xref: /openbmc/linux/drivers/firewire/core-card.c (revision 5ee9cd065836e5934710ca35653bce7905add20b)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
4   */
5  
6  #include <linux/bug.h>
7  #include <linux/completion.h>
8  #include <linux/crc-itu-t.h>
9  #include <linux/device.h>
10  #include <linux/errno.h>
11  #include <linux/firewire.h>
12  #include <linux/firewire-constants.h>
13  #include <linux/jiffies.h>
14  #include <linux/kernel.h>
15  #include <linux/kref.h>
16  #include <linux/list.h>
17  #include <linux/module.h>
18  #include <linux/mutex.h>
19  #include <linux/spinlock.h>
20  #include <linux/workqueue.h>
21  
22  #include <linux/atomic.h>
23  #include <asm/byteorder.h>
24  
25  #include "core.h"
26  
27  #define define_fw_printk_level(func, kern_level)		\
28  void func(const struct fw_card *card, const char *fmt, ...)	\
29  {								\
30  	struct va_format vaf;					\
31  	va_list args;						\
32  								\
33  	va_start(args, fmt);					\
34  	vaf.fmt = fmt;						\
35  	vaf.va = &args;						\
36  	printk(kern_level KBUILD_MODNAME " %s: %pV",		\
37  	       dev_name(card->device), &vaf);			\
38  	va_end(args);						\
39  }
40  define_fw_printk_level(fw_err, KERN_ERR);
41  define_fw_printk_level(fw_notice, KERN_NOTICE);
42  
fw_compute_block_crc(__be32 * block)43  int fw_compute_block_crc(__be32 *block)
44  {
45  	int length;
46  	u16 crc;
47  
48  	length = (be32_to_cpu(block[0]) >> 16) & 0xff;
49  	crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
50  	*block |= cpu_to_be32(crc);
51  
52  	return length;
53  }
54  
55  static DEFINE_MUTEX(card_mutex);
56  static LIST_HEAD(card_list);
57  
58  static LIST_HEAD(descriptor_list);
59  static int descriptor_count;
60  
61  static __be32 tmp_config_rom[256];
62  /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
63  static size_t config_rom_length = 1 + 4 + 1 + 1;
64  
65  #define BIB_CRC(v)		((v) <<  0)
66  #define BIB_CRC_LENGTH(v)	((v) << 16)
67  #define BIB_INFO_LENGTH(v)	((v) << 24)
68  #define BIB_BUS_NAME		0x31333934 /* "1394" */
69  #define BIB_LINK_SPEED(v)	((v) <<  0)
70  #define BIB_GENERATION(v)	((v) <<  4)
71  #define BIB_MAX_ROM(v)		((v) <<  8)
72  #define BIB_MAX_RECEIVE(v)	((v) << 12)
73  #define BIB_CYC_CLK_ACC(v)	((v) << 16)
74  #define BIB_PMC			((1) << 27)
75  #define BIB_BMC			((1) << 28)
76  #define BIB_ISC			((1) << 29)
77  #define BIB_CMC			((1) << 30)
78  #define BIB_IRMC		((1) << 31)
79  #define NODE_CAPABILITIES	0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
80  
81  /*
82   * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
83   * but we have to make it longer because there are many devices whose firmware
84   * is just too slow for that.
85   */
86  #define DEFAULT_SPLIT_TIMEOUT	(2 * 8000)
87  
88  #define CANON_OUI		0x000085
89  
generate_config_rom(struct fw_card * card,__be32 * config_rom)90  static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
91  {
92  	struct fw_descriptor *desc;
93  	int i, j, k, length;
94  
95  	/*
96  	 * Initialize contents of config rom buffer.  On the OHCI
97  	 * controller, block reads to the config rom accesses the host
98  	 * memory, but quadlet read access the hardware bus info block
99  	 * registers.  That's just crack, but it means we should make
100  	 * sure the contents of bus info block in host memory matches
101  	 * the version stored in the OHCI registers.
102  	 */
103  
104  	config_rom[0] = cpu_to_be32(
105  		BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
106  	config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
107  	config_rom[2] = cpu_to_be32(
108  		BIB_LINK_SPEED(card->link_speed) |
109  		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
110  		BIB_MAX_ROM(2) |
111  		BIB_MAX_RECEIVE(card->max_receive) |
112  		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
113  	config_rom[3] = cpu_to_be32(card->guid >> 32);
114  	config_rom[4] = cpu_to_be32(card->guid);
115  
116  	/* Generate root directory. */
117  	config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
118  	i = 7;
119  	j = 7 + descriptor_count;
120  
121  	/* Generate root directory entries for descriptors. */
122  	list_for_each_entry (desc, &descriptor_list, link) {
123  		if (desc->immediate > 0)
124  			config_rom[i++] = cpu_to_be32(desc->immediate);
125  		config_rom[i] = cpu_to_be32(desc->key | (j - i));
126  		i++;
127  		j += desc->length;
128  	}
129  
130  	/* Update root directory length. */
131  	config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
132  
133  	/* End of root directory, now copy in descriptors. */
134  	list_for_each_entry (desc, &descriptor_list, link) {
135  		for (k = 0; k < desc->length; k++)
136  			config_rom[i + k] = cpu_to_be32(desc->data[k]);
137  		i += desc->length;
138  	}
139  
140  	/* Calculate CRCs for all blocks in the config rom.  This
141  	 * assumes that CRC length and info length are identical for
142  	 * the bus info block, which is always the case for this
143  	 * implementation. */
144  	for (i = 0; i < j; i += length + 1)
145  		length = fw_compute_block_crc(config_rom + i);
146  
147  	WARN_ON(j != config_rom_length);
148  }
149  
update_config_roms(void)150  static void update_config_roms(void)
151  {
152  	struct fw_card *card;
153  
154  	list_for_each_entry (card, &card_list, link) {
155  		generate_config_rom(card, tmp_config_rom);
156  		card->driver->set_config_rom(card, tmp_config_rom,
157  					     config_rom_length);
158  	}
159  }
160  
required_space(struct fw_descriptor * desc)161  static size_t required_space(struct fw_descriptor *desc)
162  {
163  	/* descriptor + entry into root dir + optional immediate entry */
164  	return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
165  }
166  
fw_core_add_descriptor(struct fw_descriptor * desc)167  int fw_core_add_descriptor(struct fw_descriptor *desc)
168  {
169  	size_t i;
170  	int ret;
171  
172  	/*
173  	 * Check descriptor is valid; the length of all blocks in the
174  	 * descriptor has to add up to exactly the length of the
175  	 * block.
176  	 */
177  	i = 0;
178  	while (i < desc->length)
179  		i += (desc->data[i] >> 16) + 1;
180  
181  	if (i != desc->length)
182  		return -EINVAL;
183  
184  	mutex_lock(&card_mutex);
185  
186  	if (config_rom_length + required_space(desc) > 256) {
187  		ret = -EBUSY;
188  	} else {
189  		list_add_tail(&desc->link, &descriptor_list);
190  		config_rom_length += required_space(desc);
191  		descriptor_count++;
192  		if (desc->immediate > 0)
193  			descriptor_count++;
194  		update_config_roms();
195  		ret = 0;
196  	}
197  
198  	mutex_unlock(&card_mutex);
199  
200  	return ret;
201  }
202  EXPORT_SYMBOL(fw_core_add_descriptor);
203  
fw_core_remove_descriptor(struct fw_descriptor * desc)204  void fw_core_remove_descriptor(struct fw_descriptor *desc)
205  {
206  	mutex_lock(&card_mutex);
207  
208  	list_del(&desc->link);
209  	config_rom_length -= required_space(desc);
210  	descriptor_count--;
211  	if (desc->immediate > 0)
212  		descriptor_count--;
213  	update_config_roms();
214  
215  	mutex_unlock(&card_mutex);
216  }
217  EXPORT_SYMBOL(fw_core_remove_descriptor);
218  
reset_bus(struct fw_card * card,bool short_reset)219  static int reset_bus(struct fw_card *card, bool short_reset)
220  {
221  	int reg = short_reset ? 5 : 1;
222  	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
223  
224  	return card->driver->update_phy_reg(card, reg, 0, bit);
225  }
226  
fw_schedule_bus_reset(struct fw_card * card,bool delayed,bool short_reset)227  void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
228  {
229  	/* We don't try hard to sort out requests of long vs. short resets. */
230  	card->br_short = short_reset;
231  
232  	/* Use an arbitrary short delay to combine multiple reset requests. */
233  	fw_card_get(card);
234  	if (!queue_delayed_work(fw_workqueue, &card->br_work,
235  				delayed ? DIV_ROUND_UP(HZ, 100) : 0))
236  		fw_card_put(card);
237  }
238  EXPORT_SYMBOL(fw_schedule_bus_reset);
239  
br_work(struct work_struct * work)240  static void br_work(struct work_struct *work)
241  {
242  	struct fw_card *card = container_of(work, struct fw_card, br_work.work);
243  
244  	/* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
245  	if (card->reset_jiffies != 0 &&
246  	    time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
247  		if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
248  			fw_card_put(card);
249  		return;
250  	}
251  
252  	fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
253  			   FW_PHY_CONFIG_CURRENT_GAP_COUNT);
254  	reset_bus(card, card->br_short);
255  	fw_card_put(card);
256  }
257  
allocate_broadcast_channel(struct fw_card * card,int generation)258  static void allocate_broadcast_channel(struct fw_card *card, int generation)
259  {
260  	int channel, bandwidth = 0;
261  
262  	if (!card->broadcast_channel_allocated) {
263  		fw_iso_resource_manage(card, generation, 1ULL << 31,
264  				       &channel, &bandwidth, true);
265  		if (channel != 31) {
266  			fw_notice(card, "failed to allocate broadcast channel\n");
267  			return;
268  		}
269  		card->broadcast_channel_allocated = true;
270  	}
271  
272  	device_for_each_child(card->device, (void *)(long)generation,
273  			      fw_device_set_broadcast_channel);
274  }
275  
276  static const char gap_count_table[] = {
277  	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
278  };
279  
fw_schedule_bm_work(struct fw_card * card,unsigned long delay)280  void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
281  {
282  	fw_card_get(card);
283  	if (!schedule_delayed_work(&card->bm_work, delay))
284  		fw_card_put(card);
285  }
286  
bm_work(struct work_struct * work)287  static void bm_work(struct work_struct *work)
288  {
289  	struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
290  	struct fw_device *root_device, *irm_device;
291  	struct fw_node *root_node;
292  	int root_id, new_root_id, irm_id, bm_id, local_id;
293  	int gap_count, generation, grace, rcode;
294  	bool do_reset = false;
295  	bool root_device_is_running;
296  	bool root_device_is_cmc;
297  	bool irm_is_1394_1995_only;
298  	bool keep_this_irm;
299  	__be32 transaction_data[2];
300  
301  	spin_lock_irq(&card->lock);
302  
303  	if (card->local_node == NULL) {
304  		spin_unlock_irq(&card->lock);
305  		goto out_put_card;
306  	}
307  
308  	generation = card->generation;
309  
310  	root_node = card->root_node;
311  	fw_node_get(root_node);
312  	root_device = root_node->data;
313  	root_device_is_running = root_device &&
314  			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
315  	root_device_is_cmc = root_device && root_device->cmc;
316  
317  	irm_device = card->irm_node->data;
318  	irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
319  			(irm_device->config_rom[2] & 0x000000f0) == 0;
320  
321  	/* Canon MV5i works unreliably if it is not root node. */
322  	keep_this_irm = irm_device && irm_device->config_rom &&
323  			irm_device->config_rom[3] >> 8 == CANON_OUI;
324  
325  	root_id  = root_node->node_id;
326  	irm_id   = card->irm_node->node_id;
327  	local_id = card->local_node->node_id;
328  
329  	grace = time_after64(get_jiffies_64(),
330  			     card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
331  
332  	if ((is_next_generation(generation, card->bm_generation) &&
333  	     !card->bm_abdicate) ||
334  	    (card->bm_generation != generation && grace)) {
335  		/*
336  		 * This first step is to figure out who is IRM and
337  		 * then try to become bus manager.  If the IRM is not
338  		 * well defined (e.g. does not have an active link
339  		 * layer or does not responds to our lock request, we
340  		 * will have to do a little vigilante bus management.
341  		 * In that case, we do a goto into the gap count logic
342  		 * so that when we do the reset, we still optimize the
343  		 * gap count.  That could well save a reset in the
344  		 * next generation.
345  		 */
346  
347  		if (!card->irm_node->link_on) {
348  			new_root_id = local_id;
349  			fw_notice(card, "%s, making local node (%02x) root\n",
350  				  "IRM has link off", new_root_id);
351  			goto pick_me;
352  		}
353  
354  		if (irm_is_1394_1995_only && !keep_this_irm) {
355  			new_root_id = local_id;
356  			fw_notice(card, "%s, making local node (%02x) root\n",
357  				  "IRM is not 1394a compliant", new_root_id);
358  			goto pick_me;
359  		}
360  
361  		transaction_data[0] = cpu_to_be32(0x3f);
362  		transaction_data[1] = cpu_to_be32(local_id);
363  
364  		spin_unlock_irq(&card->lock);
365  
366  		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
367  				irm_id, generation, SCODE_100,
368  				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
369  				transaction_data, 8);
370  
371  		if (rcode == RCODE_GENERATION)
372  			/* Another bus reset, BM work has been rescheduled. */
373  			goto out;
374  
375  		bm_id = be32_to_cpu(transaction_data[0]);
376  
377  		spin_lock_irq(&card->lock);
378  		if (rcode == RCODE_COMPLETE && generation == card->generation)
379  			card->bm_node_id =
380  			    bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
381  		spin_unlock_irq(&card->lock);
382  
383  		if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
384  			/* Somebody else is BM.  Only act as IRM. */
385  			if (local_id == irm_id)
386  				allocate_broadcast_channel(card, generation);
387  
388  			goto out;
389  		}
390  
391  		if (rcode == RCODE_SEND_ERROR) {
392  			/*
393  			 * We have been unable to send the lock request due to
394  			 * some local problem.  Let's try again later and hope
395  			 * that the problem has gone away by then.
396  			 */
397  			fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
398  			goto out;
399  		}
400  
401  		spin_lock_irq(&card->lock);
402  
403  		if (rcode != RCODE_COMPLETE && !keep_this_irm) {
404  			/*
405  			 * The lock request failed, maybe the IRM
406  			 * isn't really IRM capable after all. Let's
407  			 * do a bus reset and pick the local node as
408  			 * root, and thus, IRM.
409  			 */
410  			new_root_id = local_id;
411  			fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
412  				  fw_rcode_string(rcode), new_root_id);
413  			goto pick_me;
414  		}
415  	} else if (card->bm_generation != generation) {
416  		/*
417  		 * We weren't BM in the last generation, and the last
418  		 * bus reset is less than 125ms ago.  Reschedule this job.
419  		 */
420  		spin_unlock_irq(&card->lock);
421  		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
422  		goto out;
423  	}
424  
425  	/*
426  	 * We're bus manager for this generation, so next step is to
427  	 * make sure we have an active cycle master and do gap count
428  	 * optimization.
429  	 */
430  	card->bm_generation = generation;
431  
432  	if (card->gap_count == 0) {
433  		/*
434  		 * If self IDs have inconsistent gap counts, do a
435  		 * bus reset ASAP. The config rom read might never
436  		 * complete, so don't wait for it. However, still
437  		 * send a PHY configuration packet prior to the
438  		 * bus reset. The PHY configuration packet might
439  		 * fail, but 1394-2008 8.4.5.2 explicitly permits
440  		 * it in this case, so it should be safe to try.
441  		 */
442  		new_root_id = local_id;
443  		/*
444  		 * We must always send a bus reset if the gap count
445  		 * is inconsistent, so bypass the 5-reset limit.
446  		 */
447  		card->bm_retries = 0;
448  	} else if (root_device == NULL) {
449  		/*
450  		 * Either link_on is false, or we failed to read the
451  		 * config rom.  In either case, pick another root.
452  		 */
453  		new_root_id = local_id;
454  	} else if (!root_device_is_running) {
455  		/*
456  		 * If we haven't probed this device yet, bail out now
457  		 * and let's try again once that's done.
458  		 */
459  		spin_unlock_irq(&card->lock);
460  		goto out;
461  	} else if (root_device_is_cmc) {
462  		/*
463  		 * We will send out a force root packet for this
464  		 * node as part of the gap count optimization.
465  		 */
466  		new_root_id = root_id;
467  	} else {
468  		/*
469  		 * Current root has an active link layer and we
470  		 * successfully read the config rom, but it's not
471  		 * cycle master capable.
472  		 */
473  		new_root_id = local_id;
474  	}
475  
476   pick_me:
477  	/*
478  	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
479  	 * the typically much larger 1394b beta repeater delays though.
480  	 */
481  	if (!card->beta_repeaters_present &&
482  	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
483  		gap_count = gap_count_table[root_node->max_hops];
484  	else
485  		gap_count = 63;
486  
487  	/*
488  	 * Finally, figure out if we should do a reset or not.  If we have
489  	 * done less than 5 resets with the same physical topology and we
490  	 * have either a new root or a new gap count setting, let's do it.
491  	 */
492  
493  	if (card->bm_retries++ < 5 &&
494  	    (card->gap_count != gap_count || new_root_id != root_id))
495  		do_reset = true;
496  
497  	spin_unlock_irq(&card->lock);
498  
499  	if (do_reset) {
500  		fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
501  			  new_root_id, gap_count);
502  		fw_send_phy_config(card, new_root_id, generation, gap_count);
503  		/*
504  		 * Where possible, use a short bus reset to minimize
505  		 * disruption to isochronous transfers. But in the event
506  		 * of a gap count inconsistency, use a long bus reset.
507  		 *
508  		 * As noted in 1394a 8.4.6.2, nodes on a mixed 1394/1394a bus
509  		 * may set different gap counts after a bus reset. On a mixed
510  		 * 1394/1394a bus, a short bus reset can get doubled. Some
511  		 * nodes may treat the double reset as one bus reset and others
512  		 * may treat it as two, causing a gap count inconsistency
513  		 * again. Using a long bus reset prevents this.
514  		 */
515  		reset_bus(card, card->gap_count != 0);
516  		/* Will allocate broadcast channel after the reset. */
517  		goto out;
518  	}
519  
520  	if (root_device_is_cmc) {
521  		/*
522  		 * Make sure that the cycle master sends cycle start packets.
523  		 */
524  		transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
525  		rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
526  				root_id, generation, SCODE_100,
527  				CSR_REGISTER_BASE + CSR_STATE_SET,
528  				transaction_data, 4);
529  		if (rcode == RCODE_GENERATION)
530  			goto out;
531  	}
532  
533  	if (local_id == irm_id)
534  		allocate_broadcast_channel(card, generation);
535  
536   out:
537  	fw_node_put(root_node);
538   out_put_card:
539  	fw_card_put(card);
540  }
541  
fw_card_initialize(struct fw_card * card,const struct fw_card_driver * driver,struct device * device)542  void fw_card_initialize(struct fw_card *card,
543  			const struct fw_card_driver *driver,
544  			struct device *device)
545  {
546  	static atomic_t index = ATOMIC_INIT(-1);
547  
548  	card->index = atomic_inc_return(&index);
549  	card->driver = driver;
550  	card->device = device;
551  	card->current_tlabel = 0;
552  	card->tlabel_mask = 0;
553  	card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
554  	card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
555  	card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
556  	card->split_timeout_jiffies =
557  			DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
558  	card->color = 0;
559  	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
560  
561  	kref_init(&card->kref);
562  	init_completion(&card->done);
563  	INIT_LIST_HEAD(&card->transaction_list);
564  	INIT_LIST_HEAD(&card->phy_receiver_list);
565  	spin_lock_init(&card->lock);
566  
567  	card->local_node = NULL;
568  
569  	INIT_DELAYED_WORK(&card->br_work, br_work);
570  	INIT_DELAYED_WORK(&card->bm_work, bm_work);
571  }
572  EXPORT_SYMBOL(fw_card_initialize);
573  
fw_card_add(struct fw_card * card,u32 max_receive,u32 link_speed,u64 guid)574  int fw_card_add(struct fw_card *card,
575  		u32 max_receive, u32 link_speed, u64 guid)
576  {
577  	int ret;
578  
579  	card->max_receive = max_receive;
580  	card->link_speed = link_speed;
581  	card->guid = guid;
582  
583  	mutex_lock(&card_mutex);
584  
585  	generate_config_rom(card, tmp_config_rom);
586  	ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
587  	if (ret == 0)
588  		list_add_tail(&card->link, &card_list);
589  
590  	mutex_unlock(&card_mutex);
591  
592  	return ret;
593  }
594  EXPORT_SYMBOL(fw_card_add);
595  
596  /*
597   * The next few functions implement a dummy driver that is used once a card
598   * driver shuts down an fw_card.  This allows the driver to cleanly unload,
599   * as all IO to the card will be handled (and failed) by the dummy driver
600   * instead of calling into the module.  Only functions for iso context
601   * shutdown still need to be provided by the card driver.
602   *
603   * .read/write_csr() should never be called anymore after the dummy driver
604   * was bound since they are only used within request handler context.
605   * .set_config_rom() is never called since the card is taken out of card_list
606   * before switching to the dummy driver.
607   */
608  
dummy_read_phy_reg(struct fw_card * card,int address)609  static int dummy_read_phy_reg(struct fw_card *card, int address)
610  {
611  	return -ENODEV;
612  }
613  
dummy_update_phy_reg(struct fw_card * card,int address,int clear_bits,int set_bits)614  static int dummy_update_phy_reg(struct fw_card *card, int address,
615  				int clear_bits, int set_bits)
616  {
617  	return -ENODEV;
618  }
619  
dummy_send_request(struct fw_card * card,struct fw_packet * packet)620  static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
621  {
622  	packet->callback(packet, card, RCODE_CANCELLED);
623  }
624  
dummy_send_response(struct fw_card * card,struct fw_packet * packet)625  static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
626  {
627  	packet->callback(packet, card, RCODE_CANCELLED);
628  }
629  
dummy_cancel_packet(struct fw_card * card,struct fw_packet * packet)630  static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
631  {
632  	return -ENOENT;
633  }
634  
dummy_enable_phys_dma(struct fw_card * card,int node_id,int generation)635  static int dummy_enable_phys_dma(struct fw_card *card,
636  				 int node_id, int generation)
637  {
638  	return -ENODEV;
639  }
640  
dummy_allocate_iso_context(struct fw_card * card,int type,int channel,size_t header_size)641  static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
642  				int type, int channel, size_t header_size)
643  {
644  	return ERR_PTR(-ENODEV);
645  }
646  
dummy_read_csr(struct fw_card * card,int csr_offset)647  static u32 dummy_read_csr(struct fw_card *card, int csr_offset)
648  {
649  	return 0;
650  }
651  
dummy_write_csr(struct fw_card * card,int csr_offset,u32 value)652  static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value)
653  {
654  }
655  
dummy_start_iso(struct fw_iso_context * ctx,s32 cycle,u32 sync,u32 tags)656  static int dummy_start_iso(struct fw_iso_context *ctx,
657  			   s32 cycle, u32 sync, u32 tags)
658  {
659  	return -ENODEV;
660  }
661  
dummy_set_iso_channels(struct fw_iso_context * ctx,u64 * channels)662  static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
663  {
664  	return -ENODEV;
665  }
666  
dummy_queue_iso(struct fw_iso_context * ctx,struct fw_iso_packet * p,struct fw_iso_buffer * buffer,unsigned long payload)667  static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
668  			   struct fw_iso_buffer *buffer, unsigned long payload)
669  {
670  	return -ENODEV;
671  }
672  
dummy_flush_queue_iso(struct fw_iso_context * ctx)673  static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
674  {
675  }
676  
dummy_flush_iso_completions(struct fw_iso_context * ctx)677  static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
678  {
679  	return -ENODEV;
680  }
681  
682  static const struct fw_card_driver dummy_driver_template = {
683  	.read_phy_reg		= dummy_read_phy_reg,
684  	.update_phy_reg		= dummy_update_phy_reg,
685  	.send_request		= dummy_send_request,
686  	.send_response		= dummy_send_response,
687  	.cancel_packet		= dummy_cancel_packet,
688  	.enable_phys_dma	= dummy_enable_phys_dma,
689  	.read_csr		= dummy_read_csr,
690  	.write_csr		= dummy_write_csr,
691  	.allocate_iso_context	= dummy_allocate_iso_context,
692  	.start_iso		= dummy_start_iso,
693  	.set_iso_channels	= dummy_set_iso_channels,
694  	.queue_iso		= dummy_queue_iso,
695  	.flush_queue_iso	= dummy_flush_queue_iso,
696  	.flush_iso_completions	= dummy_flush_iso_completions,
697  };
698  
fw_card_release(struct kref * kref)699  void fw_card_release(struct kref *kref)
700  {
701  	struct fw_card *card = container_of(kref, struct fw_card, kref);
702  
703  	complete(&card->done);
704  }
705  EXPORT_SYMBOL_GPL(fw_card_release);
706  
fw_core_remove_card(struct fw_card * card)707  void fw_core_remove_card(struct fw_card *card)
708  {
709  	struct fw_card_driver dummy_driver = dummy_driver_template;
710  	unsigned long flags;
711  
712  	card->driver->update_phy_reg(card, 4,
713  				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
714  	fw_schedule_bus_reset(card, false, true);
715  
716  	mutex_lock(&card_mutex);
717  	list_del_init(&card->link);
718  	mutex_unlock(&card_mutex);
719  
720  	/* Switch off most of the card driver interface. */
721  	dummy_driver.free_iso_context	= card->driver->free_iso_context;
722  	dummy_driver.stop_iso		= card->driver->stop_iso;
723  	card->driver = &dummy_driver;
724  
725  	spin_lock_irqsave(&card->lock, flags);
726  	fw_destroy_nodes(card);
727  	spin_unlock_irqrestore(&card->lock, flags);
728  
729  	/* Wait for all users, especially device workqueue jobs, to finish. */
730  	fw_card_put(card);
731  	wait_for_completion(&card->done);
732  
733  	WARN_ON(!list_empty(&card->transaction_list));
734  }
735  EXPORT_SYMBOL(fw_core_remove_card);
736  
737  /**
738   * fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region
739   *			    for controller card.
740   * @card: The instance of card for 1394 OHCI controller.
741   * @cycle_time: The mutual reference to value of cycle time for the read operation.
742   *
743   * Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given
744   * controller card. This function accesses the region without any lock primitives or IRQ mask.
745   * When returning successfully, the content of @value argument has value aligned to host endianness,
746   * formetted by CYCLE_TIME CSR Register of IEEE 1394 std.
747   *
748   * Context: Any context.
749   * Return:
750   * * 0 - Read successfully.
751   * * -ENODEV - The controller is unavailable due to being removed or unbound.
752   */
fw_card_read_cycle_time(struct fw_card * card,u32 * cycle_time)753  int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time)
754  {
755  	if (card->driver->read_csr == dummy_read_csr)
756  		return -ENODEV;
757  
758  	// It's possible to switch to dummy driver between the above and the below. This is the best
759  	// effort to return -ENODEV.
760  	*cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME);
761  	return 0;
762  }
763  EXPORT_SYMBOL_GPL(fw_card_read_cycle_time);
764