xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 0f9b4c3ca5fdf3e177266ef994071b1a03f07318)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (C) 1999 Eric Youngdale
4   * Copyright (C) 2014 Christoph Hellwig
5   *
6   *  SCSI queueing library.
7   *      Initial versions: Eric Youngdale (eric@andante.org).
8   *                        Based upon conversations with large numbers
9   *                        of people at Linux Expo.
10   */
11  
12  #include <linux/bio.h>
13  #include <linux/bitops.h>
14  #include <linux/blkdev.h>
15  #include <linux/completion.h>
16  #include <linux/kernel.h>
17  #include <linux/export.h>
18  #include <linux/init.h>
19  #include <linux/pci.h>
20  #include <linux/delay.h>
21  #include <linux/hardirq.h>
22  #include <linux/scatterlist.h>
23  #include <linux/blk-mq.h>
24  #include <linux/blk-integrity.h>
25  #include <linux/ratelimit.h>
26  #include <asm/unaligned.h>
27  
28  #include <scsi/scsi.h>
29  #include <scsi/scsi_cmnd.h>
30  #include <scsi/scsi_dbg.h>
31  #include <scsi/scsi_device.h>
32  #include <scsi/scsi_driver.h>
33  #include <scsi/scsi_eh.h>
34  #include <scsi/scsi_host.h>
35  #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36  #include <scsi/scsi_dh.h>
37  
38  #include <trace/events/scsi.h>
39  
40  #include "scsi_debugfs.h"
41  #include "scsi_priv.h"
42  #include "scsi_logging.h"
43  
44  /*
45   * Size of integrity metadata is usually small, 1 inline sg should
46   * cover normal cases.
47   */
48  #ifdef CONFIG_ARCH_NO_SG_CHAIN
49  #define  SCSI_INLINE_PROT_SG_CNT  0
50  #define  SCSI_INLINE_SG_CNT  0
51  #else
52  #define  SCSI_INLINE_PROT_SG_CNT  1
53  #define  SCSI_INLINE_SG_CNT  2
54  #endif
55  
56  static struct kmem_cache *scsi_sense_cache;
57  static DEFINE_MUTEX(scsi_sense_cache_mutex);
58  
59  static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60  
scsi_init_sense_cache(struct Scsi_Host * shost)61  int scsi_init_sense_cache(struct Scsi_Host *shost)
62  {
63  	int ret = 0;
64  
65  	mutex_lock(&scsi_sense_cache_mutex);
66  	if (!scsi_sense_cache) {
67  		scsi_sense_cache =
68  			kmem_cache_create_usercopy("scsi_sense_cache",
69  				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70  				0, SCSI_SENSE_BUFFERSIZE, NULL);
71  		if (!scsi_sense_cache)
72  			ret = -ENOMEM;
73  	}
74  	mutex_unlock(&scsi_sense_cache_mutex);
75  	return ret;
76  }
77  
78  static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)79  scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80  {
81  	struct Scsi_Host *host = cmd->device->host;
82  	struct scsi_device *device = cmd->device;
83  	struct scsi_target *starget = scsi_target(device);
84  
85  	/*
86  	 * Set the appropriate busy bit for the device/host.
87  	 *
88  	 * If the host/device isn't busy, assume that something actually
89  	 * completed, and that we should be able to queue a command now.
90  	 *
91  	 * Note that the prior mid-layer assumption that any host could
92  	 * always queue at least one command is now broken.  The mid-layer
93  	 * will implement a user specifiable stall (see
94  	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95  	 * if a command is requeued with no other commands outstanding
96  	 * either for the device or for the host.
97  	 */
98  	switch (reason) {
99  	case SCSI_MLQUEUE_HOST_BUSY:
100  		atomic_set(&host->host_blocked, host->max_host_blocked);
101  		break;
102  	case SCSI_MLQUEUE_DEVICE_BUSY:
103  	case SCSI_MLQUEUE_EH_RETRY:
104  		atomic_set(&device->device_blocked,
105  			   device->max_device_blocked);
106  		break;
107  	case SCSI_MLQUEUE_TARGET_BUSY:
108  		atomic_set(&starget->target_blocked,
109  			   starget->max_target_blocked);
110  		break;
111  	}
112  }
113  
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd,unsigned long msecs)114  static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115  {
116  	struct request *rq = scsi_cmd_to_rq(cmd);
117  
118  	if (rq->rq_flags & RQF_DONTPREP) {
119  		rq->rq_flags &= ~RQF_DONTPREP;
120  		scsi_mq_uninit_cmd(cmd);
121  	} else {
122  		WARN_ON_ONCE(true);
123  	}
124  
125  	blk_mq_requeue_request(rq, false);
126  	if (!scsi_host_in_recovery(cmd->device->host))
127  		blk_mq_delay_kick_requeue_list(rq->q, msecs);
128  }
129  
130  /**
131   * __scsi_queue_insert - private queue insertion
132   * @cmd: The SCSI command being requeued
133   * @reason:  The reason for the requeue
134   * @unbusy: Whether the queue should be unbusied
135   *
136   * This is a private queue insertion.  The public interface
137   * scsi_queue_insert() always assumes the queue should be unbusied
138   * because it's always called before the completion.  This function is
139   * for a requeue after completion, which should only occur in this
140   * file.
141   */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)142  static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143  {
144  	struct scsi_device *device = cmd->device;
145  
146  	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147  		"Inserting command %p into mlqueue\n", cmd));
148  
149  	scsi_set_blocked(cmd, reason);
150  
151  	/*
152  	 * Decrement the counters, since these commands are no longer
153  	 * active on the host/device.
154  	 */
155  	if (unbusy)
156  		scsi_device_unbusy(device, cmd);
157  
158  	/*
159  	 * Requeue this command.  It will go before all other commands
160  	 * that are already in the queue. Schedule requeue work under
161  	 * lock such that the kblockd_schedule_work() call happens
162  	 * before blk_mq_destroy_queue() finishes.
163  	 */
164  	cmd->result = 0;
165  
166  	blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167  			       !scsi_host_in_recovery(cmd->device->host));
168  }
169  
170  /**
171   * scsi_queue_insert - Reinsert a command in the queue.
172   * @cmd:    command that we are adding to queue.
173   * @reason: why we are inserting command to queue.
174   *
175   * We do this for one of two cases. Either the host is busy and it cannot accept
176   * any more commands for the time being, or the device returned QUEUE_FULL and
177   * can accept no more commands.
178   *
179   * Context: This could be called either from an interrupt context or a normal
180   * process context.
181   */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)182  void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183  {
184  	__scsi_queue_insert(cmd, reason, true);
185  }
186  
187  /**
188   * scsi_execute_cmd - insert request and wait for the result
189   * @sdev:	scsi_device
190   * @cmd:	scsi command
191   * @opf:	block layer request cmd_flags
192   * @buffer:	data buffer
193   * @bufflen:	len of buffer
194   * @timeout:	request timeout in HZ
195   * @retries:	number of times to retry request
196   * @args:	Optional args. See struct definition for field descriptions
197   *
198   * Returns the scsi_cmnd result field if a command was executed, or a negative
199   * Linux error code if we didn't get that far.
200   */
scsi_execute_cmd(struct scsi_device * sdev,const unsigned char * cmd,blk_opf_t opf,void * buffer,unsigned int bufflen,int timeout,int retries,const struct scsi_exec_args * args)201  int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
202  		     blk_opf_t opf, void *buffer, unsigned int bufflen,
203  		     int timeout, int retries,
204  		     const struct scsi_exec_args *args)
205  {
206  	static const struct scsi_exec_args default_args;
207  	struct request *req;
208  	struct scsi_cmnd *scmd;
209  	int ret;
210  
211  	if (!args)
212  		args = &default_args;
213  	else if (WARN_ON_ONCE(args->sense &&
214  			      args->sense_len != SCSI_SENSE_BUFFERSIZE))
215  		return -EINVAL;
216  
217  	req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
218  	if (IS_ERR(req))
219  		return PTR_ERR(req);
220  
221  	if (bufflen) {
222  		ret = blk_rq_map_kern(sdev->request_queue, req,
223  				      buffer, bufflen, GFP_NOIO);
224  		if (ret)
225  			goto out;
226  	}
227  	scmd = blk_mq_rq_to_pdu(req);
228  	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
229  	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
230  	scmd->allowed = retries;
231  	scmd->flags |= args->scmd_flags;
232  	req->timeout = timeout;
233  	req->rq_flags |= RQF_QUIET;
234  
235  	/*
236  	 * head injection *required* here otherwise quiesce won't work
237  	 */
238  	blk_execute_rq(req, true);
239  
240  	/*
241  	 * Some devices (USB mass-storage in particular) may transfer
242  	 * garbage data together with a residue indicating that the data
243  	 * is invalid.  Prevent the garbage from being misinterpreted
244  	 * and prevent security leaks by zeroing out the excess data.
245  	 */
246  	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
247  		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
248  
249  	if (args->resid)
250  		*args->resid = scmd->resid_len;
251  	if (args->sense)
252  		memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
253  	if (args->sshdr)
254  		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
255  				     args->sshdr);
256  
257  	ret = scmd->result;
258   out:
259  	blk_mq_free_request(req);
260  
261  	return ret;
262  }
263  EXPORT_SYMBOL(scsi_execute_cmd);
264  
265  /*
266   * Wake up the error handler if necessary. Avoid as follows that the error
267   * handler is not woken up if host in-flight requests number ==
268   * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
269   * with an RCU read lock in this function to ensure that this function in
270   * its entirety either finishes before scsi_eh_scmd_add() increases the
271   * host_failed counter or that it notices the shost state change made by
272   * scsi_eh_scmd_add().
273   */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)274  static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
275  {
276  	unsigned long flags;
277  
278  	rcu_read_lock();
279  	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
280  	if (unlikely(scsi_host_in_recovery(shost))) {
281  		unsigned int busy = scsi_host_busy(shost);
282  
283  		spin_lock_irqsave(shost->host_lock, flags);
284  		if (shost->host_failed || shost->host_eh_scheduled)
285  			scsi_eh_wakeup(shost, busy);
286  		spin_unlock_irqrestore(shost->host_lock, flags);
287  	}
288  	rcu_read_unlock();
289  }
290  
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)291  void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
292  {
293  	struct Scsi_Host *shost = sdev->host;
294  	struct scsi_target *starget = scsi_target(sdev);
295  
296  	scsi_dec_host_busy(shost, cmd);
297  
298  	if (starget->can_queue > 0)
299  		atomic_dec(&starget->target_busy);
300  
301  	sbitmap_put(&sdev->budget_map, cmd->budget_token);
302  	cmd->budget_token = -1;
303  }
304  
305  /*
306   * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
307   * interrupts disabled.
308   */
scsi_kick_sdev_queue(struct scsi_device * sdev,void * data)309  static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
310  {
311  	struct scsi_device *current_sdev = data;
312  
313  	if (sdev != current_sdev)
314  		blk_mq_run_hw_queues(sdev->request_queue, true);
315  }
316  
317  /*
318   * Called for single_lun devices on IO completion. Clear starget_sdev_user,
319   * and call blk_run_queue for all the scsi_devices on the target -
320   * including current_sdev first.
321   *
322   * Called with *no* scsi locks held.
323   */
scsi_single_lun_run(struct scsi_device * current_sdev)324  static void scsi_single_lun_run(struct scsi_device *current_sdev)
325  {
326  	struct Scsi_Host *shost = current_sdev->host;
327  	struct scsi_target *starget = scsi_target(current_sdev);
328  	unsigned long flags;
329  
330  	spin_lock_irqsave(shost->host_lock, flags);
331  	starget->starget_sdev_user = NULL;
332  	spin_unlock_irqrestore(shost->host_lock, flags);
333  
334  	/*
335  	 * Call blk_run_queue for all LUNs on the target, starting with
336  	 * current_sdev. We race with others (to set starget_sdev_user),
337  	 * but in most cases, we will be first. Ideally, each LU on the
338  	 * target would get some limited time or requests on the target.
339  	 */
340  	blk_mq_run_hw_queues(current_sdev->request_queue,
341  			     shost->queuecommand_may_block);
342  
343  	spin_lock_irqsave(shost->host_lock, flags);
344  	if (!starget->starget_sdev_user)
345  		__starget_for_each_device(starget, current_sdev,
346  					  scsi_kick_sdev_queue);
347  	spin_unlock_irqrestore(shost->host_lock, flags);
348  }
349  
scsi_device_is_busy(struct scsi_device * sdev)350  static inline bool scsi_device_is_busy(struct scsi_device *sdev)
351  {
352  	if (scsi_device_busy(sdev) >= sdev->queue_depth)
353  		return true;
354  	if (atomic_read(&sdev->device_blocked) > 0)
355  		return true;
356  	return false;
357  }
358  
scsi_target_is_busy(struct scsi_target * starget)359  static inline bool scsi_target_is_busy(struct scsi_target *starget)
360  {
361  	if (starget->can_queue > 0) {
362  		if (atomic_read(&starget->target_busy) >= starget->can_queue)
363  			return true;
364  		if (atomic_read(&starget->target_blocked) > 0)
365  			return true;
366  	}
367  	return false;
368  }
369  
scsi_host_is_busy(struct Scsi_Host * shost)370  static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
371  {
372  	if (atomic_read(&shost->host_blocked) > 0)
373  		return true;
374  	if (shost->host_self_blocked)
375  		return true;
376  	return false;
377  }
378  
scsi_starved_list_run(struct Scsi_Host * shost)379  static void scsi_starved_list_run(struct Scsi_Host *shost)
380  {
381  	LIST_HEAD(starved_list);
382  	struct scsi_device *sdev;
383  	unsigned long flags;
384  
385  	spin_lock_irqsave(shost->host_lock, flags);
386  	list_splice_init(&shost->starved_list, &starved_list);
387  
388  	while (!list_empty(&starved_list)) {
389  		struct request_queue *slq;
390  
391  		/*
392  		 * As long as shost is accepting commands and we have
393  		 * starved queues, call blk_run_queue. scsi_request_fn
394  		 * drops the queue_lock and can add us back to the
395  		 * starved_list.
396  		 *
397  		 * host_lock protects the starved_list and starved_entry.
398  		 * scsi_request_fn must get the host_lock before checking
399  		 * or modifying starved_list or starved_entry.
400  		 */
401  		if (scsi_host_is_busy(shost))
402  			break;
403  
404  		sdev = list_entry(starved_list.next,
405  				  struct scsi_device, starved_entry);
406  		list_del_init(&sdev->starved_entry);
407  		if (scsi_target_is_busy(scsi_target(sdev))) {
408  			list_move_tail(&sdev->starved_entry,
409  				       &shost->starved_list);
410  			continue;
411  		}
412  
413  		/*
414  		 * Once we drop the host lock, a racing scsi_remove_device()
415  		 * call may remove the sdev from the starved list and destroy
416  		 * it and the queue.  Mitigate by taking a reference to the
417  		 * queue and never touching the sdev again after we drop the
418  		 * host lock.  Note: if __scsi_remove_device() invokes
419  		 * blk_mq_destroy_queue() before the queue is run from this
420  		 * function then blk_run_queue() will return immediately since
421  		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
422  		 */
423  		slq = sdev->request_queue;
424  		if (!blk_get_queue(slq))
425  			continue;
426  		spin_unlock_irqrestore(shost->host_lock, flags);
427  
428  		blk_mq_run_hw_queues(slq, false);
429  		blk_put_queue(slq);
430  
431  		spin_lock_irqsave(shost->host_lock, flags);
432  	}
433  	/* put any unprocessed entries back */
434  	list_splice(&starved_list, &shost->starved_list);
435  	spin_unlock_irqrestore(shost->host_lock, flags);
436  }
437  
438  /**
439   * scsi_run_queue - Select a proper request queue to serve next.
440   * @q:  last request's queue
441   *
442   * The previous command was completely finished, start a new one if possible.
443   */
scsi_run_queue(struct request_queue * q)444  static void scsi_run_queue(struct request_queue *q)
445  {
446  	struct scsi_device *sdev = q->queuedata;
447  
448  	if (scsi_target(sdev)->single_lun)
449  		scsi_single_lun_run(sdev);
450  	if (!list_empty(&sdev->host->starved_list))
451  		scsi_starved_list_run(sdev->host);
452  
453  	/* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
454  	blk_mq_kick_requeue_list(q);
455  }
456  
scsi_requeue_run_queue(struct work_struct * work)457  void scsi_requeue_run_queue(struct work_struct *work)
458  {
459  	struct scsi_device *sdev;
460  	struct request_queue *q;
461  
462  	sdev = container_of(work, struct scsi_device, requeue_work);
463  	q = sdev->request_queue;
464  	scsi_run_queue(q);
465  }
466  
scsi_run_host_queues(struct Scsi_Host * shost)467  void scsi_run_host_queues(struct Scsi_Host *shost)
468  {
469  	struct scsi_device *sdev;
470  
471  	shost_for_each_device(sdev, shost)
472  		scsi_run_queue(sdev->request_queue);
473  }
474  
scsi_uninit_cmd(struct scsi_cmnd * cmd)475  static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
476  {
477  	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
478  		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
479  
480  		if (drv->uninit_command)
481  			drv->uninit_command(cmd);
482  	}
483  }
484  
scsi_free_sgtables(struct scsi_cmnd * cmd)485  void scsi_free_sgtables(struct scsi_cmnd *cmd)
486  {
487  	if (cmd->sdb.table.nents)
488  		sg_free_table_chained(&cmd->sdb.table,
489  				SCSI_INLINE_SG_CNT);
490  	if (scsi_prot_sg_count(cmd))
491  		sg_free_table_chained(&cmd->prot_sdb->table,
492  				SCSI_INLINE_PROT_SG_CNT);
493  }
494  EXPORT_SYMBOL_GPL(scsi_free_sgtables);
495  
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)496  static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
497  {
498  	scsi_free_sgtables(cmd);
499  	scsi_uninit_cmd(cmd);
500  }
501  
scsi_run_queue_async(struct scsi_device * sdev)502  static void scsi_run_queue_async(struct scsi_device *sdev)
503  {
504  	if (scsi_host_in_recovery(sdev->host))
505  		return;
506  
507  	if (scsi_target(sdev)->single_lun ||
508  	    !list_empty(&sdev->host->starved_list)) {
509  		kblockd_schedule_work(&sdev->requeue_work);
510  	} else {
511  		/*
512  		 * smp_mb() present in sbitmap_queue_clear() or implied in
513  		 * .end_io is for ordering writing .device_busy in
514  		 * scsi_device_unbusy() and reading sdev->restarts.
515  		 */
516  		int old = atomic_read(&sdev->restarts);
517  
518  		/*
519  		 * ->restarts has to be kept as non-zero if new budget
520  		 *  contention occurs.
521  		 *
522  		 *  No need to run queue when either another re-run
523  		 *  queue wins in updating ->restarts or a new budget
524  		 *  contention occurs.
525  		 */
526  		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
527  			blk_mq_run_hw_queues(sdev->request_queue, true);
528  	}
529  }
530  
531  /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)532  static bool scsi_end_request(struct request *req, blk_status_t error,
533  		unsigned int bytes)
534  {
535  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
536  	struct scsi_device *sdev = cmd->device;
537  	struct request_queue *q = sdev->request_queue;
538  
539  	if (blk_update_request(req, error, bytes))
540  		return true;
541  
542  	// XXX:
543  	if (blk_queue_add_random(q))
544  		add_disk_randomness(req->q->disk);
545  
546  	WARN_ON_ONCE(!blk_rq_is_passthrough(req) &&
547  		     !(cmd->flags & SCMD_INITIALIZED));
548  	cmd->flags = 0;
549  
550  	/*
551  	 * Calling rcu_barrier() is not necessary here because the
552  	 * SCSI error handler guarantees that the function called by
553  	 * call_rcu() has been called before scsi_end_request() is
554  	 * called.
555  	 */
556  	destroy_rcu_head(&cmd->rcu);
557  
558  	/*
559  	 * In the MQ case the command gets freed by __blk_mq_end_request,
560  	 * so we have to do all cleanup that depends on it earlier.
561  	 *
562  	 * We also can't kick the queues from irq context, so we
563  	 * will have to defer it to a workqueue.
564  	 */
565  	scsi_mq_uninit_cmd(cmd);
566  
567  	/*
568  	 * queue is still alive, so grab the ref for preventing it
569  	 * from being cleaned up during running queue.
570  	 */
571  	percpu_ref_get(&q->q_usage_counter);
572  
573  	__blk_mq_end_request(req, error);
574  
575  	scsi_run_queue_async(sdev);
576  
577  	percpu_ref_put(&q->q_usage_counter);
578  	return false;
579  }
580  
581  /**
582   * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
583   * @result:	scsi error code
584   *
585   * Translate a SCSI result code into a blk_status_t value.
586   */
scsi_result_to_blk_status(int result)587  static blk_status_t scsi_result_to_blk_status(int result)
588  {
589  	/*
590  	 * Check the scsi-ml byte first in case we converted a host or status
591  	 * byte.
592  	 */
593  	switch (scsi_ml_byte(result)) {
594  	case SCSIML_STAT_OK:
595  		break;
596  	case SCSIML_STAT_RESV_CONFLICT:
597  		return BLK_STS_RESV_CONFLICT;
598  	case SCSIML_STAT_NOSPC:
599  		return BLK_STS_NOSPC;
600  	case SCSIML_STAT_MED_ERROR:
601  		return BLK_STS_MEDIUM;
602  	case SCSIML_STAT_TGT_FAILURE:
603  		return BLK_STS_TARGET;
604  	case SCSIML_STAT_DL_TIMEOUT:
605  		return BLK_STS_DURATION_LIMIT;
606  	}
607  
608  	switch (host_byte(result)) {
609  	case DID_OK:
610  		if (scsi_status_is_good(result))
611  			return BLK_STS_OK;
612  		return BLK_STS_IOERR;
613  	case DID_TRANSPORT_FAILFAST:
614  	case DID_TRANSPORT_MARGINAL:
615  		return BLK_STS_TRANSPORT;
616  	default:
617  		return BLK_STS_IOERR;
618  	}
619  }
620  
621  /**
622   * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
623   * @rq: request to examine
624   *
625   * Description:
626   *     A request could be merge of IOs which require different failure
627   *     handling.  This function determines the number of bytes which
628   *     can be failed from the beginning of the request without
629   *     crossing into area which need to be retried further.
630   *
631   * Return:
632   *     The number of bytes to fail.
633   */
scsi_rq_err_bytes(const struct request * rq)634  static unsigned int scsi_rq_err_bytes(const struct request *rq)
635  {
636  	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
637  	unsigned int bytes = 0;
638  	struct bio *bio;
639  
640  	if (!(rq->rq_flags & RQF_MIXED_MERGE))
641  		return blk_rq_bytes(rq);
642  
643  	/*
644  	 * Currently the only 'mixing' which can happen is between
645  	 * different fastfail types.  We can safely fail portions
646  	 * which have all the failfast bits that the first one has -
647  	 * the ones which are at least as eager to fail as the first
648  	 * one.
649  	 */
650  	for (bio = rq->bio; bio; bio = bio->bi_next) {
651  		if ((bio->bi_opf & ff) != ff)
652  			break;
653  		bytes += bio->bi_iter.bi_size;
654  	}
655  
656  	/* this could lead to infinite loop */
657  	BUG_ON(blk_rq_bytes(rq) && !bytes);
658  	return bytes;
659  }
660  
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)661  static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
662  {
663  	struct request *req = scsi_cmd_to_rq(cmd);
664  	unsigned long wait_for;
665  
666  	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
667  		return false;
668  
669  	wait_for = (cmd->allowed + 1) * req->timeout;
670  	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
671  		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
672  			    wait_for/HZ);
673  		return true;
674  	}
675  	return false;
676  }
677  
678  /*
679   * When ALUA transition state is returned, reprep the cmd to
680   * use the ALUA handler's transition timeout. Delay the reprep
681   * 1 sec to avoid aggressive retries of the target in that
682   * state.
683   */
684  #define ALUA_TRANSITION_REPREP_DELAY	1000
685  
686  /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)687  static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
688  {
689  	struct request *req = scsi_cmd_to_rq(cmd);
690  	int level = 0;
691  	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
692  	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
693  	struct scsi_sense_hdr sshdr;
694  	bool sense_valid;
695  	bool sense_current = true;      /* false implies "deferred sense" */
696  	blk_status_t blk_stat;
697  
698  	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
699  	if (sense_valid)
700  		sense_current = !scsi_sense_is_deferred(&sshdr);
701  
702  	blk_stat = scsi_result_to_blk_status(result);
703  
704  	if (host_byte(result) == DID_RESET) {
705  		/* Third party bus reset or reset for error recovery
706  		 * reasons.  Just retry the command and see what
707  		 * happens.
708  		 */
709  		action = ACTION_RETRY;
710  	} else if (sense_valid && sense_current) {
711  		switch (sshdr.sense_key) {
712  		case UNIT_ATTENTION:
713  			if (cmd->device->removable) {
714  				/* Detected disc change.  Set a bit
715  				 * and quietly refuse further access.
716  				 */
717  				cmd->device->changed = 1;
718  				action = ACTION_FAIL;
719  			} else {
720  				/* Must have been a power glitch, or a
721  				 * bus reset.  Could not have been a
722  				 * media change, so we just retry the
723  				 * command and see what happens.
724  				 */
725  				action = ACTION_RETRY;
726  			}
727  			break;
728  		case ILLEGAL_REQUEST:
729  			/* If we had an ILLEGAL REQUEST returned, then
730  			 * we may have performed an unsupported
731  			 * command.  The only thing this should be
732  			 * would be a ten byte read where only a six
733  			 * byte read was supported.  Also, on a system
734  			 * where READ CAPACITY failed, we may have
735  			 * read past the end of the disk.
736  			 */
737  			if ((cmd->device->use_10_for_rw &&
738  			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
739  			    (cmd->cmnd[0] == READ_10 ||
740  			     cmd->cmnd[0] == WRITE_10)) {
741  				/* This will issue a new 6-byte command. */
742  				cmd->device->use_10_for_rw = 0;
743  				action = ACTION_REPREP;
744  			} else if (sshdr.asc == 0x10) /* DIX */ {
745  				action = ACTION_FAIL;
746  				blk_stat = BLK_STS_PROTECTION;
747  			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
748  			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
749  				action = ACTION_FAIL;
750  				blk_stat = BLK_STS_TARGET;
751  			} else
752  				action = ACTION_FAIL;
753  			break;
754  		case ABORTED_COMMAND:
755  			action = ACTION_FAIL;
756  			if (sshdr.asc == 0x10) /* DIF */
757  				blk_stat = BLK_STS_PROTECTION;
758  			break;
759  		case NOT_READY:
760  			/* If the device is in the process of becoming
761  			 * ready, or has a temporary blockage, retry.
762  			 */
763  			if (sshdr.asc == 0x04) {
764  				switch (sshdr.ascq) {
765  				case 0x01: /* becoming ready */
766  				case 0x04: /* format in progress */
767  				case 0x05: /* rebuild in progress */
768  				case 0x06: /* recalculation in progress */
769  				case 0x07: /* operation in progress */
770  				case 0x08: /* Long write in progress */
771  				case 0x09: /* self test in progress */
772  				case 0x11: /* notify (enable spinup) required */
773  				case 0x14: /* space allocation in progress */
774  				case 0x1a: /* start stop unit in progress */
775  				case 0x1b: /* sanitize in progress */
776  				case 0x1d: /* configuration in progress */
777  					action = ACTION_DELAYED_RETRY;
778  					break;
779  				case 0x0a: /* ALUA state transition */
780  					action = ACTION_DELAYED_REPREP;
781  					break;
782  				/*
783  				 * Depopulation might take many hours,
784  				 * thus it is not worthwhile to retry.
785  				 */
786  				case 0x24: /* depopulation in progress */
787  				case 0x25: /* depopulation restore in progress */
788  					fallthrough;
789  				default:
790  					action = ACTION_FAIL;
791  					break;
792  				}
793  			} else
794  				action = ACTION_FAIL;
795  			break;
796  		case VOLUME_OVERFLOW:
797  			/* See SSC3rXX or current. */
798  			action = ACTION_FAIL;
799  			break;
800  		case DATA_PROTECT:
801  			action = ACTION_FAIL;
802  			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
803  			    (sshdr.asc == 0x55 &&
804  			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
805  				/* Insufficient zone resources */
806  				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
807  			}
808  			break;
809  		case COMPLETED:
810  			fallthrough;
811  		default:
812  			action = ACTION_FAIL;
813  			break;
814  		}
815  	} else
816  		action = ACTION_FAIL;
817  
818  	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
819  		action = ACTION_FAIL;
820  
821  	switch (action) {
822  	case ACTION_FAIL:
823  		/* Give up and fail the remainder of the request */
824  		if (!(req->rq_flags & RQF_QUIET)) {
825  			static DEFINE_RATELIMIT_STATE(_rs,
826  					DEFAULT_RATELIMIT_INTERVAL,
827  					DEFAULT_RATELIMIT_BURST);
828  
829  			if (unlikely(scsi_logging_level))
830  				level =
831  				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
832  						    SCSI_LOG_MLCOMPLETE_BITS);
833  
834  			/*
835  			 * if logging is enabled the failure will be printed
836  			 * in scsi_log_completion(), so avoid duplicate messages
837  			 */
838  			if (!level && __ratelimit(&_rs)) {
839  				scsi_print_result(cmd, NULL, FAILED);
840  				if (sense_valid)
841  					scsi_print_sense(cmd);
842  				scsi_print_command(cmd);
843  			}
844  		}
845  		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
846  			return;
847  		fallthrough;
848  	case ACTION_REPREP:
849  		scsi_mq_requeue_cmd(cmd, 0);
850  		break;
851  	case ACTION_DELAYED_REPREP:
852  		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
853  		break;
854  	case ACTION_RETRY:
855  		/* Retry the same command immediately */
856  		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
857  		break;
858  	case ACTION_DELAYED_RETRY:
859  		/* Retry the same command after a delay */
860  		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
861  		break;
862  	}
863  }
864  
865  /*
866   * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
867   * new result that may suppress further error checking. Also modifies
868   * *blk_statp in some cases.
869   */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)870  static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
871  					blk_status_t *blk_statp)
872  {
873  	bool sense_valid;
874  	bool sense_current = true;	/* false implies "deferred sense" */
875  	struct request *req = scsi_cmd_to_rq(cmd);
876  	struct scsi_sense_hdr sshdr;
877  
878  	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
879  	if (sense_valid)
880  		sense_current = !scsi_sense_is_deferred(&sshdr);
881  
882  	if (blk_rq_is_passthrough(req)) {
883  		if (sense_valid) {
884  			/*
885  			 * SG_IO wants current and deferred errors
886  			 */
887  			cmd->sense_len = min(8 + cmd->sense_buffer[7],
888  					     SCSI_SENSE_BUFFERSIZE);
889  		}
890  		if (sense_current)
891  			*blk_statp = scsi_result_to_blk_status(result);
892  	} else if (blk_rq_bytes(req) == 0 && sense_current) {
893  		/*
894  		 * Flush commands do not transfers any data, and thus cannot use
895  		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
896  		 * This sets *blk_statp explicitly for the problem case.
897  		 */
898  		*blk_statp = scsi_result_to_blk_status(result);
899  	}
900  	/*
901  	 * Recovered errors need reporting, but they're always treated as
902  	 * success, so fiddle the result code here.  For passthrough requests
903  	 * we already took a copy of the original into sreq->result which
904  	 * is what gets returned to the user
905  	 */
906  	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
907  		bool do_print = true;
908  		/*
909  		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
910  		 * skip print since caller wants ATA registers. Only occurs
911  		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
912  		 */
913  		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
914  			do_print = false;
915  		else if (req->rq_flags & RQF_QUIET)
916  			do_print = false;
917  		if (do_print)
918  			scsi_print_sense(cmd);
919  		result = 0;
920  		/* for passthrough, *blk_statp may be set */
921  		*blk_statp = BLK_STS_OK;
922  	}
923  	/*
924  	 * Another corner case: the SCSI status byte is non-zero but 'good'.
925  	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
926  	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
927  	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
928  	 * intermediate statuses (both obsolete in SAM-4) as good.
929  	 */
930  	if ((result & 0xff) && scsi_status_is_good(result)) {
931  		result = 0;
932  		*blk_statp = BLK_STS_OK;
933  	}
934  	return result;
935  }
936  
937  /**
938   * scsi_io_completion - Completion processing for SCSI commands.
939   * @cmd:	command that is finished.
940   * @good_bytes:	number of processed bytes.
941   *
942   * We will finish off the specified number of sectors. If we are done, the
943   * command block will be released and the queue function will be goosed. If we
944   * are not done then we have to figure out what to do next:
945   *
946   *   a) We can call scsi_mq_requeue_cmd().  The request will be
947   *	unprepared and put back on the queue.  Then a new command will
948   *	be created for it.  This should be used if we made forward
949   *	progress, or if we want to switch from READ(10) to READ(6) for
950   *	example.
951   *
952   *   b) We can call scsi_io_completion_action().  The request will be
953   *	put back on the queue and retried using the same command as
954   *	before, possibly after a delay.
955   *
956   *   c) We can call scsi_end_request() with blk_stat other than
957   *	BLK_STS_OK, to fail the remainder of the request.
958   */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)959  void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
960  {
961  	int result = cmd->result;
962  	struct request *req = scsi_cmd_to_rq(cmd);
963  	blk_status_t blk_stat = BLK_STS_OK;
964  
965  	if (unlikely(result))	/* a nz result may or may not be an error */
966  		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
967  
968  	/*
969  	 * Next deal with any sectors which we were able to correctly
970  	 * handle.
971  	 */
972  	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
973  		"%u sectors total, %d bytes done.\n",
974  		blk_rq_sectors(req), good_bytes));
975  
976  	/*
977  	 * Failed, zero length commands always need to drop down
978  	 * to retry code. Fast path should return in this block.
979  	 */
980  	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
981  		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
982  			return; /* no bytes remaining */
983  	}
984  
985  	/* Kill remainder if no retries. */
986  	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
987  		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
988  			WARN_ONCE(true,
989  			    "Bytes remaining after failed, no-retry command");
990  		return;
991  	}
992  
993  	/*
994  	 * If there had been no error, but we have leftover bytes in the
995  	 * request just queue the command up again.
996  	 */
997  	if (likely(result == 0))
998  		scsi_mq_requeue_cmd(cmd, 0);
999  	else
1000  		scsi_io_completion_action(cmd, result);
1001  }
1002  
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)1003  static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1004  		struct request *rq)
1005  {
1006  	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1007  	       !op_is_write(req_op(rq)) &&
1008  	       sdev->host->hostt->dma_need_drain(rq);
1009  }
1010  
1011  /**
1012   * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1013   * @cmd: SCSI command data structure to initialize.
1014   *
1015   * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1016   * for @cmd.
1017   *
1018   * Returns:
1019   * * BLK_STS_OK       - on success
1020   * * BLK_STS_RESOURCE - if the failure is retryable
1021   * * BLK_STS_IOERR    - if the failure is fatal
1022   */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)1023  blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1024  {
1025  	struct scsi_device *sdev = cmd->device;
1026  	struct request *rq = scsi_cmd_to_rq(cmd);
1027  	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1028  	struct scatterlist *last_sg = NULL;
1029  	blk_status_t ret;
1030  	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1031  	int count;
1032  
1033  	if (WARN_ON_ONCE(!nr_segs))
1034  		return BLK_STS_IOERR;
1035  
1036  	/*
1037  	 * Make sure there is space for the drain.  The driver must adjust
1038  	 * max_hw_segments to be prepared for this.
1039  	 */
1040  	if (need_drain)
1041  		nr_segs++;
1042  
1043  	/*
1044  	 * If sg table allocation fails, requeue request later.
1045  	 */
1046  	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1047  			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1048  		return BLK_STS_RESOURCE;
1049  
1050  	/*
1051  	 * Next, walk the list, and fill in the addresses and sizes of
1052  	 * each segment.
1053  	 */
1054  	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1055  
1056  	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1057  		unsigned int pad_len =
1058  			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1059  
1060  		last_sg->length += pad_len;
1061  		cmd->extra_len += pad_len;
1062  	}
1063  
1064  	if (need_drain) {
1065  		sg_unmark_end(last_sg);
1066  		last_sg = sg_next(last_sg);
1067  		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1068  		sg_mark_end(last_sg);
1069  
1070  		cmd->extra_len += sdev->dma_drain_len;
1071  		count++;
1072  	}
1073  
1074  	BUG_ON(count > cmd->sdb.table.nents);
1075  	cmd->sdb.table.nents = count;
1076  	cmd->sdb.length = blk_rq_payload_bytes(rq);
1077  
1078  	if (blk_integrity_rq(rq)) {
1079  		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1080  		int ivecs;
1081  
1082  		if (WARN_ON_ONCE(!prot_sdb)) {
1083  			/*
1084  			 * This can happen if someone (e.g. multipath)
1085  			 * queues a command to a device on an adapter
1086  			 * that does not support DIX.
1087  			 */
1088  			ret = BLK_STS_IOERR;
1089  			goto out_free_sgtables;
1090  		}
1091  
1092  		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1093  
1094  		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1095  				prot_sdb->table.sgl,
1096  				SCSI_INLINE_PROT_SG_CNT)) {
1097  			ret = BLK_STS_RESOURCE;
1098  			goto out_free_sgtables;
1099  		}
1100  
1101  		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1102  						prot_sdb->table.sgl);
1103  		BUG_ON(count > ivecs);
1104  		BUG_ON(count > queue_max_integrity_segments(rq->q));
1105  
1106  		cmd->prot_sdb = prot_sdb;
1107  		cmd->prot_sdb->table.nents = count;
1108  	}
1109  
1110  	return BLK_STS_OK;
1111  out_free_sgtables:
1112  	scsi_free_sgtables(cmd);
1113  	return ret;
1114  }
1115  EXPORT_SYMBOL(scsi_alloc_sgtables);
1116  
1117  /**
1118   * scsi_initialize_rq - initialize struct scsi_cmnd partially
1119   * @rq: Request associated with the SCSI command to be initialized.
1120   *
1121   * This function initializes the members of struct scsi_cmnd that must be
1122   * initialized before request processing starts and that won't be
1123   * reinitialized if a SCSI command is requeued.
1124   */
scsi_initialize_rq(struct request * rq)1125  static void scsi_initialize_rq(struct request *rq)
1126  {
1127  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1128  
1129  	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1130  	cmd->cmd_len = MAX_COMMAND_SIZE;
1131  	cmd->sense_len = 0;
1132  	init_rcu_head(&cmd->rcu);
1133  	cmd->jiffies_at_alloc = jiffies;
1134  	cmd->retries = 0;
1135  }
1136  
scsi_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)1137  struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1138  				   blk_mq_req_flags_t flags)
1139  {
1140  	struct request *rq;
1141  
1142  	rq = blk_mq_alloc_request(q, opf, flags);
1143  	if (!IS_ERR(rq))
1144  		scsi_initialize_rq(rq);
1145  	return rq;
1146  }
1147  EXPORT_SYMBOL_GPL(scsi_alloc_request);
1148  
1149  /*
1150   * Only called when the request isn't completed by SCSI, and not freed by
1151   * SCSI
1152   */
scsi_cleanup_rq(struct request * rq)1153  static void scsi_cleanup_rq(struct request *rq)
1154  {
1155  	if (rq->rq_flags & RQF_DONTPREP) {
1156  		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1157  		rq->rq_flags &= ~RQF_DONTPREP;
1158  	}
1159  }
1160  
1161  /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1162  void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1163  {
1164  	struct request *rq = scsi_cmd_to_rq(cmd);
1165  
1166  	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1167  		cmd->flags |= SCMD_INITIALIZED;
1168  		scsi_initialize_rq(rq);
1169  	}
1170  
1171  	cmd->device = dev;
1172  	INIT_LIST_HEAD(&cmd->eh_entry);
1173  	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1174  }
1175  
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1176  static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1177  		struct request *req)
1178  {
1179  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1180  
1181  	/*
1182  	 * Passthrough requests may transfer data, in which case they must
1183  	 * a bio attached to them.  Or they might contain a SCSI command
1184  	 * that does not transfer data, in which case they may optionally
1185  	 * submit a request without an attached bio.
1186  	 */
1187  	if (req->bio) {
1188  		blk_status_t ret = scsi_alloc_sgtables(cmd);
1189  		if (unlikely(ret != BLK_STS_OK))
1190  			return ret;
1191  	} else {
1192  		BUG_ON(blk_rq_bytes(req));
1193  
1194  		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1195  	}
1196  
1197  	cmd->transfersize = blk_rq_bytes(req);
1198  	return BLK_STS_OK;
1199  }
1200  
1201  static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1202  scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1203  {
1204  	switch (sdev->sdev_state) {
1205  	case SDEV_CREATED:
1206  		return BLK_STS_OK;
1207  	case SDEV_OFFLINE:
1208  	case SDEV_TRANSPORT_OFFLINE:
1209  		/*
1210  		 * If the device is offline we refuse to process any
1211  		 * commands.  The device must be brought online
1212  		 * before trying any recovery commands.
1213  		 */
1214  		if (!sdev->offline_already) {
1215  			sdev->offline_already = true;
1216  			sdev_printk(KERN_ERR, sdev,
1217  				    "rejecting I/O to offline device\n");
1218  		}
1219  		return BLK_STS_IOERR;
1220  	case SDEV_DEL:
1221  		/*
1222  		 * If the device is fully deleted, we refuse to
1223  		 * process any commands as well.
1224  		 */
1225  		sdev_printk(KERN_ERR, sdev,
1226  			    "rejecting I/O to dead device\n");
1227  		return BLK_STS_IOERR;
1228  	case SDEV_BLOCK:
1229  	case SDEV_CREATED_BLOCK:
1230  		return BLK_STS_RESOURCE;
1231  	case SDEV_QUIESCE:
1232  		/*
1233  		 * If the device is blocked we only accept power management
1234  		 * commands.
1235  		 */
1236  		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1237  			return BLK_STS_RESOURCE;
1238  		return BLK_STS_OK;
1239  	default:
1240  		/*
1241  		 * For any other not fully online state we only allow
1242  		 * power management commands.
1243  		 */
1244  		if (req && !(req->rq_flags & RQF_PM))
1245  			return BLK_STS_OFFLINE;
1246  		return BLK_STS_OK;
1247  	}
1248  }
1249  
1250  /*
1251   * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1252   * and return the token else return -1.
1253   */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1254  static inline int scsi_dev_queue_ready(struct request_queue *q,
1255  				  struct scsi_device *sdev)
1256  {
1257  	int token;
1258  
1259  	token = sbitmap_get(&sdev->budget_map);
1260  	if (atomic_read(&sdev->device_blocked)) {
1261  		if (token < 0)
1262  			goto out;
1263  
1264  		if (scsi_device_busy(sdev) > 1)
1265  			goto out_dec;
1266  
1267  		/*
1268  		 * unblock after device_blocked iterates to zero
1269  		 */
1270  		if (atomic_dec_return(&sdev->device_blocked) > 0)
1271  			goto out_dec;
1272  		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1273  				   "unblocking device at zero depth\n"));
1274  	}
1275  
1276  	return token;
1277  out_dec:
1278  	if (token >= 0)
1279  		sbitmap_put(&sdev->budget_map, token);
1280  out:
1281  	return -1;
1282  }
1283  
1284  /*
1285   * scsi_target_queue_ready: checks if there we can send commands to target
1286   * @sdev: scsi device on starget to check.
1287   */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1288  static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1289  					   struct scsi_device *sdev)
1290  {
1291  	struct scsi_target *starget = scsi_target(sdev);
1292  	unsigned int busy;
1293  
1294  	if (starget->single_lun) {
1295  		spin_lock_irq(shost->host_lock);
1296  		if (starget->starget_sdev_user &&
1297  		    starget->starget_sdev_user != sdev) {
1298  			spin_unlock_irq(shost->host_lock);
1299  			return 0;
1300  		}
1301  		starget->starget_sdev_user = sdev;
1302  		spin_unlock_irq(shost->host_lock);
1303  	}
1304  
1305  	if (starget->can_queue <= 0)
1306  		return 1;
1307  
1308  	busy = atomic_inc_return(&starget->target_busy) - 1;
1309  	if (atomic_read(&starget->target_blocked) > 0) {
1310  		if (busy)
1311  			goto starved;
1312  
1313  		/*
1314  		 * unblock after target_blocked iterates to zero
1315  		 */
1316  		if (atomic_dec_return(&starget->target_blocked) > 0)
1317  			goto out_dec;
1318  
1319  		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1320  				 "unblocking target at zero depth\n"));
1321  	}
1322  
1323  	if (busy >= starget->can_queue)
1324  		goto starved;
1325  
1326  	return 1;
1327  
1328  starved:
1329  	spin_lock_irq(shost->host_lock);
1330  	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1331  	spin_unlock_irq(shost->host_lock);
1332  out_dec:
1333  	if (starget->can_queue > 0)
1334  		atomic_dec(&starget->target_busy);
1335  	return 0;
1336  }
1337  
1338  /*
1339   * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1340   * return 0. We must end up running the queue again whenever 0 is
1341   * returned, else IO can hang.
1342   */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1343  static inline int scsi_host_queue_ready(struct request_queue *q,
1344  				   struct Scsi_Host *shost,
1345  				   struct scsi_device *sdev,
1346  				   struct scsi_cmnd *cmd)
1347  {
1348  	if (atomic_read(&shost->host_blocked) > 0) {
1349  		if (scsi_host_busy(shost) > 0)
1350  			goto starved;
1351  
1352  		/*
1353  		 * unblock after host_blocked iterates to zero
1354  		 */
1355  		if (atomic_dec_return(&shost->host_blocked) > 0)
1356  			goto out_dec;
1357  
1358  		SCSI_LOG_MLQUEUE(3,
1359  			shost_printk(KERN_INFO, shost,
1360  				     "unblocking host at zero depth\n"));
1361  	}
1362  
1363  	if (shost->host_self_blocked)
1364  		goto starved;
1365  
1366  	/* We're OK to process the command, so we can't be starved */
1367  	if (!list_empty(&sdev->starved_entry)) {
1368  		spin_lock_irq(shost->host_lock);
1369  		if (!list_empty(&sdev->starved_entry))
1370  			list_del_init(&sdev->starved_entry);
1371  		spin_unlock_irq(shost->host_lock);
1372  	}
1373  
1374  	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1375  
1376  	return 1;
1377  
1378  starved:
1379  	spin_lock_irq(shost->host_lock);
1380  	if (list_empty(&sdev->starved_entry))
1381  		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1382  	spin_unlock_irq(shost->host_lock);
1383  out_dec:
1384  	scsi_dec_host_busy(shost, cmd);
1385  	return 0;
1386  }
1387  
1388  /*
1389   * Busy state exporting function for request stacking drivers.
1390   *
1391   * For efficiency, no lock is taken to check the busy state of
1392   * shost/starget/sdev, since the returned value is not guaranteed and
1393   * may be changed after request stacking drivers call the function,
1394   * regardless of taking lock or not.
1395   *
1396   * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1397   * needs to return 'not busy'. Otherwise, request stacking drivers
1398   * may hold requests forever.
1399   */
scsi_mq_lld_busy(struct request_queue * q)1400  static bool scsi_mq_lld_busy(struct request_queue *q)
1401  {
1402  	struct scsi_device *sdev = q->queuedata;
1403  	struct Scsi_Host *shost;
1404  
1405  	if (blk_queue_dying(q))
1406  		return false;
1407  
1408  	shost = sdev->host;
1409  
1410  	/*
1411  	 * Ignore host/starget busy state.
1412  	 * Since block layer does not have a concept of fairness across
1413  	 * multiple queues, congestion of host/starget needs to be handled
1414  	 * in SCSI layer.
1415  	 */
1416  	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1417  		return true;
1418  
1419  	return false;
1420  }
1421  
1422  /*
1423   * Block layer request completion callback. May be called from interrupt
1424   * context.
1425   */
scsi_complete(struct request * rq)1426  static void scsi_complete(struct request *rq)
1427  {
1428  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1429  	enum scsi_disposition disposition;
1430  
1431  	INIT_LIST_HEAD(&cmd->eh_entry);
1432  
1433  	atomic_inc(&cmd->device->iodone_cnt);
1434  	if (cmd->result)
1435  		atomic_inc(&cmd->device->ioerr_cnt);
1436  
1437  	disposition = scsi_decide_disposition(cmd);
1438  	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1439  		disposition = SUCCESS;
1440  
1441  	scsi_log_completion(cmd, disposition);
1442  
1443  	switch (disposition) {
1444  	case SUCCESS:
1445  		scsi_finish_command(cmd);
1446  		break;
1447  	case NEEDS_RETRY:
1448  		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1449  		break;
1450  	case ADD_TO_MLQUEUE:
1451  		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1452  		break;
1453  	default:
1454  		scsi_eh_scmd_add(cmd);
1455  		break;
1456  	}
1457  }
1458  
1459  /**
1460   * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1461   * @cmd: command block we are dispatching.
1462   *
1463   * Return: nonzero return request was rejected and device's queue needs to be
1464   * plugged.
1465   */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1466  static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1467  {
1468  	struct Scsi_Host *host = cmd->device->host;
1469  	int rtn = 0;
1470  
1471  	atomic_inc(&cmd->device->iorequest_cnt);
1472  
1473  	/* check if the device is still usable */
1474  	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1475  		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1476  		 * returns an immediate error upwards, and signals
1477  		 * that the device is no longer present */
1478  		cmd->result = DID_NO_CONNECT << 16;
1479  		goto done;
1480  	}
1481  
1482  	/* Check to see if the scsi lld made this device blocked. */
1483  	if (unlikely(scsi_device_blocked(cmd->device))) {
1484  		/*
1485  		 * in blocked state, the command is just put back on
1486  		 * the device queue.  The suspend state has already
1487  		 * blocked the queue so future requests should not
1488  		 * occur until the device transitions out of the
1489  		 * suspend state.
1490  		 */
1491  		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1492  			"queuecommand : device blocked\n"));
1493  		atomic_dec(&cmd->device->iorequest_cnt);
1494  		return SCSI_MLQUEUE_DEVICE_BUSY;
1495  	}
1496  
1497  	/* Store the LUN value in cmnd, if needed. */
1498  	if (cmd->device->lun_in_cdb)
1499  		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1500  			       (cmd->device->lun << 5 & 0xe0);
1501  
1502  	scsi_log_send(cmd);
1503  
1504  	/*
1505  	 * Before we queue this command, check if the command
1506  	 * length exceeds what the host adapter can handle.
1507  	 */
1508  	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1509  		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1510  			       "queuecommand : command too long. "
1511  			       "cdb_size=%d host->max_cmd_len=%d\n",
1512  			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1513  		cmd->result = (DID_ABORT << 16);
1514  		goto done;
1515  	}
1516  
1517  	if (unlikely(host->shost_state == SHOST_DEL)) {
1518  		cmd->result = (DID_NO_CONNECT << 16);
1519  		goto done;
1520  
1521  	}
1522  
1523  	trace_scsi_dispatch_cmd_start(cmd);
1524  	rtn = host->hostt->queuecommand(host, cmd);
1525  	if (rtn) {
1526  		atomic_dec(&cmd->device->iorequest_cnt);
1527  		trace_scsi_dispatch_cmd_error(cmd, rtn);
1528  		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1529  		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1530  			rtn = SCSI_MLQUEUE_HOST_BUSY;
1531  
1532  		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1533  			"queuecommand : request rejected\n"));
1534  	}
1535  
1536  	return rtn;
1537   done:
1538  	scsi_done(cmd);
1539  	return 0;
1540  }
1541  
1542  /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1543  static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1544  {
1545  	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1546  		sizeof(struct scatterlist);
1547  }
1548  
scsi_prepare_cmd(struct request * req)1549  static blk_status_t scsi_prepare_cmd(struct request *req)
1550  {
1551  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1552  	struct scsi_device *sdev = req->q->queuedata;
1553  	struct Scsi_Host *shost = sdev->host;
1554  	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1555  	struct scatterlist *sg;
1556  
1557  	scsi_init_command(sdev, cmd);
1558  
1559  	cmd->eh_eflags = 0;
1560  	cmd->prot_type = 0;
1561  	cmd->prot_flags = 0;
1562  	cmd->submitter = 0;
1563  	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1564  	cmd->underflow = 0;
1565  	cmd->transfersize = 0;
1566  	cmd->host_scribble = NULL;
1567  	cmd->result = 0;
1568  	cmd->extra_len = 0;
1569  	cmd->state = 0;
1570  	if (in_flight)
1571  		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1572  
1573  	cmd->prot_op = SCSI_PROT_NORMAL;
1574  	if (blk_rq_bytes(req))
1575  		cmd->sc_data_direction = rq_dma_dir(req);
1576  	else
1577  		cmd->sc_data_direction = DMA_NONE;
1578  
1579  	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1580  	cmd->sdb.table.sgl = sg;
1581  
1582  	if (scsi_host_get_prot(shost)) {
1583  		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1584  
1585  		cmd->prot_sdb->table.sgl =
1586  			(struct scatterlist *)(cmd->prot_sdb + 1);
1587  	}
1588  
1589  	/*
1590  	 * Special handling for passthrough commands, which don't go to the ULP
1591  	 * at all:
1592  	 */
1593  	if (blk_rq_is_passthrough(req))
1594  		return scsi_setup_scsi_cmnd(sdev, req);
1595  
1596  	if (sdev->handler && sdev->handler->prep_fn) {
1597  		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1598  
1599  		if (ret != BLK_STS_OK)
1600  			return ret;
1601  	}
1602  
1603  	/* Usually overridden by the ULP */
1604  	cmd->allowed = 0;
1605  	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1606  	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1607  }
1608  
scsi_done_internal(struct scsi_cmnd * cmd,bool complete_directly)1609  static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1610  {
1611  	struct request *req = scsi_cmd_to_rq(cmd);
1612  
1613  	switch (cmd->submitter) {
1614  	case SUBMITTED_BY_BLOCK_LAYER:
1615  		break;
1616  	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1617  		return scsi_eh_done(cmd);
1618  	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1619  		return;
1620  	}
1621  
1622  	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1623  		return;
1624  	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1625  		return;
1626  	trace_scsi_dispatch_cmd_done(cmd);
1627  
1628  	if (complete_directly)
1629  		blk_mq_complete_request_direct(req, scsi_complete);
1630  	else
1631  		blk_mq_complete_request(req);
1632  }
1633  
scsi_done(struct scsi_cmnd * cmd)1634  void scsi_done(struct scsi_cmnd *cmd)
1635  {
1636  	scsi_done_internal(cmd, false);
1637  }
1638  EXPORT_SYMBOL(scsi_done);
1639  
scsi_done_direct(struct scsi_cmnd * cmd)1640  void scsi_done_direct(struct scsi_cmnd *cmd)
1641  {
1642  	scsi_done_internal(cmd, true);
1643  }
1644  EXPORT_SYMBOL(scsi_done_direct);
1645  
scsi_mq_put_budget(struct request_queue * q,int budget_token)1646  static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1647  {
1648  	struct scsi_device *sdev = q->queuedata;
1649  
1650  	sbitmap_put(&sdev->budget_map, budget_token);
1651  }
1652  
1653  /*
1654   * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1655   * not change behaviour from the previous unplug mechanism, experimentation
1656   * may prove this needs changing.
1657   */
1658  #define SCSI_QUEUE_DELAY 3
1659  
scsi_mq_get_budget(struct request_queue * q)1660  static int scsi_mq_get_budget(struct request_queue *q)
1661  {
1662  	struct scsi_device *sdev = q->queuedata;
1663  	int token = scsi_dev_queue_ready(q, sdev);
1664  
1665  	if (token >= 0)
1666  		return token;
1667  
1668  	atomic_inc(&sdev->restarts);
1669  
1670  	/*
1671  	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1672  	 * .restarts must be incremented before .device_busy is read because the
1673  	 * code in scsi_run_queue_async() depends on the order of these operations.
1674  	 */
1675  	smp_mb__after_atomic();
1676  
1677  	/*
1678  	 * If all in-flight requests originated from this LUN are completed
1679  	 * before reading .device_busy, sdev->device_busy will be observed as
1680  	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1681  	 * soon. Otherwise, completion of one of these requests will observe
1682  	 * the .restarts flag, and the request queue will be run for handling
1683  	 * this request, see scsi_end_request().
1684  	 */
1685  	if (unlikely(scsi_device_busy(sdev) == 0 &&
1686  				!scsi_device_blocked(sdev)))
1687  		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1688  	return -1;
1689  }
1690  
scsi_mq_set_rq_budget_token(struct request * req,int token)1691  static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1692  {
1693  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1694  
1695  	cmd->budget_token = token;
1696  }
1697  
scsi_mq_get_rq_budget_token(struct request * req)1698  static int scsi_mq_get_rq_budget_token(struct request *req)
1699  {
1700  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1701  
1702  	return cmd->budget_token;
1703  }
1704  
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1705  static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1706  			 const struct blk_mq_queue_data *bd)
1707  {
1708  	struct request *req = bd->rq;
1709  	struct request_queue *q = req->q;
1710  	struct scsi_device *sdev = q->queuedata;
1711  	struct Scsi_Host *shost = sdev->host;
1712  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1713  	blk_status_t ret;
1714  	int reason;
1715  
1716  	WARN_ON_ONCE(cmd->budget_token < 0);
1717  
1718  	/*
1719  	 * If the device is not in running state we will reject some or all
1720  	 * commands.
1721  	 */
1722  	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1723  		ret = scsi_device_state_check(sdev, req);
1724  		if (ret != BLK_STS_OK)
1725  			goto out_put_budget;
1726  	}
1727  
1728  	ret = BLK_STS_RESOURCE;
1729  	if (!scsi_target_queue_ready(shost, sdev))
1730  		goto out_put_budget;
1731  	if (unlikely(scsi_host_in_recovery(shost))) {
1732  		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1733  			ret = BLK_STS_OFFLINE;
1734  		goto out_dec_target_busy;
1735  	}
1736  	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1737  		goto out_dec_target_busy;
1738  
1739  	/*
1740  	 * Only clear the driver-private command data if the LLD does not supply
1741  	 * a function to initialize that data.
1742  	 */
1743  	if (shost->hostt->cmd_size && !shost->hostt->init_cmd_priv)
1744  		memset(cmd + 1, 0, shost->hostt->cmd_size);
1745  
1746  	if (!(req->rq_flags & RQF_DONTPREP)) {
1747  		ret = scsi_prepare_cmd(req);
1748  		if (ret != BLK_STS_OK)
1749  			goto out_dec_host_busy;
1750  		req->rq_flags |= RQF_DONTPREP;
1751  	} else {
1752  		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1753  	}
1754  
1755  	cmd->flags &= SCMD_PRESERVED_FLAGS;
1756  	if (sdev->simple_tags)
1757  		cmd->flags |= SCMD_TAGGED;
1758  	if (bd->last)
1759  		cmd->flags |= SCMD_LAST;
1760  
1761  	scsi_set_resid(cmd, 0);
1762  	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1763  	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1764  
1765  	blk_mq_start_request(req);
1766  	reason = scsi_dispatch_cmd(cmd);
1767  	if (reason) {
1768  		scsi_set_blocked(cmd, reason);
1769  		ret = BLK_STS_RESOURCE;
1770  		goto out_dec_host_busy;
1771  	}
1772  
1773  	return BLK_STS_OK;
1774  
1775  out_dec_host_busy:
1776  	scsi_dec_host_busy(shost, cmd);
1777  out_dec_target_busy:
1778  	if (scsi_target(sdev)->can_queue > 0)
1779  		atomic_dec(&scsi_target(sdev)->target_busy);
1780  out_put_budget:
1781  	scsi_mq_put_budget(q, cmd->budget_token);
1782  	cmd->budget_token = -1;
1783  	switch (ret) {
1784  	case BLK_STS_OK:
1785  		break;
1786  	case BLK_STS_RESOURCE:
1787  	case BLK_STS_ZONE_RESOURCE:
1788  		if (scsi_device_blocked(sdev))
1789  			ret = BLK_STS_DEV_RESOURCE;
1790  		break;
1791  	case BLK_STS_AGAIN:
1792  		cmd->result = DID_BUS_BUSY << 16;
1793  		if (req->rq_flags & RQF_DONTPREP)
1794  			scsi_mq_uninit_cmd(cmd);
1795  		break;
1796  	default:
1797  		if (unlikely(!scsi_device_online(sdev)))
1798  			cmd->result = DID_NO_CONNECT << 16;
1799  		else
1800  			cmd->result = DID_ERROR << 16;
1801  		/*
1802  		 * Make sure to release all allocated resources when
1803  		 * we hit an error, as we will never see this command
1804  		 * again.
1805  		 */
1806  		if (req->rq_flags & RQF_DONTPREP)
1807  			scsi_mq_uninit_cmd(cmd);
1808  		scsi_run_queue_async(sdev);
1809  		break;
1810  	}
1811  	return ret;
1812  }
1813  
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1814  static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1815  				unsigned int hctx_idx, unsigned int numa_node)
1816  {
1817  	struct Scsi_Host *shost = set->driver_data;
1818  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1819  	struct scatterlist *sg;
1820  	int ret = 0;
1821  
1822  	cmd->sense_buffer =
1823  		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1824  	if (!cmd->sense_buffer)
1825  		return -ENOMEM;
1826  
1827  	if (scsi_host_get_prot(shost)) {
1828  		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1829  			shost->hostt->cmd_size;
1830  		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1831  	}
1832  
1833  	if (shost->hostt->init_cmd_priv) {
1834  		ret = shost->hostt->init_cmd_priv(shost, cmd);
1835  		if (ret < 0)
1836  			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1837  	}
1838  
1839  	return ret;
1840  }
1841  
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1842  static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1843  				 unsigned int hctx_idx)
1844  {
1845  	struct Scsi_Host *shost = set->driver_data;
1846  	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1847  
1848  	if (shost->hostt->exit_cmd_priv)
1849  		shost->hostt->exit_cmd_priv(shost, cmd);
1850  	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1851  }
1852  
1853  
scsi_mq_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1854  static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1855  {
1856  	struct Scsi_Host *shost = hctx->driver_data;
1857  
1858  	if (shost->hostt->mq_poll)
1859  		return shost->hostt->mq_poll(shost, hctx->queue_num);
1860  
1861  	return 0;
1862  }
1863  
scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1864  static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1865  			  unsigned int hctx_idx)
1866  {
1867  	struct Scsi_Host *shost = data;
1868  
1869  	hctx->driver_data = shost;
1870  	return 0;
1871  }
1872  
scsi_map_queues(struct blk_mq_tag_set * set)1873  static void scsi_map_queues(struct blk_mq_tag_set *set)
1874  {
1875  	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1876  
1877  	if (shost->hostt->map_queues)
1878  		return shost->hostt->map_queues(shost);
1879  	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1880  }
1881  
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)1882  void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1883  {
1884  	struct device *dev = shost->dma_dev;
1885  
1886  	/*
1887  	 * this limit is imposed by hardware restrictions
1888  	 */
1889  	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1890  					SG_MAX_SEGMENTS));
1891  
1892  	if (scsi_host_prot_dma(shost)) {
1893  		shost->sg_prot_tablesize =
1894  			min_not_zero(shost->sg_prot_tablesize,
1895  				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1896  		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1897  		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1898  	}
1899  
1900  	blk_queue_max_hw_sectors(q, shost->max_sectors);
1901  	blk_queue_segment_boundary(q, shost->dma_boundary);
1902  	dma_set_seg_boundary(dev, shost->dma_boundary);
1903  
1904  	blk_queue_max_segment_size(q, shost->max_segment_size);
1905  	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1906  	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1907  
1908  	/*
1909  	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1910  	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1911  	 * which is set by the platform.
1912  	 *
1913  	 * Devices that require a bigger alignment can increase it later.
1914  	 */
1915  	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1916  }
1917  EXPORT_SYMBOL_GPL(__scsi_init_queue);
1918  
1919  static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1920  	.get_budget	= scsi_mq_get_budget,
1921  	.put_budget	= scsi_mq_put_budget,
1922  	.queue_rq	= scsi_queue_rq,
1923  	.complete	= scsi_complete,
1924  	.timeout	= scsi_timeout,
1925  #ifdef CONFIG_BLK_DEBUG_FS
1926  	.show_rq	= scsi_show_rq,
1927  #endif
1928  	.init_request	= scsi_mq_init_request,
1929  	.exit_request	= scsi_mq_exit_request,
1930  	.cleanup_rq	= scsi_cleanup_rq,
1931  	.busy		= scsi_mq_lld_busy,
1932  	.map_queues	= scsi_map_queues,
1933  	.init_hctx	= scsi_init_hctx,
1934  	.poll		= scsi_mq_poll,
1935  	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1936  	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1937  };
1938  
1939  
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)1940  static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1941  {
1942  	struct Scsi_Host *shost = hctx->driver_data;
1943  
1944  	shost->hostt->commit_rqs(shost, hctx->queue_num);
1945  }
1946  
1947  static const struct blk_mq_ops scsi_mq_ops = {
1948  	.get_budget	= scsi_mq_get_budget,
1949  	.put_budget	= scsi_mq_put_budget,
1950  	.queue_rq	= scsi_queue_rq,
1951  	.commit_rqs	= scsi_commit_rqs,
1952  	.complete	= scsi_complete,
1953  	.timeout	= scsi_timeout,
1954  #ifdef CONFIG_BLK_DEBUG_FS
1955  	.show_rq	= scsi_show_rq,
1956  #endif
1957  	.init_request	= scsi_mq_init_request,
1958  	.exit_request	= scsi_mq_exit_request,
1959  	.cleanup_rq	= scsi_cleanup_rq,
1960  	.busy		= scsi_mq_lld_busy,
1961  	.map_queues	= scsi_map_queues,
1962  	.init_hctx	= scsi_init_hctx,
1963  	.poll		= scsi_mq_poll,
1964  	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1965  	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1966  };
1967  
scsi_mq_setup_tags(struct Scsi_Host * shost)1968  int scsi_mq_setup_tags(struct Scsi_Host *shost)
1969  {
1970  	unsigned int cmd_size, sgl_size;
1971  	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1972  
1973  	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1974  				scsi_mq_inline_sgl_size(shost));
1975  	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1976  	if (scsi_host_get_prot(shost))
1977  		cmd_size += sizeof(struct scsi_data_buffer) +
1978  			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1979  
1980  	memset(tag_set, 0, sizeof(*tag_set));
1981  	if (shost->hostt->commit_rqs)
1982  		tag_set->ops = &scsi_mq_ops;
1983  	else
1984  		tag_set->ops = &scsi_mq_ops_no_commit;
1985  	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1986  	tag_set->nr_maps = shost->nr_maps ? : 1;
1987  	tag_set->queue_depth = shost->can_queue;
1988  	tag_set->cmd_size = cmd_size;
1989  	tag_set->numa_node = dev_to_node(shost->dma_dev);
1990  	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1991  	tag_set->flags |=
1992  		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1993  	if (shost->queuecommand_may_block)
1994  		tag_set->flags |= BLK_MQ_F_BLOCKING;
1995  	tag_set->driver_data = shost;
1996  	if (shost->host_tagset)
1997  		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1998  
1999  	return blk_mq_alloc_tag_set(tag_set);
2000  }
2001  
scsi_mq_free_tags(struct kref * kref)2002  void scsi_mq_free_tags(struct kref *kref)
2003  {
2004  	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2005  					       tagset_refcnt);
2006  
2007  	blk_mq_free_tag_set(&shost->tag_set);
2008  	complete(&shost->tagset_freed);
2009  }
2010  
2011  /**
2012   * scsi_device_from_queue - return sdev associated with a request_queue
2013   * @q: The request queue to return the sdev from
2014   *
2015   * Return the sdev associated with a request queue or NULL if the
2016   * request_queue does not reference a SCSI device.
2017   */
scsi_device_from_queue(struct request_queue * q)2018  struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2019  {
2020  	struct scsi_device *sdev = NULL;
2021  
2022  	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2023  	    q->mq_ops == &scsi_mq_ops)
2024  		sdev = q->queuedata;
2025  	if (!sdev || !get_device(&sdev->sdev_gendev))
2026  		sdev = NULL;
2027  
2028  	return sdev;
2029  }
2030  /*
2031   * pktcdvd should have been integrated into the SCSI layers, but for historical
2032   * reasons like the old IDE driver it isn't.  This export allows it to safely
2033   * probe if a given device is a SCSI one and only attach to that.
2034   */
2035  #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2036  EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2037  #endif
2038  
2039  /**
2040   * scsi_block_requests - Utility function used by low-level drivers to prevent
2041   * further commands from being queued to the device.
2042   * @shost:  host in question
2043   *
2044   * There is no timer nor any other means by which the requests get unblocked
2045   * other than the low-level driver calling scsi_unblock_requests().
2046   */
scsi_block_requests(struct Scsi_Host * shost)2047  void scsi_block_requests(struct Scsi_Host *shost)
2048  {
2049  	shost->host_self_blocked = 1;
2050  }
2051  EXPORT_SYMBOL(scsi_block_requests);
2052  
2053  /**
2054   * scsi_unblock_requests - Utility function used by low-level drivers to allow
2055   * further commands to be queued to the device.
2056   * @shost:  host in question
2057   *
2058   * There is no timer nor any other means by which the requests get unblocked
2059   * other than the low-level driver calling scsi_unblock_requests(). This is done
2060   * as an API function so that changes to the internals of the scsi mid-layer
2061   * won't require wholesale changes to drivers that use this feature.
2062   */
scsi_unblock_requests(struct Scsi_Host * shost)2063  void scsi_unblock_requests(struct Scsi_Host *shost)
2064  {
2065  	shost->host_self_blocked = 0;
2066  	scsi_run_host_queues(shost);
2067  }
2068  EXPORT_SYMBOL(scsi_unblock_requests);
2069  
scsi_exit_queue(void)2070  void scsi_exit_queue(void)
2071  {
2072  	kmem_cache_destroy(scsi_sense_cache);
2073  }
2074  
2075  /**
2076   *	scsi_mode_select - issue a mode select
2077   *	@sdev:	SCSI device to be queried
2078   *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2079   *	@sp:	Save page bit (0 == don't save, 1 == save)
2080   *	@buffer: request buffer (may not be smaller than eight bytes)
2081   *	@len:	length of request buffer.
2082   *	@timeout: command timeout
2083   *	@retries: number of retries before failing
2084   *	@data: returns a structure abstracting the mode header data
2085   *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2086   *		must be SCSI_SENSE_BUFFERSIZE big.
2087   *
2088   *	Returns zero if successful; negative error number or scsi
2089   *	status on error
2090   *
2091   */
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2092  int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2093  		     unsigned char *buffer, int len, int timeout, int retries,
2094  		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2095  {
2096  	unsigned char cmd[10];
2097  	unsigned char *real_buffer;
2098  	const struct scsi_exec_args exec_args = {
2099  		.sshdr = sshdr,
2100  	};
2101  	int ret;
2102  
2103  	memset(cmd, 0, sizeof(cmd));
2104  	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2105  
2106  	/*
2107  	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2108  	 * and the mode select header cannot fit within the maximumm 255 bytes
2109  	 * of the MODE SELECT(6) command.
2110  	 */
2111  	if (sdev->use_10_for_ms ||
2112  	    len + 4 > 255 ||
2113  	    data->block_descriptor_length > 255) {
2114  		if (len > 65535 - 8)
2115  			return -EINVAL;
2116  		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2117  		if (!real_buffer)
2118  			return -ENOMEM;
2119  		memcpy(real_buffer + 8, buffer, len);
2120  		len += 8;
2121  		real_buffer[0] = 0;
2122  		real_buffer[1] = 0;
2123  		real_buffer[2] = data->medium_type;
2124  		real_buffer[3] = data->device_specific;
2125  		real_buffer[4] = data->longlba ? 0x01 : 0;
2126  		real_buffer[5] = 0;
2127  		put_unaligned_be16(data->block_descriptor_length,
2128  				   &real_buffer[6]);
2129  
2130  		cmd[0] = MODE_SELECT_10;
2131  		put_unaligned_be16(len, &cmd[7]);
2132  	} else {
2133  		if (data->longlba)
2134  			return -EINVAL;
2135  
2136  		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2137  		if (!real_buffer)
2138  			return -ENOMEM;
2139  		memcpy(real_buffer + 4, buffer, len);
2140  		len += 4;
2141  		real_buffer[0] = 0;
2142  		real_buffer[1] = data->medium_type;
2143  		real_buffer[2] = data->device_specific;
2144  		real_buffer[3] = data->block_descriptor_length;
2145  
2146  		cmd[0] = MODE_SELECT;
2147  		cmd[4] = len;
2148  	}
2149  
2150  	ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2151  			       timeout, retries, &exec_args);
2152  	kfree(real_buffer);
2153  	return ret;
2154  }
2155  EXPORT_SYMBOL_GPL(scsi_mode_select);
2156  
2157  /**
2158   *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2159   *	@sdev:	SCSI device to be queried
2160   *	@dbd:	set to prevent mode sense from returning block descriptors
2161   *	@modepage: mode page being requested
2162   *	@subpage: sub-page of the mode page being requested
2163   *	@buffer: request buffer (may not be smaller than eight bytes)
2164   *	@len:	length of request buffer.
2165   *	@timeout: command timeout
2166   *	@retries: number of retries before failing
2167   *	@data: returns a structure abstracting the mode header data
2168   *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2169   *		must be SCSI_SENSE_BUFFERSIZE big.
2170   *
2171   *	Returns zero if successful, or a negative error number on failure
2172   */
2173  int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,int subpage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2174  scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2175  		  unsigned char *buffer, int len, int timeout, int retries,
2176  		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2177  {
2178  	unsigned char cmd[12];
2179  	int use_10_for_ms;
2180  	int header_length;
2181  	int result, retry_count = retries;
2182  	struct scsi_sense_hdr my_sshdr;
2183  	const struct scsi_exec_args exec_args = {
2184  		/* caller might not be interested in sense, but we need it */
2185  		.sshdr = sshdr ? : &my_sshdr,
2186  	};
2187  
2188  	memset(data, 0, sizeof(*data));
2189  	memset(&cmd[0], 0, 12);
2190  
2191  	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2192  	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2193  	cmd[2] = modepage;
2194  	cmd[3] = subpage;
2195  
2196  	sshdr = exec_args.sshdr;
2197  
2198   retry:
2199  	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2200  
2201  	if (use_10_for_ms) {
2202  		if (len < 8 || len > 65535)
2203  			return -EINVAL;
2204  
2205  		cmd[0] = MODE_SENSE_10;
2206  		put_unaligned_be16(len, &cmd[7]);
2207  		header_length = 8;
2208  	} else {
2209  		if (len < 4)
2210  			return -EINVAL;
2211  
2212  		cmd[0] = MODE_SENSE;
2213  		cmd[4] = len;
2214  		header_length = 4;
2215  	}
2216  
2217  	memset(buffer, 0, len);
2218  
2219  	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2220  				  timeout, retries, &exec_args);
2221  	if (result < 0)
2222  		return result;
2223  
2224  	/* This code looks awful: what it's doing is making sure an
2225  	 * ILLEGAL REQUEST sense return identifies the actual command
2226  	 * byte as the problem.  MODE_SENSE commands can return
2227  	 * ILLEGAL REQUEST if the code page isn't supported */
2228  
2229  	if (!scsi_status_is_good(result)) {
2230  		if (scsi_sense_valid(sshdr)) {
2231  			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2232  			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2233  				/*
2234  				 * Invalid command operation code: retry using
2235  				 * MODE SENSE(6) if this was a MODE SENSE(10)
2236  				 * request, except if the request mode page is
2237  				 * too large for MODE SENSE single byte
2238  				 * allocation length field.
2239  				 */
2240  				if (use_10_for_ms) {
2241  					if (len > 255)
2242  						return -EIO;
2243  					sdev->use_10_for_ms = 0;
2244  					goto retry;
2245  				}
2246  			}
2247  			if (scsi_status_is_check_condition(result) &&
2248  			    sshdr->sense_key == UNIT_ATTENTION &&
2249  			    retry_count) {
2250  				retry_count--;
2251  				goto retry;
2252  			}
2253  		}
2254  		return -EIO;
2255  	}
2256  	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2257  		     (modepage == 6 || modepage == 8))) {
2258  		/* Initio breakage? */
2259  		header_length = 0;
2260  		data->length = 13;
2261  		data->medium_type = 0;
2262  		data->device_specific = 0;
2263  		data->longlba = 0;
2264  		data->block_descriptor_length = 0;
2265  	} else if (use_10_for_ms) {
2266  		data->length = get_unaligned_be16(&buffer[0]) + 2;
2267  		data->medium_type = buffer[2];
2268  		data->device_specific = buffer[3];
2269  		data->longlba = buffer[4] & 0x01;
2270  		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2271  	} else {
2272  		data->length = buffer[0] + 1;
2273  		data->medium_type = buffer[1];
2274  		data->device_specific = buffer[2];
2275  		data->block_descriptor_length = buffer[3];
2276  	}
2277  	data->header_length = header_length;
2278  
2279  	return 0;
2280  }
2281  EXPORT_SYMBOL(scsi_mode_sense);
2282  
2283  /**
2284   *	scsi_test_unit_ready - test if unit is ready
2285   *	@sdev:	scsi device to change the state of.
2286   *	@timeout: command timeout
2287   *	@retries: number of retries before failing
2288   *	@sshdr: outpout pointer for decoded sense information.
2289   *
2290   *	Returns zero if unsuccessful or an error if TUR failed.  For
2291   *	removable media, UNIT_ATTENTION sets ->changed flag.
2292   **/
2293  int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2294  scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2295  		     struct scsi_sense_hdr *sshdr)
2296  {
2297  	char cmd[] = {
2298  		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2299  	};
2300  	const struct scsi_exec_args exec_args = {
2301  		.sshdr = sshdr,
2302  	};
2303  	int result;
2304  
2305  	/* try to eat the UNIT_ATTENTION if there are enough retries */
2306  	do {
2307  		result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2308  					  timeout, 1, &exec_args);
2309  		if (sdev->removable && scsi_sense_valid(sshdr) &&
2310  		    sshdr->sense_key == UNIT_ATTENTION)
2311  			sdev->changed = 1;
2312  	} while (scsi_sense_valid(sshdr) &&
2313  		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2314  
2315  	return result;
2316  }
2317  EXPORT_SYMBOL(scsi_test_unit_ready);
2318  
2319  /**
2320   *	scsi_device_set_state - Take the given device through the device state model.
2321   *	@sdev:	scsi device to change the state of.
2322   *	@state:	state to change to.
2323   *
2324   *	Returns zero if successful or an error if the requested
2325   *	transition is illegal.
2326   */
2327  int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2328  scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2329  {
2330  	enum scsi_device_state oldstate = sdev->sdev_state;
2331  
2332  	if (state == oldstate)
2333  		return 0;
2334  
2335  	switch (state) {
2336  	case SDEV_CREATED:
2337  		switch (oldstate) {
2338  		case SDEV_CREATED_BLOCK:
2339  			break;
2340  		default:
2341  			goto illegal;
2342  		}
2343  		break;
2344  
2345  	case SDEV_RUNNING:
2346  		switch (oldstate) {
2347  		case SDEV_CREATED:
2348  		case SDEV_OFFLINE:
2349  		case SDEV_TRANSPORT_OFFLINE:
2350  		case SDEV_QUIESCE:
2351  		case SDEV_BLOCK:
2352  			break;
2353  		default:
2354  			goto illegal;
2355  		}
2356  		break;
2357  
2358  	case SDEV_QUIESCE:
2359  		switch (oldstate) {
2360  		case SDEV_RUNNING:
2361  		case SDEV_OFFLINE:
2362  		case SDEV_TRANSPORT_OFFLINE:
2363  			break;
2364  		default:
2365  			goto illegal;
2366  		}
2367  		break;
2368  
2369  	case SDEV_OFFLINE:
2370  	case SDEV_TRANSPORT_OFFLINE:
2371  		switch (oldstate) {
2372  		case SDEV_CREATED:
2373  		case SDEV_RUNNING:
2374  		case SDEV_QUIESCE:
2375  		case SDEV_BLOCK:
2376  			break;
2377  		default:
2378  			goto illegal;
2379  		}
2380  		break;
2381  
2382  	case SDEV_BLOCK:
2383  		switch (oldstate) {
2384  		case SDEV_RUNNING:
2385  		case SDEV_CREATED_BLOCK:
2386  		case SDEV_QUIESCE:
2387  		case SDEV_OFFLINE:
2388  			break;
2389  		default:
2390  			goto illegal;
2391  		}
2392  		break;
2393  
2394  	case SDEV_CREATED_BLOCK:
2395  		switch (oldstate) {
2396  		case SDEV_CREATED:
2397  			break;
2398  		default:
2399  			goto illegal;
2400  		}
2401  		break;
2402  
2403  	case SDEV_CANCEL:
2404  		switch (oldstate) {
2405  		case SDEV_CREATED:
2406  		case SDEV_RUNNING:
2407  		case SDEV_QUIESCE:
2408  		case SDEV_OFFLINE:
2409  		case SDEV_TRANSPORT_OFFLINE:
2410  			break;
2411  		default:
2412  			goto illegal;
2413  		}
2414  		break;
2415  
2416  	case SDEV_DEL:
2417  		switch (oldstate) {
2418  		case SDEV_CREATED:
2419  		case SDEV_RUNNING:
2420  		case SDEV_OFFLINE:
2421  		case SDEV_TRANSPORT_OFFLINE:
2422  		case SDEV_CANCEL:
2423  		case SDEV_BLOCK:
2424  		case SDEV_CREATED_BLOCK:
2425  			break;
2426  		default:
2427  			goto illegal;
2428  		}
2429  		break;
2430  
2431  	}
2432  	sdev->offline_already = false;
2433  	sdev->sdev_state = state;
2434  	return 0;
2435  
2436   illegal:
2437  	SCSI_LOG_ERROR_RECOVERY(1,
2438  				sdev_printk(KERN_ERR, sdev,
2439  					    "Illegal state transition %s->%s",
2440  					    scsi_device_state_name(oldstate),
2441  					    scsi_device_state_name(state))
2442  				);
2443  	return -EINVAL;
2444  }
2445  EXPORT_SYMBOL(scsi_device_set_state);
2446  
2447  /**
2448   *	scsi_evt_emit - emit a single SCSI device uevent
2449   *	@sdev: associated SCSI device
2450   *	@evt: event to emit
2451   *
2452   *	Send a single uevent (scsi_event) to the associated scsi_device.
2453   */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2454  static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2455  {
2456  	int idx = 0;
2457  	char *envp[3];
2458  
2459  	switch (evt->evt_type) {
2460  	case SDEV_EVT_MEDIA_CHANGE:
2461  		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2462  		break;
2463  	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2464  		scsi_rescan_device(sdev);
2465  		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2466  		break;
2467  	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2468  		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2469  		break;
2470  	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2471  	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2472  		break;
2473  	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2474  		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2475  		break;
2476  	case SDEV_EVT_LUN_CHANGE_REPORTED:
2477  		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2478  		break;
2479  	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2480  		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2481  		break;
2482  	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2483  		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2484  		break;
2485  	default:
2486  		/* do nothing */
2487  		break;
2488  	}
2489  
2490  	envp[idx++] = NULL;
2491  
2492  	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2493  }
2494  
2495  /**
2496   *	scsi_evt_thread - send a uevent for each scsi event
2497   *	@work: work struct for scsi_device
2498   *
2499   *	Dispatch queued events to their associated scsi_device kobjects
2500   *	as uevents.
2501   */
scsi_evt_thread(struct work_struct * work)2502  void scsi_evt_thread(struct work_struct *work)
2503  {
2504  	struct scsi_device *sdev;
2505  	enum scsi_device_event evt_type;
2506  	LIST_HEAD(event_list);
2507  
2508  	sdev = container_of(work, struct scsi_device, event_work);
2509  
2510  	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2511  		if (test_and_clear_bit(evt_type, sdev->pending_events))
2512  			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2513  
2514  	while (1) {
2515  		struct scsi_event *evt;
2516  		struct list_head *this, *tmp;
2517  		unsigned long flags;
2518  
2519  		spin_lock_irqsave(&sdev->list_lock, flags);
2520  		list_splice_init(&sdev->event_list, &event_list);
2521  		spin_unlock_irqrestore(&sdev->list_lock, flags);
2522  
2523  		if (list_empty(&event_list))
2524  			break;
2525  
2526  		list_for_each_safe(this, tmp, &event_list) {
2527  			evt = list_entry(this, struct scsi_event, node);
2528  			list_del(&evt->node);
2529  			scsi_evt_emit(sdev, evt);
2530  			kfree(evt);
2531  		}
2532  	}
2533  }
2534  
2535  /**
2536   * 	sdev_evt_send - send asserted event to uevent thread
2537   *	@sdev: scsi_device event occurred on
2538   *	@evt: event to send
2539   *
2540   *	Assert scsi device event asynchronously.
2541   */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2542  void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2543  {
2544  	unsigned long flags;
2545  
2546  #if 0
2547  	/* FIXME: currently this check eliminates all media change events
2548  	 * for polled devices.  Need to update to discriminate between AN
2549  	 * and polled events */
2550  	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2551  		kfree(evt);
2552  		return;
2553  	}
2554  #endif
2555  
2556  	spin_lock_irqsave(&sdev->list_lock, flags);
2557  	list_add_tail(&evt->node, &sdev->event_list);
2558  	schedule_work(&sdev->event_work);
2559  	spin_unlock_irqrestore(&sdev->list_lock, flags);
2560  }
2561  EXPORT_SYMBOL_GPL(sdev_evt_send);
2562  
2563  /**
2564   * 	sdev_evt_alloc - allocate a new scsi event
2565   *	@evt_type: type of event to allocate
2566   *	@gfpflags: GFP flags for allocation
2567   *
2568   *	Allocates and returns a new scsi_event.
2569   */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2570  struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2571  				  gfp_t gfpflags)
2572  {
2573  	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2574  	if (!evt)
2575  		return NULL;
2576  
2577  	evt->evt_type = evt_type;
2578  	INIT_LIST_HEAD(&evt->node);
2579  
2580  	/* evt_type-specific initialization, if any */
2581  	switch (evt_type) {
2582  	case SDEV_EVT_MEDIA_CHANGE:
2583  	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2584  	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2585  	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2586  	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2587  	case SDEV_EVT_LUN_CHANGE_REPORTED:
2588  	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2589  	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2590  	default:
2591  		/* do nothing */
2592  		break;
2593  	}
2594  
2595  	return evt;
2596  }
2597  EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2598  
2599  /**
2600   * 	sdev_evt_send_simple - send asserted event to uevent thread
2601   *	@sdev: scsi_device event occurred on
2602   *	@evt_type: type of event to send
2603   *	@gfpflags: GFP flags for allocation
2604   *
2605   *	Assert scsi device event asynchronously, given an event type.
2606   */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2607  void sdev_evt_send_simple(struct scsi_device *sdev,
2608  			  enum scsi_device_event evt_type, gfp_t gfpflags)
2609  {
2610  	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2611  	if (!evt) {
2612  		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2613  			    evt_type);
2614  		return;
2615  	}
2616  
2617  	sdev_evt_send(sdev, evt);
2618  }
2619  EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2620  
2621  /**
2622   *	scsi_device_quiesce - Block all commands except power management.
2623   *	@sdev:	scsi device to quiesce.
2624   *
2625   *	This works by trying to transition to the SDEV_QUIESCE state
2626   *	(which must be a legal transition).  When the device is in this
2627   *	state, only power management requests will be accepted, all others will
2628   *	be deferred.
2629   *
2630   *	Must be called with user context, may sleep.
2631   *
2632   *	Returns zero if unsuccessful or an error if not.
2633   */
2634  int
scsi_device_quiesce(struct scsi_device * sdev)2635  scsi_device_quiesce(struct scsi_device *sdev)
2636  {
2637  	struct request_queue *q = sdev->request_queue;
2638  	int err;
2639  
2640  	/*
2641  	 * It is allowed to call scsi_device_quiesce() multiple times from
2642  	 * the same context but concurrent scsi_device_quiesce() calls are
2643  	 * not allowed.
2644  	 */
2645  	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2646  
2647  	if (sdev->quiesced_by == current)
2648  		return 0;
2649  
2650  	blk_set_pm_only(q);
2651  
2652  	blk_mq_freeze_queue(q);
2653  	/*
2654  	 * Ensure that the effect of blk_set_pm_only() will be visible
2655  	 * for percpu_ref_tryget() callers that occur after the queue
2656  	 * unfreeze even if the queue was already frozen before this function
2657  	 * was called. See also https://lwn.net/Articles/573497/.
2658  	 */
2659  	synchronize_rcu();
2660  	blk_mq_unfreeze_queue(q);
2661  
2662  	mutex_lock(&sdev->state_mutex);
2663  	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2664  	if (err == 0)
2665  		sdev->quiesced_by = current;
2666  	else
2667  		blk_clear_pm_only(q);
2668  	mutex_unlock(&sdev->state_mutex);
2669  
2670  	return err;
2671  }
2672  EXPORT_SYMBOL(scsi_device_quiesce);
2673  
2674  /**
2675   *	scsi_device_resume - Restart user issued commands to a quiesced device.
2676   *	@sdev:	scsi device to resume.
2677   *
2678   *	Moves the device from quiesced back to running and restarts the
2679   *	queues.
2680   *
2681   *	Must be called with user context, may sleep.
2682   */
scsi_device_resume(struct scsi_device * sdev)2683  void scsi_device_resume(struct scsi_device *sdev)
2684  {
2685  	/* check if the device state was mutated prior to resume, and if
2686  	 * so assume the state is being managed elsewhere (for example
2687  	 * device deleted during suspend)
2688  	 */
2689  	mutex_lock(&sdev->state_mutex);
2690  	if (sdev->sdev_state == SDEV_QUIESCE)
2691  		scsi_device_set_state(sdev, SDEV_RUNNING);
2692  	if (sdev->quiesced_by) {
2693  		sdev->quiesced_by = NULL;
2694  		blk_clear_pm_only(sdev->request_queue);
2695  	}
2696  	mutex_unlock(&sdev->state_mutex);
2697  }
2698  EXPORT_SYMBOL(scsi_device_resume);
2699  
2700  static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2701  device_quiesce_fn(struct scsi_device *sdev, void *data)
2702  {
2703  	scsi_device_quiesce(sdev);
2704  }
2705  
2706  void
scsi_target_quiesce(struct scsi_target * starget)2707  scsi_target_quiesce(struct scsi_target *starget)
2708  {
2709  	starget_for_each_device(starget, NULL, device_quiesce_fn);
2710  }
2711  EXPORT_SYMBOL(scsi_target_quiesce);
2712  
2713  static void
device_resume_fn(struct scsi_device * sdev,void * data)2714  device_resume_fn(struct scsi_device *sdev, void *data)
2715  {
2716  	scsi_device_resume(sdev);
2717  }
2718  
2719  void
scsi_target_resume(struct scsi_target * starget)2720  scsi_target_resume(struct scsi_target *starget)
2721  {
2722  	starget_for_each_device(starget, NULL, device_resume_fn);
2723  }
2724  EXPORT_SYMBOL(scsi_target_resume);
2725  
__scsi_internal_device_block_nowait(struct scsi_device * sdev)2726  static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2727  {
2728  	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2729  		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2730  
2731  	return 0;
2732  }
2733  
scsi_start_queue(struct scsi_device * sdev)2734  void scsi_start_queue(struct scsi_device *sdev)
2735  {
2736  	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2737  		blk_mq_unquiesce_queue(sdev->request_queue);
2738  }
2739  
scsi_stop_queue(struct scsi_device * sdev)2740  static void scsi_stop_queue(struct scsi_device *sdev)
2741  {
2742  	/*
2743  	 * The atomic variable of ->queue_stopped covers that
2744  	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2745  	 *
2746  	 * The caller needs to wait until quiesce is done.
2747  	 */
2748  	if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2749  		blk_mq_quiesce_queue_nowait(sdev->request_queue);
2750  }
2751  
2752  /**
2753   * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2754   * @sdev: device to block
2755   *
2756   * Pause SCSI command processing on the specified device. Does not sleep.
2757   *
2758   * Returns zero if successful or a negative error code upon failure.
2759   *
2760   * Notes:
2761   * This routine transitions the device to the SDEV_BLOCK state (which must be
2762   * a legal transition). When the device is in this state, command processing
2763   * is paused until the device leaves the SDEV_BLOCK state. See also
2764   * scsi_internal_device_unblock_nowait().
2765   */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2766  int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2767  {
2768  	int ret = __scsi_internal_device_block_nowait(sdev);
2769  
2770  	/*
2771  	 * The device has transitioned to SDEV_BLOCK.  Stop the
2772  	 * block layer from calling the midlayer with this device's
2773  	 * request queue.
2774  	 */
2775  	if (!ret)
2776  		scsi_stop_queue(sdev);
2777  	return ret;
2778  }
2779  EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2780  
2781  /**
2782   * scsi_device_block - try to transition to the SDEV_BLOCK state
2783   * @sdev: device to block
2784   * @data: dummy argument, ignored
2785   *
2786   * Pause SCSI command processing on the specified device. Callers must wait
2787   * until all ongoing scsi_queue_rq() calls have finished after this function
2788   * returns.
2789   *
2790   * Note:
2791   * This routine transitions the device to the SDEV_BLOCK state (which must be
2792   * a legal transition). When the device is in this state, command processing
2793   * is paused until the device leaves the SDEV_BLOCK state. See also
2794   * scsi_internal_device_unblock().
2795   */
scsi_device_block(struct scsi_device * sdev,void * data)2796  static void scsi_device_block(struct scsi_device *sdev, void *data)
2797  {
2798  	int err;
2799  	enum scsi_device_state state;
2800  
2801  	mutex_lock(&sdev->state_mutex);
2802  	err = __scsi_internal_device_block_nowait(sdev);
2803  	state = sdev->sdev_state;
2804  	if (err == 0)
2805  		/*
2806  		 * scsi_stop_queue() must be called with the state_mutex
2807  		 * held. Otherwise a simultaneous scsi_start_queue() call
2808  		 * might unquiesce the queue before we quiesce it.
2809  		 */
2810  		scsi_stop_queue(sdev);
2811  
2812  	mutex_unlock(&sdev->state_mutex);
2813  
2814  	WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2815  		  __func__, dev_name(&sdev->sdev_gendev), state);
2816  }
2817  
2818  /**
2819   * scsi_internal_device_unblock_nowait - resume a device after a block request
2820   * @sdev:	device to resume
2821   * @new_state:	state to set the device to after unblocking
2822   *
2823   * Restart the device queue for a previously suspended SCSI device. Does not
2824   * sleep.
2825   *
2826   * Returns zero if successful or a negative error code upon failure.
2827   *
2828   * Notes:
2829   * This routine transitions the device to the SDEV_RUNNING state or to one of
2830   * the offline states (which must be a legal transition) allowing the midlayer
2831   * to goose the queue for this device.
2832   */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2833  int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2834  					enum scsi_device_state new_state)
2835  {
2836  	switch (new_state) {
2837  	case SDEV_RUNNING:
2838  	case SDEV_TRANSPORT_OFFLINE:
2839  		break;
2840  	default:
2841  		return -EINVAL;
2842  	}
2843  
2844  	/*
2845  	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2846  	 * offlined states and goose the device queue if successful.
2847  	 */
2848  	switch (sdev->sdev_state) {
2849  	case SDEV_BLOCK:
2850  	case SDEV_TRANSPORT_OFFLINE:
2851  		sdev->sdev_state = new_state;
2852  		break;
2853  	case SDEV_CREATED_BLOCK:
2854  		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2855  		    new_state == SDEV_OFFLINE)
2856  			sdev->sdev_state = new_state;
2857  		else
2858  			sdev->sdev_state = SDEV_CREATED;
2859  		break;
2860  	case SDEV_CANCEL:
2861  	case SDEV_OFFLINE:
2862  		break;
2863  	default:
2864  		return -EINVAL;
2865  	}
2866  	scsi_start_queue(sdev);
2867  
2868  	return 0;
2869  }
2870  EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2871  
2872  /**
2873   * scsi_internal_device_unblock - resume a device after a block request
2874   * @sdev:	device to resume
2875   * @new_state:	state to set the device to after unblocking
2876   *
2877   * Restart the device queue for a previously suspended SCSI device. May sleep.
2878   *
2879   * Returns zero if successful or a negative error code upon failure.
2880   *
2881   * Notes:
2882   * This routine transitions the device to the SDEV_RUNNING state or to one of
2883   * the offline states (which must be a legal transition) allowing the midlayer
2884   * to goose the queue for this device.
2885   */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2886  static int scsi_internal_device_unblock(struct scsi_device *sdev,
2887  					enum scsi_device_state new_state)
2888  {
2889  	int ret;
2890  
2891  	mutex_lock(&sdev->state_mutex);
2892  	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2893  	mutex_unlock(&sdev->state_mutex);
2894  
2895  	return ret;
2896  }
2897  
2898  static int
target_block(struct device * dev,void * data)2899  target_block(struct device *dev, void *data)
2900  {
2901  	if (scsi_is_target_device(dev))
2902  		starget_for_each_device(to_scsi_target(dev), NULL,
2903  					scsi_device_block);
2904  	return 0;
2905  }
2906  
2907  /**
2908   * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
2909   * @dev: a parent device of one or more scsi_target devices
2910   * @shost: the Scsi_Host to which this device belongs
2911   *
2912   * Iterate over all children of @dev, which should be scsi_target devices,
2913   * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
2914   * ongoing scsi_queue_rq() calls to finish. May sleep.
2915   *
2916   * Note:
2917   * @dev must not itself be a scsi_target device.
2918   */
2919  void
scsi_block_targets(struct Scsi_Host * shost,struct device * dev)2920  scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
2921  {
2922  	WARN_ON_ONCE(scsi_is_target_device(dev));
2923  	device_for_each_child(dev, NULL, target_block);
2924  	blk_mq_wait_quiesce_done(&shost->tag_set);
2925  }
2926  EXPORT_SYMBOL_GPL(scsi_block_targets);
2927  
2928  static void
device_unblock(struct scsi_device * sdev,void * data)2929  device_unblock(struct scsi_device *sdev, void *data)
2930  {
2931  	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2932  }
2933  
2934  static int
target_unblock(struct device * dev,void * data)2935  target_unblock(struct device *dev, void *data)
2936  {
2937  	if (scsi_is_target_device(dev))
2938  		starget_for_each_device(to_scsi_target(dev), data,
2939  					device_unblock);
2940  	return 0;
2941  }
2942  
2943  void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2944  scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2945  {
2946  	if (scsi_is_target_device(dev))
2947  		starget_for_each_device(to_scsi_target(dev), &new_state,
2948  					device_unblock);
2949  	else
2950  		device_for_each_child(dev, &new_state, target_unblock);
2951  }
2952  EXPORT_SYMBOL_GPL(scsi_target_unblock);
2953  
2954  /**
2955   * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
2956   * @shost: device to block
2957   *
2958   * Pause SCSI command processing for all logical units associated with the SCSI
2959   * host and wait until pending scsi_queue_rq() calls have finished.
2960   *
2961   * Returns zero if successful or a negative error code upon failure.
2962   */
2963  int
scsi_host_block(struct Scsi_Host * shost)2964  scsi_host_block(struct Scsi_Host *shost)
2965  {
2966  	struct scsi_device *sdev;
2967  	int ret;
2968  
2969  	/*
2970  	 * Call scsi_internal_device_block_nowait so we can avoid
2971  	 * calling synchronize_rcu() for each LUN.
2972  	 */
2973  	shost_for_each_device(sdev, shost) {
2974  		mutex_lock(&sdev->state_mutex);
2975  		ret = scsi_internal_device_block_nowait(sdev);
2976  		mutex_unlock(&sdev->state_mutex);
2977  		if (ret) {
2978  			scsi_device_put(sdev);
2979  			return ret;
2980  		}
2981  	}
2982  
2983  	/* Wait for ongoing scsi_queue_rq() calls to finish. */
2984  	blk_mq_wait_quiesce_done(&shost->tag_set);
2985  
2986  	return 0;
2987  }
2988  EXPORT_SYMBOL_GPL(scsi_host_block);
2989  
2990  int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)2991  scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2992  {
2993  	struct scsi_device *sdev;
2994  	int ret = 0;
2995  
2996  	shost_for_each_device(sdev, shost) {
2997  		ret = scsi_internal_device_unblock(sdev, new_state);
2998  		if (ret) {
2999  			scsi_device_put(sdev);
3000  			break;
3001  		}
3002  	}
3003  	return ret;
3004  }
3005  EXPORT_SYMBOL_GPL(scsi_host_unblock);
3006  
3007  /**
3008   * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3009   * @sgl:	scatter-gather list
3010   * @sg_count:	number of segments in sg
3011   * @offset:	offset in bytes into sg, on return offset into the mapped area
3012   * @len:	bytes to map, on return number of bytes mapped
3013   *
3014   * Returns virtual address of the start of the mapped page
3015   */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)3016  void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3017  			  size_t *offset, size_t *len)
3018  {
3019  	int i;
3020  	size_t sg_len = 0, len_complete = 0;
3021  	struct scatterlist *sg;
3022  	struct page *page;
3023  
3024  	WARN_ON(!irqs_disabled());
3025  
3026  	for_each_sg(sgl, sg, sg_count, i) {
3027  		len_complete = sg_len; /* Complete sg-entries */
3028  		sg_len += sg->length;
3029  		if (sg_len > *offset)
3030  			break;
3031  	}
3032  
3033  	if (unlikely(i == sg_count)) {
3034  		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3035  			"elements %d\n",
3036  		       __func__, sg_len, *offset, sg_count);
3037  		WARN_ON(1);
3038  		return NULL;
3039  	}
3040  
3041  	/* Offset starting from the beginning of first page in this sg-entry */
3042  	*offset = *offset - len_complete + sg->offset;
3043  
3044  	/* Assumption: contiguous pages can be accessed as "page + i" */
3045  	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3046  	*offset &= ~PAGE_MASK;
3047  
3048  	/* Bytes in this sg-entry from *offset to the end of the page */
3049  	sg_len = PAGE_SIZE - *offset;
3050  	if (*len > sg_len)
3051  		*len = sg_len;
3052  
3053  	return kmap_atomic(page);
3054  }
3055  EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3056  
3057  /**
3058   * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3059   * @virt:	virtual address to be unmapped
3060   */
scsi_kunmap_atomic_sg(void * virt)3061  void scsi_kunmap_atomic_sg(void *virt)
3062  {
3063  	kunmap_atomic(virt);
3064  }
3065  EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3066  
sdev_disable_disk_events(struct scsi_device * sdev)3067  void sdev_disable_disk_events(struct scsi_device *sdev)
3068  {
3069  	atomic_inc(&sdev->disk_events_disable_depth);
3070  }
3071  EXPORT_SYMBOL(sdev_disable_disk_events);
3072  
sdev_enable_disk_events(struct scsi_device * sdev)3073  void sdev_enable_disk_events(struct scsi_device *sdev)
3074  {
3075  	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3076  		return;
3077  	atomic_dec(&sdev->disk_events_disable_depth);
3078  }
3079  EXPORT_SYMBOL(sdev_enable_disk_events);
3080  
designator_prio(const unsigned char * d)3081  static unsigned char designator_prio(const unsigned char *d)
3082  {
3083  	if (d[1] & 0x30)
3084  		/* not associated with LUN */
3085  		return 0;
3086  
3087  	if (d[3] == 0)
3088  		/* invalid length */
3089  		return 0;
3090  
3091  	/*
3092  	 * Order of preference for lun descriptor:
3093  	 * - SCSI name string
3094  	 * - NAA IEEE Registered Extended
3095  	 * - EUI-64 based 16-byte
3096  	 * - EUI-64 based 12-byte
3097  	 * - NAA IEEE Registered
3098  	 * - NAA IEEE Extended
3099  	 * - EUI-64 based 8-byte
3100  	 * - SCSI name string (truncated)
3101  	 * - T10 Vendor ID
3102  	 * as longer descriptors reduce the likelyhood
3103  	 * of identification clashes.
3104  	 */
3105  
3106  	switch (d[1] & 0xf) {
3107  	case 8:
3108  		/* SCSI name string, variable-length UTF-8 */
3109  		return 9;
3110  	case 3:
3111  		switch (d[4] >> 4) {
3112  		case 6:
3113  			/* NAA registered extended */
3114  			return 8;
3115  		case 5:
3116  			/* NAA registered */
3117  			return 5;
3118  		case 4:
3119  			/* NAA extended */
3120  			return 4;
3121  		case 3:
3122  			/* NAA locally assigned */
3123  			return 1;
3124  		default:
3125  			break;
3126  		}
3127  		break;
3128  	case 2:
3129  		switch (d[3]) {
3130  		case 16:
3131  			/* EUI64-based, 16 byte */
3132  			return 7;
3133  		case 12:
3134  			/* EUI64-based, 12 byte */
3135  			return 6;
3136  		case 8:
3137  			/* EUI64-based, 8 byte */
3138  			return 3;
3139  		default:
3140  			break;
3141  		}
3142  		break;
3143  	case 1:
3144  		/* T10 vendor ID */
3145  		return 1;
3146  	default:
3147  		break;
3148  	}
3149  
3150  	return 0;
3151  }
3152  
3153  /**
3154   * scsi_vpd_lun_id - return a unique device identification
3155   * @sdev: SCSI device
3156   * @id:   buffer for the identification
3157   * @id_len:  length of the buffer
3158   *
3159   * Copies a unique device identification into @id based
3160   * on the information in the VPD page 0x83 of the device.
3161   * The string will be formatted as a SCSI name string.
3162   *
3163   * Returns the length of the identification or error on failure.
3164   * If the identifier is longer than the supplied buffer the actual
3165   * identifier length is returned and the buffer is not zero-padded.
3166   */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3167  int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3168  {
3169  	u8 cur_id_prio = 0;
3170  	u8 cur_id_size = 0;
3171  	const unsigned char *d, *cur_id_str;
3172  	const struct scsi_vpd *vpd_pg83;
3173  	int id_size = -EINVAL;
3174  
3175  	rcu_read_lock();
3176  	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3177  	if (!vpd_pg83) {
3178  		rcu_read_unlock();
3179  		return -ENXIO;
3180  	}
3181  
3182  	/* The id string must be at least 20 bytes + terminating NULL byte */
3183  	if (id_len < 21) {
3184  		rcu_read_unlock();
3185  		return -EINVAL;
3186  	}
3187  
3188  	memset(id, 0, id_len);
3189  	for (d = vpd_pg83->data + 4;
3190  	     d < vpd_pg83->data + vpd_pg83->len;
3191  	     d += d[3] + 4) {
3192  		u8 prio = designator_prio(d);
3193  
3194  		if (prio == 0 || cur_id_prio > prio)
3195  			continue;
3196  
3197  		switch (d[1] & 0xf) {
3198  		case 0x1:
3199  			/* T10 Vendor ID */
3200  			if (cur_id_size > d[3])
3201  				break;
3202  			cur_id_prio = prio;
3203  			cur_id_size = d[3];
3204  			if (cur_id_size + 4 > id_len)
3205  				cur_id_size = id_len - 4;
3206  			cur_id_str = d + 4;
3207  			id_size = snprintf(id, id_len, "t10.%*pE",
3208  					   cur_id_size, cur_id_str);
3209  			break;
3210  		case 0x2:
3211  			/* EUI-64 */
3212  			cur_id_prio = prio;
3213  			cur_id_size = d[3];
3214  			cur_id_str = d + 4;
3215  			switch (cur_id_size) {
3216  			case 8:
3217  				id_size = snprintf(id, id_len,
3218  						   "eui.%8phN",
3219  						   cur_id_str);
3220  				break;
3221  			case 12:
3222  				id_size = snprintf(id, id_len,
3223  						   "eui.%12phN",
3224  						   cur_id_str);
3225  				break;
3226  			case 16:
3227  				id_size = snprintf(id, id_len,
3228  						   "eui.%16phN",
3229  						   cur_id_str);
3230  				break;
3231  			default:
3232  				break;
3233  			}
3234  			break;
3235  		case 0x3:
3236  			/* NAA */
3237  			cur_id_prio = prio;
3238  			cur_id_size = d[3];
3239  			cur_id_str = d + 4;
3240  			switch (cur_id_size) {
3241  			case 8:
3242  				id_size = snprintf(id, id_len,
3243  						   "naa.%8phN",
3244  						   cur_id_str);
3245  				break;
3246  			case 16:
3247  				id_size = snprintf(id, id_len,
3248  						   "naa.%16phN",
3249  						   cur_id_str);
3250  				break;
3251  			default:
3252  				break;
3253  			}
3254  			break;
3255  		case 0x8:
3256  			/* SCSI name string */
3257  			if (cur_id_size > d[3])
3258  				break;
3259  			/* Prefer others for truncated descriptor */
3260  			if (d[3] > id_len) {
3261  				prio = 2;
3262  				if (cur_id_prio > prio)
3263  					break;
3264  			}
3265  			cur_id_prio = prio;
3266  			cur_id_size = id_size = d[3];
3267  			cur_id_str = d + 4;
3268  			if (cur_id_size >= id_len)
3269  				cur_id_size = id_len - 1;
3270  			memcpy(id, cur_id_str, cur_id_size);
3271  			break;
3272  		default:
3273  			break;
3274  		}
3275  	}
3276  	rcu_read_unlock();
3277  
3278  	return id_size;
3279  }
3280  EXPORT_SYMBOL(scsi_vpd_lun_id);
3281  
3282  /*
3283   * scsi_vpd_tpg_id - return a target port group identifier
3284   * @sdev: SCSI device
3285   *
3286   * Returns the Target Port Group identifier from the information
3287   * froom VPD page 0x83 of the device.
3288   *
3289   * Returns the identifier or error on failure.
3290   */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3291  int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3292  {
3293  	const unsigned char *d;
3294  	const struct scsi_vpd *vpd_pg83;
3295  	int group_id = -EAGAIN, rel_port = -1;
3296  
3297  	rcu_read_lock();
3298  	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3299  	if (!vpd_pg83) {
3300  		rcu_read_unlock();
3301  		return -ENXIO;
3302  	}
3303  
3304  	d = vpd_pg83->data + 4;
3305  	while (d < vpd_pg83->data + vpd_pg83->len) {
3306  		switch (d[1] & 0xf) {
3307  		case 0x4:
3308  			/* Relative target port */
3309  			rel_port = get_unaligned_be16(&d[6]);
3310  			break;
3311  		case 0x5:
3312  			/* Target port group */
3313  			group_id = get_unaligned_be16(&d[6]);
3314  			break;
3315  		default:
3316  			break;
3317  		}
3318  		d += d[3] + 4;
3319  	}
3320  	rcu_read_unlock();
3321  
3322  	if (group_id >= 0 && rel_id && rel_port != -1)
3323  		*rel_id = rel_port;
3324  
3325  	return group_id;
3326  }
3327  EXPORT_SYMBOL(scsi_vpd_tpg_id);
3328  
3329  /**
3330   * scsi_build_sense - build sense data for a command
3331   * @scmd:	scsi command for which the sense should be formatted
3332   * @desc:	Sense format (non-zero == descriptor format,
3333   *              0 == fixed format)
3334   * @key:	Sense key
3335   * @asc:	Additional sense code
3336   * @ascq:	Additional sense code qualifier
3337   *
3338   **/
scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3339  void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3340  {
3341  	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3342  	scmd->result = SAM_STAT_CHECK_CONDITION;
3343  }
3344  EXPORT_SYMBOL_GPL(scsi_build_sense);
3345