 1381 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1382 spin_unlock_irq(shost->host_lock); 1383 out_dec: 1384 scsi_dec_host_busy(shost, cmd); 1385 return 0; 1386 } 1387 1388 /* 1389 * Busy state exporting function for request stacking drivers. 1390 * 1391 * For efficiency, no lock is taken to check the busy state of 1392 * shost/starget/sdev, since the returned value is not guaranteed and 1393 * may be changed after request stacking drivers call the function, 1394 * regardless of taking lock or not. 1395 * 1396 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1397 * needs to return 'not busy'. Otherwise, request stacking drivers 1398 * may hold requests forever. 1399 */ scsi_mq_lld_busy(struct request_queue * q)1400 static bool scsi_mq_lld_busy(struct request_queue *q) 1401 { 1402 struct scsi_device *sdev = q->queuedata; 1403 struct Scsi_Host *shost; 1404 1405 if (blk_queue_dying(q)) 1406 return false; 1407 1408 shost = sdev->host; 1409 1410 /* 1411 * Ignore host/starget busy state. 1412 * Since block layer does not have a concept of fairness across 1413 * multiple queues, congestion of host/starget needs to be handled 1414 * in SCSI layer. 1415 */ 1416 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1417 return true; 1418 1419 return false; 1420 } 1421 1422 /* 1423 * Block layer request completion callback. May be called from interrupt 1424 * context. 1425 */ scsi_complete(struct request * rq)1426 static void scsi_complete(struct request *rq) 1427 { 1428 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1429 enum scsi_disposition disposition; 1430 1431 INIT_LIST_HEAD(&cmd->eh_entry); 1432 1433 atomic_inc(&cmd->device->iodone_cnt); 1434 if (cmd->result) 1435 atomic_inc(&cmd->device->ioerr_cnt); 1436 1437 disposition = scsi_decide_disposition(cmd); 1438 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1439 disposition = SUCCESS; 1440 1441 scsi_log_completion(cmd, disposition); 1442 1443 switch (disposition) { 1444 case SUCCESS: 1445 scsi_finish_command(cmd); 1446 break; 1447 case NEEDS_RETRY: 1448 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1449 break; 1450 case ADD_TO_MLQUEUE: 1451 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1452 break; 1453 default: 1454 scsi_eh_scmd_add(cmd); 1455 break; 1456 } 1457 } 1458 1459 /** 1460 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1461 * @cmd: command block we are dispatching. 1462 * 1463 * Return: nonzero return request was rejected and device's queue needs to be 1464 * plugged. 1465 */ scsi_dispatch_cmd(struct scsi_cmnd * cmd)1466 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1467 { 1468 struct Scsi_Host *host = cmd->device->host; 1469 int rtn = 0; 1470 1471 atomic_inc(&cmd->device->iorequest_cnt); 1472 1473 /* check if the device is still usable */ 1474 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1475 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1476 * returns an immediate error upwards, and signals 1477 * that the device is no longer present */ 1478 cmd->result = DID_NO_CONNECT << 16; 1479 goto done; 1480 } 1481 1482 /* Check to see if the scsi lld made this device blocked. */ 1483 if (unlikely(scsi_device_blocked(cmd->device))) { 1484 /* 1485 * in blocked state, the command is just put back on 1486 * the device queue. The suspend state has already 1487 * blocked the queue so future requests should not 1488 * occur until the device transitions out of the 1489 * suspend state. 1490 */ 1491 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1492 "queuecommand : device blocked\n")); 1493 atomic_dec(&cmd->device->iorequest_cnt); 1494 return SCSI_MLQUEUE_DEVICE_BUSY; 1495 } 1496 1497 /* Store the LUN value in cmnd, if needed. */ 1498 if (cmd->device->lun_in_cdb) 1499 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1500 (cmd->device->lun << 5 & 0xe0); 1501 1502 scsi_log_send(cmd); 1503 1504 /* 1505 * Before we queue this command, check if the command 1506 * length exceeds what the host adapter can handle. 1507 */ 1508 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1509 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1510 "queuecommand : command too long. " 1511 "cdb_size=%d host->max_cmd_len=%d\n", 1512 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1513 cmd->result = (DID_ABORT << 16); 1514 goto done; 1515 } 1516 1517 if (unlikely(host->shost_state == SHOST_DEL)) { 1518 cmd->result = (DID_NO_CONNECT << 16); 1519 goto done; 1520 1521 } 1522 1523 trace_scsi_dispatch_cmd_start(cmd); 1524 rtn = host->hostt->queuecommand(host, cmd); 1525 if (rtn) { 1526 atomic_dec(&cmd->device->iorequest_cnt); 1527 trace_scsi_dispatch_cmd_error(cmd, rtn); 1528 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1529 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1530 rtn = SCSI_MLQUEUE_HOST_BUSY; 1531 1532 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1533 "queuecommand : request rejected\n")); 1534 } 1535 1536 return rtn; 1537 done: 1538 scsi_done(cmd); 1539 return 0; 1540 } 1541 1542 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1543 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1544 { 1545 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1546 sizeof(struct scatterlist); 1547 } 1548 scsi_prepare_cmd(struct request * req)1549 static blk_status_t scsi_prepare_cmd(struct request *req) 1550 { 1551 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1552 struct scsi_device *sdev = req->q->queuedata; 1553 struct Scsi_Host *shost = sdev->host; 1554 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1555 struct scatterlist *sg; 1556 1557 scsi_init_command(sdev, cmd); 1558 1559 cmd->eh_eflags = 0; 1560 cmd->prot_type = 0; 1561 cmd->prot_flags = 0; 1562 cmd->submitter = 0; 1563 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1564 cmd->underflow = 0; 1565 cmd->transfersize = 0; 1566 cmd->host_scribble = NULL; 1567 cmd->result = 0; 1568 cmd->extra_len = 0; 1569 cmd->state = 0; 1570 if (in_flight) 1571 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1572 1573 cmd->prot_op = SCSI_PROT_NORMAL; 1574 if (blk_rq_bytes(req)) 1575 cmd->sc_data_direction = rq_dma_dir(req); 1576 else 1577 cmd->sc_data_direction = DMA_NONE; 1578 1579 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1580 cmd->sdb.table.sgl = sg; 1581 1582 if (scsi_host_get_prot(shost)) { 1583 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1584 1585 cmd->prot_sdb->table.sgl = 1586 (struct scatterlist *)(cmd->prot_sdb + 1); 1587 } 1588 1589 /* 1590 * Special handling for passthrough commands, which don't go to the ULP 1591 * at all: 1592 */ 1593 if (blk_rq_is_passthrough(req)) 1594 return scsi_setup_scsi_cmnd(sdev, req); 1595 1596 if (sdev->handler && sdev->handler->prep_fn) { 1597 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1598 1599 if (ret != BLK_STS_OK) 1600 return ret; 1601 } 1602 1603 /* Usually overridden by the ULP */ 1604 cmd->allowed = 0; 1605 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1606 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1607 } 1608 scsi_done_internal(struct scsi_cmnd * cmd,bool complete_directly)1609 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly) 1610 { 1611 struct request *req = scsi_cmd_to_rq(cmd); 1612 1613 switch (cmd->submitter) { 1614 case SUBMITTED_BY_BLOCK_LAYER: 1615 break; 1616 case SUBMITTED_BY_SCSI_ERROR_HANDLER: 1617 return scsi_eh_done(cmd); 1618 case SUBMITTED_BY_SCSI_RESET_IOCTL: 1619 return; 1620 } 1621 1622 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q))) 1623 return; 1624 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1625 return; 1626 trace_scsi_dispatch_cmd_done(cmd); 1627 1628 if (complete_directly) 1629 blk_mq_complete_request_direct(req, scsi_complete); 1630 else 1631 blk_mq_complete_request(req); 1632 } 1633 scsi_done(struct scsi_cmnd * cmd)1634 void scsi_done(struct scsi_cmnd *cmd) 1635 { 1636 scsi_done_internal(cmd, false); 1637 } 1638 EXPORT_SYMBOL(scsi_done); 1639 scsi_done_direct(struct scsi_cmnd * cmd)1640 void scsi_done_direct(struct scsi_cmnd *cmd) 1641 { 1642 scsi_done_internal(cmd, true); 1643 } 1644 EXPORT_SYMBOL(scsi_done_direct); 1645 scsi_mq_put_budget(struct request_queue * q,int budget_token)1646 static void scsi_mq_put_budget(struct request_queue *q, int budget_token) 1647 { 1648 struct scsi_device *sdev = q->queuedata; 1649 1650 sbitmap_put(&sdev->budget_map, budget_token); 1651 } 1652 1653 /* 1654 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 1655 * not change behaviour from the previous unplug mechanism, experimentation 1656 * may prove this needs changing. 1657 */ 1658 #define SCSI_QUEUE_DELAY 3 1659 scsi_mq_get_budget(struct request_queue * q)1660 static int scsi_mq_get_budget(struct request_queue *q) 1661 { 1662 struct scsi_device *sdev = q->queuedata; 1663 int token = scsi_dev_queue_ready(q, sdev); 1664 1665 if (token >= 0) 1666 return token; 1667 1668 atomic_inc(&sdev->restarts); 1669 1670 /* 1671 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1672 * .restarts must be incremented before .device_busy is read because the 1673 * code in scsi_run_queue_async() depends on the order of these operations. 1674 */ 1675 smp_mb__after_atomic(); 1676 1677 /* 1678 * If all in-flight requests originated from this LUN are completed 1679 * before reading .device_busy, sdev->device_busy will be observed as 1680 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1681 * soon. Otherwise, completion of one of these requests will observe 1682 * the .restarts flag, and the request queue will be run for handling 1683 * this request, see scsi_end_request(). 1684 */ 1685 if (unlikely(scsi_device_busy(sdev) == 0 && 1686 !scsi_device_blocked(sdev))) 1687 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1688 return -1; 1689 } 1690 scsi_mq_set_rq_budget_token(struct request * req,int token)1691 static void scsi_mq_set_rq_budget_token(struct request *req, int token) 1692 { 1693 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1694 1695 cmd->budget_token = token; 1696 } 1697 scsi_mq_get_rq_budget_token(struct request * req)1698 static int scsi_mq_get_rq_budget_token(struct request *req) 1699 { 1700 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1701 1702 return cmd->budget_token; 1703 } 1704 scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1705 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1706 const struct blk_mq_queue_data *bd) 1707 { 1708 struct request *req = bd->rq; 1709 struct request_queue *q = req->q; 1710 struct scsi_device *sdev = q->queuedata; 1711 struct Scsi_Host *shost = sdev->host; 1712 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1713 blk_status_t ret; 1714 int reason; 1715 1716 WARN_ON_ONCE(cmd->budget_token < 0); 1717 1718 /* 1719 * If the device is not in running state we will reject some or all 1720 * commands. 1721 */ 1722 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1723 ret = scsi_device_state_check(sdev, req); 1724 if (ret != BLK_STS_OK) 1725 goto out_put_budget; 1726 } 1727 1728 ret = BLK_STS_RESOURCE; 1729 if (!scsi_target_queue_ready(shost, sdev)) 1730 goto out_put_budget; 1731 if (unlikely(scsi_host_in_recovery(shost))) { 1732 if (cmd->flags & SCMD_FAIL_IF_RECOVERING) 1733 ret = BLK_STS_OFFLINE; 1734 goto out_dec_target_busy; 1735 } 1736 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1737 goto out_dec_target_busy; 1738 1739 /* 1740 * Only clear the driver-private command data if the LLD does not supply 1741 * a function to initialize that data. 1742 */ 1743 if (shost->hostt->cmd_size && !shost->hostt->init_cmd_priv) 1744 memset(cmd + 1, 0, shost->hostt->cmd_size); 1745 1746 if (!(req->rq_flags & RQF_DONTPREP)) { 1747 ret = scsi_prepare_cmd(req); 1748 if (ret != BLK_STS_OK) 1749 goto out_dec_host_busy; 1750 req->rq_flags |= RQF_DONTPREP; 1751 } else { 1752 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1753 } 1754 1755 cmd->flags &= SCMD_PRESERVED_FLAGS; 1756 if (sdev->simple_tags) 1757 cmd->flags |= SCMD_TAGGED; 1758 if (bd->last) 1759 cmd->flags |= SCMD_LAST; 1760 1761 scsi_set_resid(cmd, 0); 1762 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1763 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER; 1764 1765 blk_mq_start_request(req); 1766 reason = scsi_dispatch_cmd(cmd); 1767 if (reason) { 1768 scsi_set_blocked(cmd, reason); 1769 ret = BLK_STS_RESOURCE; 1770 goto out_dec_host_busy; 1771 } 1772 1773 return BLK_STS_OK; 1774 1775 out_dec_host_busy: 1776 scsi_dec_host_busy(shost, cmd); 1777 out_dec_target_busy: 1778 if (scsi_target(sdev)->can_queue > 0) 1779 atomic_dec(&scsi_target(sdev)->target_busy); 1780 out_put_budget: 1781 scsi_mq_put_budget(q, cmd->budget_token); 1782 cmd->budget_token = -1; 1783 switch (ret) { 1784 case BLK_STS_OK: 1785 break; 1786 case BLK_STS_RESOURCE: 1787 case BLK_STS_ZONE_RESOURCE: 1788 if (scsi_device_blocked(sdev)) 1789 ret = BLK_STS_DEV_RESOURCE; 1790 break; 1791 case BLK_STS_AGAIN: 1792 cmd->result = DID_BUS_BUSY << 16; 1793 if (req->rq_flags & RQF_DONTPREP) 1794 scsi_mq_uninit_cmd(cmd); 1795 break; 1796 default: 1797 if (unlikely(!scsi_device_online(sdev))) 1798 cmd->result = DID_NO_CONNECT << 16; 1799 else 1800 cmd->result = DID_ERROR << 16; 1801 /* 1802 * Make sure to release all allocated resources when 1803 * we hit an error, as we will never see this command 1804 * again. 1805 */ 1806 if (req->rq_flags & RQF_DONTPREP) 1807 scsi_mq_uninit_cmd(cmd); 1808 scsi_run_queue_async(sdev); 1809 break; 1810 } 1811 return ret; 1812 } 1813 scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1814 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1815 unsigned int hctx_idx, unsigned int numa_node) 1816 { 1817 struct Scsi_Host *shost = set->driver_data; 1818 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1819 struct scatterlist *sg; 1820 int ret = 0; 1821 1822 cmd->sense_buffer = 1823 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node); 1824 if (!cmd->sense_buffer) 1825 return -ENOMEM; 1826 1827 if (scsi_host_get_prot(shost)) { 1828 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1829 shost->hostt->cmd_size; 1830 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1831 } 1832 1833 if (shost->hostt->init_cmd_priv) { 1834 ret = shost->hostt->init_cmd_priv(shost, cmd); 1835 if (ret < 0) 1836 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1837 } 1838 1839 return ret; 1840 } 1841 scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1842 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1843 unsigned int hctx_idx) 1844 { 1845 struct Scsi_Host *shost = set->driver_data; 1846 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1847 1848 if (shost->hostt->exit_cmd_priv) 1849 shost->hostt->exit_cmd_priv(shost, cmd); 1850 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1851 } 1852 1853 scsi_mq_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1854 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1855 { 1856 struct Scsi_Host *shost = hctx->driver_data; 1857 1858 if (shost->hostt->mq_poll) 1859 return shost->hostt->mq_poll(shost, hctx->queue_num); 1860 1861 return 0; 1862 } 1863 scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1864 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1865 unsigned int hctx_idx) 1866 { 1867 struct Scsi_Host *shost = data; 1868 1869 hctx->driver_data = shost; 1870 return 0; 1871 } 1872 scsi_map_queues(struct blk_mq_tag_set * set)1873 static void scsi_map_queues(struct blk_mq_tag_set *set) 1874 { 1875 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1876 1877 if (shost->hostt->map_queues) 1878 return shost->hostt->map_queues(shost); 1879 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1880 } 1881 __scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)1882 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1883 { 1884 struct device *dev = shost->dma_dev; 1885 1886 /* 1887 * this limit is imposed by hardware restrictions 1888 */ 1889 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1890 SG_MAX_SEGMENTS)); 1891 1892 if (scsi_host_prot_dma(shost)) { 1893 shost->sg_prot_tablesize = 1894 min_not_zero(shost->sg_prot_tablesize, 1895 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1896 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1897 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1898 } 1899 1900 blk_queue_max_hw_sectors(q, shost->max_sectors); 1901 blk_queue_segment_boundary(q, shost->dma_boundary); 1902 dma_set_seg_boundary(dev, shost->dma_boundary); 1903 1904 blk_queue_max_segment_size(q, shost->max_segment_size); 1905 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1906 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1907 1908 /* 1909 * Set a reasonable default alignment: The larger of 32-byte (dword), 1910 * which is a common minimum for HBAs, and the minimum DMA alignment, 1911 * which is set by the platform. 1912 * 1913 * Devices that require a bigger alignment can increase it later. 1914 */ 1915 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1916 } 1917 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1918 1919 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1920 .get_budget = scsi_mq_get_budget, 1921 .put_budget = scsi_mq_put_budget, 1922 .queue_rq = scsi_queue_rq, 1923 .complete = scsi_complete, 1924 .timeout = scsi_timeout, 1925 #ifdef CONFIG_BLK_DEBUG_FS 1926 .show_rq = scsi_show_rq, 1927 #endif 1928 .init_request = scsi_mq_init_request, 1929 .exit_request = scsi_mq_exit_request, 1930 .cleanup_rq = scsi_cleanup_rq, 1931 .busy = scsi_mq_lld_busy, 1932 .map_queues = scsi_map_queues, 1933 .init_hctx = scsi_init_hctx, 1934 .poll = scsi_mq_poll, 1935 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1936 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1937 }; 1938 1939 scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)1940 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1941 { 1942 struct Scsi_Host *shost = hctx->driver_data; 1943 1944 shost->hostt->commit_rqs(shost, hctx->queue_num); 1945 } 1946 1947 static const struct blk_mq_ops scsi_mq_ops = { 1948 .get_budget = scsi_mq_get_budget, 1949 .put_budget = scsi_mq_put_budget, 1950 .queue_rq = scsi_queue_rq, 1951 .commit_rqs = scsi_commit_rqs, 1952 .complete = scsi_complete, 1953 .timeout = scsi_timeout, 1954 #ifdef CONFIG_BLK_DEBUG_FS 1955 .show_rq = scsi_show_rq, 1956 #endif 1957 .init_request = scsi_mq_init_request, 1958 .exit_request = scsi_mq_exit_request, 1959 .cleanup_rq = scsi_cleanup_rq, 1960 .busy = scsi_mq_lld_busy, 1961 .map_queues = scsi_map_queues, 1962 .init_hctx = scsi_init_hctx, 1963 .poll = scsi_mq_poll, 1964 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1965 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1966 }; 1967 scsi_mq_setup_tags(struct Scsi_Host * shost)1968 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1969 { 1970 unsigned int cmd_size, sgl_size; 1971 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1972 1973 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1974 scsi_mq_inline_sgl_size(shost)); 1975 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1976 if (scsi_host_get_prot(shost)) 1977 cmd_size += sizeof(struct scsi_data_buffer) + 1978 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1979 1980 memset(tag_set, 0, sizeof(*tag_set)); 1981 if (shost->hostt->commit_rqs) 1982 tag_set->ops = &scsi_mq_ops; 1983 else 1984 tag_set->ops = &scsi_mq_ops_no_commit; 1985 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1986 tag_set->nr_maps = shost->nr_maps ? : 1; 1987 tag_set->queue_depth = shost->can_queue; 1988 tag_set->cmd_size = cmd_size; 1989 tag_set->numa_node = dev_to_node(shost->dma_dev); 1990 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1991 tag_set->flags |= 1992 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1993 if (shost->queuecommand_may_block) 1994 tag_set->flags |= BLK_MQ_F_BLOCKING; 1995 tag_set->driver_data = shost; 1996 if (shost->host_tagset) 1997 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1998 1999 return blk_mq_alloc_tag_set(tag_set); 2000 } 2001 scsi_mq_free_tags(struct kref * kref)2002 void scsi_mq_free_tags(struct kref *kref) 2003 { 2004 struct Scsi_Host *shost = container_of(kref, typeof(*shost), 2005 tagset_refcnt); 2006 2007 blk_mq_free_tag_set(&shost->tag_set); 2008 complete(&shost->tagset_freed); 2009 } 2010 2011 /** 2012 * scsi_device_from_queue - return sdev associated with a request_queue 2013 * @q: The request queue to return the sdev from 2014 * 2015 * Return the sdev associated with a request queue or NULL if the 2016 * request_queue does not reference a SCSI device. 2017 */ scsi_device_from_queue(struct request_queue * q)2018 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2019 { 2020 struct scsi_device *sdev = NULL; 2021 2022 if (q->mq_ops == &scsi_mq_ops_no_commit || 2023 q->mq_ops == &scsi_mq_ops) 2024 sdev = q->queuedata; 2025 if (!sdev || !get_device(&sdev->sdev_gendev)) 2026 sdev = NULL; 2027 2028 return sdev; 2029 } 2030 /* 2031 * pktcdvd should have been integrated into the SCSI layers, but for historical 2032 * reasons like the old IDE driver it isn't. This export allows it to safely 2033 * probe if a given device is a SCSI one and only attach to that. 2034 */ 2035 #ifdef CONFIG_CDROM_PKTCDVD_MODULE 2036 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2037 #endif 2038 2039 /** 2040 * scsi_block_requests - Utility function used by low-level drivers to prevent 2041 * further commands from being queued to the device. 2042 * @shost: host in question 2043 * 2044 * There is no timer nor any other means by which the requests get unblocked 2045 * other than the low-level driver calling scsi_unblock_requests(). 2046 */ scsi_block_requests(struct Scsi_Host * shost)2047 void scsi_block_requests(struct Scsi_Host *shost) 2048 { 2049 shost->host_self_blocked = 1; 2050 } 2051 EXPORT_SYMBOL(scsi_block_requests); 2052 2053 /** 2054 * scsi_unblock_requests - Utility function used by low-level drivers to allow 2055 * further commands to be queued to the device. 2056 * @shost: host in question 2057 * 2058 * There is no timer nor any other means by which the requests get unblocked 2059 * other than the low-level driver calling scsi_unblock_requests(). This is done 2060 * as an API function so that changes to the internals of the scsi mid-layer 2061 * won't require wholesale changes to drivers that use this feature. 2062 */ scsi_unblock_requests(struct Scsi_Host * shost)2063 void scsi_unblock_requests(struct Scsi_Host *shost) 2064 { 2065 shost->host_self_blocked = 0; 2066 scsi_run_host_queues(shost); 2067 } 2068 EXPORT_SYMBOL(scsi_unblock_requests); 2069 scsi_exit_queue(void)2070 void scsi_exit_queue(void) 2071 { 2072 kmem_cache_destroy(scsi_sense_cache); 2073 } 2074 2075 /** 2076 * scsi_mode_select - issue a mode select 2077 * @sdev: SCSI device to be queried 2078 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2079 * @sp: Save page bit (0 == don't save, 1 == save) 2080 * @buffer: request buffer (may not be smaller than eight bytes) 2081 * @len: length of request buffer. 2082 * @timeout: command timeout 2083 * @retries: number of retries before failing 2084 * @data: returns a structure abstracting the mode header data 2085 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2086 * must be SCSI_SENSE_BUFFERSIZE big. 2087 * 2088 * Returns zero if successful; negative error number or scsi 2089 * status on error 2090 * 2091 */ scsi_mode_select(struct scsi_device * sdev,int pf,int sp,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2092 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp, 2093 unsigned char *buffer, int len, int timeout, int retries, 2094 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2095 { 2096 unsigned char cmd[10]; 2097 unsigned char *real_buffer; 2098 const struct scsi_exec_args exec_args = { 2099 .sshdr = sshdr, 2100 }; 2101 int ret; 2102 2103 memset(cmd, 0, sizeof(cmd)); 2104 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2105 2106 /* 2107 * Use MODE SELECT(10) if the device asked for it or if the mode page 2108 * and the mode select header cannot fit within the maximumm 255 bytes 2109 * of the MODE SELECT(6) command. 2110 */ 2111 if (sdev->use_10_for_ms || 2112 len + 4 > 255 || 2113 data->block_descriptor_length > 255) { 2114 if (len > 65535 - 8) 2115 return -EINVAL; 2116 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2117 if (!real_buffer) 2118 return -ENOMEM; 2119 memcpy(real_buffer + 8, buffer, len); 2120 len += 8; 2121 real_buffer[0] = 0; 2122 real_buffer[1] = 0; 2123 real_buffer[2] = data->medium_type; 2124 real_buffer[3] = data->device_specific; 2125 real_buffer[4] = data->longlba ? 0x01 : 0; 2126 real_buffer[5] = 0; 2127 put_unaligned_be16(data->block_descriptor_length, 2128 &real_buffer[6]); 2129 2130 cmd[0] = MODE_SELECT_10; 2131 put_unaligned_be16(len, &cmd[7]); 2132 } else { 2133 if (data->longlba) 2134 return -EINVAL; 2135 2136 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2137 if (!real_buffer) 2138 return -ENOMEM; 2139 memcpy(real_buffer + 4, buffer, len); 2140 len += 4; 2141 real_buffer[0] = 0; 2142 real_buffer[1] = data->medium_type; 2143 real_buffer[2] = data->device_specific; 2144 real_buffer[3] = data->block_descriptor_length; 2145 2146 cmd[0] = MODE_SELECT; 2147 cmd[4] = len; 2148 } 2149 2150 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len, 2151 timeout, retries, &exec_args); 2152 kfree(real_buffer); 2153 return ret; 2154 } 2155 EXPORT_SYMBOL_GPL(scsi_mode_select); 2156 2157 /** 2158 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2159 * @sdev: SCSI device to be queried 2160 * @dbd: set to prevent mode sense from returning block descriptors 2161 * @modepage: mode page being requested 2162 * @subpage: sub-page of the mode page being requested 2163 * @buffer: request buffer (may not be smaller than eight bytes) 2164 * @len: length of request buffer. 2165 * @timeout: command timeout 2166 * @retries: number of retries before failing 2167 * @data: returns a structure abstracting the mode header data 2168 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2169 * must be SCSI_SENSE_BUFFERSIZE big. 2170 * 2171 * Returns zero if successful, or a negative error number on failure 2172 */ 2173 int scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,int subpage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2174 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage, 2175 unsigned char *buffer, int len, int timeout, int retries, 2176 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2177 { 2178 unsigned char cmd[12]; 2179 int use_10_for_ms; 2180 int header_length; 2181 int result, retry_count = retries; 2182 struct scsi_sense_hdr my_sshdr; 2183 const struct scsi_exec_args exec_args = { 2184 /* caller might not be interested in sense, but we need it */ 2185 .sshdr = sshdr ? : &my_sshdr, 2186 }; 2187 2188 memset(data, 0, sizeof(*data)); 2189 memset(&cmd[0], 0, 12); 2190 2191 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2192 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2193 cmd[2] = modepage; 2194 cmd[3] = subpage; 2195 2196 sshdr = exec_args.sshdr; 2197 2198 retry: 2199 use_10_for_ms = sdev->use_10_for_ms || len > 255; 2200 2201 if (use_10_for_ms) { 2202 if (len < 8 || len > 65535) 2203 return -EINVAL; 2204 2205 cmd[0] = MODE_SENSE_10; 2206 put_unaligned_be16(len, &cmd[7]); 2207 header_length = 8; 2208 } else { 2209 if (len < 4) 2210 return -EINVAL; 2211 2212 cmd[0] = MODE_SENSE; 2213 cmd[4] = len; 2214 header_length = 4; 2215 } 2216 2217 memset(buffer, 0, len); 2218 2219 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len, 2220 timeout, retries, &exec_args); 2221 if (result < 0) 2222 return result; 2223 2224 /* This code looks awful: what it's doing is making sure an 2225 * ILLEGAL REQUEST sense return identifies the actual command 2226 * byte as the problem. MODE_SENSE commands can return 2227 * ILLEGAL REQUEST if the code page isn't supported */ 2228 2229 if (!scsi_status_is_good(result)) { 2230 if (scsi_sense_valid(sshdr)) { 2231 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2232 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2233 /* 2234 * Invalid command operation code: retry using 2235 * MODE SENSE(6) if this was a MODE SENSE(10) 2236 * request, except if the request mode page is 2237 * too large for MODE SENSE single byte 2238 * allocation length field. 2239 */ 2240 if (use_10_for_ms) { 2241 if (len > 255) 2242 return -EIO; 2243 sdev->use_10_for_ms = 0; 2244 goto retry; 2245 } 2246 } 2247 if (scsi_status_is_check_condition(result) && 2248 sshdr->sense_key == UNIT_ATTENTION && 2249 retry_count) { 2250 retry_count--; 2251 goto retry; 2252 } 2253 } 2254 return -EIO; 2255 } 2256 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2257 (modepage == 6 || modepage == 8))) { 2258 /* Initio breakage? */ 2259 header_length = 0; 2260 data->length = 13; 2261 data->medium_type = 0; 2262 data->device_specific = 0; 2263 data->longlba = 0; 2264 data->block_descriptor_length = 0; 2265 } else if (use_10_for_ms) { 2266 data->length = get_unaligned_be16(&buffer[0]) + 2; 2267 data->medium_type = buffer[2]; 2268 data->device_specific = buffer[3]; 2269 data->longlba = buffer[4] & 0x01; 2270 data->block_descriptor_length = get_unaligned_be16(&buffer[6]); 2271 } else { 2272 data->length = buffer[0] + 1; 2273 data->medium_type = buffer[1]; 2274 data->device_specific = buffer[2]; 2275 data->block_descriptor_length = buffer[3]; 2276 } 2277 data->header_length = header_length; 2278 2279 return 0; 2280 } 2281 EXPORT_SYMBOL(scsi_mode_sense); 2282 2283 /** 2284 * scsi_test_unit_ready - test if unit is ready 2285 * @sdev: scsi device to change the state of. 2286 * @timeout: command timeout 2287 * @retries: number of retries before failing 2288 * @sshdr: outpout pointer for decoded sense information. 2289 * 2290 * Returns zero if unsuccessful or an error if TUR failed. For 2291 * removable media, UNIT_ATTENTION sets ->changed flag. 2292 **/ 2293 int scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2294 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2295 struct scsi_sense_hdr *sshdr) 2296 { 2297 char cmd[] = { 2298 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2299 }; 2300 const struct scsi_exec_args exec_args = { 2301 .sshdr = sshdr, 2302 }; 2303 int result; 2304 2305 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2306 do { 2307 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0, 2308 timeout, 1, &exec_args); 2309 if (sdev->removable && scsi_sense_valid(sshdr) && 2310 sshdr->sense_key == UNIT_ATTENTION) 2311 sdev->changed = 1; 2312 } while (scsi_sense_valid(sshdr) && 2313 sshdr->sense_key == UNIT_ATTENTION && --retries); 2314 2315 return result; 2316 } 2317 EXPORT_SYMBOL(scsi_test_unit_ready); 2318 2319 /** 2320 * scsi_device_set_state - Take the given device through the device state model. 2321 * @sdev: scsi device to change the state of. 2322 * @state: state to change to. 2323 * 2324 * Returns zero if successful or an error if the requested 2325 * transition is illegal. 2326 */ 2327 int scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2328 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2329 { 2330 enum scsi_device_state oldstate = sdev->sdev_state; 2331 2332 if (state == oldstate) 2333 return 0; 2334 2335 switch (state) { 2336 case SDEV_CREATED: 2337 switch (oldstate) { 2338 case SDEV_CREATED_BLOCK: 2339 break; 2340 default: 2341 goto illegal; 2342 } 2343 break; 2344 2345 case SDEV_RUNNING: 2346 switch (oldstate) { 2347 case SDEV_CREATED: 2348 case SDEV_OFFLINE: 2349 case SDEV_TRANSPORT_OFFLINE: 2350 case SDEV_QUIESCE: 2351 case SDEV_BLOCK: 2352 break; 2353 default: 2354 goto illegal; 2355 } 2356 break; 2357 2358 case SDEV_QUIESCE: 2359 switch (oldstate) { 2360 case SDEV_RUNNING: 2361 case SDEV_OFFLINE: 2362 case SDEV_TRANSPORT_OFFLINE: 2363 break; 2364 default: 2365 goto illegal; 2366 } 2367 break; 2368 2369 case SDEV_OFFLINE: 2370 case SDEV_TRANSPORT_OFFLINE: 2371 switch (oldstate) { 2372 case SDEV_CREATED: 2373 case SDEV_RUNNING: 2374 case SDEV_QUIESCE: 2375 case SDEV_BLOCK: 2376 break; 2377 default: 2378 goto illegal; 2379 } 2380 break; 2381 2382 case SDEV_BLOCK: 2383 switch (oldstate) { 2384 case SDEV_RUNNING: 2385 case SDEV_CREATED_BLOCK: 2386 case SDEV_QUIESCE: 2387 case SDEV_OFFLINE: 2388 break; 2389 default: 2390 goto illegal; 2391 } 2392 break; 2393 2394 case SDEV_CREATED_BLOCK: 2395 switch (oldstate) { 2396 case SDEV_CREATED: 2397 break; 2398 default: 2399 goto illegal; 2400 } 2401 break; 2402 2403 case SDEV_CANCEL: 2404 switch (oldstate) { 2405 case SDEV_CREATED: 2406 case SDEV_RUNNING: 2407 case SDEV_QUIESCE: 2408 case SDEV_OFFLINE: 2409 case SDEV_TRANSPORT_OFFLINE: 2410 break; 2411 default: 2412 goto illegal; 2413 } 2414 break; 2415 2416 case SDEV_DEL: 2417 switch (oldstate) { 2418 case SDEV_CREATED: 2419 case SDEV_RUNNING: 2420 case SDEV_OFFLINE: 2421 case SDEV_TRANSPORT_OFFLINE: 2422 case SDEV_CANCEL: 2423 case SDEV_BLOCK: 2424 case SDEV_CREATED_BLOCK: 2425 break; 2426 default: 2427 goto illegal; 2428 } 2429 break; 2430 2431 } 2432 sdev->offline_already = false; 2433 sdev->sdev_state = state; 2434 return 0; 2435 2436 illegal: 2437 SCSI_LOG_ERROR_RECOVERY(1, 2438 sdev_printk(KERN_ERR, sdev, 2439 "Illegal state transition %s->%s", 2440 scsi_device_state_name(oldstate), 2441 scsi_device_state_name(state)) 2442 ); 2443 return -EINVAL; 2444 } 2445 EXPORT_SYMBOL(scsi_device_set_state); 2446 2447 /** 2448 * scsi_evt_emit - emit a single SCSI device uevent 2449 * @sdev: associated SCSI device 2450 * @evt: event to emit 2451 * 2452 * Send a single uevent (scsi_event) to the associated scsi_device. 2453 */ scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2454 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2455 { 2456 int idx = 0; 2457 char *envp[3]; 2458 2459 switch (evt->evt_type) { 2460 case SDEV_EVT_MEDIA_CHANGE: 2461 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2462 break; 2463 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2464 scsi_rescan_device(sdev); 2465 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2466 break; 2467 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2468 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2469 break; 2470 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2471 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2472 break; 2473 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2474 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2475 break; 2476 case SDEV_EVT_LUN_CHANGE_REPORTED: 2477 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2478 break; 2479 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2480 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2481 break; 2482 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2483 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2484 break; 2485 default: 2486 /* do nothing */ 2487 break; 2488 } 2489 2490 envp[idx++] = NULL; 2491 2492 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2493 } 2494 2495 /** 2496 * scsi_evt_thread - send a uevent for each scsi event 2497 * @work: work struct for scsi_device 2498 * 2499 * Dispatch queued events to their associated scsi_device kobjects 2500 * as uevents. 2501 */ scsi_evt_thread(struct work_struct * work)2502 void scsi_evt_thread(struct work_struct *work) 2503 { 2504 struct scsi_device *sdev; 2505 enum scsi_device_event evt_type; 2506 LIST_HEAD(event_list); 2507 2508 sdev = container_of(work, struct scsi_device, event_work); 2509 2510 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2511 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2512 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2513 2514 while (1) { 2515 struct scsi_event *evt; 2516 struct list_head *this, *tmp; 2517 unsigned long flags; 2518 2519 spin_lock_irqsave(&sdev->list_lock, flags); 2520 list_splice_init(&sdev->event_list, &event_list); 2521 spin_unlock_irqrestore(&sdev->list_lock, flags); 2522 2523 if (list_empty(&event_list)) 2524 break; 2525 2526 list_for_each_safe(this, tmp, &event_list) { 2527 evt = list_entry(this, struct scsi_event, node); 2528 list_del(&evt->node); 2529 scsi_evt_emit(sdev, evt); 2530 kfree(evt); 2531 } 2532 } 2533 } 2534 2535 /** 2536 * sdev_evt_send - send asserted event to uevent thread 2537 * @sdev: scsi_device event occurred on 2538 * @evt: event to send 2539 * 2540 * Assert scsi device event asynchronously. 2541 */ sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2542 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2543 { 2544 unsigned long flags; 2545 2546 #if 0 2547 /* FIXME: currently this check eliminates all media change events 2548 * for polled devices. Need to update to discriminate between AN 2549 * and polled events */ 2550 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2551 kfree(evt); 2552 return; 2553 } 2554 #endif 2555 2556 spin_lock_irqsave(&sdev->list_lock, flags); 2557 list_add_tail(&evt->node, &sdev->event_list); 2558 schedule_work(&sdev->event_work); 2559 spin_unlock_irqrestore(&sdev->list_lock, flags); 2560 } 2561 EXPORT_SYMBOL_GPL(sdev_evt_send); 2562 2563 /** 2564 * sdev_evt_alloc - allocate a new scsi event 2565 * @evt_type: type of event to allocate 2566 * @gfpflags: GFP flags for allocation 2567 * 2568 * Allocates and returns a new scsi_event. 2569 */ sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2570 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2571 gfp_t gfpflags) 2572 { 2573 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2574 if (!evt) 2575 return NULL; 2576 2577 evt->evt_type = evt_type; 2578 INIT_LIST_HEAD(&evt->node); 2579 2580 /* evt_type-specific initialization, if any */ 2581 switch (evt_type) { 2582 case SDEV_EVT_MEDIA_CHANGE: 2583 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2584 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2585 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2586 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2587 case SDEV_EVT_LUN_CHANGE_REPORTED: 2588 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2589 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2590 default: 2591 /* do nothing */ 2592 break; 2593 } 2594 2595 return evt; 2596 } 2597 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2598 2599 /** 2600 * sdev_evt_send_simple - send asserted event to uevent thread 2601 * @sdev: scsi_device event occurred on 2602 * @evt_type: type of event to send 2603 * @gfpflags: GFP flags for allocation 2604 * 2605 * Assert scsi device event asynchronously, given an event type. 2606 */ sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2607 void sdev_evt_send_simple(struct scsi_device *sdev, 2608 enum scsi_device_event evt_type, gfp_t gfpflags) 2609 { 2610 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2611 if (!evt) { 2612 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2613 evt_type); 2614 return; 2615 } 2616 2617 sdev_evt_send(sdev, evt); 2618 } 2619 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2620 2621 /** 2622 * scsi_device_quiesce - Block all commands except power management. 2623 * @sdev: scsi device to quiesce. 2624 * 2625 * This works by trying to transition to the SDEV_QUIESCE state 2626 * (which must be a legal transition). When the device is in this 2627 * state, only power management requests will be accepted, all others will 2628 * be deferred. 2629 * 2630 * Must be called with user context, may sleep. 2631 * 2632 * Returns zero if unsuccessful or an error if not. 2633 */ 2634 int scsi_device_quiesce(struct scsi_device * sdev)2635 scsi_device_quiesce(struct scsi_device *sdev) 2636 { 2637 struct request_queue *q = sdev->request_queue; 2638 int err; 2639 2640 /* 2641 * It is allowed to call scsi_device_quiesce() multiple times from 2642 * the same context but concurrent scsi_device_quiesce() calls are 2643 * not allowed. 2644 */ 2645 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2646 2647 if (sdev->quiesced_by == current) 2648 return 0; 2649 2650 blk_set_pm_only(q); 2651 2652 blk_mq_freeze_queue(q); 2653 /* 2654 * Ensure that the effect of blk_set_pm_only() will be visible 2655 * for percpu_ref_tryget() callers that occur after the queue 2656 * unfreeze even if the queue was already frozen before this function 2657 * was called. See also https://lwn.net/Articles/573497/. 2658 */ 2659 synchronize_rcu(); 2660 blk_mq_unfreeze_queue(q); 2661 2662 mutex_lock(&sdev->state_mutex); 2663 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2664 if (err == 0) 2665 sdev->quiesced_by = current; 2666 else 2667 blk_clear_pm_only(q); 2668 mutex_unlock(&sdev->state_mutex); 2669 2670 return err; 2671 } 2672 EXPORT_SYMBOL(scsi_device_quiesce); 2673 2674 /** 2675 * scsi_device_resume - Restart user issued commands to a quiesced device. 2676 * @sdev: scsi device to resume. 2677 * 2678 * Moves the device from quiesced back to running and restarts the 2679 * queues. 2680 * 2681 * Must be called with user context, may sleep. 2682 */ scsi_device_resume(struct scsi_device * sdev)2683 void scsi_device_resume(struct scsi_device *sdev) 2684 { 2685 /* check if the device state was mutated prior to resume, and if 2686 * so assume the state is being managed elsewhere (for example 2687 * device deleted during suspend) 2688 */ 2689 mutex_lock(&sdev->state_mutex); 2690 if (sdev->sdev_state == SDEV_QUIESCE) 2691 scsi_device_set_state(sdev, SDEV_RUNNING); 2692 if (sdev->quiesced_by) { 2693 sdev->quiesced_by = NULL; 2694 blk_clear_pm_only(sdev->request_queue); 2695 } 2696 mutex_unlock(&sdev->state_mutex); 2697 } 2698 EXPORT_SYMBOL(scsi_device_resume); 2699 2700 static void device_quiesce_fn(struct scsi_device * sdev,void * data)2701 device_quiesce_fn(struct scsi_device *sdev, void *data) 2702 { 2703 scsi_device_quiesce(sdev); 2704 } 2705 2706 void scsi_target_quiesce(struct scsi_target * starget)2707 scsi_target_quiesce(struct scsi_target *starget) 2708 { 2709 starget_for_each_device(starget, NULL, device_quiesce_fn); 2710 } 2711 EXPORT_SYMBOL(scsi_target_quiesce); 2712 2713 static void device_resume_fn(struct scsi_device * sdev,void * data)2714 device_resume_fn(struct scsi_device *sdev, void *data) 2715 { 2716 scsi_device_resume(sdev); 2717 } 2718 2719 void scsi_target_resume(struct scsi_target * starget)2720 scsi_target_resume(struct scsi_target *starget) 2721 { 2722 starget_for_each_device(starget, NULL, device_resume_fn); 2723 } 2724 EXPORT_SYMBOL(scsi_target_resume); 2725 __scsi_internal_device_block_nowait(struct scsi_device * sdev)2726 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev) 2727 { 2728 if (scsi_device_set_state(sdev, SDEV_BLOCK)) 2729 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2730 2731 return 0; 2732 } 2733 scsi_start_queue(struct scsi_device * sdev)2734 void scsi_start_queue(struct scsi_device *sdev) 2735 { 2736 if (cmpxchg(&sdev->queue_stopped, 1, 0)) 2737 blk_mq_unquiesce_queue(sdev->request_queue); 2738 } 2739 scsi_stop_queue(struct scsi_device * sdev)2740 static void scsi_stop_queue(struct scsi_device *sdev) 2741 { 2742 /* 2743 * The atomic variable of ->queue_stopped covers that 2744 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue. 2745 * 2746 * The caller needs to wait until quiesce is done. 2747 */ 2748 if (!cmpxchg(&sdev->queue_stopped, 0, 1)) 2749 blk_mq_quiesce_queue_nowait(sdev->request_queue); 2750 } 2751 2752 /** 2753 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2754 * @sdev: device to block 2755 * 2756 * Pause SCSI command processing on the specified device. Does not sleep. 2757 * 2758 * Returns zero if successful or a negative error code upon failure. 2759 * 2760 * Notes: 2761 * This routine transitions the device to the SDEV_BLOCK state (which must be 2762 * a legal transition). When the device is in this state, command processing 2763 * is paused until the device leaves the SDEV_BLOCK state. See also 2764 * scsi_internal_device_unblock_nowait(). 2765 */ scsi_internal_device_block_nowait(struct scsi_device * sdev)2766 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2767 { 2768 int ret = __scsi_internal_device_block_nowait(sdev); 2769 2770 /* 2771 * The device has transitioned to SDEV_BLOCK. Stop the 2772 * block layer from calling the midlayer with this device's 2773 * request queue. 2774 */ 2775 if (!ret) 2776 scsi_stop_queue(sdev); 2777 return ret; 2778 } 2779 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2780 2781 /** 2782 * scsi_device_block - try to transition to the SDEV_BLOCK state 2783 * @sdev: device to block 2784 * @data: dummy argument, ignored 2785 * 2786 * Pause SCSI command processing on the specified device. Callers must wait 2787 * until all ongoing scsi_queue_rq() calls have finished after this function 2788 * returns. 2789 * 2790 * Note: 2791 * This routine transitions the device to the SDEV_BLOCK state (which must be 2792 * a legal transition). When the device is in this state, command processing 2793 * is paused until the device leaves the SDEV_BLOCK state. See also 2794 * scsi_internal_device_unblock(). 2795 */ scsi_device_block(struct scsi_device * sdev,void * data)2796 static void scsi_device_block(struct scsi_device *sdev, void *data) 2797 { 2798 int err; 2799 enum scsi_device_state state; 2800 2801 mutex_lock(&sdev->state_mutex); 2802 err = __scsi_internal_device_block_nowait(sdev); 2803 state = sdev->sdev_state; 2804 if (err == 0) 2805 /* 2806 * scsi_stop_queue() must be called with the state_mutex 2807 * held. Otherwise a simultaneous scsi_start_queue() call 2808 * might unquiesce the queue before we quiesce it. 2809 */ 2810 scsi_stop_queue(sdev); 2811 2812 mutex_unlock(&sdev->state_mutex); 2813 2814 WARN_ONCE(err, "%s: failed to block %s in state %d\n", 2815 __func__, dev_name(&sdev->sdev_gendev), state); 2816 } 2817 2818 /** 2819 * scsi_internal_device_unblock_nowait - resume a device after a block request 2820 * @sdev: device to resume 2821 * @new_state: state to set the device to after unblocking 2822 * 2823 * Restart the device queue for a previously suspended SCSI device. Does not 2824 * sleep. 2825 * 2826 * Returns zero if successful or a negative error code upon failure. 2827 * 2828 * Notes: 2829 * This routine transitions the device to the SDEV_RUNNING state or to one of 2830 * the offline states (which must be a legal transition) allowing the midlayer 2831 * to goose the queue for this device. 2832 */ scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2833 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2834 enum scsi_device_state new_state) 2835 { 2836 switch (new_state) { 2837 case SDEV_RUNNING: 2838 case SDEV_TRANSPORT_OFFLINE: 2839 break; 2840 default: 2841 return -EINVAL; 2842 } 2843 2844 /* 2845 * Try to transition the scsi device to SDEV_RUNNING or one of the 2846 * offlined states and goose the device queue if successful. 2847 */ 2848 switch (sdev->sdev_state) { 2849 case SDEV_BLOCK: 2850 case SDEV_TRANSPORT_OFFLINE: 2851 sdev->sdev_state = new_state; 2852 break; 2853 case SDEV_CREATED_BLOCK: 2854 if (new_state == SDEV_TRANSPORT_OFFLINE || 2855 new_state == SDEV_OFFLINE) 2856 sdev->sdev_state = new_state; 2857 else 2858 sdev->sdev_state = SDEV_CREATED; 2859 break; 2860 case SDEV_CANCEL: 2861 case SDEV_OFFLINE: 2862 break; 2863 default: 2864 return -EINVAL; 2865 } 2866 scsi_start_queue(sdev); 2867 2868 return 0; 2869 } 2870 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2871 2872 /** 2873 * scsi_internal_device_unblock - resume a device after a block request 2874 * @sdev: device to resume 2875 * @new_state: state to set the device to after unblocking 2876 * 2877 * Restart the device queue for a previously suspended SCSI device. May sleep. 2878 * 2879 * Returns zero if successful or a negative error code upon failure. 2880 * 2881 * Notes: 2882 * This routine transitions the device to the SDEV_RUNNING state or to one of 2883 * the offline states (which must be a legal transition) allowing the midlayer 2884 * to goose the queue for this device. 2885 */ scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2886 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2887 enum scsi_device_state new_state) 2888 { 2889 int ret; 2890 2891 mutex_lock(&sdev->state_mutex); 2892 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2893 mutex_unlock(&sdev->state_mutex); 2894 2895 return ret; 2896 } 2897 2898 static int target_block(struct device * dev,void * data)2899 target_block(struct device *dev, void *data) 2900 { 2901 if (scsi_is_target_device(dev)) 2902 starget_for_each_device(to_scsi_target(dev), NULL, 2903 scsi_device_block); 2904 return 0; 2905 } 2906 2907 /** 2908 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state 2909 * @dev: a parent device of one or more scsi_target devices 2910 * @shost: the Scsi_Host to which this device belongs 2911 * 2912 * Iterate over all children of @dev, which should be scsi_target devices, 2913 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for 2914 * ongoing scsi_queue_rq() calls to finish. May sleep. 2915 * 2916 * Note: 2917 * @dev must not itself be a scsi_target device. 2918 */ 2919 void scsi_block_targets(struct Scsi_Host * shost,struct device * dev)2920 scsi_block_targets(struct Scsi_Host *shost, struct device *dev) 2921 { 2922 WARN_ON_ONCE(scsi_is_target_device(dev)); 2923 device_for_each_child(dev, NULL, target_block); 2924 blk_mq_wait_quiesce_done(&shost->tag_set); 2925 } 2926 EXPORT_SYMBOL_GPL(scsi_block_targets); 2927 2928 static void device_unblock(struct scsi_device * sdev,void * data)2929 device_unblock(struct scsi_device *sdev, void *data) 2930 { 2931 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2932 } 2933 2934 static int target_unblock(struct device * dev,void * data)2935 target_unblock(struct device *dev, void *data) 2936 { 2937 if (scsi_is_target_device(dev)) 2938 starget_for_each_device(to_scsi_target(dev), data, 2939 device_unblock); 2940 return 0; 2941 } 2942 2943 void scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2944 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2945 { 2946 if (scsi_is_target_device(dev)) 2947 starget_for_each_device(to_scsi_target(dev), &new_state, 2948 device_unblock); 2949 else 2950 device_for_each_child(dev, &new_state, target_unblock); 2951 } 2952 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2953 2954 /** 2955 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state 2956 * @shost: device to block 2957 * 2958 * Pause SCSI command processing for all logical units associated with the SCSI 2959 * host and wait until pending scsi_queue_rq() calls have finished. 2960 * 2961 * Returns zero if successful or a negative error code upon failure. 2962 */ 2963 int scsi_host_block(struct Scsi_Host * shost)2964 scsi_host_block(struct Scsi_Host *shost) 2965 { 2966 struct scsi_device *sdev; 2967 int ret; 2968 2969 /* 2970 * Call scsi_internal_device_block_nowait so we can avoid 2971 * calling synchronize_rcu() for each LUN. 2972 */ 2973 shost_for_each_device(sdev, shost) { 2974 mutex_lock(&sdev->state_mutex); 2975 ret = scsi_internal_device_block_nowait(sdev); 2976 mutex_unlock(&sdev->state_mutex); 2977 if (ret) { 2978 scsi_device_put(sdev); 2979 return ret; 2980 } 2981 } 2982 2983 /* Wait for ongoing scsi_queue_rq() calls to finish. */ 2984 blk_mq_wait_quiesce_done(&shost->tag_set); 2985 2986 return 0; 2987 } 2988 EXPORT_SYMBOL_GPL(scsi_host_block); 2989 2990 int scsi_host_unblock(struct Scsi_Host * shost,int new_state)2991 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2992 { 2993 struct scsi_device *sdev; 2994 int ret = 0; 2995 2996 shost_for_each_device(sdev, shost) { 2997 ret = scsi_internal_device_unblock(sdev, new_state); 2998 if (ret) { 2999 scsi_device_put(sdev); 3000 break; 3001 } 3002 } 3003 return ret; 3004 } 3005 EXPORT_SYMBOL_GPL(scsi_host_unblock); 3006 3007 /** 3008 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3009 * @sgl: scatter-gather list 3010 * @sg_count: number of segments in sg 3011 * @offset: offset in bytes into sg, on return offset into the mapped area 3012 * @len: bytes to map, on return number of bytes mapped 3013 * 3014 * Returns virtual address of the start of the mapped page 3015 */ scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)3016 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3017 size_t *offset, size_t *len) 3018 { 3019 int i; 3020 size_t sg_len = 0, len_complete = 0; 3021 struct scatterlist *sg; 3022 struct page *page; 3023 3024 WARN_ON(!irqs_disabled()); 3025 3026 for_each_sg(sgl, sg, sg_count, i) { 3027 len_complete = sg_len; /* Complete sg-entries */ 3028 sg_len += sg->length; 3029 if (sg_len > *offset) 3030 break; 3031 } 3032 3033 if (unlikely(i == sg_count)) { 3034 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3035 "elements %d\n", 3036 __func__, sg_len, *offset, sg_count); 3037 WARN_ON(1); 3038 return NULL; 3039 } 3040 3041 /* Offset starting from the beginning of first page in this sg-entry */ 3042 *offset = *offset - len_complete + sg->offset; 3043 3044 /* Assumption: contiguous pages can be accessed as "page + i" */ 3045 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3046 *offset &= ~PAGE_MASK; 3047 3048 /* Bytes in this sg-entry from *offset to the end of the page */ 3049 sg_len = PAGE_SIZE - *offset; 3050 if (*len > sg_len) 3051 *len = sg_len; 3052 3053 return kmap_atomic(page); 3054 } 3055 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3056 3057 /** 3058 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3059 * @virt: virtual address to be unmapped 3060 */ scsi_kunmap_atomic_sg(void * virt)3061 void scsi_kunmap_atomic_sg(void *virt) 3062 { 3063 kunmap_atomic(virt); 3064 } 3065 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3066 sdev_disable_disk_events(struct scsi_device * sdev)3067 void sdev_disable_disk_events(struct scsi_device *sdev) 3068 { 3069 atomic_inc(&sdev->disk_events_disable_depth); 3070 } 3071 EXPORT_SYMBOL(sdev_disable_disk_events); 3072 sdev_enable_disk_events(struct scsi_device * sdev)3073 void sdev_enable_disk_events(struct scsi_device *sdev) 3074 { 3075 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3076 return; 3077 atomic_dec(&sdev->disk_events_disable_depth); 3078 } 3079 EXPORT_SYMBOL(sdev_enable_disk_events); 3080 designator_prio(const unsigned char * d)3081 static unsigned char designator_prio(const unsigned char *d) 3082 { 3083 if (d[1] & 0x30) 3084 /* not associated with LUN */ 3085 return 0; 3086 3087 if (d[3] == 0) 3088 /* invalid length */ 3089 return 0; 3090 3091 /* 3092 * Order of preference for lun descriptor: 3093 * - SCSI name string 3094 * - NAA IEEE Registered Extended 3095 * - EUI-64 based 16-byte 3096 * - EUI-64 based 12-byte 3097 * - NAA IEEE Registered 3098 * - NAA IEEE Extended 3099 * - EUI-64 based 8-byte 3100 * - SCSI name string (truncated) 3101 * - T10 Vendor ID 3102 * as longer descriptors reduce the likelyhood 3103 * of identification clashes. 3104 */ 3105 3106 switch (d[1] & 0xf) { 3107 case 8: 3108 /* SCSI name string, variable-length UTF-8 */ 3109 return 9; 3110 case 3: 3111 switch (d[4] >> 4) { 3112 case 6: 3113 /* NAA registered extended */ 3114 return 8; 3115 case 5: 3116 /* NAA registered */ 3117 return 5; 3118 case 4: 3119 /* NAA extended */ 3120 return 4; 3121 case 3: 3122 /* NAA locally assigned */ 3123 return 1; 3124 default: 3125 break; 3126 } 3127 break; 3128 case 2: 3129 switch (d[3]) { 3130 case 16: 3131 /* EUI64-based, 16 byte */ 3132 return 7; 3133 case 12: 3134 /* EUI64-based, 12 byte */ 3135 return 6; 3136 case 8: 3137 /* EUI64-based, 8 byte */ 3138 return 3; 3139 default: 3140 break; 3141 } 3142 break; 3143 case 1: 3144 /* T10 vendor ID */ 3145 return 1; 3146 default: 3147 break; 3148 } 3149 3150 return 0; 3151 } 3152 3153 /** 3154 * scsi_vpd_lun_id - return a unique device identification 3155 * @sdev: SCSI device 3156 * @id: buffer for the identification 3157 * @id_len: length of the buffer 3158 * 3159 * Copies a unique device identification into @id based 3160 * on the information in the VPD page 0x83 of the device. 3161 * The string will be formatted as a SCSI name string. 3162 * 3163 * Returns the length of the identification or error on failure. 3164 * If the identifier is longer than the supplied buffer the actual 3165 * identifier length is returned and the buffer is not zero-padded. 3166 */ scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3167 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3168 { 3169 u8 cur_id_prio = 0; 3170 u8 cur_id_size = 0; 3171 const unsigned char *d, *cur_id_str; 3172 const struct scsi_vpd *vpd_pg83; 3173 int id_size = -EINVAL; 3174 3175 rcu_read_lock(); 3176 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3177 if (!vpd_pg83) { 3178 rcu_read_unlock(); 3179 return -ENXIO; 3180 } 3181 3182 /* The id string must be at least 20 bytes + terminating NULL byte */ 3183 if (id_len < 21) { 3184 rcu_read_unlock(); 3185 return -EINVAL; 3186 } 3187 3188 memset(id, 0, id_len); 3189 for (d = vpd_pg83->data + 4; 3190 d < vpd_pg83->data + vpd_pg83->len; 3191 d += d[3] + 4) { 3192 u8 prio = designator_prio(d); 3193 3194 if (prio == 0 || cur_id_prio > prio) 3195 continue; 3196 3197 switch (d[1] & 0xf) { 3198 case 0x1: 3199 /* T10 Vendor ID */ 3200 if (cur_id_size > d[3]) 3201 break; 3202 cur_id_prio = prio; 3203 cur_id_size = d[3]; 3204 if (cur_id_size + 4 > id_len) 3205 cur_id_size = id_len - 4; 3206 cur_id_str = d + 4; 3207 id_size = snprintf(id, id_len, "t10.%*pE", 3208 cur_id_size, cur_id_str); 3209 break; 3210 case 0x2: 3211 /* EUI-64 */ 3212 cur_id_prio = prio; 3213 cur_id_size = d[3]; 3214 cur_id_str = d + 4; 3215 switch (cur_id_size) { 3216 case 8: 3217 id_size = snprintf(id, id_len, 3218 "eui.%8phN", 3219 cur_id_str); 3220 break; 3221 case 12: 3222 id_size = snprintf(id, id_len, 3223 "eui.%12phN", 3224 cur_id_str); 3225 break; 3226 case 16: 3227 id_size = snprintf(id, id_len, 3228 "eui.%16phN", 3229 cur_id_str); 3230 break; 3231 default: 3232 break; 3233 } 3234 break; 3235 case 0x3: 3236 /* NAA */ 3237 cur_id_prio = prio; 3238 cur_id_size = d[3]; 3239 cur_id_str = d + 4; 3240 switch (cur_id_size) { 3241 case 8: 3242 id_size = snprintf(id, id_len, 3243 "naa.%8phN", 3244 cur_id_str); 3245 break; 3246 case 16: 3247 id_size = snprintf(id, id_len, 3248 "naa.%16phN", 3249 cur_id_str); 3250 break; 3251 default: 3252 break; 3253 } 3254 break; 3255 case 0x8: 3256 /* SCSI name string */ 3257 if (cur_id_size > d[3]) 3258 break; 3259 /* Prefer others for truncated descriptor */ 3260 if (d[3] > id_len) { 3261 prio = 2; 3262 if (cur_id_prio > prio) 3263 break; 3264 } 3265 cur_id_prio = prio; 3266 cur_id_size = id_size = d[3]; 3267 cur_id_str = d + 4; 3268 if (cur_id_size >= id_len) 3269 cur_id_size = id_len - 1; 3270 memcpy(id, cur_id_str, cur_id_size); 3271 break; 3272 default: 3273 break; 3274 } 3275 } 3276 rcu_read_unlock(); 3277 3278 return id_size; 3279 } 3280 EXPORT_SYMBOL(scsi_vpd_lun_id); 3281 3282 /* 3283 * scsi_vpd_tpg_id - return a target port group identifier 3284 * @sdev: SCSI device 3285 * 3286 * Returns the Target Port Group identifier from the information 3287 * froom VPD page 0x83 of the device. 3288 * 3289 * Returns the identifier or error on failure. 3290 */ scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3291 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3292 { 3293 const unsigned char *d; 3294 const struct scsi_vpd *vpd_pg83; 3295 int group_id = -EAGAIN, rel_port = -1; 3296 3297 rcu_read_lock(); 3298 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3299 if (!vpd_pg83) { 3300 rcu_read_unlock(); 3301 return -ENXIO; 3302 } 3303 3304 d = vpd_pg83->data + 4; 3305 while (d < vpd_pg83->data + vpd_pg83->len) { 3306 switch (d[1] & 0xf) { 3307 case 0x4: 3308 /* Relative target port */ 3309 rel_port = get_unaligned_be16(&d[6]); 3310 break; 3311 case 0x5: 3312 /* Target port group */ 3313 group_id = get_unaligned_be16(&d[6]); 3314 break; 3315 default: 3316 break; 3317 } 3318 d += d[3] + 4; 3319 } 3320 rcu_read_unlock(); 3321 3322 if (group_id >= 0 && rel_id && rel_port != -1) 3323 *rel_id = rel_port; 3324 3325 return group_id; 3326 } 3327 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3328 3329 /** 3330 * scsi_build_sense - build sense data for a command 3331 * @scmd: scsi command for which the sense should be formatted 3332 * @desc: Sense format (non-zero == descriptor format, 3333 * 0 == fixed format) 3334 * @key: Sense key 3335 * @asc: Additional sense code 3336 * @ascq: Additional sense code qualifier 3337 * 3338 **/ scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3339 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq) 3340 { 3341 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq); 3342 scmd->result = SAM_STAT_CHECK_CONDITION; 3343 } 3344 EXPORT_SYMBOL_GPL(scsi_build_sense); 3345