xref: /openbmc/linux/fs/proc/base.c (revision fac59652993f075d57860769c99045b3ca18780d)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  linux/fs/proc/base.c
4   *
5   *  Copyright (C) 1991, 1992 Linus Torvalds
6   *
7   *  proc base directory handling functions
8   *
9   *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10   *  Instead of using magical inumbers to determine the kind of object
11   *  we allocate and fill in-core inodes upon lookup. They don't even
12   *  go into icache. We cache the reference to task_struct upon lookup too.
13   *  Eventually it should become a filesystem in its own. We don't use the
14   *  rest of procfs anymore.
15   *
16   *
17   *  Changelog:
18   *  17-Jan-2005
19   *  Allan Bezerra
20   *  Bruna Moreira <bruna.moreira@indt.org.br>
21   *  Edjard Mota <edjard.mota@indt.org.br>
22   *  Ilias Biris <ilias.biris@indt.org.br>
23   *  Mauricio Lin <mauricio.lin@indt.org.br>
24   *
25   *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26   *
27   *  A new process specific entry (smaps) included in /proc. It shows the
28   *  size of rss for each memory area. The maps entry lacks information
29   *  about physical memory size (rss) for each mapped file, i.e.,
30   *  rss information for executables and library files.
31   *  This additional information is useful for any tools that need to know
32   *  about physical memory consumption for a process specific library.
33   *
34   *  Changelog:
35   *  21-Feb-2005
36   *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37   *  Pud inclusion in the page table walking.
38   *
39   *  ChangeLog:
40   *  10-Mar-2005
41   *  10LE Instituto Nokia de Tecnologia - INdT:
42   *  A better way to walks through the page table as suggested by Hugh Dickins.
43   *
44   *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45   *  Smaps information related to shared, private, clean and dirty pages.
46   *
47   *  Paul Mundt <paul.mundt@nokia.com>:
48   *  Overall revision about smaps.
49   */
50  
51  #include <linux/uaccess.h>
52  
53  #include <linux/errno.h>
54  #include <linux/time.h>
55  #include <linux/proc_fs.h>
56  #include <linux/stat.h>
57  #include <linux/task_io_accounting_ops.h>
58  #include <linux/init.h>
59  #include <linux/capability.h>
60  #include <linux/file.h>
61  #include <linux/fdtable.h>
62  #include <linux/generic-radix-tree.h>
63  #include <linux/string.h>
64  #include <linux/seq_file.h>
65  #include <linux/namei.h>
66  #include <linux/mnt_namespace.h>
67  #include <linux/mm.h>
68  #include <linux/swap.h>
69  #include <linux/rcupdate.h>
70  #include <linux/kallsyms.h>
71  #include <linux/stacktrace.h>
72  #include <linux/resource.h>
73  #include <linux/module.h>
74  #include <linux/mount.h>
75  #include <linux/security.h>
76  #include <linux/ptrace.h>
77  #include <linux/printk.h>
78  #include <linux/cache.h>
79  #include <linux/cgroup.h>
80  #include <linux/cpuset.h>
81  #include <linux/audit.h>
82  #include <linux/poll.h>
83  #include <linux/nsproxy.h>
84  #include <linux/oom.h>
85  #include <linux/elf.h>
86  #include <linux/pid_namespace.h>
87  #include <linux/user_namespace.h>
88  #include <linux/fs_parser.h>
89  #include <linux/fs_struct.h>
90  #include <linux/slab.h>
91  #include <linux/sched/autogroup.h>
92  #include <linux/sched/mm.h>
93  #include <linux/sched/coredump.h>
94  #include <linux/sched/debug.h>
95  #include <linux/sched/stat.h>
96  #include <linux/posix-timers.h>
97  #include <linux/time_namespace.h>
98  #include <linux/resctrl.h>
99  #include <linux/cn_proc.h>
100  #include <linux/ksm.h>
101  #include <trace/events/oom.h>
102  #include "internal.h"
103  #include "fd.h"
104  
105  #include "../../lib/kstrtox.h"
106  
107  /* NOTE:
108   *	Implementing inode permission operations in /proc is almost
109   *	certainly an error.  Permission checks need to happen during
110   *	each system call not at open time.  The reason is that most of
111   *	what we wish to check for permissions in /proc varies at runtime.
112   *
113   *	The classic example of a problem is opening file descriptors
114   *	in /proc for a task before it execs a suid executable.
115   */
116  
117  static u8 nlink_tid __ro_after_init;
118  static u8 nlink_tgid __ro_after_init;
119  
120  enum proc_mem_force {
121  	PROC_MEM_FORCE_ALWAYS,
122  	PROC_MEM_FORCE_PTRACE,
123  	PROC_MEM_FORCE_NEVER
124  };
125  
126  static enum proc_mem_force proc_mem_force_override __ro_after_init =
127  	IS_ENABLED(CONFIG_PROC_MEM_NO_FORCE) ? PROC_MEM_FORCE_NEVER :
128  	IS_ENABLED(CONFIG_PROC_MEM_FORCE_PTRACE) ? PROC_MEM_FORCE_PTRACE :
129  	PROC_MEM_FORCE_ALWAYS;
130  
131  static const struct constant_table proc_mem_force_table[] __initconst = {
132  	{ "always", PROC_MEM_FORCE_ALWAYS },
133  	{ "ptrace", PROC_MEM_FORCE_PTRACE },
134  	{ "never", PROC_MEM_FORCE_NEVER },
135  	{ }
136  };
137  
early_proc_mem_force_override(char * buf)138  static int __init early_proc_mem_force_override(char *buf)
139  {
140  	if (!buf)
141  		return -EINVAL;
142  
143  	/*
144  	 * lookup_constant() defaults to proc_mem_force_override to preseve
145  	 * the initial Kconfig choice in case an invalid param gets passed.
146  	 */
147  	proc_mem_force_override = lookup_constant(proc_mem_force_table,
148  						  buf, proc_mem_force_override);
149  
150  	return 0;
151  }
152  early_param("proc_mem.force_override", early_proc_mem_force_override);
153  
154  struct pid_entry {
155  	const char *name;
156  	unsigned int len;
157  	umode_t mode;
158  	const struct inode_operations *iop;
159  	const struct file_operations *fop;
160  	union proc_op op;
161  };
162  
163  #define NOD(NAME, MODE, IOP, FOP, OP) {			\
164  	.name = (NAME),					\
165  	.len  = sizeof(NAME) - 1,			\
166  	.mode = MODE,					\
167  	.iop  = IOP,					\
168  	.fop  = FOP,					\
169  	.op   = OP,					\
170  }
171  
172  #define DIR(NAME, MODE, iops, fops)	\
173  	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
174  #define LNK(NAME, get_link)					\
175  	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
176  		&proc_pid_link_inode_operations, NULL,		\
177  		{ .proc_get_link = get_link } )
178  #define REG(NAME, MODE, fops)				\
179  	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
180  #define ONE(NAME, MODE, show)				\
181  	NOD(NAME, (S_IFREG|(MODE)),			\
182  		NULL, &proc_single_file_operations,	\
183  		{ .proc_show = show } )
184  #define ATTR(LSM, NAME, MODE)				\
185  	NOD(NAME, (S_IFREG|(MODE)),			\
186  		NULL, &proc_pid_attr_operations,	\
187  		{ .lsm = LSM })
188  
189  /*
190   * Count the number of hardlinks for the pid_entry table, excluding the .
191   * and .. links.
192   */
pid_entry_nlink(const struct pid_entry * entries,unsigned int n)193  static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
194  	unsigned int n)
195  {
196  	unsigned int i;
197  	unsigned int count;
198  
199  	count = 2;
200  	for (i = 0; i < n; ++i) {
201  		if (S_ISDIR(entries[i].mode))
202  			++count;
203  	}
204  
205  	return count;
206  }
207  
get_task_root(struct task_struct * task,struct path * root)208  static int get_task_root(struct task_struct *task, struct path *root)
209  {
210  	int result = -ENOENT;
211  
212  	task_lock(task);
213  	if (task->fs) {
214  		get_fs_root(task->fs, root);
215  		result = 0;
216  	}
217  	task_unlock(task);
218  	return result;
219  }
220  
proc_cwd_link(struct dentry * dentry,struct path * path)221  static int proc_cwd_link(struct dentry *dentry, struct path *path)
222  {
223  	struct task_struct *task = get_proc_task(d_inode(dentry));
224  	int result = -ENOENT;
225  
226  	if (task) {
227  		task_lock(task);
228  		if (task->fs) {
229  			get_fs_pwd(task->fs, path);
230  			result = 0;
231  		}
232  		task_unlock(task);
233  		put_task_struct(task);
234  	}
235  	return result;
236  }
237  
proc_root_link(struct dentry * dentry,struct path * path)238  static int proc_root_link(struct dentry *dentry, struct path *path)
239  {
240  	struct task_struct *task = get_proc_task(d_inode(dentry));
241  	int result = -ENOENT;
242  
243  	if (task) {
244  		result = get_task_root(task, path);
245  		put_task_struct(task);
246  	}
247  	return result;
248  }
249  
250  /*
251   * If the user used setproctitle(), we just get the string from
252   * user space at arg_start, and limit it to a maximum of one page.
253   */
get_mm_proctitle(struct mm_struct * mm,char __user * buf,size_t count,unsigned long pos,unsigned long arg_start)254  static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
255  				size_t count, unsigned long pos,
256  				unsigned long arg_start)
257  {
258  	char *page;
259  	int ret, got;
260  
261  	if (pos >= PAGE_SIZE)
262  		return 0;
263  
264  	page = (char *)__get_free_page(GFP_KERNEL);
265  	if (!page)
266  		return -ENOMEM;
267  
268  	ret = 0;
269  	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
270  	if (got > 0) {
271  		int len = strnlen(page, got);
272  
273  		/* Include the NUL character if it was found */
274  		if (len < got)
275  			len++;
276  
277  		if (len > pos) {
278  			len -= pos;
279  			if (len > count)
280  				len = count;
281  			len -= copy_to_user(buf, page+pos, len);
282  			if (!len)
283  				len = -EFAULT;
284  			ret = len;
285  		}
286  	}
287  	free_page((unsigned long)page);
288  	return ret;
289  }
290  
get_mm_cmdline(struct mm_struct * mm,char __user * buf,size_t count,loff_t * ppos)291  static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
292  			      size_t count, loff_t *ppos)
293  {
294  	unsigned long arg_start, arg_end, env_start, env_end;
295  	unsigned long pos, len;
296  	char *page, c;
297  
298  	/* Check if process spawned far enough to have cmdline. */
299  	if (!mm->env_end)
300  		return 0;
301  
302  	spin_lock(&mm->arg_lock);
303  	arg_start = mm->arg_start;
304  	arg_end = mm->arg_end;
305  	env_start = mm->env_start;
306  	env_end = mm->env_end;
307  	spin_unlock(&mm->arg_lock);
308  
309  	if (arg_start >= arg_end)
310  		return 0;
311  
312  	/*
313  	 * We allow setproctitle() to overwrite the argument
314  	 * strings, and overflow past the original end. But
315  	 * only when it overflows into the environment area.
316  	 */
317  	if (env_start != arg_end || env_end < env_start)
318  		env_start = env_end = arg_end;
319  	len = env_end - arg_start;
320  
321  	/* We're not going to care if "*ppos" has high bits set */
322  	pos = *ppos;
323  	if (pos >= len)
324  		return 0;
325  	if (count > len - pos)
326  		count = len - pos;
327  	if (!count)
328  		return 0;
329  
330  	/*
331  	 * Magical special case: if the argv[] end byte is not
332  	 * zero, the user has overwritten it with setproctitle(3).
333  	 *
334  	 * Possible future enhancement: do this only once when
335  	 * pos is 0, and set a flag in the 'struct file'.
336  	 */
337  	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
338  		return get_mm_proctitle(mm, buf, count, pos, arg_start);
339  
340  	/*
341  	 * For the non-setproctitle() case we limit things strictly
342  	 * to the [arg_start, arg_end[ range.
343  	 */
344  	pos += arg_start;
345  	if (pos < arg_start || pos >= arg_end)
346  		return 0;
347  	if (count > arg_end - pos)
348  		count = arg_end - pos;
349  
350  	page = (char *)__get_free_page(GFP_KERNEL);
351  	if (!page)
352  		return -ENOMEM;
353  
354  	len = 0;
355  	while (count) {
356  		int got;
357  		size_t size = min_t(size_t, PAGE_SIZE, count);
358  
359  		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
360  		if (got <= 0)
361  			break;
362  		got -= copy_to_user(buf, page, got);
363  		if (unlikely(!got)) {
364  			if (!len)
365  				len = -EFAULT;
366  			break;
367  		}
368  		pos += got;
369  		buf += got;
370  		len += got;
371  		count -= got;
372  	}
373  
374  	free_page((unsigned long)page);
375  	return len;
376  }
377  
get_task_cmdline(struct task_struct * tsk,char __user * buf,size_t count,loff_t * pos)378  static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
379  				size_t count, loff_t *pos)
380  {
381  	struct mm_struct *mm;
382  	ssize_t ret;
383  
384  	mm = get_task_mm(tsk);
385  	if (!mm)
386  		return 0;
387  
388  	ret = get_mm_cmdline(mm, buf, count, pos);
389  	mmput(mm);
390  	return ret;
391  }
392  
proc_pid_cmdline_read(struct file * file,char __user * buf,size_t count,loff_t * pos)393  static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
394  				     size_t count, loff_t *pos)
395  {
396  	struct task_struct *tsk;
397  	ssize_t ret;
398  
399  	BUG_ON(*pos < 0);
400  
401  	tsk = get_proc_task(file_inode(file));
402  	if (!tsk)
403  		return -ESRCH;
404  	ret = get_task_cmdline(tsk, buf, count, pos);
405  	put_task_struct(tsk);
406  	if (ret > 0)
407  		*pos += ret;
408  	return ret;
409  }
410  
411  static const struct file_operations proc_pid_cmdline_ops = {
412  	.read	= proc_pid_cmdline_read,
413  	.llseek	= generic_file_llseek,
414  };
415  
416  #ifdef CONFIG_KALLSYMS
417  /*
418   * Provides a wchan file via kallsyms in a proper one-value-per-file format.
419   * Returns the resolved symbol.  If that fails, simply return the address.
420   */
proc_pid_wchan(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)421  static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
422  			  struct pid *pid, struct task_struct *task)
423  {
424  	unsigned long wchan;
425  	char symname[KSYM_NAME_LEN];
426  
427  	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
428  		goto print0;
429  
430  	wchan = get_wchan(task);
431  	if (wchan && !lookup_symbol_name(wchan, symname)) {
432  		seq_puts(m, symname);
433  		return 0;
434  	}
435  
436  print0:
437  	seq_putc(m, '0');
438  	return 0;
439  }
440  #endif /* CONFIG_KALLSYMS */
441  
lock_trace(struct task_struct * task)442  static int lock_trace(struct task_struct *task)
443  {
444  	int err = down_read_killable(&task->signal->exec_update_lock);
445  	if (err)
446  		return err;
447  	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
448  		up_read(&task->signal->exec_update_lock);
449  		return -EPERM;
450  	}
451  	return 0;
452  }
453  
unlock_trace(struct task_struct * task)454  static void unlock_trace(struct task_struct *task)
455  {
456  	up_read(&task->signal->exec_update_lock);
457  }
458  
459  #ifdef CONFIG_STACKTRACE
460  
461  #define MAX_STACK_TRACE_DEPTH	64
462  
proc_pid_stack(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)463  static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
464  			  struct pid *pid, struct task_struct *task)
465  {
466  	unsigned long *entries;
467  	int err;
468  
469  	/*
470  	 * The ability to racily run the kernel stack unwinder on a running task
471  	 * and then observe the unwinder output is scary; while it is useful for
472  	 * debugging kernel issues, it can also allow an attacker to leak kernel
473  	 * stack contents.
474  	 * Doing this in a manner that is at least safe from races would require
475  	 * some work to ensure that the remote task can not be scheduled; and
476  	 * even then, this would still expose the unwinder as local attack
477  	 * surface.
478  	 * Therefore, this interface is restricted to root.
479  	 */
480  	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
481  		return -EACCES;
482  
483  	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
484  				GFP_KERNEL);
485  	if (!entries)
486  		return -ENOMEM;
487  
488  	err = lock_trace(task);
489  	if (!err) {
490  		unsigned int i, nr_entries;
491  
492  		nr_entries = stack_trace_save_tsk(task, entries,
493  						  MAX_STACK_TRACE_DEPTH, 0);
494  
495  		for (i = 0; i < nr_entries; i++) {
496  			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
497  		}
498  
499  		unlock_trace(task);
500  	}
501  	kfree(entries);
502  
503  	return err;
504  }
505  #endif
506  
507  #ifdef CONFIG_SCHED_INFO
508  /*
509   * Provides /proc/PID/schedstat
510   */
proc_pid_schedstat(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)511  static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
512  			      struct pid *pid, struct task_struct *task)
513  {
514  	if (unlikely(!sched_info_on()))
515  		seq_puts(m, "0 0 0\n");
516  	else
517  		seq_printf(m, "%llu %llu %lu\n",
518  		   (unsigned long long)task->se.sum_exec_runtime,
519  		   (unsigned long long)task->sched_info.run_delay,
520  		   task->sched_info.pcount);
521  
522  	return 0;
523  }
524  #endif
525  
526  #ifdef CONFIG_LATENCYTOP
lstats_show_proc(struct seq_file * m,void * v)527  static int lstats_show_proc(struct seq_file *m, void *v)
528  {
529  	int i;
530  	struct inode *inode = m->private;
531  	struct task_struct *task = get_proc_task(inode);
532  
533  	if (!task)
534  		return -ESRCH;
535  	seq_puts(m, "Latency Top version : v0.1\n");
536  	for (i = 0; i < LT_SAVECOUNT; i++) {
537  		struct latency_record *lr = &task->latency_record[i];
538  		if (lr->backtrace[0]) {
539  			int q;
540  			seq_printf(m, "%i %li %li",
541  				   lr->count, lr->time, lr->max);
542  			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
543  				unsigned long bt = lr->backtrace[q];
544  
545  				if (!bt)
546  					break;
547  				seq_printf(m, " %ps", (void *)bt);
548  			}
549  			seq_putc(m, '\n');
550  		}
551  
552  	}
553  	put_task_struct(task);
554  	return 0;
555  }
556  
lstats_open(struct inode * inode,struct file * file)557  static int lstats_open(struct inode *inode, struct file *file)
558  {
559  	return single_open(file, lstats_show_proc, inode);
560  }
561  
lstats_write(struct file * file,const char __user * buf,size_t count,loff_t * offs)562  static ssize_t lstats_write(struct file *file, const char __user *buf,
563  			    size_t count, loff_t *offs)
564  {
565  	struct task_struct *task = get_proc_task(file_inode(file));
566  
567  	if (!task)
568  		return -ESRCH;
569  	clear_tsk_latency_tracing(task);
570  	put_task_struct(task);
571  
572  	return count;
573  }
574  
575  static const struct file_operations proc_lstats_operations = {
576  	.open		= lstats_open,
577  	.read		= seq_read,
578  	.write		= lstats_write,
579  	.llseek		= seq_lseek,
580  	.release	= single_release,
581  };
582  
583  #endif
584  
proc_oom_score(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)585  static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
586  			  struct pid *pid, struct task_struct *task)
587  {
588  	unsigned long totalpages = totalram_pages() + total_swap_pages;
589  	unsigned long points = 0;
590  	long badness;
591  
592  	badness = oom_badness(task, totalpages);
593  	/*
594  	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
595  	 * badness value into [0, 2000] range which we have been
596  	 * exporting for a long time so userspace might depend on it.
597  	 */
598  	if (badness != LONG_MIN)
599  		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
600  
601  	seq_printf(m, "%lu\n", points);
602  
603  	return 0;
604  }
605  
606  struct limit_names {
607  	const char *name;
608  	const char *unit;
609  };
610  
611  static const struct limit_names lnames[RLIM_NLIMITS] = {
612  	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
613  	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
614  	[RLIMIT_DATA] = {"Max data size", "bytes"},
615  	[RLIMIT_STACK] = {"Max stack size", "bytes"},
616  	[RLIMIT_CORE] = {"Max core file size", "bytes"},
617  	[RLIMIT_RSS] = {"Max resident set", "bytes"},
618  	[RLIMIT_NPROC] = {"Max processes", "processes"},
619  	[RLIMIT_NOFILE] = {"Max open files", "files"},
620  	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
621  	[RLIMIT_AS] = {"Max address space", "bytes"},
622  	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
623  	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
624  	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
625  	[RLIMIT_NICE] = {"Max nice priority", NULL},
626  	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
627  	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
628  };
629  
630  /* Display limits for a process */
proc_pid_limits(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)631  static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
632  			   struct pid *pid, struct task_struct *task)
633  {
634  	unsigned int i;
635  	unsigned long flags;
636  
637  	struct rlimit rlim[RLIM_NLIMITS];
638  
639  	if (!lock_task_sighand(task, &flags))
640  		return 0;
641  	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
642  	unlock_task_sighand(task, &flags);
643  
644  	/*
645  	 * print the file header
646  	 */
647  	seq_puts(m, "Limit                     "
648  		"Soft Limit           "
649  		"Hard Limit           "
650  		"Units     \n");
651  
652  	for (i = 0; i < RLIM_NLIMITS; i++) {
653  		if (rlim[i].rlim_cur == RLIM_INFINITY)
654  			seq_printf(m, "%-25s %-20s ",
655  				   lnames[i].name, "unlimited");
656  		else
657  			seq_printf(m, "%-25s %-20lu ",
658  				   lnames[i].name, rlim[i].rlim_cur);
659  
660  		if (rlim[i].rlim_max == RLIM_INFINITY)
661  			seq_printf(m, "%-20s ", "unlimited");
662  		else
663  			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
664  
665  		if (lnames[i].unit)
666  			seq_printf(m, "%-10s\n", lnames[i].unit);
667  		else
668  			seq_putc(m, '\n');
669  	}
670  
671  	return 0;
672  }
673  
674  #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
proc_pid_syscall(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)675  static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
676  			    struct pid *pid, struct task_struct *task)
677  {
678  	struct syscall_info info;
679  	u64 *args = &info.data.args[0];
680  	int res;
681  
682  	res = lock_trace(task);
683  	if (res)
684  		return res;
685  
686  	if (task_current_syscall(task, &info))
687  		seq_puts(m, "running\n");
688  	else if (info.data.nr < 0)
689  		seq_printf(m, "%d 0x%llx 0x%llx\n",
690  			   info.data.nr, info.sp, info.data.instruction_pointer);
691  	else
692  		seq_printf(m,
693  		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
694  		       info.data.nr,
695  		       args[0], args[1], args[2], args[3], args[4], args[5],
696  		       info.sp, info.data.instruction_pointer);
697  	unlock_trace(task);
698  
699  	return 0;
700  }
701  #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
702  
703  /************************************************************************/
704  /*                       Here the fs part begins                        */
705  /************************************************************************/
706  
707  /* permission checks */
proc_fd_access_allowed(struct inode * inode)708  static bool proc_fd_access_allowed(struct inode *inode)
709  {
710  	struct task_struct *task;
711  	bool allowed = false;
712  	/* Allow access to a task's file descriptors if it is us or we
713  	 * may use ptrace attach to the process and find out that
714  	 * information.
715  	 */
716  	task = get_proc_task(inode);
717  	if (task) {
718  		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
719  		put_task_struct(task);
720  	}
721  	return allowed;
722  }
723  
proc_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)724  int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
725  		 struct iattr *attr)
726  {
727  	int error;
728  	struct inode *inode = d_inode(dentry);
729  
730  	if (attr->ia_valid & ATTR_MODE)
731  		return -EPERM;
732  
733  	error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
734  	if (error)
735  		return error;
736  
737  	setattr_copy(&nop_mnt_idmap, inode, attr);
738  	return 0;
739  }
740  
741  /*
742   * May current process learn task's sched/cmdline info (for hide_pid_min=1)
743   * or euid/egid (for hide_pid_min=2)?
744   */
has_pid_permissions(struct proc_fs_info * fs_info,struct task_struct * task,enum proc_hidepid hide_pid_min)745  static bool has_pid_permissions(struct proc_fs_info *fs_info,
746  				 struct task_struct *task,
747  				 enum proc_hidepid hide_pid_min)
748  {
749  	/*
750  	 * If 'hidpid' mount option is set force a ptrace check,
751  	 * we indicate that we are using a filesystem syscall
752  	 * by passing PTRACE_MODE_READ_FSCREDS
753  	 */
754  	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
755  		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
756  
757  	if (fs_info->hide_pid < hide_pid_min)
758  		return true;
759  	if (in_group_p(fs_info->pid_gid))
760  		return true;
761  	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
762  }
763  
764  
proc_pid_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)765  static int proc_pid_permission(struct mnt_idmap *idmap,
766  			       struct inode *inode, int mask)
767  {
768  	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
769  	struct task_struct *task;
770  	bool has_perms;
771  
772  	task = get_proc_task(inode);
773  	if (!task)
774  		return -ESRCH;
775  	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
776  	put_task_struct(task);
777  
778  	if (!has_perms) {
779  		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
780  			/*
781  			 * Let's make getdents(), stat(), and open()
782  			 * consistent with each other.  If a process
783  			 * may not stat() a file, it shouldn't be seen
784  			 * in procfs at all.
785  			 */
786  			return -ENOENT;
787  		}
788  
789  		return -EPERM;
790  	}
791  	return generic_permission(&nop_mnt_idmap, inode, mask);
792  }
793  
794  
795  
796  static const struct inode_operations proc_def_inode_operations = {
797  	.setattr	= proc_setattr,
798  };
799  
proc_single_show(struct seq_file * m,void * v)800  static int proc_single_show(struct seq_file *m, void *v)
801  {
802  	struct inode *inode = m->private;
803  	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
804  	struct pid *pid = proc_pid(inode);
805  	struct task_struct *task;
806  	int ret;
807  
808  	task = get_pid_task(pid, PIDTYPE_PID);
809  	if (!task)
810  		return -ESRCH;
811  
812  	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
813  
814  	put_task_struct(task);
815  	return ret;
816  }
817  
proc_single_open(struct inode * inode,struct file * filp)818  static int proc_single_open(struct inode *inode, struct file *filp)
819  {
820  	return single_open(filp, proc_single_show, inode);
821  }
822  
823  static const struct file_operations proc_single_file_operations = {
824  	.open		= proc_single_open,
825  	.read		= seq_read,
826  	.llseek		= seq_lseek,
827  	.release	= single_release,
828  };
829  
830  
proc_mem_open(struct inode * inode,unsigned int mode)831  struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
832  {
833  	struct task_struct *task = get_proc_task(inode);
834  	struct mm_struct *mm = ERR_PTR(-ESRCH);
835  
836  	if (task) {
837  		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
838  		put_task_struct(task);
839  
840  		if (!IS_ERR_OR_NULL(mm)) {
841  			/* ensure this mm_struct can't be freed */
842  			mmgrab(mm);
843  			/* but do not pin its memory */
844  			mmput(mm);
845  		}
846  	}
847  
848  	return mm;
849  }
850  
__mem_open(struct inode * inode,struct file * file,unsigned int mode)851  static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
852  {
853  	struct mm_struct *mm = proc_mem_open(inode, mode);
854  
855  	if (IS_ERR(mm))
856  		return PTR_ERR(mm);
857  
858  	file->private_data = mm;
859  	return 0;
860  }
861  
mem_open(struct inode * inode,struct file * file)862  static int mem_open(struct inode *inode, struct file *file)
863  {
864  	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
865  
866  	/* OK to pass negative loff_t, we can catch out-of-range */
867  	file->f_mode |= FMODE_UNSIGNED_OFFSET;
868  
869  	return ret;
870  }
871  
proc_mem_foll_force(struct file * file,struct mm_struct * mm)872  static bool proc_mem_foll_force(struct file *file, struct mm_struct *mm)
873  {
874  	struct task_struct *task;
875  	bool ptrace_active = false;
876  
877  	switch (proc_mem_force_override) {
878  	case PROC_MEM_FORCE_NEVER:
879  		return false;
880  	case PROC_MEM_FORCE_PTRACE:
881  		task = get_proc_task(file_inode(file));
882  		if (task) {
883  			ptrace_active =	READ_ONCE(task->ptrace) &&
884  					READ_ONCE(task->mm) == mm &&
885  					READ_ONCE(task->parent) == current;
886  			put_task_struct(task);
887  		}
888  		return ptrace_active;
889  	default:
890  		return true;
891  	}
892  }
893  
mem_rw(struct file * file,char __user * buf,size_t count,loff_t * ppos,int write)894  static ssize_t mem_rw(struct file *file, char __user *buf,
895  			size_t count, loff_t *ppos, int write)
896  {
897  	struct mm_struct *mm = file->private_data;
898  	unsigned long addr = *ppos;
899  	ssize_t copied;
900  	char *page;
901  	unsigned int flags;
902  
903  	if (!mm)
904  		return 0;
905  
906  	page = (char *)__get_free_page(GFP_KERNEL);
907  	if (!page)
908  		return -ENOMEM;
909  
910  	copied = 0;
911  	if (!mmget_not_zero(mm))
912  		goto free;
913  
914  	flags = write ? FOLL_WRITE : 0;
915  	if (proc_mem_foll_force(file, mm))
916  		flags |= FOLL_FORCE;
917  
918  	while (count > 0) {
919  		size_t this_len = min_t(size_t, count, PAGE_SIZE);
920  
921  		if (write && copy_from_user(page, buf, this_len)) {
922  			copied = -EFAULT;
923  			break;
924  		}
925  
926  		this_len = access_remote_vm(mm, addr, page, this_len, flags);
927  		if (!this_len) {
928  			if (!copied)
929  				copied = -EIO;
930  			break;
931  		}
932  
933  		if (!write && copy_to_user(buf, page, this_len)) {
934  			copied = -EFAULT;
935  			break;
936  		}
937  
938  		buf += this_len;
939  		addr += this_len;
940  		copied += this_len;
941  		count -= this_len;
942  	}
943  	*ppos = addr;
944  
945  	mmput(mm);
946  free:
947  	free_page((unsigned long) page);
948  	return copied;
949  }
950  
mem_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)951  static ssize_t mem_read(struct file *file, char __user *buf,
952  			size_t count, loff_t *ppos)
953  {
954  	return mem_rw(file, buf, count, ppos, 0);
955  }
956  
mem_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)957  static ssize_t mem_write(struct file *file, const char __user *buf,
958  			 size_t count, loff_t *ppos)
959  {
960  	return mem_rw(file, (char __user*)buf, count, ppos, 1);
961  }
962  
mem_lseek(struct file * file,loff_t offset,int orig)963  loff_t mem_lseek(struct file *file, loff_t offset, int orig)
964  {
965  	switch (orig) {
966  	case 0:
967  		file->f_pos = offset;
968  		break;
969  	case 1:
970  		file->f_pos += offset;
971  		break;
972  	default:
973  		return -EINVAL;
974  	}
975  	force_successful_syscall_return();
976  	return file->f_pos;
977  }
978  
mem_release(struct inode * inode,struct file * file)979  static int mem_release(struct inode *inode, struct file *file)
980  {
981  	struct mm_struct *mm = file->private_data;
982  	if (mm)
983  		mmdrop(mm);
984  	return 0;
985  }
986  
987  static const struct file_operations proc_mem_operations = {
988  	.llseek		= mem_lseek,
989  	.read		= mem_read,
990  	.write		= mem_write,
991  	.open		= mem_open,
992  	.release	= mem_release,
993  };
994  
environ_open(struct inode * inode,struct file * file)995  static int environ_open(struct inode *inode, struct file *file)
996  {
997  	return __mem_open(inode, file, PTRACE_MODE_READ);
998  }
999  
environ_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1000  static ssize_t environ_read(struct file *file, char __user *buf,
1001  			size_t count, loff_t *ppos)
1002  {
1003  	char *page;
1004  	unsigned long src = *ppos;
1005  	int ret = 0;
1006  	struct mm_struct *mm = file->private_data;
1007  	unsigned long env_start, env_end;
1008  
1009  	/* Ensure the process spawned far enough to have an environment. */
1010  	if (!mm || !mm->env_end)
1011  		return 0;
1012  
1013  	page = (char *)__get_free_page(GFP_KERNEL);
1014  	if (!page)
1015  		return -ENOMEM;
1016  
1017  	ret = 0;
1018  	if (!mmget_not_zero(mm))
1019  		goto free;
1020  
1021  	spin_lock(&mm->arg_lock);
1022  	env_start = mm->env_start;
1023  	env_end = mm->env_end;
1024  	spin_unlock(&mm->arg_lock);
1025  
1026  	while (count > 0) {
1027  		size_t this_len, max_len;
1028  		int retval;
1029  
1030  		if (src >= (env_end - env_start))
1031  			break;
1032  
1033  		this_len = env_end - (env_start + src);
1034  
1035  		max_len = min_t(size_t, PAGE_SIZE, count);
1036  		this_len = min(max_len, this_len);
1037  
1038  		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
1039  
1040  		if (retval <= 0) {
1041  			ret = retval;
1042  			break;
1043  		}
1044  
1045  		if (copy_to_user(buf, page, retval)) {
1046  			ret = -EFAULT;
1047  			break;
1048  		}
1049  
1050  		ret += retval;
1051  		src += retval;
1052  		buf += retval;
1053  		count -= retval;
1054  	}
1055  	*ppos = src;
1056  	mmput(mm);
1057  
1058  free:
1059  	free_page((unsigned long) page);
1060  	return ret;
1061  }
1062  
1063  static const struct file_operations proc_environ_operations = {
1064  	.open		= environ_open,
1065  	.read		= environ_read,
1066  	.llseek		= generic_file_llseek,
1067  	.release	= mem_release,
1068  };
1069  
auxv_open(struct inode * inode,struct file * file)1070  static int auxv_open(struct inode *inode, struct file *file)
1071  {
1072  	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1073  }
1074  
auxv_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1075  static ssize_t auxv_read(struct file *file, char __user *buf,
1076  			size_t count, loff_t *ppos)
1077  {
1078  	struct mm_struct *mm = file->private_data;
1079  	unsigned int nwords = 0;
1080  
1081  	if (!mm)
1082  		return 0;
1083  	do {
1084  		nwords += 2;
1085  	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1086  	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1087  				       nwords * sizeof(mm->saved_auxv[0]));
1088  }
1089  
1090  static const struct file_operations proc_auxv_operations = {
1091  	.open		= auxv_open,
1092  	.read		= auxv_read,
1093  	.llseek		= generic_file_llseek,
1094  	.release	= mem_release,
1095  };
1096  
oom_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1097  static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1098  			    loff_t *ppos)
1099  {
1100  	struct task_struct *task = get_proc_task(file_inode(file));
1101  	char buffer[PROC_NUMBUF];
1102  	int oom_adj = OOM_ADJUST_MIN;
1103  	size_t len;
1104  
1105  	if (!task)
1106  		return -ESRCH;
1107  	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1108  		oom_adj = OOM_ADJUST_MAX;
1109  	else
1110  		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1111  			  OOM_SCORE_ADJ_MAX;
1112  	put_task_struct(task);
1113  	if (oom_adj > OOM_ADJUST_MAX)
1114  		oom_adj = OOM_ADJUST_MAX;
1115  	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1116  	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1117  }
1118  
__set_oom_adj(struct file * file,int oom_adj,bool legacy)1119  static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1120  {
1121  	struct mm_struct *mm = NULL;
1122  	struct task_struct *task;
1123  	int err = 0;
1124  
1125  	task = get_proc_task(file_inode(file));
1126  	if (!task)
1127  		return -ESRCH;
1128  
1129  	mutex_lock(&oom_adj_mutex);
1130  	if (legacy) {
1131  		if (oom_adj < task->signal->oom_score_adj &&
1132  				!capable(CAP_SYS_RESOURCE)) {
1133  			err = -EACCES;
1134  			goto err_unlock;
1135  		}
1136  		/*
1137  		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1138  		 * /proc/pid/oom_score_adj instead.
1139  		 */
1140  		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1141  			  current->comm, task_pid_nr(current), task_pid_nr(task),
1142  			  task_pid_nr(task));
1143  	} else {
1144  		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1145  				!capable(CAP_SYS_RESOURCE)) {
1146  			err = -EACCES;
1147  			goto err_unlock;
1148  		}
1149  	}
1150  
1151  	/*
1152  	 * Make sure we will check other processes sharing the mm if this is
1153  	 * not vfrok which wants its own oom_score_adj.
1154  	 * pin the mm so it doesn't go away and get reused after task_unlock
1155  	 */
1156  	if (!task->vfork_done) {
1157  		struct task_struct *p = find_lock_task_mm(task);
1158  
1159  		if (p) {
1160  			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1161  				mm = p->mm;
1162  				mmgrab(mm);
1163  			}
1164  			task_unlock(p);
1165  		}
1166  	}
1167  
1168  	task->signal->oom_score_adj = oom_adj;
1169  	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1170  		task->signal->oom_score_adj_min = (short)oom_adj;
1171  	trace_oom_score_adj_update(task);
1172  
1173  	if (mm) {
1174  		struct task_struct *p;
1175  
1176  		rcu_read_lock();
1177  		for_each_process(p) {
1178  			if (same_thread_group(task, p))
1179  				continue;
1180  
1181  			/* do not touch kernel threads or the global init */
1182  			if (p->flags & PF_KTHREAD || is_global_init(p))
1183  				continue;
1184  
1185  			task_lock(p);
1186  			if (!p->vfork_done && process_shares_mm(p, mm)) {
1187  				p->signal->oom_score_adj = oom_adj;
1188  				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1189  					p->signal->oom_score_adj_min = (short)oom_adj;
1190  			}
1191  			task_unlock(p);
1192  		}
1193  		rcu_read_unlock();
1194  		mmdrop(mm);
1195  	}
1196  err_unlock:
1197  	mutex_unlock(&oom_adj_mutex);
1198  	put_task_struct(task);
1199  	return err;
1200  }
1201  
1202  /*
1203   * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1204   * kernels.  The effective policy is defined by oom_score_adj, which has a
1205   * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1206   * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1207   * Processes that become oom disabled via oom_adj will still be oom disabled
1208   * with this implementation.
1209   *
1210   * oom_adj cannot be removed since existing userspace binaries use it.
1211   */
oom_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1212  static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1213  			     size_t count, loff_t *ppos)
1214  {
1215  	char buffer[PROC_NUMBUF];
1216  	int oom_adj;
1217  	int err;
1218  
1219  	memset(buffer, 0, sizeof(buffer));
1220  	if (count > sizeof(buffer) - 1)
1221  		count = sizeof(buffer) - 1;
1222  	if (copy_from_user(buffer, buf, count)) {
1223  		err = -EFAULT;
1224  		goto out;
1225  	}
1226  
1227  	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1228  	if (err)
1229  		goto out;
1230  	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1231  	     oom_adj != OOM_DISABLE) {
1232  		err = -EINVAL;
1233  		goto out;
1234  	}
1235  
1236  	/*
1237  	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1238  	 * value is always attainable.
1239  	 */
1240  	if (oom_adj == OOM_ADJUST_MAX)
1241  		oom_adj = OOM_SCORE_ADJ_MAX;
1242  	else
1243  		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1244  
1245  	err = __set_oom_adj(file, oom_adj, true);
1246  out:
1247  	return err < 0 ? err : count;
1248  }
1249  
1250  static const struct file_operations proc_oom_adj_operations = {
1251  	.read		= oom_adj_read,
1252  	.write		= oom_adj_write,
1253  	.llseek		= generic_file_llseek,
1254  };
1255  
oom_score_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1256  static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1257  					size_t count, loff_t *ppos)
1258  {
1259  	struct task_struct *task = get_proc_task(file_inode(file));
1260  	char buffer[PROC_NUMBUF];
1261  	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1262  	size_t len;
1263  
1264  	if (!task)
1265  		return -ESRCH;
1266  	oom_score_adj = task->signal->oom_score_adj;
1267  	put_task_struct(task);
1268  	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1269  	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1270  }
1271  
oom_score_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1272  static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1273  					size_t count, loff_t *ppos)
1274  {
1275  	char buffer[PROC_NUMBUF];
1276  	int oom_score_adj;
1277  	int err;
1278  
1279  	memset(buffer, 0, sizeof(buffer));
1280  	if (count > sizeof(buffer) - 1)
1281  		count = sizeof(buffer) - 1;
1282  	if (copy_from_user(buffer, buf, count)) {
1283  		err = -EFAULT;
1284  		goto out;
1285  	}
1286  
1287  	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1288  	if (err)
1289  		goto out;
1290  	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1291  			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1292  		err = -EINVAL;
1293  		goto out;
1294  	}
1295  
1296  	err = __set_oom_adj(file, oom_score_adj, false);
1297  out:
1298  	return err < 0 ? err : count;
1299  }
1300  
1301  static const struct file_operations proc_oom_score_adj_operations = {
1302  	.read		= oom_score_adj_read,
1303  	.write		= oom_score_adj_write,
1304  	.llseek		= default_llseek,
1305  };
1306  
1307  #ifdef CONFIG_AUDIT
1308  #define TMPBUFLEN 11
proc_loginuid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1309  static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1310  				  size_t count, loff_t *ppos)
1311  {
1312  	struct inode * inode = file_inode(file);
1313  	struct task_struct *task = get_proc_task(inode);
1314  	ssize_t length;
1315  	char tmpbuf[TMPBUFLEN];
1316  
1317  	if (!task)
1318  		return -ESRCH;
1319  	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1320  			   from_kuid(file->f_cred->user_ns,
1321  				     audit_get_loginuid(task)));
1322  	put_task_struct(task);
1323  	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1324  }
1325  
proc_loginuid_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1326  static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1327  				   size_t count, loff_t *ppos)
1328  {
1329  	struct inode * inode = file_inode(file);
1330  	uid_t loginuid;
1331  	kuid_t kloginuid;
1332  	int rv;
1333  
1334  	/* Don't let kthreads write their own loginuid */
1335  	if (current->flags & PF_KTHREAD)
1336  		return -EPERM;
1337  
1338  	rcu_read_lock();
1339  	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1340  		rcu_read_unlock();
1341  		return -EPERM;
1342  	}
1343  	rcu_read_unlock();
1344  
1345  	if (*ppos != 0) {
1346  		/* No partial writes. */
1347  		return -EINVAL;
1348  	}
1349  
1350  	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1351  	if (rv < 0)
1352  		return rv;
1353  
1354  	/* is userspace tring to explicitly UNSET the loginuid? */
1355  	if (loginuid == AUDIT_UID_UNSET) {
1356  		kloginuid = INVALID_UID;
1357  	} else {
1358  		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1359  		if (!uid_valid(kloginuid))
1360  			return -EINVAL;
1361  	}
1362  
1363  	rv = audit_set_loginuid(kloginuid);
1364  	if (rv < 0)
1365  		return rv;
1366  	return count;
1367  }
1368  
1369  static const struct file_operations proc_loginuid_operations = {
1370  	.read		= proc_loginuid_read,
1371  	.write		= proc_loginuid_write,
1372  	.llseek		= generic_file_llseek,
1373  };
1374  
proc_sessionid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1375  static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1376  				  size_t count, loff_t *ppos)
1377  {
1378  	struct inode * inode = file_inode(file);
1379  	struct task_struct *task = get_proc_task(inode);
1380  	ssize_t length;
1381  	char tmpbuf[TMPBUFLEN];
1382  
1383  	if (!task)
1384  		return -ESRCH;
1385  	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1386  				audit_get_sessionid(task));
1387  	put_task_struct(task);
1388  	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1389  }
1390  
1391  static const struct file_operations proc_sessionid_operations = {
1392  	.read		= proc_sessionid_read,
1393  	.llseek		= generic_file_llseek,
1394  };
1395  #endif
1396  
1397  #ifdef CONFIG_FAULT_INJECTION
proc_fault_inject_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1398  static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1399  				      size_t count, loff_t *ppos)
1400  {
1401  	struct task_struct *task = get_proc_task(file_inode(file));
1402  	char buffer[PROC_NUMBUF];
1403  	size_t len;
1404  	int make_it_fail;
1405  
1406  	if (!task)
1407  		return -ESRCH;
1408  	make_it_fail = task->make_it_fail;
1409  	put_task_struct(task);
1410  
1411  	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1412  
1413  	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1414  }
1415  
proc_fault_inject_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1416  static ssize_t proc_fault_inject_write(struct file * file,
1417  			const char __user * buf, size_t count, loff_t *ppos)
1418  {
1419  	struct task_struct *task;
1420  	char buffer[PROC_NUMBUF];
1421  	int make_it_fail;
1422  	int rv;
1423  
1424  	if (!capable(CAP_SYS_RESOURCE))
1425  		return -EPERM;
1426  	memset(buffer, 0, sizeof(buffer));
1427  	if (count > sizeof(buffer) - 1)
1428  		count = sizeof(buffer) - 1;
1429  	if (copy_from_user(buffer, buf, count))
1430  		return -EFAULT;
1431  	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1432  	if (rv < 0)
1433  		return rv;
1434  	if (make_it_fail < 0 || make_it_fail > 1)
1435  		return -EINVAL;
1436  
1437  	task = get_proc_task(file_inode(file));
1438  	if (!task)
1439  		return -ESRCH;
1440  	task->make_it_fail = make_it_fail;
1441  	put_task_struct(task);
1442  
1443  	return count;
1444  }
1445  
1446  static const struct file_operations proc_fault_inject_operations = {
1447  	.read		= proc_fault_inject_read,
1448  	.write		= proc_fault_inject_write,
1449  	.llseek		= generic_file_llseek,
1450  };
1451  
proc_fail_nth_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1452  static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1453  				   size_t count, loff_t *ppos)
1454  {
1455  	struct task_struct *task;
1456  	int err;
1457  	unsigned int n;
1458  
1459  	err = kstrtouint_from_user(buf, count, 0, &n);
1460  	if (err)
1461  		return err;
1462  
1463  	task = get_proc_task(file_inode(file));
1464  	if (!task)
1465  		return -ESRCH;
1466  	task->fail_nth = n;
1467  	put_task_struct(task);
1468  
1469  	return count;
1470  }
1471  
proc_fail_nth_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1472  static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1473  				  size_t count, loff_t *ppos)
1474  {
1475  	struct task_struct *task;
1476  	char numbuf[PROC_NUMBUF];
1477  	ssize_t len;
1478  
1479  	task = get_proc_task(file_inode(file));
1480  	if (!task)
1481  		return -ESRCH;
1482  	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1483  	put_task_struct(task);
1484  	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1485  }
1486  
1487  static const struct file_operations proc_fail_nth_operations = {
1488  	.read		= proc_fail_nth_read,
1489  	.write		= proc_fail_nth_write,
1490  };
1491  #endif
1492  
1493  
1494  #ifdef CONFIG_SCHED_DEBUG
1495  /*
1496   * Print out various scheduling related per-task fields:
1497   */
sched_show(struct seq_file * m,void * v)1498  static int sched_show(struct seq_file *m, void *v)
1499  {
1500  	struct inode *inode = m->private;
1501  	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1502  	struct task_struct *p;
1503  
1504  	p = get_proc_task(inode);
1505  	if (!p)
1506  		return -ESRCH;
1507  	proc_sched_show_task(p, ns, m);
1508  
1509  	put_task_struct(p);
1510  
1511  	return 0;
1512  }
1513  
1514  static ssize_t
sched_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1515  sched_write(struct file *file, const char __user *buf,
1516  	    size_t count, loff_t *offset)
1517  {
1518  	struct inode *inode = file_inode(file);
1519  	struct task_struct *p;
1520  
1521  	p = get_proc_task(inode);
1522  	if (!p)
1523  		return -ESRCH;
1524  	proc_sched_set_task(p);
1525  
1526  	put_task_struct(p);
1527  
1528  	return count;
1529  }
1530  
sched_open(struct inode * inode,struct file * filp)1531  static int sched_open(struct inode *inode, struct file *filp)
1532  {
1533  	return single_open(filp, sched_show, inode);
1534  }
1535  
1536  static const struct file_operations proc_pid_sched_operations = {
1537  	.open		= sched_open,
1538  	.read		= seq_read,
1539  	.write		= sched_write,
1540  	.llseek		= seq_lseek,
1541  	.release	= single_release,
1542  };
1543  
1544  #endif
1545  
1546  #ifdef CONFIG_SCHED_AUTOGROUP
1547  /*
1548   * Print out autogroup related information:
1549   */
sched_autogroup_show(struct seq_file * m,void * v)1550  static int sched_autogroup_show(struct seq_file *m, void *v)
1551  {
1552  	struct inode *inode = m->private;
1553  	struct task_struct *p;
1554  
1555  	p = get_proc_task(inode);
1556  	if (!p)
1557  		return -ESRCH;
1558  	proc_sched_autogroup_show_task(p, m);
1559  
1560  	put_task_struct(p);
1561  
1562  	return 0;
1563  }
1564  
1565  static ssize_t
sched_autogroup_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1566  sched_autogroup_write(struct file *file, const char __user *buf,
1567  	    size_t count, loff_t *offset)
1568  {
1569  	struct inode *inode = file_inode(file);
1570  	struct task_struct *p;
1571  	char buffer[PROC_NUMBUF];
1572  	int nice;
1573  	int err;
1574  
1575  	memset(buffer, 0, sizeof(buffer));
1576  	if (count > sizeof(buffer) - 1)
1577  		count = sizeof(buffer) - 1;
1578  	if (copy_from_user(buffer, buf, count))
1579  		return -EFAULT;
1580  
1581  	err = kstrtoint(strstrip(buffer), 0, &nice);
1582  	if (err < 0)
1583  		return err;
1584  
1585  	p = get_proc_task(inode);
1586  	if (!p)
1587  		return -ESRCH;
1588  
1589  	err = proc_sched_autogroup_set_nice(p, nice);
1590  	if (err)
1591  		count = err;
1592  
1593  	put_task_struct(p);
1594  
1595  	return count;
1596  }
1597  
sched_autogroup_open(struct inode * inode,struct file * filp)1598  static int sched_autogroup_open(struct inode *inode, struct file *filp)
1599  {
1600  	int ret;
1601  
1602  	ret = single_open(filp, sched_autogroup_show, NULL);
1603  	if (!ret) {
1604  		struct seq_file *m = filp->private_data;
1605  
1606  		m->private = inode;
1607  	}
1608  	return ret;
1609  }
1610  
1611  static const struct file_operations proc_pid_sched_autogroup_operations = {
1612  	.open		= sched_autogroup_open,
1613  	.read		= seq_read,
1614  	.write		= sched_autogroup_write,
1615  	.llseek		= seq_lseek,
1616  	.release	= single_release,
1617  };
1618  
1619  #endif /* CONFIG_SCHED_AUTOGROUP */
1620  
1621  #ifdef CONFIG_TIME_NS
timens_offsets_show(struct seq_file * m,void * v)1622  static int timens_offsets_show(struct seq_file *m, void *v)
1623  {
1624  	struct task_struct *p;
1625  
1626  	p = get_proc_task(file_inode(m->file));
1627  	if (!p)
1628  		return -ESRCH;
1629  	proc_timens_show_offsets(p, m);
1630  
1631  	put_task_struct(p);
1632  
1633  	return 0;
1634  }
1635  
timens_offsets_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1636  static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1637  				    size_t count, loff_t *ppos)
1638  {
1639  	struct inode *inode = file_inode(file);
1640  	struct proc_timens_offset offsets[2];
1641  	char *kbuf = NULL, *pos, *next_line;
1642  	struct task_struct *p;
1643  	int ret, noffsets;
1644  
1645  	/* Only allow < page size writes at the beginning of the file */
1646  	if ((*ppos != 0) || (count >= PAGE_SIZE))
1647  		return -EINVAL;
1648  
1649  	/* Slurp in the user data */
1650  	kbuf = memdup_user_nul(buf, count);
1651  	if (IS_ERR(kbuf))
1652  		return PTR_ERR(kbuf);
1653  
1654  	/* Parse the user data */
1655  	ret = -EINVAL;
1656  	noffsets = 0;
1657  	for (pos = kbuf; pos; pos = next_line) {
1658  		struct proc_timens_offset *off = &offsets[noffsets];
1659  		char clock[10];
1660  		int err;
1661  
1662  		/* Find the end of line and ensure we don't look past it */
1663  		next_line = strchr(pos, '\n');
1664  		if (next_line) {
1665  			*next_line = '\0';
1666  			next_line++;
1667  			if (*next_line == '\0')
1668  				next_line = NULL;
1669  		}
1670  
1671  		err = sscanf(pos, "%9s %lld %lu", clock,
1672  				&off->val.tv_sec, &off->val.tv_nsec);
1673  		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1674  			goto out;
1675  
1676  		clock[sizeof(clock) - 1] = 0;
1677  		if (strcmp(clock, "monotonic") == 0 ||
1678  		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1679  			off->clockid = CLOCK_MONOTONIC;
1680  		else if (strcmp(clock, "boottime") == 0 ||
1681  			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1682  			off->clockid = CLOCK_BOOTTIME;
1683  		else
1684  			goto out;
1685  
1686  		noffsets++;
1687  		if (noffsets == ARRAY_SIZE(offsets)) {
1688  			if (next_line)
1689  				count = next_line - kbuf;
1690  			break;
1691  		}
1692  	}
1693  
1694  	ret = -ESRCH;
1695  	p = get_proc_task(inode);
1696  	if (!p)
1697  		goto out;
1698  	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1699  	put_task_struct(p);
1700  	if (ret)
1701  		goto out;
1702  
1703  	ret = count;
1704  out:
1705  	kfree(kbuf);
1706  	return ret;
1707  }
1708  
timens_offsets_open(struct inode * inode,struct file * filp)1709  static int timens_offsets_open(struct inode *inode, struct file *filp)
1710  {
1711  	return single_open(filp, timens_offsets_show, inode);
1712  }
1713  
1714  static const struct file_operations proc_timens_offsets_operations = {
1715  	.open		= timens_offsets_open,
1716  	.read		= seq_read,
1717  	.write		= timens_offsets_write,
1718  	.llseek		= seq_lseek,
1719  	.release	= single_release,
1720  };
1721  #endif /* CONFIG_TIME_NS */
1722  
comm_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1723  static ssize_t comm_write(struct file *file, const char __user *buf,
1724  				size_t count, loff_t *offset)
1725  {
1726  	struct inode *inode = file_inode(file);
1727  	struct task_struct *p;
1728  	char buffer[TASK_COMM_LEN];
1729  	const size_t maxlen = sizeof(buffer) - 1;
1730  
1731  	memset(buffer, 0, sizeof(buffer));
1732  	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1733  		return -EFAULT;
1734  
1735  	p = get_proc_task(inode);
1736  	if (!p)
1737  		return -ESRCH;
1738  
1739  	if (same_thread_group(current, p)) {
1740  		set_task_comm(p, buffer);
1741  		proc_comm_connector(p);
1742  	}
1743  	else
1744  		count = -EINVAL;
1745  
1746  	put_task_struct(p);
1747  
1748  	return count;
1749  }
1750  
comm_show(struct seq_file * m,void * v)1751  static int comm_show(struct seq_file *m, void *v)
1752  {
1753  	struct inode *inode = m->private;
1754  	struct task_struct *p;
1755  
1756  	p = get_proc_task(inode);
1757  	if (!p)
1758  		return -ESRCH;
1759  
1760  	proc_task_name(m, p, false);
1761  	seq_putc(m, '\n');
1762  
1763  	put_task_struct(p);
1764  
1765  	return 0;
1766  }
1767  
comm_open(struct inode * inode,struct file * filp)1768  static int comm_open(struct inode *inode, struct file *filp)
1769  {
1770  	return single_open(filp, comm_show, inode);
1771  }
1772  
1773  static const struct file_operations proc_pid_set_comm_operations = {
1774  	.open		= comm_open,
1775  	.read		= seq_read,
1776  	.write		= comm_write,
1777  	.llseek		= seq_lseek,
1778  	.release	= single_release,
1779  };
1780  
proc_exe_link(struct dentry * dentry,struct path * exe_path)1781  static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1782  {
1783  	struct task_struct *task;
1784  	struct file *exe_file;
1785  
1786  	task = get_proc_task(d_inode(dentry));
1787  	if (!task)
1788  		return -ENOENT;
1789  	exe_file = get_task_exe_file(task);
1790  	put_task_struct(task);
1791  	if (exe_file) {
1792  		*exe_path = exe_file->f_path;
1793  		path_get(&exe_file->f_path);
1794  		fput(exe_file);
1795  		return 0;
1796  	} else
1797  		return -ENOENT;
1798  }
1799  
proc_pid_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1800  static const char *proc_pid_get_link(struct dentry *dentry,
1801  				     struct inode *inode,
1802  				     struct delayed_call *done)
1803  {
1804  	struct path path;
1805  	int error = -EACCES;
1806  
1807  	if (!dentry)
1808  		return ERR_PTR(-ECHILD);
1809  
1810  	/* Are we allowed to snoop on the tasks file descriptors? */
1811  	if (!proc_fd_access_allowed(inode))
1812  		goto out;
1813  
1814  	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1815  	if (error)
1816  		goto out;
1817  
1818  	error = nd_jump_link(&path);
1819  out:
1820  	return ERR_PTR(error);
1821  }
1822  
do_proc_readlink(const struct path * path,char __user * buffer,int buflen)1823  static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen)
1824  {
1825  	char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1826  	char *pathname;
1827  	int len;
1828  
1829  	if (!tmp)
1830  		return -ENOMEM;
1831  
1832  	pathname = d_path(path, tmp, PATH_MAX);
1833  	len = PTR_ERR(pathname);
1834  	if (IS_ERR(pathname))
1835  		goto out;
1836  	len = tmp + PATH_MAX - 1 - pathname;
1837  
1838  	if (len > buflen)
1839  		len = buflen;
1840  	if (copy_to_user(buffer, pathname, len))
1841  		len = -EFAULT;
1842   out:
1843  	kfree(tmp);
1844  	return len;
1845  }
1846  
proc_pid_readlink(struct dentry * dentry,char __user * buffer,int buflen)1847  static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1848  {
1849  	int error = -EACCES;
1850  	struct inode *inode = d_inode(dentry);
1851  	struct path path;
1852  
1853  	/* Are we allowed to snoop on the tasks file descriptors? */
1854  	if (!proc_fd_access_allowed(inode))
1855  		goto out;
1856  
1857  	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1858  	if (error)
1859  		goto out;
1860  
1861  	error = do_proc_readlink(&path, buffer, buflen);
1862  	path_put(&path);
1863  out:
1864  	return error;
1865  }
1866  
1867  const struct inode_operations proc_pid_link_inode_operations = {
1868  	.readlink	= proc_pid_readlink,
1869  	.get_link	= proc_pid_get_link,
1870  	.setattr	= proc_setattr,
1871  };
1872  
1873  
1874  /* building an inode */
1875  
task_dump_owner(struct task_struct * task,umode_t mode,kuid_t * ruid,kgid_t * rgid)1876  void task_dump_owner(struct task_struct *task, umode_t mode,
1877  		     kuid_t *ruid, kgid_t *rgid)
1878  {
1879  	/* Depending on the state of dumpable compute who should own a
1880  	 * proc file for a task.
1881  	 */
1882  	const struct cred *cred;
1883  	kuid_t uid;
1884  	kgid_t gid;
1885  
1886  	if (unlikely(task->flags & PF_KTHREAD)) {
1887  		*ruid = GLOBAL_ROOT_UID;
1888  		*rgid = GLOBAL_ROOT_GID;
1889  		return;
1890  	}
1891  
1892  	/* Default to the tasks effective ownership */
1893  	rcu_read_lock();
1894  	cred = __task_cred(task);
1895  	uid = cred->euid;
1896  	gid = cred->egid;
1897  	rcu_read_unlock();
1898  
1899  	/*
1900  	 * Before the /proc/pid/status file was created the only way to read
1901  	 * the effective uid of a /process was to stat /proc/pid.  Reading
1902  	 * /proc/pid/status is slow enough that procps and other packages
1903  	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1904  	 * made this apply to all per process world readable and executable
1905  	 * directories.
1906  	 */
1907  	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1908  		struct mm_struct *mm;
1909  		task_lock(task);
1910  		mm = task->mm;
1911  		/* Make non-dumpable tasks owned by some root */
1912  		if (mm) {
1913  			if (get_dumpable(mm) != SUID_DUMP_USER) {
1914  				struct user_namespace *user_ns = mm->user_ns;
1915  
1916  				uid = make_kuid(user_ns, 0);
1917  				if (!uid_valid(uid))
1918  					uid = GLOBAL_ROOT_UID;
1919  
1920  				gid = make_kgid(user_ns, 0);
1921  				if (!gid_valid(gid))
1922  					gid = GLOBAL_ROOT_GID;
1923  			}
1924  		} else {
1925  			uid = GLOBAL_ROOT_UID;
1926  			gid = GLOBAL_ROOT_GID;
1927  		}
1928  		task_unlock(task);
1929  	}
1930  	*ruid = uid;
1931  	*rgid = gid;
1932  }
1933  
proc_pid_evict_inode(struct proc_inode * ei)1934  void proc_pid_evict_inode(struct proc_inode *ei)
1935  {
1936  	struct pid *pid = ei->pid;
1937  
1938  	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1939  		spin_lock(&pid->lock);
1940  		hlist_del_init_rcu(&ei->sibling_inodes);
1941  		spin_unlock(&pid->lock);
1942  	}
1943  
1944  	put_pid(pid);
1945  }
1946  
proc_pid_make_inode(struct super_block * sb,struct task_struct * task,umode_t mode)1947  struct inode *proc_pid_make_inode(struct super_block *sb,
1948  				  struct task_struct *task, umode_t mode)
1949  {
1950  	struct inode * inode;
1951  	struct proc_inode *ei;
1952  	struct pid *pid;
1953  
1954  	/* We need a new inode */
1955  
1956  	inode = new_inode(sb);
1957  	if (!inode)
1958  		goto out;
1959  
1960  	/* Common stuff */
1961  	ei = PROC_I(inode);
1962  	inode->i_mode = mode;
1963  	inode->i_ino = get_next_ino();
1964  	inode->i_mtime = inode->i_atime = inode_set_ctime_current(inode);
1965  	inode->i_op = &proc_def_inode_operations;
1966  
1967  	/*
1968  	 * grab the reference to task.
1969  	 */
1970  	pid = get_task_pid(task, PIDTYPE_PID);
1971  	if (!pid)
1972  		goto out_unlock;
1973  
1974  	/* Let the pid remember us for quick removal */
1975  	ei->pid = pid;
1976  
1977  	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1978  	security_task_to_inode(task, inode);
1979  
1980  out:
1981  	return inode;
1982  
1983  out_unlock:
1984  	iput(inode);
1985  	return NULL;
1986  }
1987  
1988  /*
1989   * Generating an inode and adding it into @pid->inodes, so that task will
1990   * invalidate inode's dentry before being released.
1991   *
1992   * This helper is used for creating dir-type entries under '/proc' and
1993   * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
1994   * can be released by invalidating '/proc/<tgid>' dentry.
1995   * In theory, dentries under '/proc/<tgid>/task' can also be released by
1996   * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
1997   * thread exiting situation: Any one of threads should invalidate its
1998   * '/proc/<tgid>/task/<pid>' dentry before released.
1999   */
proc_pid_make_base_inode(struct super_block * sb,struct task_struct * task,umode_t mode)2000  static struct inode *proc_pid_make_base_inode(struct super_block *sb,
2001  				struct task_struct *task, umode_t mode)
2002  {
2003  	struct inode *inode;
2004  	struct proc_inode *ei;
2005  	struct pid *pid;
2006  
2007  	inode = proc_pid_make_inode(sb, task, mode);
2008  	if (!inode)
2009  		return NULL;
2010  
2011  	/* Let proc_flush_pid find this directory inode */
2012  	ei = PROC_I(inode);
2013  	pid = ei->pid;
2014  	spin_lock(&pid->lock);
2015  	hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
2016  	spin_unlock(&pid->lock);
2017  
2018  	return inode;
2019  }
2020  
pid_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)2021  int pid_getattr(struct mnt_idmap *idmap, const struct path *path,
2022  		struct kstat *stat, u32 request_mask, unsigned int query_flags)
2023  {
2024  	struct inode *inode = d_inode(path->dentry);
2025  	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
2026  	struct task_struct *task;
2027  
2028  	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
2029  
2030  	stat->uid = GLOBAL_ROOT_UID;
2031  	stat->gid = GLOBAL_ROOT_GID;
2032  	rcu_read_lock();
2033  	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2034  	if (task) {
2035  		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
2036  			rcu_read_unlock();
2037  			/*
2038  			 * This doesn't prevent learning whether PID exists,
2039  			 * it only makes getattr() consistent with readdir().
2040  			 */
2041  			return -ENOENT;
2042  		}
2043  		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
2044  	}
2045  	rcu_read_unlock();
2046  	return 0;
2047  }
2048  
2049  /* dentry stuff */
2050  
2051  /*
2052   * Set <pid>/... inode ownership (can change due to setuid(), etc.)
2053   */
pid_update_inode(struct task_struct * task,struct inode * inode)2054  void pid_update_inode(struct task_struct *task, struct inode *inode)
2055  {
2056  	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
2057  
2058  	inode->i_mode &= ~(S_ISUID | S_ISGID);
2059  	security_task_to_inode(task, inode);
2060  }
2061  
2062  /*
2063   * Rewrite the inode's ownerships here because the owning task may have
2064   * performed a setuid(), etc.
2065   *
2066   */
pid_revalidate(struct dentry * dentry,unsigned int flags)2067  static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2068  {
2069  	struct inode *inode;
2070  	struct task_struct *task;
2071  	int ret = 0;
2072  
2073  	rcu_read_lock();
2074  	inode = d_inode_rcu(dentry);
2075  	if (!inode)
2076  		goto out;
2077  	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2078  
2079  	if (task) {
2080  		pid_update_inode(task, inode);
2081  		ret = 1;
2082  	}
2083  out:
2084  	rcu_read_unlock();
2085  	return ret;
2086  }
2087  
proc_inode_is_dead(struct inode * inode)2088  static inline bool proc_inode_is_dead(struct inode *inode)
2089  {
2090  	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2091  }
2092  
pid_delete_dentry(const struct dentry * dentry)2093  int pid_delete_dentry(const struct dentry *dentry)
2094  {
2095  	/* Is the task we represent dead?
2096  	 * If so, then don't put the dentry on the lru list,
2097  	 * kill it immediately.
2098  	 */
2099  	return proc_inode_is_dead(d_inode(dentry));
2100  }
2101  
2102  const struct dentry_operations pid_dentry_operations =
2103  {
2104  	.d_revalidate	= pid_revalidate,
2105  	.d_delete	= pid_delete_dentry,
2106  };
2107  
2108  /* Lookups */
2109  
2110  /*
2111   * Fill a directory entry.
2112   *
2113   * If possible create the dcache entry and derive our inode number and
2114   * file type from dcache entry.
2115   *
2116   * Since all of the proc inode numbers are dynamically generated, the inode
2117   * numbers do not exist until the inode is cache.  This means creating
2118   * the dcache entry in readdir is necessary to keep the inode numbers
2119   * reported by readdir in sync with the inode numbers reported
2120   * by stat.
2121   */
proc_fill_cache(struct file * file,struct dir_context * ctx,const char * name,unsigned int len,instantiate_t instantiate,struct task_struct * task,const void * ptr)2122  bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2123  	const char *name, unsigned int len,
2124  	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2125  {
2126  	struct dentry *child, *dir = file->f_path.dentry;
2127  	struct qstr qname = QSTR_INIT(name, len);
2128  	struct inode *inode;
2129  	unsigned type = DT_UNKNOWN;
2130  	ino_t ino = 1;
2131  
2132  	child = d_hash_and_lookup(dir, &qname);
2133  	if (!child) {
2134  		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2135  		child = d_alloc_parallel(dir, &qname, &wq);
2136  		if (IS_ERR(child))
2137  			goto end_instantiate;
2138  		if (d_in_lookup(child)) {
2139  			struct dentry *res;
2140  			res = instantiate(child, task, ptr);
2141  			d_lookup_done(child);
2142  			if (unlikely(res)) {
2143  				dput(child);
2144  				child = res;
2145  				if (IS_ERR(child))
2146  					goto end_instantiate;
2147  			}
2148  		}
2149  	}
2150  	inode = d_inode(child);
2151  	ino = inode->i_ino;
2152  	type = inode->i_mode >> 12;
2153  	dput(child);
2154  end_instantiate:
2155  	return dir_emit(ctx, name, len, ino, type);
2156  }
2157  
2158  /*
2159   * dname_to_vma_addr - maps a dentry name into two unsigned longs
2160   * which represent vma start and end addresses.
2161   */
dname_to_vma_addr(struct dentry * dentry,unsigned long * start,unsigned long * end)2162  static int dname_to_vma_addr(struct dentry *dentry,
2163  			     unsigned long *start, unsigned long *end)
2164  {
2165  	const char *str = dentry->d_name.name;
2166  	unsigned long long sval, eval;
2167  	unsigned int len;
2168  
2169  	if (str[0] == '0' && str[1] != '-')
2170  		return -EINVAL;
2171  	len = _parse_integer(str, 16, &sval);
2172  	if (len & KSTRTOX_OVERFLOW)
2173  		return -EINVAL;
2174  	if (sval != (unsigned long)sval)
2175  		return -EINVAL;
2176  	str += len;
2177  
2178  	if (*str != '-')
2179  		return -EINVAL;
2180  	str++;
2181  
2182  	if (str[0] == '0' && str[1])
2183  		return -EINVAL;
2184  	len = _parse_integer(str, 16, &eval);
2185  	if (len & KSTRTOX_OVERFLOW)
2186  		return -EINVAL;
2187  	if (eval != (unsigned long)eval)
2188  		return -EINVAL;
2189  	str += len;
2190  
2191  	if (*str != '\0')
2192  		return -EINVAL;
2193  
2194  	*start = sval;
2195  	*end = eval;
2196  
2197  	return 0;
2198  }
2199  
map_files_d_revalidate(struct dentry * dentry,unsigned int flags)2200  static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2201  {
2202  	unsigned long vm_start, vm_end;
2203  	bool exact_vma_exists = false;
2204  	struct mm_struct *mm = NULL;
2205  	struct task_struct *task;
2206  	struct inode *inode;
2207  	int status = 0;
2208  
2209  	if (flags & LOOKUP_RCU)
2210  		return -ECHILD;
2211  
2212  	inode = d_inode(dentry);
2213  	task = get_proc_task(inode);
2214  	if (!task)
2215  		goto out_notask;
2216  
2217  	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2218  	if (IS_ERR_OR_NULL(mm))
2219  		goto out;
2220  
2221  	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2222  		status = mmap_read_lock_killable(mm);
2223  		if (!status) {
2224  			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2225  							    vm_end);
2226  			mmap_read_unlock(mm);
2227  		}
2228  	}
2229  
2230  	mmput(mm);
2231  
2232  	if (exact_vma_exists) {
2233  		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2234  
2235  		security_task_to_inode(task, inode);
2236  		status = 1;
2237  	}
2238  
2239  out:
2240  	put_task_struct(task);
2241  
2242  out_notask:
2243  	return status;
2244  }
2245  
2246  static const struct dentry_operations tid_map_files_dentry_operations = {
2247  	.d_revalidate	= map_files_d_revalidate,
2248  	.d_delete	= pid_delete_dentry,
2249  };
2250  
map_files_get_link(struct dentry * dentry,struct path * path)2251  static int map_files_get_link(struct dentry *dentry, struct path *path)
2252  {
2253  	unsigned long vm_start, vm_end;
2254  	struct vm_area_struct *vma;
2255  	struct task_struct *task;
2256  	struct mm_struct *mm;
2257  	int rc;
2258  
2259  	rc = -ENOENT;
2260  	task = get_proc_task(d_inode(dentry));
2261  	if (!task)
2262  		goto out;
2263  
2264  	mm = get_task_mm(task);
2265  	put_task_struct(task);
2266  	if (!mm)
2267  		goto out;
2268  
2269  	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2270  	if (rc)
2271  		goto out_mmput;
2272  
2273  	rc = mmap_read_lock_killable(mm);
2274  	if (rc)
2275  		goto out_mmput;
2276  
2277  	rc = -ENOENT;
2278  	vma = find_exact_vma(mm, vm_start, vm_end);
2279  	if (vma && vma->vm_file) {
2280  		*path = vma->vm_file->f_path;
2281  		path_get(path);
2282  		rc = 0;
2283  	}
2284  	mmap_read_unlock(mm);
2285  
2286  out_mmput:
2287  	mmput(mm);
2288  out:
2289  	return rc;
2290  }
2291  
2292  struct map_files_info {
2293  	unsigned long	start;
2294  	unsigned long	end;
2295  	fmode_t		mode;
2296  };
2297  
2298  /*
2299   * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2300   * to concerns about how the symlinks may be used to bypass permissions on
2301   * ancestor directories in the path to the file in question.
2302   */
2303  static const char *
proc_map_files_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)2304  proc_map_files_get_link(struct dentry *dentry,
2305  			struct inode *inode,
2306  		        struct delayed_call *done)
2307  {
2308  	if (!checkpoint_restore_ns_capable(&init_user_ns))
2309  		return ERR_PTR(-EPERM);
2310  
2311  	return proc_pid_get_link(dentry, inode, done);
2312  }
2313  
2314  /*
2315   * Identical to proc_pid_link_inode_operations except for get_link()
2316   */
2317  static const struct inode_operations proc_map_files_link_inode_operations = {
2318  	.readlink	= proc_pid_readlink,
2319  	.get_link	= proc_map_files_get_link,
2320  	.setattr	= proc_setattr,
2321  };
2322  
2323  static struct dentry *
proc_map_files_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2324  proc_map_files_instantiate(struct dentry *dentry,
2325  			   struct task_struct *task, const void *ptr)
2326  {
2327  	fmode_t mode = (fmode_t)(unsigned long)ptr;
2328  	struct proc_inode *ei;
2329  	struct inode *inode;
2330  
2331  	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2332  				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2333  				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2334  	if (!inode)
2335  		return ERR_PTR(-ENOENT);
2336  
2337  	ei = PROC_I(inode);
2338  	ei->op.proc_get_link = map_files_get_link;
2339  
2340  	inode->i_op = &proc_map_files_link_inode_operations;
2341  	inode->i_size = 64;
2342  
2343  	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2344  	return d_splice_alias(inode, dentry);
2345  }
2346  
proc_map_files_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2347  static struct dentry *proc_map_files_lookup(struct inode *dir,
2348  		struct dentry *dentry, unsigned int flags)
2349  {
2350  	unsigned long vm_start, vm_end;
2351  	struct vm_area_struct *vma;
2352  	struct task_struct *task;
2353  	struct dentry *result;
2354  	struct mm_struct *mm;
2355  
2356  	result = ERR_PTR(-ENOENT);
2357  	task = get_proc_task(dir);
2358  	if (!task)
2359  		goto out;
2360  
2361  	result = ERR_PTR(-EACCES);
2362  	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2363  		goto out_put_task;
2364  
2365  	result = ERR_PTR(-ENOENT);
2366  	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2367  		goto out_put_task;
2368  
2369  	mm = get_task_mm(task);
2370  	if (!mm)
2371  		goto out_put_task;
2372  
2373  	result = ERR_PTR(-EINTR);
2374  	if (mmap_read_lock_killable(mm))
2375  		goto out_put_mm;
2376  
2377  	result = ERR_PTR(-ENOENT);
2378  	vma = find_exact_vma(mm, vm_start, vm_end);
2379  	if (!vma)
2380  		goto out_no_vma;
2381  
2382  	if (vma->vm_file)
2383  		result = proc_map_files_instantiate(dentry, task,
2384  				(void *)(unsigned long)vma->vm_file->f_mode);
2385  
2386  out_no_vma:
2387  	mmap_read_unlock(mm);
2388  out_put_mm:
2389  	mmput(mm);
2390  out_put_task:
2391  	put_task_struct(task);
2392  out:
2393  	return result;
2394  }
2395  
2396  static const struct inode_operations proc_map_files_inode_operations = {
2397  	.lookup		= proc_map_files_lookup,
2398  	.permission	= proc_fd_permission,
2399  	.setattr	= proc_setattr,
2400  };
2401  
2402  static int
proc_map_files_readdir(struct file * file,struct dir_context * ctx)2403  proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2404  {
2405  	struct vm_area_struct *vma;
2406  	struct task_struct *task;
2407  	struct mm_struct *mm;
2408  	unsigned long nr_files, pos, i;
2409  	GENRADIX(struct map_files_info) fa;
2410  	struct map_files_info *p;
2411  	int ret;
2412  	struct vma_iterator vmi;
2413  
2414  	genradix_init(&fa);
2415  
2416  	ret = -ENOENT;
2417  	task = get_proc_task(file_inode(file));
2418  	if (!task)
2419  		goto out;
2420  
2421  	ret = -EACCES;
2422  	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2423  		goto out_put_task;
2424  
2425  	ret = 0;
2426  	if (!dir_emit_dots(file, ctx))
2427  		goto out_put_task;
2428  
2429  	mm = get_task_mm(task);
2430  	if (!mm)
2431  		goto out_put_task;
2432  
2433  	ret = mmap_read_lock_killable(mm);
2434  	if (ret) {
2435  		mmput(mm);
2436  		goto out_put_task;
2437  	}
2438  
2439  	nr_files = 0;
2440  
2441  	/*
2442  	 * We need two passes here:
2443  	 *
2444  	 *  1) Collect vmas of mapped files with mmap_lock taken
2445  	 *  2) Release mmap_lock and instantiate entries
2446  	 *
2447  	 * otherwise we get lockdep complained, since filldir()
2448  	 * routine might require mmap_lock taken in might_fault().
2449  	 */
2450  
2451  	pos = 2;
2452  	vma_iter_init(&vmi, mm, 0);
2453  	for_each_vma(vmi, vma) {
2454  		if (!vma->vm_file)
2455  			continue;
2456  		if (++pos <= ctx->pos)
2457  			continue;
2458  
2459  		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2460  		if (!p) {
2461  			ret = -ENOMEM;
2462  			mmap_read_unlock(mm);
2463  			mmput(mm);
2464  			goto out_put_task;
2465  		}
2466  
2467  		p->start = vma->vm_start;
2468  		p->end = vma->vm_end;
2469  		p->mode = vma->vm_file->f_mode;
2470  	}
2471  	mmap_read_unlock(mm);
2472  	mmput(mm);
2473  
2474  	for (i = 0; i < nr_files; i++) {
2475  		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2476  		unsigned int len;
2477  
2478  		p = genradix_ptr(&fa, i);
2479  		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2480  		if (!proc_fill_cache(file, ctx,
2481  				      buf, len,
2482  				      proc_map_files_instantiate,
2483  				      task,
2484  				      (void *)(unsigned long)p->mode))
2485  			break;
2486  		ctx->pos++;
2487  	}
2488  
2489  out_put_task:
2490  	put_task_struct(task);
2491  out:
2492  	genradix_free(&fa);
2493  	return ret;
2494  }
2495  
2496  static const struct file_operations proc_map_files_operations = {
2497  	.read		= generic_read_dir,
2498  	.iterate_shared	= proc_map_files_readdir,
2499  	.llseek		= generic_file_llseek,
2500  };
2501  
2502  #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2503  struct timers_private {
2504  	struct pid *pid;
2505  	struct task_struct *task;
2506  	struct sighand_struct *sighand;
2507  	struct pid_namespace *ns;
2508  	unsigned long flags;
2509  };
2510  
timers_start(struct seq_file * m,loff_t * pos)2511  static void *timers_start(struct seq_file *m, loff_t *pos)
2512  {
2513  	struct timers_private *tp = m->private;
2514  
2515  	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2516  	if (!tp->task)
2517  		return ERR_PTR(-ESRCH);
2518  
2519  	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2520  	if (!tp->sighand)
2521  		return ERR_PTR(-ESRCH);
2522  
2523  	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2524  }
2525  
timers_next(struct seq_file * m,void * v,loff_t * pos)2526  static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2527  {
2528  	struct timers_private *tp = m->private;
2529  	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2530  }
2531  
timers_stop(struct seq_file * m,void * v)2532  static void timers_stop(struct seq_file *m, void *v)
2533  {
2534  	struct timers_private *tp = m->private;
2535  
2536  	if (tp->sighand) {
2537  		unlock_task_sighand(tp->task, &tp->flags);
2538  		tp->sighand = NULL;
2539  	}
2540  
2541  	if (tp->task) {
2542  		put_task_struct(tp->task);
2543  		tp->task = NULL;
2544  	}
2545  }
2546  
show_timer(struct seq_file * m,void * v)2547  static int show_timer(struct seq_file *m, void *v)
2548  {
2549  	struct k_itimer *timer;
2550  	struct timers_private *tp = m->private;
2551  	int notify;
2552  	static const char * const nstr[] = {
2553  		[SIGEV_SIGNAL] = "signal",
2554  		[SIGEV_NONE] = "none",
2555  		[SIGEV_THREAD] = "thread",
2556  	};
2557  
2558  	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2559  	notify = timer->it_sigev_notify;
2560  
2561  	seq_printf(m, "ID: %d\n", timer->it_id);
2562  	seq_printf(m, "signal: %d/%px\n",
2563  		   timer->sigq->info.si_signo,
2564  		   timer->sigq->info.si_value.sival_ptr);
2565  	seq_printf(m, "notify: %s/%s.%d\n",
2566  		   nstr[notify & ~SIGEV_THREAD_ID],
2567  		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2568  		   pid_nr_ns(timer->it_pid, tp->ns));
2569  	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2570  
2571  	return 0;
2572  }
2573  
2574  static const struct seq_operations proc_timers_seq_ops = {
2575  	.start	= timers_start,
2576  	.next	= timers_next,
2577  	.stop	= timers_stop,
2578  	.show	= show_timer,
2579  };
2580  
proc_timers_open(struct inode * inode,struct file * file)2581  static int proc_timers_open(struct inode *inode, struct file *file)
2582  {
2583  	struct timers_private *tp;
2584  
2585  	tp = __seq_open_private(file, &proc_timers_seq_ops,
2586  			sizeof(struct timers_private));
2587  	if (!tp)
2588  		return -ENOMEM;
2589  
2590  	tp->pid = proc_pid(inode);
2591  	tp->ns = proc_pid_ns(inode->i_sb);
2592  	return 0;
2593  }
2594  
2595  static const struct file_operations proc_timers_operations = {
2596  	.open		= proc_timers_open,
2597  	.read		= seq_read,
2598  	.llseek		= seq_lseek,
2599  	.release	= seq_release_private,
2600  };
2601  #endif
2602  
timerslack_ns_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)2603  static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2604  					size_t count, loff_t *offset)
2605  {
2606  	struct inode *inode = file_inode(file);
2607  	struct task_struct *p;
2608  	u64 slack_ns;
2609  	int err;
2610  
2611  	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2612  	if (err < 0)
2613  		return err;
2614  
2615  	p = get_proc_task(inode);
2616  	if (!p)
2617  		return -ESRCH;
2618  
2619  	if (p != current) {
2620  		rcu_read_lock();
2621  		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2622  			rcu_read_unlock();
2623  			count = -EPERM;
2624  			goto out;
2625  		}
2626  		rcu_read_unlock();
2627  
2628  		err = security_task_setscheduler(p);
2629  		if (err) {
2630  			count = err;
2631  			goto out;
2632  		}
2633  	}
2634  
2635  	task_lock(p);
2636  	if (slack_ns == 0)
2637  		p->timer_slack_ns = p->default_timer_slack_ns;
2638  	else
2639  		p->timer_slack_ns = slack_ns;
2640  	task_unlock(p);
2641  
2642  out:
2643  	put_task_struct(p);
2644  
2645  	return count;
2646  }
2647  
timerslack_ns_show(struct seq_file * m,void * v)2648  static int timerslack_ns_show(struct seq_file *m, void *v)
2649  {
2650  	struct inode *inode = m->private;
2651  	struct task_struct *p;
2652  	int err = 0;
2653  
2654  	p = get_proc_task(inode);
2655  	if (!p)
2656  		return -ESRCH;
2657  
2658  	if (p != current) {
2659  		rcu_read_lock();
2660  		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2661  			rcu_read_unlock();
2662  			err = -EPERM;
2663  			goto out;
2664  		}
2665  		rcu_read_unlock();
2666  
2667  		err = security_task_getscheduler(p);
2668  		if (err)
2669  			goto out;
2670  	}
2671  
2672  	task_lock(p);
2673  	seq_printf(m, "%llu\n", p->timer_slack_ns);
2674  	task_unlock(p);
2675  
2676  out:
2677  	put_task_struct(p);
2678  
2679  	return err;
2680  }
2681  
timerslack_ns_open(struct inode * inode,struct file * filp)2682  static int timerslack_ns_open(struct inode *inode, struct file *filp)
2683  {
2684  	return single_open(filp, timerslack_ns_show, inode);
2685  }
2686  
2687  static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2688  	.open		= timerslack_ns_open,
2689  	.read		= seq_read,
2690  	.write		= timerslack_ns_write,
2691  	.llseek		= seq_lseek,
2692  	.release	= single_release,
2693  };
2694  
proc_pident_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2695  static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2696  	struct task_struct *task, const void *ptr)
2697  {
2698  	const struct pid_entry *p = ptr;
2699  	struct inode *inode;
2700  	struct proc_inode *ei;
2701  
2702  	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2703  	if (!inode)
2704  		return ERR_PTR(-ENOENT);
2705  
2706  	ei = PROC_I(inode);
2707  	if (S_ISDIR(inode->i_mode))
2708  		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2709  	if (p->iop)
2710  		inode->i_op = p->iop;
2711  	if (p->fop)
2712  		inode->i_fop = p->fop;
2713  	ei->op = p->op;
2714  	pid_update_inode(task, inode);
2715  	d_set_d_op(dentry, &pid_dentry_operations);
2716  	return d_splice_alias(inode, dentry);
2717  }
2718  
proc_pident_lookup(struct inode * dir,struct dentry * dentry,const struct pid_entry * p,const struct pid_entry * end)2719  static struct dentry *proc_pident_lookup(struct inode *dir,
2720  					 struct dentry *dentry,
2721  					 const struct pid_entry *p,
2722  					 const struct pid_entry *end)
2723  {
2724  	struct task_struct *task = get_proc_task(dir);
2725  	struct dentry *res = ERR_PTR(-ENOENT);
2726  
2727  	if (!task)
2728  		goto out_no_task;
2729  
2730  	/*
2731  	 * Yes, it does not scale. And it should not. Don't add
2732  	 * new entries into /proc/<tgid>/ without very good reasons.
2733  	 */
2734  	for (; p < end; p++) {
2735  		if (p->len != dentry->d_name.len)
2736  			continue;
2737  		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2738  			res = proc_pident_instantiate(dentry, task, p);
2739  			break;
2740  		}
2741  	}
2742  	put_task_struct(task);
2743  out_no_task:
2744  	return res;
2745  }
2746  
proc_pident_readdir(struct file * file,struct dir_context * ctx,const struct pid_entry * ents,unsigned int nents)2747  static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2748  		const struct pid_entry *ents, unsigned int nents)
2749  {
2750  	struct task_struct *task = get_proc_task(file_inode(file));
2751  	const struct pid_entry *p;
2752  
2753  	if (!task)
2754  		return -ENOENT;
2755  
2756  	if (!dir_emit_dots(file, ctx))
2757  		goto out;
2758  
2759  	if (ctx->pos >= nents + 2)
2760  		goto out;
2761  
2762  	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2763  		if (!proc_fill_cache(file, ctx, p->name, p->len,
2764  				proc_pident_instantiate, task, p))
2765  			break;
2766  		ctx->pos++;
2767  	}
2768  out:
2769  	put_task_struct(task);
2770  	return 0;
2771  }
2772  
2773  #ifdef CONFIG_SECURITY
proc_pid_attr_open(struct inode * inode,struct file * file)2774  static int proc_pid_attr_open(struct inode *inode, struct file *file)
2775  {
2776  	file->private_data = NULL;
2777  	__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2778  	return 0;
2779  }
2780  
proc_pid_attr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2781  static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2782  				  size_t count, loff_t *ppos)
2783  {
2784  	struct inode * inode = file_inode(file);
2785  	char *p = NULL;
2786  	ssize_t length;
2787  	struct task_struct *task = get_proc_task(inode);
2788  
2789  	if (!task)
2790  		return -ESRCH;
2791  
2792  	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2793  				      file->f_path.dentry->d_name.name,
2794  				      &p);
2795  	put_task_struct(task);
2796  	if (length > 0)
2797  		length = simple_read_from_buffer(buf, count, ppos, p, length);
2798  	kfree(p);
2799  	return length;
2800  }
2801  
proc_pid_attr_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2802  static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2803  				   size_t count, loff_t *ppos)
2804  {
2805  	struct inode * inode = file_inode(file);
2806  	struct task_struct *task;
2807  	void *page;
2808  	int rv;
2809  
2810  	/* A task may only write when it was the opener. */
2811  	if (file->private_data != current->mm)
2812  		return -EPERM;
2813  
2814  	rcu_read_lock();
2815  	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2816  	if (!task) {
2817  		rcu_read_unlock();
2818  		return -ESRCH;
2819  	}
2820  	/* A task may only write its own attributes. */
2821  	if (current != task) {
2822  		rcu_read_unlock();
2823  		return -EACCES;
2824  	}
2825  	/* Prevent changes to overridden credentials. */
2826  	if (current_cred() != current_real_cred()) {
2827  		rcu_read_unlock();
2828  		return -EBUSY;
2829  	}
2830  	rcu_read_unlock();
2831  
2832  	if (count > PAGE_SIZE)
2833  		count = PAGE_SIZE;
2834  
2835  	/* No partial writes. */
2836  	if (*ppos != 0)
2837  		return -EINVAL;
2838  
2839  	page = memdup_user(buf, count);
2840  	if (IS_ERR(page)) {
2841  		rv = PTR_ERR(page);
2842  		goto out;
2843  	}
2844  
2845  	/* Guard against adverse ptrace interaction */
2846  	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2847  	if (rv < 0)
2848  		goto out_free;
2849  
2850  	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2851  				  file->f_path.dentry->d_name.name, page,
2852  				  count);
2853  	mutex_unlock(&current->signal->cred_guard_mutex);
2854  out_free:
2855  	kfree(page);
2856  out:
2857  	return rv;
2858  }
2859  
2860  static const struct file_operations proc_pid_attr_operations = {
2861  	.open		= proc_pid_attr_open,
2862  	.read		= proc_pid_attr_read,
2863  	.write		= proc_pid_attr_write,
2864  	.llseek		= generic_file_llseek,
2865  	.release	= mem_release,
2866  };
2867  
2868  #define LSM_DIR_OPS(LSM) \
2869  static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2870  			     struct dir_context *ctx) \
2871  { \
2872  	return proc_pident_readdir(filp, ctx, \
2873  				   LSM##_attr_dir_stuff, \
2874  				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2875  } \
2876  \
2877  static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2878  	.read		= generic_read_dir, \
2879  	.iterate_shared	= proc_##LSM##_attr_dir_iterate, \
2880  	.llseek		= default_llseek, \
2881  }; \
2882  \
2883  static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2884  				struct dentry *dentry, unsigned int flags) \
2885  { \
2886  	return proc_pident_lookup(dir, dentry, \
2887  				  LSM##_attr_dir_stuff, \
2888  				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2889  } \
2890  \
2891  static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2892  	.lookup		= proc_##LSM##_attr_dir_lookup, \
2893  	.getattr	= pid_getattr, \
2894  	.setattr	= proc_setattr, \
2895  }
2896  
2897  #ifdef CONFIG_SECURITY_SMACK
2898  static const struct pid_entry smack_attr_dir_stuff[] = {
2899  	ATTR("smack", "current",	0666),
2900  };
2901  LSM_DIR_OPS(smack);
2902  #endif
2903  
2904  #ifdef CONFIG_SECURITY_APPARMOR
2905  static const struct pid_entry apparmor_attr_dir_stuff[] = {
2906  	ATTR("apparmor", "current",	0666),
2907  	ATTR("apparmor", "prev",	0444),
2908  	ATTR("apparmor", "exec",	0666),
2909  };
2910  LSM_DIR_OPS(apparmor);
2911  #endif
2912  
2913  static const struct pid_entry attr_dir_stuff[] = {
2914  	ATTR(NULL, "current",		0666),
2915  	ATTR(NULL, "prev",		0444),
2916  	ATTR(NULL, "exec",		0666),
2917  	ATTR(NULL, "fscreate",		0666),
2918  	ATTR(NULL, "keycreate",		0666),
2919  	ATTR(NULL, "sockcreate",	0666),
2920  #ifdef CONFIG_SECURITY_SMACK
2921  	DIR("smack",			0555,
2922  	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2923  #endif
2924  #ifdef CONFIG_SECURITY_APPARMOR
2925  	DIR("apparmor",			0555,
2926  	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2927  #endif
2928  };
2929  
proc_attr_dir_readdir(struct file * file,struct dir_context * ctx)2930  static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2931  {
2932  	return proc_pident_readdir(file, ctx,
2933  				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2934  }
2935  
2936  static const struct file_operations proc_attr_dir_operations = {
2937  	.read		= generic_read_dir,
2938  	.iterate_shared	= proc_attr_dir_readdir,
2939  	.llseek		= generic_file_llseek,
2940  };
2941  
proc_attr_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2942  static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2943  				struct dentry *dentry, unsigned int flags)
2944  {
2945  	return proc_pident_lookup(dir, dentry,
2946  				  attr_dir_stuff,
2947  				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2948  }
2949  
2950  static const struct inode_operations proc_attr_dir_inode_operations = {
2951  	.lookup		= proc_attr_dir_lookup,
2952  	.getattr	= pid_getattr,
2953  	.setattr	= proc_setattr,
2954  };
2955  
2956  #endif
2957  
2958  #ifdef CONFIG_ELF_CORE
proc_coredump_filter_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2959  static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2960  					 size_t count, loff_t *ppos)
2961  {
2962  	struct task_struct *task = get_proc_task(file_inode(file));
2963  	struct mm_struct *mm;
2964  	char buffer[PROC_NUMBUF];
2965  	size_t len;
2966  	int ret;
2967  
2968  	if (!task)
2969  		return -ESRCH;
2970  
2971  	ret = 0;
2972  	mm = get_task_mm(task);
2973  	if (mm) {
2974  		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2975  			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2976  				MMF_DUMP_FILTER_SHIFT));
2977  		mmput(mm);
2978  		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2979  	}
2980  
2981  	put_task_struct(task);
2982  
2983  	return ret;
2984  }
2985  
proc_coredump_filter_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2986  static ssize_t proc_coredump_filter_write(struct file *file,
2987  					  const char __user *buf,
2988  					  size_t count,
2989  					  loff_t *ppos)
2990  {
2991  	struct task_struct *task;
2992  	struct mm_struct *mm;
2993  	unsigned int val;
2994  	int ret;
2995  	int i;
2996  	unsigned long mask;
2997  
2998  	ret = kstrtouint_from_user(buf, count, 0, &val);
2999  	if (ret < 0)
3000  		return ret;
3001  
3002  	ret = -ESRCH;
3003  	task = get_proc_task(file_inode(file));
3004  	if (!task)
3005  		goto out_no_task;
3006  
3007  	mm = get_task_mm(task);
3008  	if (!mm)
3009  		goto out_no_mm;
3010  	ret = 0;
3011  
3012  	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
3013  		if (val & mask)
3014  			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3015  		else
3016  			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3017  	}
3018  
3019  	mmput(mm);
3020   out_no_mm:
3021  	put_task_struct(task);
3022   out_no_task:
3023  	if (ret < 0)
3024  		return ret;
3025  	return count;
3026  }
3027  
3028  static const struct file_operations proc_coredump_filter_operations = {
3029  	.read		= proc_coredump_filter_read,
3030  	.write		= proc_coredump_filter_write,
3031  	.llseek		= generic_file_llseek,
3032  };
3033  #endif
3034  
3035  #ifdef CONFIG_TASK_IO_ACCOUNTING
do_io_accounting(struct task_struct * task,struct seq_file * m,int whole)3036  static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
3037  {
3038  	struct task_io_accounting acct = task->ioac;
3039  	unsigned long flags;
3040  	int result;
3041  
3042  	result = down_read_killable(&task->signal->exec_update_lock);
3043  	if (result)
3044  		return result;
3045  
3046  	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
3047  		result = -EACCES;
3048  		goto out_unlock;
3049  	}
3050  
3051  	if (whole && lock_task_sighand(task, &flags)) {
3052  		struct task_struct *t = task;
3053  
3054  		task_io_accounting_add(&acct, &task->signal->ioac);
3055  		while_each_thread(task, t)
3056  			task_io_accounting_add(&acct, &t->ioac);
3057  
3058  		unlock_task_sighand(task, &flags);
3059  	}
3060  	seq_printf(m,
3061  		   "rchar: %llu\n"
3062  		   "wchar: %llu\n"
3063  		   "syscr: %llu\n"
3064  		   "syscw: %llu\n"
3065  		   "read_bytes: %llu\n"
3066  		   "write_bytes: %llu\n"
3067  		   "cancelled_write_bytes: %llu\n",
3068  		   (unsigned long long)acct.rchar,
3069  		   (unsigned long long)acct.wchar,
3070  		   (unsigned long long)acct.syscr,
3071  		   (unsigned long long)acct.syscw,
3072  		   (unsigned long long)acct.read_bytes,
3073  		   (unsigned long long)acct.write_bytes,
3074  		   (unsigned long long)acct.cancelled_write_bytes);
3075  	result = 0;
3076  
3077  out_unlock:
3078  	up_read(&task->signal->exec_update_lock);
3079  	return result;
3080  }
3081  
proc_tid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3082  static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3083  				  struct pid *pid, struct task_struct *task)
3084  {
3085  	return do_io_accounting(task, m, 0);
3086  }
3087  
proc_tgid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3088  static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3089  				   struct pid *pid, struct task_struct *task)
3090  {
3091  	return do_io_accounting(task, m, 1);
3092  }
3093  #endif /* CONFIG_TASK_IO_ACCOUNTING */
3094  
3095  #ifdef CONFIG_USER_NS
proc_id_map_open(struct inode * inode,struct file * file,const struct seq_operations * seq_ops)3096  static int proc_id_map_open(struct inode *inode, struct file *file,
3097  	const struct seq_operations *seq_ops)
3098  {
3099  	struct user_namespace *ns = NULL;
3100  	struct task_struct *task;
3101  	struct seq_file *seq;
3102  	int ret = -EINVAL;
3103  
3104  	task = get_proc_task(inode);
3105  	if (task) {
3106  		rcu_read_lock();
3107  		ns = get_user_ns(task_cred_xxx(task, user_ns));
3108  		rcu_read_unlock();
3109  		put_task_struct(task);
3110  	}
3111  	if (!ns)
3112  		goto err;
3113  
3114  	ret = seq_open(file, seq_ops);
3115  	if (ret)
3116  		goto err_put_ns;
3117  
3118  	seq = file->private_data;
3119  	seq->private = ns;
3120  
3121  	return 0;
3122  err_put_ns:
3123  	put_user_ns(ns);
3124  err:
3125  	return ret;
3126  }
3127  
proc_id_map_release(struct inode * inode,struct file * file)3128  static int proc_id_map_release(struct inode *inode, struct file *file)
3129  {
3130  	struct seq_file *seq = file->private_data;
3131  	struct user_namespace *ns = seq->private;
3132  	put_user_ns(ns);
3133  	return seq_release(inode, file);
3134  }
3135  
proc_uid_map_open(struct inode * inode,struct file * file)3136  static int proc_uid_map_open(struct inode *inode, struct file *file)
3137  {
3138  	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3139  }
3140  
proc_gid_map_open(struct inode * inode,struct file * file)3141  static int proc_gid_map_open(struct inode *inode, struct file *file)
3142  {
3143  	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3144  }
3145  
proc_projid_map_open(struct inode * inode,struct file * file)3146  static int proc_projid_map_open(struct inode *inode, struct file *file)
3147  {
3148  	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3149  }
3150  
3151  static const struct file_operations proc_uid_map_operations = {
3152  	.open		= proc_uid_map_open,
3153  	.write		= proc_uid_map_write,
3154  	.read		= seq_read,
3155  	.llseek		= seq_lseek,
3156  	.release	= proc_id_map_release,
3157  };
3158  
3159  static const struct file_operations proc_gid_map_operations = {
3160  	.open		= proc_gid_map_open,
3161  	.write		= proc_gid_map_write,
3162  	.read		= seq_read,
3163  	.llseek		= seq_lseek,
3164  	.release	= proc_id_map_release,
3165  };
3166  
3167  static const struct file_operations proc_projid_map_operations = {
3168  	.open		= proc_projid_map_open,
3169  	.write		= proc_projid_map_write,
3170  	.read		= seq_read,
3171  	.llseek		= seq_lseek,
3172  	.release	= proc_id_map_release,
3173  };
3174  
proc_setgroups_open(struct inode * inode,struct file * file)3175  static int proc_setgroups_open(struct inode *inode, struct file *file)
3176  {
3177  	struct user_namespace *ns = NULL;
3178  	struct task_struct *task;
3179  	int ret;
3180  
3181  	ret = -ESRCH;
3182  	task = get_proc_task(inode);
3183  	if (task) {
3184  		rcu_read_lock();
3185  		ns = get_user_ns(task_cred_xxx(task, user_ns));
3186  		rcu_read_unlock();
3187  		put_task_struct(task);
3188  	}
3189  	if (!ns)
3190  		goto err;
3191  
3192  	if (file->f_mode & FMODE_WRITE) {
3193  		ret = -EACCES;
3194  		if (!ns_capable(ns, CAP_SYS_ADMIN))
3195  			goto err_put_ns;
3196  	}
3197  
3198  	ret = single_open(file, &proc_setgroups_show, ns);
3199  	if (ret)
3200  		goto err_put_ns;
3201  
3202  	return 0;
3203  err_put_ns:
3204  	put_user_ns(ns);
3205  err:
3206  	return ret;
3207  }
3208  
proc_setgroups_release(struct inode * inode,struct file * file)3209  static int proc_setgroups_release(struct inode *inode, struct file *file)
3210  {
3211  	struct seq_file *seq = file->private_data;
3212  	struct user_namespace *ns = seq->private;
3213  	int ret = single_release(inode, file);
3214  	put_user_ns(ns);
3215  	return ret;
3216  }
3217  
3218  static const struct file_operations proc_setgroups_operations = {
3219  	.open		= proc_setgroups_open,
3220  	.write		= proc_setgroups_write,
3221  	.read		= seq_read,
3222  	.llseek		= seq_lseek,
3223  	.release	= proc_setgroups_release,
3224  };
3225  #endif /* CONFIG_USER_NS */
3226  
proc_pid_personality(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3227  static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3228  				struct pid *pid, struct task_struct *task)
3229  {
3230  	int err = lock_trace(task);
3231  	if (!err) {
3232  		seq_printf(m, "%08x\n", task->personality);
3233  		unlock_trace(task);
3234  	}
3235  	return err;
3236  }
3237  
3238  #ifdef CONFIG_LIVEPATCH
proc_pid_patch_state(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3239  static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3240  				struct pid *pid, struct task_struct *task)
3241  {
3242  	seq_printf(m, "%d\n", task->patch_state);
3243  	return 0;
3244  }
3245  #endif /* CONFIG_LIVEPATCH */
3246  
3247  #ifdef CONFIG_KSM
proc_pid_ksm_merging_pages(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3248  static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3249  				struct pid *pid, struct task_struct *task)
3250  {
3251  	struct mm_struct *mm;
3252  
3253  	mm = get_task_mm(task);
3254  	if (mm) {
3255  		seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3256  		mmput(mm);
3257  	}
3258  
3259  	return 0;
3260  }
proc_pid_ksm_stat(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3261  static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns,
3262  				struct pid *pid, struct task_struct *task)
3263  {
3264  	struct mm_struct *mm;
3265  
3266  	mm = get_task_mm(task);
3267  	if (mm) {
3268  		seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items);
3269  		seq_printf(m, "ksm_zero_pages %ld\n", mm_ksm_zero_pages(mm));
3270  		seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages);
3271  		seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm));
3272  		mmput(mm);
3273  	}
3274  
3275  	return 0;
3276  }
3277  #endif /* CONFIG_KSM */
3278  
3279  #ifdef CONFIG_STACKLEAK_METRICS
proc_stack_depth(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3280  static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3281  				struct pid *pid, struct task_struct *task)
3282  {
3283  	unsigned long prev_depth = THREAD_SIZE -
3284  				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3285  	unsigned long depth = THREAD_SIZE -
3286  				(task->lowest_stack & (THREAD_SIZE - 1));
3287  
3288  	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3289  							prev_depth, depth);
3290  	return 0;
3291  }
3292  #endif /* CONFIG_STACKLEAK_METRICS */
3293  
3294  /*
3295   * Thread groups
3296   */
3297  static const struct file_operations proc_task_operations;
3298  static const struct inode_operations proc_task_inode_operations;
3299  
3300  static const struct pid_entry tgid_base_stuff[] = {
3301  	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3302  	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3303  	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3304  	DIR("fdinfo",     S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3305  	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3306  #ifdef CONFIG_NET
3307  	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3308  #endif
3309  	REG("environ",    S_IRUSR, proc_environ_operations),
3310  	REG("auxv",       S_IRUSR, proc_auxv_operations),
3311  	ONE("status",     S_IRUGO, proc_pid_status),
3312  	ONE("personality", S_IRUSR, proc_pid_personality),
3313  	ONE("limits",	  S_IRUGO, proc_pid_limits),
3314  #ifdef CONFIG_SCHED_DEBUG
3315  	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3316  #endif
3317  #ifdef CONFIG_SCHED_AUTOGROUP
3318  	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3319  #endif
3320  #ifdef CONFIG_TIME_NS
3321  	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3322  #endif
3323  	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3324  #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3325  	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3326  #endif
3327  	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3328  	ONE("stat",       S_IRUGO, proc_tgid_stat),
3329  	ONE("statm",      S_IRUGO, proc_pid_statm),
3330  	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3331  #ifdef CONFIG_NUMA
3332  	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3333  #endif
3334  	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3335  	LNK("cwd",        proc_cwd_link),
3336  	LNK("root",       proc_root_link),
3337  	LNK("exe",        proc_exe_link),
3338  	REG("mounts",     S_IRUGO, proc_mounts_operations),
3339  	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3340  	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3341  #ifdef CONFIG_PROC_PAGE_MONITOR
3342  	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3343  	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3344  	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3345  	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3346  #endif
3347  #ifdef CONFIG_SECURITY
3348  	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3349  #endif
3350  #ifdef CONFIG_KALLSYMS
3351  	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3352  #endif
3353  #ifdef CONFIG_STACKTRACE
3354  	ONE("stack",      S_IRUSR, proc_pid_stack),
3355  #endif
3356  #ifdef CONFIG_SCHED_INFO
3357  	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3358  #endif
3359  #ifdef CONFIG_LATENCYTOP
3360  	REG("latency",  S_IRUGO, proc_lstats_operations),
3361  #endif
3362  #ifdef CONFIG_PROC_PID_CPUSET
3363  	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3364  #endif
3365  #ifdef CONFIG_CGROUPS
3366  	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3367  #endif
3368  #ifdef CONFIG_PROC_CPU_RESCTRL
3369  	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3370  #endif
3371  	ONE("oom_score",  S_IRUGO, proc_oom_score),
3372  	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3373  	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3374  #ifdef CONFIG_AUDIT
3375  	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3376  	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3377  #endif
3378  #ifdef CONFIG_FAULT_INJECTION
3379  	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3380  	REG("fail-nth", 0644, proc_fail_nth_operations),
3381  #endif
3382  #ifdef CONFIG_ELF_CORE
3383  	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3384  #endif
3385  #ifdef CONFIG_TASK_IO_ACCOUNTING
3386  	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3387  #endif
3388  #ifdef CONFIG_USER_NS
3389  	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3390  	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3391  	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3392  	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3393  #endif
3394  #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3395  	REG("timers",	  S_IRUGO, proc_timers_operations),
3396  #endif
3397  	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3398  #ifdef CONFIG_LIVEPATCH
3399  	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3400  #endif
3401  #ifdef CONFIG_STACKLEAK_METRICS
3402  	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3403  #endif
3404  #ifdef CONFIG_PROC_PID_ARCH_STATUS
3405  	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3406  #endif
3407  #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3408  	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3409  #endif
3410  #ifdef CONFIG_KSM
3411  	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
3412  	ONE("ksm_stat",  S_IRUSR, proc_pid_ksm_stat),
3413  #endif
3414  };
3415  
proc_tgid_base_readdir(struct file * file,struct dir_context * ctx)3416  static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3417  {
3418  	return proc_pident_readdir(file, ctx,
3419  				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3420  }
3421  
3422  static const struct file_operations proc_tgid_base_operations = {
3423  	.read		= generic_read_dir,
3424  	.iterate_shared	= proc_tgid_base_readdir,
3425  	.llseek		= generic_file_llseek,
3426  };
3427  
tgid_pidfd_to_pid(const struct file * file)3428  struct pid *tgid_pidfd_to_pid(const struct file *file)
3429  {
3430  	if (file->f_op != &proc_tgid_base_operations)
3431  		return ERR_PTR(-EBADF);
3432  
3433  	return proc_pid(file_inode(file));
3434  }
3435  
proc_tgid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3436  static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3437  {
3438  	return proc_pident_lookup(dir, dentry,
3439  				  tgid_base_stuff,
3440  				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3441  }
3442  
3443  static const struct inode_operations proc_tgid_base_inode_operations = {
3444  	.lookup		= proc_tgid_base_lookup,
3445  	.getattr	= pid_getattr,
3446  	.setattr	= proc_setattr,
3447  	.permission	= proc_pid_permission,
3448  };
3449  
3450  /**
3451   * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3452   * @pid: pid that should be flushed.
3453   *
3454   * This function walks a list of inodes (that belong to any proc
3455   * filesystem) that are attached to the pid and flushes them from
3456   * the dentry cache.
3457   *
3458   * It is safe and reasonable to cache /proc entries for a task until
3459   * that task exits.  After that they just clog up the dcache with
3460   * useless entries, possibly causing useful dcache entries to be
3461   * flushed instead.  This routine is provided to flush those useless
3462   * dcache entries when a process is reaped.
3463   *
3464   * NOTE: This routine is just an optimization so it does not guarantee
3465   *       that no dcache entries will exist after a process is reaped
3466   *       it just makes it very unlikely that any will persist.
3467   */
3468  
proc_flush_pid(struct pid * pid)3469  void proc_flush_pid(struct pid *pid)
3470  {
3471  	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3472  }
3473  
proc_pid_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3474  static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3475  				   struct task_struct *task, const void *ptr)
3476  {
3477  	struct inode *inode;
3478  
3479  	inode = proc_pid_make_base_inode(dentry->d_sb, task,
3480  					 S_IFDIR | S_IRUGO | S_IXUGO);
3481  	if (!inode)
3482  		return ERR_PTR(-ENOENT);
3483  
3484  	inode->i_op = &proc_tgid_base_inode_operations;
3485  	inode->i_fop = &proc_tgid_base_operations;
3486  	inode->i_flags|=S_IMMUTABLE;
3487  
3488  	set_nlink(inode, nlink_tgid);
3489  	pid_update_inode(task, inode);
3490  
3491  	d_set_d_op(dentry, &pid_dentry_operations);
3492  	return d_splice_alias(inode, dentry);
3493  }
3494  
proc_pid_lookup(struct dentry * dentry,unsigned int flags)3495  struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3496  {
3497  	struct task_struct *task;
3498  	unsigned tgid;
3499  	struct proc_fs_info *fs_info;
3500  	struct pid_namespace *ns;
3501  	struct dentry *result = ERR_PTR(-ENOENT);
3502  
3503  	tgid = name_to_int(&dentry->d_name);
3504  	if (tgid == ~0U)
3505  		goto out;
3506  
3507  	fs_info = proc_sb_info(dentry->d_sb);
3508  	ns = fs_info->pid_ns;
3509  	rcu_read_lock();
3510  	task = find_task_by_pid_ns(tgid, ns);
3511  	if (task)
3512  		get_task_struct(task);
3513  	rcu_read_unlock();
3514  	if (!task)
3515  		goto out;
3516  
3517  	/* Limit procfs to only ptraceable tasks */
3518  	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3519  		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3520  			goto out_put_task;
3521  	}
3522  
3523  	result = proc_pid_instantiate(dentry, task, NULL);
3524  out_put_task:
3525  	put_task_struct(task);
3526  out:
3527  	return result;
3528  }
3529  
3530  /*
3531   * Find the first task with tgid >= tgid
3532   *
3533   */
3534  struct tgid_iter {
3535  	unsigned int tgid;
3536  	struct task_struct *task;
3537  };
next_tgid(struct pid_namespace * ns,struct tgid_iter iter)3538  static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3539  {
3540  	struct pid *pid;
3541  
3542  	if (iter.task)
3543  		put_task_struct(iter.task);
3544  	rcu_read_lock();
3545  retry:
3546  	iter.task = NULL;
3547  	pid = find_ge_pid(iter.tgid, ns);
3548  	if (pid) {
3549  		iter.tgid = pid_nr_ns(pid, ns);
3550  		iter.task = pid_task(pid, PIDTYPE_TGID);
3551  		if (!iter.task) {
3552  			iter.tgid += 1;
3553  			goto retry;
3554  		}
3555  		get_task_struct(iter.task);
3556  	}
3557  	rcu_read_unlock();
3558  	return iter;
3559  }
3560  
3561  #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3562  
3563  /* for the /proc/ directory itself, after non-process stuff has been done */
proc_pid_readdir(struct file * file,struct dir_context * ctx)3564  int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3565  {
3566  	struct tgid_iter iter;
3567  	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3568  	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3569  	loff_t pos = ctx->pos;
3570  
3571  	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3572  		return 0;
3573  
3574  	if (pos == TGID_OFFSET - 2) {
3575  		struct inode *inode = d_inode(fs_info->proc_self);
3576  		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3577  			return 0;
3578  		ctx->pos = pos = pos + 1;
3579  	}
3580  	if (pos == TGID_OFFSET - 1) {
3581  		struct inode *inode = d_inode(fs_info->proc_thread_self);
3582  		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3583  			return 0;
3584  		ctx->pos = pos = pos + 1;
3585  	}
3586  	iter.tgid = pos - TGID_OFFSET;
3587  	iter.task = NULL;
3588  	for (iter = next_tgid(ns, iter);
3589  	     iter.task;
3590  	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3591  		char name[10 + 1];
3592  		unsigned int len;
3593  
3594  		cond_resched();
3595  		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3596  			continue;
3597  
3598  		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3599  		ctx->pos = iter.tgid + TGID_OFFSET;
3600  		if (!proc_fill_cache(file, ctx, name, len,
3601  				     proc_pid_instantiate, iter.task, NULL)) {
3602  			put_task_struct(iter.task);
3603  			return 0;
3604  		}
3605  	}
3606  	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3607  	return 0;
3608  }
3609  
3610  /*
3611   * proc_tid_comm_permission is a special permission function exclusively
3612   * used for the node /proc/<pid>/task/<tid>/comm.
3613   * It bypasses generic permission checks in the case where a task of the same
3614   * task group attempts to access the node.
3615   * The rationale behind this is that glibc and bionic access this node for
3616   * cross thread naming (pthread_set/getname_np(!self)). However, if
3617   * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3618   * which locks out the cross thread naming implementation.
3619   * This function makes sure that the node is always accessible for members of
3620   * same thread group.
3621   */
proc_tid_comm_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)3622  static int proc_tid_comm_permission(struct mnt_idmap *idmap,
3623  				    struct inode *inode, int mask)
3624  {
3625  	bool is_same_tgroup;
3626  	struct task_struct *task;
3627  
3628  	task = get_proc_task(inode);
3629  	if (!task)
3630  		return -ESRCH;
3631  	is_same_tgroup = same_thread_group(current, task);
3632  	put_task_struct(task);
3633  
3634  	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3635  		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3636  		 * read or written by the members of the corresponding
3637  		 * thread group.
3638  		 */
3639  		return 0;
3640  	}
3641  
3642  	return generic_permission(&nop_mnt_idmap, inode, mask);
3643  }
3644  
3645  static const struct inode_operations proc_tid_comm_inode_operations = {
3646  		.setattr	= proc_setattr,
3647  		.permission	= proc_tid_comm_permission,
3648  };
3649  
3650  /*
3651   * Tasks
3652   */
3653  static const struct pid_entry tid_base_stuff[] = {
3654  	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3655  	DIR("fdinfo",    S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3656  	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3657  #ifdef CONFIG_NET
3658  	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3659  #endif
3660  	REG("environ",   S_IRUSR, proc_environ_operations),
3661  	REG("auxv",      S_IRUSR, proc_auxv_operations),
3662  	ONE("status",    S_IRUGO, proc_pid_status),
3663  	ONE("personality", S_IRUSR, proc_pid_personality),
3664  	ONE("limits",	 S_IRUGO, proc_pid_limits),
3665  #ifdef CONFIG_SCHED_DEBUG
3666  	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3667  #endif
3668  	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3669  			 &proc_tid_comm_inode_operations,
3670  			 &proc_pid_set_comm_operations, {}),
3671  #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3672  	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3673  #endif
3674  	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3675  	ONE("stat",      S_IRUGO, proc_tid_stat),
3676  	ONE("statm",     S_IRUGO, proc_pid_statm),
3677  	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3678  #ifdef CONFIG_PROC_CHILDREN
3679  	REG("children",  S_IRUGO, proc_tid_children_operations),
3680  #endif
3681  #ifdef CONFIG_NUMA
3682  	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3683  #endif
3684  	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3685  	LNK("cwd",       proc_cwd_link),
3686  	LNK("root",      proc_root_link),
3687  	LNK("exe",       proc_exe_link),
3688  	REG("mounts",    S_IRUGO, proc_mounts_operations),
3689  	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3690  #ifdef CONFIG_PROC_PAGE_MONITOR
3691  	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3692  	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3693  	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3694  	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3695  #endif
3696  #ifdef CONFIG_SECURITY
3697  	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3698  #endif
3699  #ifdef CONFIG_KALLSYMS
3700  	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3701  #endif
3702  #ifdef CONFIG_STACKTRACE
3703  	ONE("stack",      S_IRUSR, proc_pid_stack),
3704  #endif
3705  #ifdef CONFIG_SCHED_INFO
3706  	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3707  #endif
3708  #ifdef CONFIG_LATENCYTOP
3709  	REG("latency",  S_IRUGO, proc_lstats_operations),
3710  #endif
3711  #ifdef CONFIG_PROC_PID_CPUSET
3712  	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3713  #endif
3714  #ifdef CONFIG_CGROUPS
3715  	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3716  #endif
3717  #ifdef CONFIG_PROC_CPU_RESCTRL
3718  	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3719  #endif
3720  	ONE("oom_score", S_IRUGO, proc_oom_score),
3721  	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3722  	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3723  #ifdef CONFIG_AUDIT
3724  	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3725  	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3726  #endif
3727  #ifdef CONFIG_FAULT_INJECTION
3728  	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3729  	REG("fail-nth", 0644, proc_fail_nth_operations),
3730  #endif
3731  #ifdef CONFIG_TASK_IO_ACCOUNTING
3732  	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3733  #endif
3734  #ifdef CONFIG_USER_NS
3735  	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3736  	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3737  	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3738  	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3739  #endif
3740  #ifdef CONFIG_LIVEPATCH
3741  	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3742  #endif
3743  #ifdef CONFIG_PROC_PID_ARCH_STATUS
3744  	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3745  #endif
3746  #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3747  	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3748  #endif
3749  #ifdef CONFIG_KSM
3750  	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
3751  	ONE("ksm_stat",  S_IRUSR, proc_pid_ksm_stat),
3752  #endif
3753  };
3754  
proc_tid_base_readdir(struct file * file,struct dir_context * ctx)3755  static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3756  {
3757  	return proc_pident_readdir(file, ctx,
3758  				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3759  }
3760  
proc_tid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3761  static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3762  {
3763  	return proc_pident_lookup(dir, dentry,
3764  				  tid_base_stuff,
3765  				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3766  }
3767  
3768  static const struct file_operations proc_tid_base_operations = {
3769  	.read		= generic_read_dir,
3770  	.iterate_shared	= proc_tid_base_readdir,
3771  	.llseek		= generic_file_llseek,
3772  };
3773  
3774  static const struct inode_operations proc_tid_base_inode_operations = {
3775  	.lookup		= proc_tid_base_lookup,
3776  	.getattr	= pid_getattr,
3777  	.setattr	= proc_setattr,
3778  };
3779  
proc_task_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3780  static struct dentry *proc_task_instantiate(struct dentry *dentry,
3781  	struct task_struct *task, const void *ptr)
3782  {
3783  	struct inode *inode;
3784  	inode = proc_pid_make_base_inode(dentry->d_sb, task,
3785  					 S_IFDIR | S_IRUGO | S_IXUGO);
3786  	if (!inode)
3787  		return ERR_PTR(-ENOENT);
3788  
3789  	inode->i_op = &proc_tid_base_inode_operations;
3790  	inode->i_fop = &proc_tid_base_operations;
3791  	inode->i_flags |= S_IMMUTABLE;
3792  
3793  	set_nlink(inode, nlink_tid);
3794  	pid_update_inode(task, inode);
3795  
3796  	d_set_d_op(dentry, &pid_dentry_operations);
3797  	return d_splice_alias(inode, dentry);
3798  }
3799  
proc_task_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3800  static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3801  {
3802  	struct task_struct *task;
3803  	struct task_struct *leader = get_proc_task(dir);
3804  	unsigned tid;
3805  	struct proc_fs_info *fs_info;
3806  	struct pid_namespace *ns;
3807  	struct dentry *result = ERR_PTR(-ENOENT);
3808  
3809  	if (!leader)
3810  		goto out_no_task;
3811  
3812  	tid = name_to_int(&dentry->d_name);
3813  	if (tid == ~0U)
3814  		goto out;
3815  
3816  	fs_info = proc_sb_info(dentry->d_sb);
3817  	ns = fs_info->pid_ns;
3818  	rcu_read_lock();
3819  	task = find_task_by_pid_ns(tid, ns);
3820  	if (task)
3821  		get_task_struct(task);
3822  	rcu_read_unlock();
3823  	if (!task)
3824  		goto out;
3825  	if (!same_thread_group(leader, task))
3826  		goto out_drop_task;
3827  
3828  	result = proc_task_instantiate(dentry, task, NULL);
3829  out_drop_task:
3830  	put_task_struct(task);
3831  out:
3832  	put_task_struct(leader);
3833  out_no_task:
3834  	return result;
3835  }
3836  
3837  /*
3838   * Find the first tid of a thread group to return to user space.
3839   *
3840   * Usually this is just the thread group leader, but if the users
3841   * buffer was too small or there was a seek into the middle of the
3842   * directory we have more work todo.
3843   *
3844   * In the case of a short read we start with find_task_by_pid.
3845   *
3846   * In the case of a seek we start with the leader and walk nr
3847   * threads past it.
3848   */
first_tid(struct pid * pid,int tid,loff_t f_pos,struct pid_namespace * ns)3849  static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3850  					struct pid_namespace *ns)
3851  {
3852  	struct task_struct *pos, *task;
3853  	unsigned long nr = f_pos;
3854  
3855  	if (nr != f_pos)	/* 32bit overflow? */
3856  		return NULL;
3857  
3858  	rcu_read_lock();
3859  	task = pid_task(pid, PIDTYPE_PID);
3860  	if (!task)
3861  		goto fail;
3862  
3863  	/* Attempt to start with the tid of a thread */
3864  	if (tid && nr) {
3865  		pos = find_task_by_pid_ns(tid, ns);
3866  		if (pos && same_thread_group(pos, task))
3867  			goto found;
3868  	}
3869  
3870  	/* If nr exceeds the number of threads there is nothing todo */
3871  	if (nr >= get_nr_threads(task))
3872  		goto fail;
3873  
3874  	/* If we haven't found our starting place yet start
3875  	 * with the leader and walk nr threads forward.
3876  	 */
3877  	for_each_thread(task, pos) {
3878  		if (!nr--)
3879  			goto found;
3880  	};
3881  fail:
3882  	pos = NULL;
3883  	goto out;
3884  found:
3885  	get_task_struct(pos);
3886  out:
3887  	rcu_read_unlock();
3888  	return pos;
3889  }
3890  
3891  /*
3892   * Find the next thread in the thread list.
3893   * Return NULL if there is an error or no next thread.
3894   *
3895   * The reference to the input task_struct is released.
3896   */
next_tid(struct task_struct * start)3897  static struct task_struct *next_tid(struct task_struct *start)
3898  {
3899  	struct task_struct *pos = NULL;
3900  	rcu_read_lock();
3901  	if (pid_alive(start)) {
3902  		pos = next_thread(start);
3903  		if (thread_group_leader(pos))
3904  			pos = NULL;
3905  		else
3906  			get_task_struct(pos);
3907  	}
3908  	rcu_read_unlock();
3909  	put_task_struct(start);
3910  	return pos;
3911  }
3912  
3913  /* for the /proc/TGID/task/ directories */
proc_task_readdir(struct file * file,struct dir_context * ctx)3914  static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3915  {
3916  	struct inode *inode = file_inode(file);
3917  	struct task_struct *task;
3918  	struct pid_namespace *ns;
3919  	int tid;
3920  
3921  	if (proc_inode_is_dead(inode))
3922  		return -ENOENT;
3923  
3924  	if (!dir_emit_dots(file, ctx))
3925  		return 0;
3926  
3927  	/* f_version caches the tgid value that the last readdir call couldn't
3928  	 * return. lseek aka telldir automagically resets f_version to 0.
3929  	 */
3930  	ns = proc_pid_ns(inode->i_sb);
3931  	tid = (int)file->f_version;
3932  	file->f_version = 0;
3933  	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3934  	     task;
3935  	     task = next_tid(task), ctx->pos++) {
3936  		char name[10 + 1];
3937  		unsigned int len;
3938  
3939  		tid = task_pid_nr_ns(task, ns);
3940  		if (!tid)
3941  			continue;	/* The task has just exited. */
3942  		len = snprintf(name, sizeof(name), "%u", tid);
3943  		if (!proc_fill_cache(file, ctx, name, len,
3944  				proc_task_instantiate, task, NULL)) {
3945  			/* returning this tgid failed, save it as the first
3946  			 * pid for the next readir call */
3947  			file->f_version = (u64)tid;
3948  			put_task_struct(task);
3949  			break;
3950  		}
3951  	}
3952  
3953  	return 0;
3954  }
3955  
proc_task_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)3956  static int proc_task_getattr(struct mnt_idmap *idmap,
3957  			     const struct path *path, struct kstat *stat,
3958  			     u32 request_mask, unsigned int query_flags)
3959  {
3960  	struct inode *inode = d_inode(path->dentry);
3961  	struct task_struct *p = get_proc_task(inode);
3962  	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
3963  
3964  	if (p) {
3965  		stat->nlink += get_nr_threads(p);
3966  		put_task_struct(p);
3967  	}
3968  
3969  	return 0;
3970  }
3971  
3972  static const struct inode_operations proc_task_inode_operations = {
3973  	.lookup		= proc_task_lookup,
3974  	.getattr	= proc_task_getattr,
3975  	.setattr	= proc_setattr,
3976  	.permission	= proc_pid_permission,
3977  };
3978  
3979  static const struct file_operations proc_task_operations = {
3980  	.read		= generic_read_dir,
3981  	.iterate_shared	= proc_task_readdir,
3982  	.llseek		= generic_file_llseek,
3983  };
3984  
set_proc_pid_nlink(void)3985  void __init set_proc_pid_nlink(void)
3986  {
3987  	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3988  	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3989  }
3990