xref: /openbmc/linux/arch/x86/xen/enlighten_pv.c (revision 16f6ccde74a6f8538c62f127f17207c75f4dba7a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Core of Xen paravirt_ops implementation.
4  *
5  * This file contains the xen_paravirt_ops structure itself, and the
6  * implementations for:
7  * - privileged instructions
8  * - interrupt flags
9  * - segment operations
10  * - booting and setup
11  *
12  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13  */
14 
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/kstrtox.h>
27 #include <linux/memblock.h>
28 #include <linux/export.h>
29 #include <linux/mm.h>
30 #include <linux/page-flags.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/edd.h>
34 #include <linux/reboot.h>
35 #include <linux/virtio_anchor.h>
36 #include <linux/stackprotector.h>
37 
38 #include <xen/xen.h>
39 #include <xen/events.h>
40 #include <xen/interface/xen.h>
41 #include <xen/interface/version.h>
42 #include <xen/interface/physdev.h>
43 #include <xen/interface/vcpu.h>
44 #include <xen/interface/memory.h>
45 #include <xen/interface/nmi.h>
46 #include <xen/interface/xen-mca.h>
47 #include <xen/features.h>
48 #include <xen/page.h>
49 #include <xen/hvc-console.h>
50 #include <xen/acpi.h>
51 
52 #include <asm/paravirt.h>
53 #include <asm/apic.h>
54 #include <asm/page.h>
55 #include <asm/xen/pci.h>
56 #include <asm/xen/hypercall.h>
57 #include <asm/xen/hypervisor.h>
58 #include <asm/xen/cpuid.h>
59 #include <asm/fixmap.h>
60 #include <asm/processor.h>
61 #include <asm/proto.h>
62 #include <asm/msr-index.h>
63 #include <asm/traps.h>
64 #include <asm/setup.h>
65 #include <asm/desc.h>
66 #include <asm/pgalloc.h>
67 #include <asm/tlbflush.h>
68 #include <asm/reboot.h>
69 #include <asm/hypervisor.h>
70 #include <asm/mach_traps.h>
71 #include <asm/mtrr.h>
72 #include <asm/mwait.h>
73 #include <asm/pci_x86.h>
74 #include <asm/cpu.h>
75 #ifdef CONFIG_X86_IOPL_IOPERM
76 #include <asm/io_bitmap.h>
77 #endif
78 
79 #ifdef CONFIG_ACPI
80 #include <linux/acpi.h>
81 #include <asm/acpi.h>
82 #include <acpi/proc_cap_intel.h>
83 #include <acpi/processor.h>
84 #include <xen/interface/platform.h>
85 #endif
86 
87 #include "xen-ops.h"
88 #include "mmu.h"
89 #include "smp.h"
90 #include "multicalls.h"
91 #include "pmu.h"
92 
93 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
94 
95 void *xen_initial_gdt;
96 
97 static int xen_cpu_up_prepare_pv(unsigned int cpu);
98 static int xen_cpu_dead_pv(unsigned int cpu);
99 
100 struct tls_descs {
101 	struct desc_struct desc[3];
102 };
103 
104 DEFINE_PER_CPU(enum xen_lazy_mode, xen_lazy_mode) = XEN_LAZY_NONE;
105 DEFINE_PER_CPU(unsigned int, xen_lazy_nesting);
106 
xen_get_lazy_mode(void)107 enum xen_lazy_mode xen_get_lazy_mode(void)
108 {
109 	if (in_interrupt())
110 		return XEN_LAZY_NONE;
111 
112 	return this_cpu_read(xen_lazy_mode);
113 }
114 
115 /*
116  * Updating the 3 TLS descriptors in the GDT on every task switch is
117  * surprisingly expensive so we avoid updating them if they haven't
118  * changed.  Since Xen writes different descriptors than the one
119  * passed in the update_descriptor hypercall we keep shadow copies to
120  * compare against.
121  */
122 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
123 
124 static __read_mostly bool xen_msr_safe = IS_ENABLED(CONFIG_XEN_PV_MSR_SAFE);
125 
parse_xen_msr_safe(char * str)126 static int __init parse_xen_msr_safe(char *str)
127 {
128 	if (str)
129 		return kstrtobool(str, &xen_msr_safe);
130 	return -EINVAL;
131 }
132 early_param("xen_msr_safe", parse_xen_msr_safe);
133 
134 /* Get MTRR settings from Xen and put them into mtrr_state. */
xen_set_mtrr_data(void)135 static void __init xen_set_mtrr_data(void)
136 {
137 #ifdef CONFIG_MTRR
138 	struct xen_platform_op op = {
139 		.cmd = XENPF_read_memtype,
140 		.interface_version = XENPF_INTERFACE_VERSION,
141 	};
142 	unsigned int reg;
143 	unsigned long mask;
144 	uint32_t eax, width;
145 	static struct mtrr_var_range var[MTRR_MAX_VAR_RANGES] __initdata;
146 
147 	/* Get physical address width (only 64-bit cpus supported). */
148 	width = 36;
149 	eax = cpuid_eax(0x80000000);
150 	if ((eax >> 16) == 0x8000 && eax >= 0x80000008) {
151 		eax = cpuid_eax(0x80000008);
152 		width = eax & 0xff;
153 	}
154 
155 	for (reg = 0; reg < MTRR_MAX_VAR_RANGES; reg++) {
156 		op.u.read_memtype.reg = reg;
157 		if (HYPERVISOR_platform_op(&op))
158 			break;
159 
160 		/*
161 		 * Only called in dom0, which has all RAM PFNs mapped at
162 		 * RAM MFNs, and all PCI space etc. is identity mapped.
163 		 * This means we can treat MFN == PFN regarding MTRR settings.
164 		 */
165 		var[reg].base_lo = op.u.read_memtype.type;
166 		var[reg].base_lo |= op.u.read_memtype.mfn << PAGE_SHIFT;
167 		var[reg].base_hi = op.u.read_memtype.mfn >> (32 - PAGE_SHIFT);
168 		mask = ~((op.u.read_memtype.nr_mfns << PAGE_SHIFT) - 1);
169 		mask &= (1UL << width) - 1;
170 		if (mask)
171 			mask |= MTRR_PHYSMASK_V;
172 		var[reg].mask_lo = mask;
173 		var[reg].mask_hi = mask >> 32;
174 	}
175 
176 	/* Only overwrite MTRR state if any MTRR could be got from Xen. */
177 	if (reg)
178 		mtrr_overwrite_state(var, reg, MTRR_TYPE_UNCACHABLE);
179 #endif
180 }
181 
xen_pv_init_platform(void)182 static void __init xen_pv_init_platform(void)
183 {
184 	/* PV guests can't operate virtio devices without grants. */
185 	if (IS_ENABLED(CONFIG_XEN_VIRTIO))
186 		virtio_set_mem_acc_cb(xen_virtio_restricted_mem_acc);
187 
188 	populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
189 
190 	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
191 	HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
192 
193 	/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
194 	xen_vcpu_info_reset(0);
195 
196 	/* pvclock is in shared info area */
197 	xen_init_time_ops();
198 
199 	if (xen_initial_domain())
200 		xen_set_mtrr_data();
201 	else
202 		mtrr_overwrite_state(NULL, 0, MTRR_TYPE_WRBACK);
203 }
204 
xen_pv_guest_late_init(void)205 static void __init xen_pv_guest_late_init(void)
206 {
207 #ifndef CONFIG_SMP
208 	/* Setup shared vcpu info for non-smp configurations */
209 	xen_setup_vcpu_info_placement();
210 #endif
211 }
212 
213 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
214 static __read_mostly unsigned int cpuid_leaf5_edx_val;
215 
xen_cpuid(unsigned int * ax,unsigned int * bx,unsigned int * cx,unsigned int * dx)216 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
217 		      unsigned int *cx, unsigned int *dx)
218 {
219 	unsigned maskebx = ~0;
220 
221 	/*
222 	 * Mask out inconvenient features, to try and disable as many
223 	 * unsupported kernel subsystems as possible.
224 	 */
225 	switch (*ax) {
226 	case CPUID_MWAIT_LEAF:
227 		/* Synthesize the values.. */
228 		*ax = 0;
229 		*bx = 0;
230 		*cx = cpuid_leaf5_ecx_val;
231 		*dx = cpuid_leaf5_edx_val;
232 		return;
233 
234 	case 0xb:
235 		/* Suppress extended topology stuff */
236 		maskebx = 0;
237 		break;
238 	}
239 
240 	asm(XEN_EMULATE_PREFIX "cpuid"
241 		: "=a" (*ax),
242 		  "=b" (*bx),
243 		  "=c" (*cx),
244 		  "=d" (*dx)
245 		: "0" (*ax), "2" (*cx));
246 
247 	*bx &= maskebx;
248 }
249 
xen_check_mwait(void)250 static bool __init xen_check_mwait(void)
251 {
252 #ifdef CONFIG_ACPI
253 	struct xen_platform_op op = {
254 		.cmd			= XENPF_set_processor_pminfo,
255 		.u.set_pminfo.id	= -1,
256 		.u.set_pminfo.type	= XEN_PM_PDC,
257 	};
258 	uint32_t buf[3];
259 	unsigned int ax, bx, cx, dx;
260 	unsigned int mwait_mask;
261 
262 	/* We need to determine whether it is OK to expose the MWAIT
263 	 * capability to the kernel to harvest deeper than C3 states from ACPI
264 	 * _CST using the processor_harvest_xen.c module. For this to work, we
265 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
266 	 * checks against). The hypervisor won't expose the MWAIT flag because
267 	 * it would break backwards compatibility; so we will find out directly
268 	 * from the hardware and hypercall.
269 	 */
270 	if (!xen_initial_domain())
271 		return false;
272 
273 	/*
274 	 * When running under platform earlier than Xen4.2, do not expose
275 	 * mwait, to avoid the risk of loading native acpi pad driver
276 	 */
277 	if (!xen_running_on_version_or_later(4, 2))
278 		return false;
279 
280 	ax = 1;
281 	cx = 0;
282 
283 	native_cpuid(&ax, &bx, &cx, &dx);
284 
285 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
286 		     (1 << (X86_FEATURE_MWAIT % 32));
287 
288 	if ((cx & mwait_mask) != mwait_mask)
289 		return false;
290 
291 	/* We need to emulate the MWAIT_LEAF and for that we need both
292 	 * ecx and edx. The hypercall provides only partial information.
293 	 */
294 
295 	ax = CPUID_MWAIT_LEAF;
296 	bx = 0;
297 	cx = 0;
298 	dx = 0;
299 
300 	native_cpuid(&ax, &bx, &cx, &dx);
301 
302 	/* Ask the Hypervisor whether to clear ACPI_PROC_CAP_C_C2C3_FFH. If so,
303 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
304 	 */
305 	buf[0] = ACPI_PDC_REVISION_ID;
306 	buf[1] = 1;
307 	buf[2] = (ACPI_PROC_CAP_C_CAPABILITY_SMP | ACPI_PROC_CAP_EST_CAPABILITY_SWSMP);
308 
309 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
310 
311 	if ((HYPERVISOR_platform_op(&op) == 0) &&
312 	    (buf[2] & (ACPI_PROC_CAP_C_C1_FFH | ACPI_PROC_CAP_C_C2C3_FFH))) {
313 		cpuid_leaf5_ecx_val = cx;
314 		cpuid_leaf5_edx_val = dx;
315 	}
316 	return true;
317 #else
318 	return false;
319 #endif
320 }
321 
xen_check_xsave(void)322 static bool __init xen_check_xsave(void)
323 {
324 	unsigned int cx, xsave_mask;
325 
326 	cx = cpuid_ecx(1);
327 
328 	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
329 		     (1 << (X86_FEATURE_OSXSAVE % 32));
330 
331 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
332 	return (cx & xsave_mask) == xsave_mask;
333 }
334 
xen_init_capabilities(void)335 static void __init xen_init_capabilities(void)
336 {
337 	setup_force_cpu_cap(X86_FEATURE_XENPV);
338 	setup_clear_cpu_cap(X86_FEATURE_DCA);
339 	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
340 	setup_clear_cpu_cap(X86_FEATURE_MTRR);
341 	setup_clear_cpu_cap(X86_FEATURE_ACC);
342 	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
343 	setup_clear_cpu_cap(X86_FEATURE_SME);
344 	setup_clear_cpu_cap(X86_FEATURE_LKGS);
345 
346 	/*
347 	 * Xen PV would need some work to support PCID: CR3 handling as well
348 	 * as xen_flush_tlb_others() would need updating.
349 	 */
350 	setup_clear_cpu_cap(X86_FEATURE_PCID);
351 
352 	if (!xen_initial_domain())
353 		setup_clear_cpu_cap(X86_FEATURE_ACPI);
354 
355 	if (xen_check_mwait())
356 		setup_force_cpu_cap(X86_FEATURE_MWAIT);
357 	else
358 		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
359 
360 	if (!xen_check_xsave()) {
361 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
362 		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
363 	}
364 }
365 
xen_set_debugreg(int reg,unsigned long val)366 static noinstr void xen_set_debugreg(int reg, unsigned long val)
367 {
368 	HYPERVISOR_set_debugreg(reg, val);
369 }
370 
xen_get_debugreg(int reg)371 static noinstr unsigned long xen_get_debugreg(int reg)
372 {
373 	return HYPERVISOR_get_debugreg(reg);
374 }
375 
xen_start_context_switch(struct task_struct * prev)376 static void xen_start_context_switch(struct task_struct *prev)
377 {
378 	BUG_ON(preemptible());
379 
380 	if (this_cpu_read(xen_lazy_mode) == XEN_LAZY_MMU) {
381 		arch_leave_lazy_mmu_mode();
382 		set_ti_thread_flag(task_thread_info(prev), TIF_LAZY_MMU_UPDATES);
383 	}
384 	enter_lazy(XEN_LAZY_CPU);
385 }
386 
xen_end_context_switch(struct task_struct * next)387 static void xen_end_context_switch(struct task_struct *next)
388 {
389 	BUG_ON(preemptible());
390 
391 	xen_mc_flush();
392 	leave_lazy(XEN_LAZY_CPU);
393 	if (test_and_clear_ti_thread_flag(task_thread_info(next), TIF_LAZY_MMU_UPDATES))
394 		arch_enter_lazy_mmu_mode();
395 }
396 
xen_store_tr(void)397 static unsigned long xen_store_tr(void)
398 {
399 	return 0;
400 }
401 
402 /*
403  * Set the page permissions for a particular virtual address.  If the
404  * address is a vmalloc mapping (or other non-linear mapping), then
405  * find the linear mapping of the page and also set its protections to
406  * match.
407  */
set_aliased_prot(void * v,pgprot_t prot)408 static void set_aliased_prot(void *v, pgprot_t prot)
409 {
410 	int level;
411 	pte_t *ptep;
412 	pte_t pte;
413 	unsigned long pfn;
414 	unsigned char dummy;
415 	void *va;
416 
417 	ptep = lookup_address((unsigned long)v, &level);
418 	BUG_ON(ptep == NULL);
419 
420 	pfn = pte_pfn(*ptep);
421 	pte = pfn_pte(pfn, prot);
422 
423 	/*
424 	 * Careful: update_va_mapping() will fail if the virtual address
425 	 * we're poking isn't populated in the page tables.  We don't
426 	 * need to worry about the direct map (that's always in the page
427 	 * tables), but we need to be careful about vmap space.  In
428 	 * particular, the top level page table can lazily propagate
429 	 * entries between processes, so if we've switched mms since we
430 	 * vmapped the target in the first place, we might not have the
431 	 * top-level page table entry populated.
432 	 *
433 	 * We disable preemption because we want the same mm active when
434 	 * we probe the target and when we issue the hypercall.  We'll
435 	 * have the same nominal mm, but if we're a kernel thread, lazy
436 	 * mm dropping could change our pgd.
437 	 *
438 	 * Out of an abundance of caution, this uses __get_user() to fault
439 	 * in the target address just in case there's some obscure case
440 	 * in which the target address isn't readable.
441 	 */
442 
443 	preempt_disable();
444 
445 	copy_from_kernel_nofault(&dummy, v, 1);
446 
447 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
448 		BUG();
449 
450 	va = __va(PFN_PHYS(pfn));
451 
452 	if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
453 		BUG();
454 
455 	preempt_enable();
456 }
457 
xen_alloc_ldt(struct desc_struct * ldt,unsigned entries)458 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
459 {
460 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
461 	int i;
462 
463 	/*
464 	 * We need to mark the all aliases of the LDT pages RO.  We
465 	 * don't need to call vm_flush_aliases(), though, since that's
466 	 * only responsible for flushing aliases out the TLBs, not the
467 	 * page tables, and Xen will flush the TLB for us if needed.
468 	 *
469 	 * To avoid confusing future readers: none of this is necessary
470 	 * to load the LDT.  The hypervisor only checks this when the
471 	 * LDT is faulted in due to subsequent descriptor access.
472 	 */
473 
474 	for (i = 0; i < entries; i += entries_per_page)
475 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
476 }
477 
xen_free_ldt(struct desc_struct * ldt,unsigned entries)478 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
479 {
480 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
481 	int i;
482 
483 	for (i = 0; i < entries; i += entries_per_page)
484 		set_aliased_prot(ldt + i, PAGE_KERNEL);
485 }
486 
xen_set_ldt(const void * addr,unsigned entries)487 static void xen_set_ldt(const void *addr, unsigned entries)
488 {
489 	struct mmuext_op *op;
490 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
491 
492 	trace_xen_cpu_set_ldt(addr, entries);
493 
494 	op = mcs.args;
495 	op->cmd = MMUEXT_SET_LDT;
496 	op->arg1.linear_addr = (unsigned long)addr;
497 	op->arg2.nr_ents = entries;
498 
499 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
500 
501 	xen_mc_issue(XEN_LAZY_CPU);
502 }
503 
xen_load_gdt(const struct desc_ptr * dtr)504 static void xen_load_gdt(const struct desc_ptr *dtr)
505 {
506 	unsigned long va = dtr->address;
507 	unsigned int size = dtr->size + 1;
508 	unsigned long pfn, mfn;
509 	int level;
510 	pte_t *ptep;
511 	void *virt;
512 
513 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
514 	BUG_ON(size > PAGE_SIZE);
515 	BUG_ON(va & ~PAGE_MASK);
516 
517 	/*
518 	 * The GDT is per-cpu and is in the percpu data area.
519 	 * That can be virtually mapped, so we need to do a
520 	 * page-walk to get the underlying MFN for the
521 	 * hypercall.  The page can also be in the kernel's
522 	 * linear range, so we need to RO that mapping too.
523 	 */
524 	ptep = lookup_address(va, &level);
525 	BUG_ON(ptep == NULL);
526 
527 	pfn = pte_pfn(*ptep);
528 	mfn = pfn_to_mfn(pfn);
529 	virt = __va(PFN_PHYS(pfn));
530 
531 	make_lowmem_page_readonly((void *)va);
532 	make_lowmem_page_readonly(virt);
533 
534 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
535 		BUG();
536 }
537 
538 /*
539  * load_gdt for early boot, when the gdt is only mapped once
540  */
xen_load_gdt_boot(const struct desc_ptr * dtr)541 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
542 {
543 	unsigned long va = dtr->address;
544 	unsigned int size = dtr->size + 1;
545 	unsigned long pfn, mfn;
546 	pte_t pte;
547 
548 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
549 	BUG_ON(size > PAGE_SIZE);
550 	BUG_ON(va & ~PAGE_MASK);
551 
552 	pfn = virt_to_pfn((void *)va);
553 	mfn = pfn_to_mfn(pfn);
554 
555 	pte = pfn_pte(pfn, PAGE_KERNEL_RO);
556 
557 	if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
558 		BUG();
559 
560 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
561 		BUG();
562 }
563 
desc_equal(const struct desc_struct * d1,const struct desc_struct * d2)564 static inline bool desc_equal(const struct desc_struct *d1,
565 			      const struct desc_struct *d2)
566 {
567 	return !memcmp(d1, d2, sizeof(*d1));
568 }
569 
load_TLS_descriptor(struct thread_struct * t,unsigned int cpu,unsigned int i)570 static void load_TLS_descriptor(struct thread_struct *t,
571 				unsigned int cpu, unsigned int i)
572 {
573 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
574 	struct desc_struct *gdt;
575 	xmaddr_t maddr;
576 	struct multicall_space mc;
577 
578 	if (desc_equal(shadow, &t->tls_array[i]))
579 		return;
580 
581 	*shadow = t->tls_array[i];
582 
583 	gdt = get_cpu_gdt_rw(cpu);
584 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
585 	mc = __xen_mc_entry(0);
586 
587 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
588 }
589 
xen_load_tls(struct thread_struct * t,unsigned int cpu)590 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
591 {
592 	/*
593 	 * In lazy mode we need to zero %fs, otherwise we may get an
594 	 * exception between the new %fs descriptor being loaded and
595 	 * %fs being effectively cleared at __switch_to().
596 	 */
597 	if (xen_get_lazy_mode() == XEN_LAZY_CPU)
598 		loadsegment(fs, 0);
599 
600 	xen_mc_batch();
601 
602 	load_TLS_descriptor(t, cpu, 0);
603 	load_TLS_descriptor(t, cpu, 1);
604 	load_TLS_descriptor(t, cpu, 2);
605 
606 	xen_mc_issue(XEN_LAZY_CPU);
607 }
608 
xen_load_gs_index(unsigned int idx)609 static void xen_load_gs_index(unsigned int idx)
610 {
611 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
612 		BUG();
613 }
614 
xen_write_ldt_entry(struct desc_struct * dt,int entrynum,const void * ptr)615 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
616 				const void *ptr)
617 {
618 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
619 	u64 entry = *(u64 *)ptr;
620 
621 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
622 
623 	preempt_disable();
624 
625 	xen_mc_flush();
626 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
627 		BUG();
628 
629 	preempt_enable();
630 }
631 
632 void noist_exc_debug(struct pt_regs *regs);
633 
DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)634 DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
635 {
636 	/* On Xen PV, NMI doesn't use IST.  The C part is the same as native. */
637 	exc_nmi(regs);
638 }
639 
DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)640 DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
641 {
642 	/* On Xen PV, DF doesn't use IST.  The C part is the same as native. */
643 	exc_double_fault(regs, error_code);
644 }
645 
DEFINE_IDTENTRY_RAW(xenpv_exc_debug)646 DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
647 {
648 	/*
649 	 * There's no IST on Xen PV, but we still need to dispatch
650 	 * to the correct handler.
651 	 */
652 	if (user_mode(regs))
653 		noist_exc_debug(regs);
654 	else
655 		exc_debug(regs);
656 }
657 
DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)658 DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
659 {
660 	/* This should never happen and there is no way to handle it. */
661 	instrumentation_begin();
662 	pr_err("Unknown trap in Xen PV mode.");
663 	BUG();
664 	instrumentation_end();
665 }
666 
667 #ifdef CONFIG_X86_MCE
DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)668 DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
669 {
670 	/*
671 	 * There's no IST on Xen PV, but we still need to dispatch
672 	 * to the correct handler.
673 	 */
674 	if (user_mode(regs))
675 		noist_exc_machine_check(regs);
676 	else
677 		exc_machine_check(regs);
678 }
679 #endif
680 
681 struct trap_array_entry {
682 	void (*orig)(void);
683 	void (*xen)(void);
684 	bool ist_okay;
685 };
686 
687 #define TRAP_ENTRY(func, ist_ok) {			\
688 	.orig		= asm_##func,			\
689 	.xen		= xen_asm_##func,		\
690 	.ist_okay	= ist_ok }
691 
692 #define TRAP_ENTRY_REDIR(func, ist_ok) {		\
693 	.orig		= asm_##func,			\
694 	.xen		= xen_asm_xenpv_##func,		\
695 	.ist_okay	= ist_ok }
696 
697 static struct trap_array_entry trap_array[] = {
698 	TRAP_ENTRY_REDIR(exc_debug,			true  ),
699 	TRAP_ENTRY_REDIR(exc_double_fault,		true  ),
700 #ifdef CONFIG_X86_MCE
701 	TRAP_ENTRY_REDIR(exc_machine_check,		true  ),
702 #endif
703 	TRAP_ENTRY_REDIR(exc_nmi,			true  ),
704 	TRAP_ENTRY(exc_int3,				false ),
705 	TRAP_ENTRY(exc_overflow,			false ),
706 #ifdef CONFIG_IA32_EMULATION
707 	TRAP_ENTRY(int80_emulation,			false ),
708 #endif
709 	TRAP_ENTRY(exc_page_fault,			false ),
710 	TRAP_ENTRY(exc_divide_error,			false ),
711 	TRAP_ENTRY(exc_bounds,				false ),
712 	TRAP_ENTRY(exc_invalid_op,			false ),
713 	TRAP_ENTRY(exc_device_not_available,		false ),
714 	TRAP_ENTRY(exc_coproc_segment_overrun,		false ),
715 	TRAP_ENTRY(exc_invalid_tss,			false ),
716 	TRAP_ENTRY(exc_segment_not_present,		false ),
717 	TRAP_ENTRY(exc_stack_segment,			false ),
718 	TRAP_ENTRY(exc_general_protection,		false ),
719 	TRAP_ENTRY(exc_spurious_interrupt_bug,		false ),
720 	TRAP_ENTRY(exc_coprocessor_error,		false ),
721 	TRAP_ENTRY(exc_alignment_check,			false ),
722 	TRAP_ENTRY(exc_simd_coprocessor_error,		false ),
723 #ifdef CONFIG_X86_CET
724 	TRAP_ENTRY(exc_control_protection,		false ),
725 #endif
726 };
727 
get_trap_addr(void ** addr,unsigned int ist)728 static bool __ref get_trap_addr(void **addr, unsigned int ist)
729 {
730 	unsigned int nr;
731 	bool ist_okay = false;
732 	bool found = false;
733 
734 	/*
735 	 * Replace trap handler addresses by Xen specific ones.
736 	 * Check for known traps using IST and whitelist them.
737 	 * The debugger ones are the only ones we care about.
738 	 * Xen will handle faults like double_fault, so we should never see
739 	 * them.  Warn if there's an unexpected IST-using fault handler.
740 	 */
741 	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
742 		struct trap_array_entry *entry = trap_array + nr;
743 
744 		if (*addr == entry->orig) {
745 			*addr = entry->xen;
746 			ist_okay = entry->ist_okay;
747 			found = true;
748 			break;
749 		}
750 	}
751 
752 	if (nr == ARRAY_SIZE(trap_array) &&
753 	    *addr >= (void *)early_idt_handler_array[0] &&
754 	    *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
755 		nr = (*addr - (void *)early_idt_handler_array[0]) /
756 		     EARLY_IDT_HANDLER_SIZE;
757 		*addr = (void *)xen_early_idt_handler_array[nr];
758 		found = true;
759 	}
760 
761 	if (!found)
762 		*addr = (void *)xen_asm_exc_xen_unknown_trap;
763 
764 	if (WARN_ON(found && ist != 0 && !ist_okay))
765 		return false;
766 
767 	return true;
768 }
769 
cvt_gate_to_trap(int vector,const gate_desc * val,struct trap_info * info)770 static int cvt_gate_to_trap(int vector, const gate_desc *val,
771 			    struct trap_info *info)
772 {
773 	unsigned long addr;
774 
775 	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
776 		return 0;
777 
778 	info->vector = vector;
779 
780 	addr = gate_offset(val);
781 	if (!get_trap_addr((void **)&addr, val->bits.ist))
782 		return 0;
783 	info->address = addr;
784 
785 	info->cs = gate_segment(val);
786 	info->flags = val->bits.dpl;
787 	/* interrupt gates clear IF */
788 	if (val->bits.type == GATE_INTERRUPT)
789 		info->flags |= 1 << 2;
790 
791 	return 1;
792 }
793 
794 /* Locations of each CPU's IDT */
795 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
796 
797 /* Set an IDT entry.  If the entry is part of the current IDT, then
798    also update Xen. */
xen_write_idt_entry(gate_desc * dt,int entrynum,const gate_desc * g)799 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
800 {
801 	unsigned long p = (unsigned long)&dt[entrynum];
802 	unsigned long start, end;
803 
804 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
805 
806 	preempt_disable();
807 
808 	start = __this_cpu_read(idt_desc.address);
809 	end = start + __this_cpu_read(idt_desc.size) + 1;
810 
811 	xen_mc_flush();
812 
813 	native_write_idt_entry(dt, entrynum, g);
814 
815 	if (p >= start && (p + 8) <= end) {
816 		struct trap_info info[2];
817 
818 		info[1].address = 0;
819 
820 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
821 			if (HYPERVISOR_set_trap_table(info))
822 				BUG();
823 	}
824 
825 	preempt_enable();
826 }
827 
xen_convert_trap_info(const struct desc_ptr * desc,struct trap_info * traps,bool full)828 static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
829 				      struct trap_info *traps, bool full)
830 {
831 	unsigned in, out, count;
832 
833 	count = (desc->size+1) / sizeof(gate_desc);
834 	BUG_ON(count > 256);
835 
836 	for (in = out = 0; in < count; in++) {
837 		gate_desc *entry = (gate_desc *)(desc->address) + in;
838 
839 		if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
840 			out++;
841 	}
842 
843 	return out;
844 }
845 
xen_copy_trap_info(struct trap_info * traps)846 void xen_copy_trap_info(struct trap_info *traps)
847 {
848 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
849 
850 	xen_convert_trap_info(desc, traps, true);
851 }
852 
853 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
854    hold a spinlock to protect the static traps[] array (static because
855    it avoids allocation, and saves stack space). */
xen_load_idt(const struct desc_ptr * desc)856 static void xen_load_idt(const struct desc_ptr *desc)
857 {
858 	static DEFINE_SPINLOCK(lock);
859 	static struct trap_info traps[257];
860 	static const struct trap_info zero = { };
861 	unsigned out;
862 
863 	trace_xen_cpu_load_idt(desc);
864 
865 	spin_lock(&lock);
866 
867 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
868 
869 	out = xen_convert_trap_info(desc, traps, false);
870 	traps[out] = zero;
871 
872 	xen_mc_flush();
873 	if (HYPERVISOR_set_trap_table(traps))
874 		BUG();
875 
876 	spin_unlock(&lock);
877 }
878 
879 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
880    they're handled differently. */
xen_write_gdt_entry(struct desc_struct * dt,int entry,const void * desc,int type)881 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
882 				const void *desc, int type)
883 {
884 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
885 
886 	preempt_disable();
887 
888 	switch (type) {
889 	case DESC_LDT:
890 	case DESC_TSS:
891 		/* ignore */
892 		break;
893 
894 	default: {
895 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
896 
897 		xen_mc_flush();
898 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
899 			BUG();
900 	}
901 
902 	}
903 
904 	preempt_enable();
905 }
906 
907 /*
908  * Version of write_gdt_entry for use at early boot-time needed to
909  * update an entry as simply as possible.
910  */
xen_write_gdt_entry_boot(struct desc_struct * dt,int entry,const void * desc,int type)911 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
912 					    const void *desc, int type)
913 {
914 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
915 
916 	switch (type) {
917 	case DESC_LDT:
918 	case DESC_TSS:
919 		/* ignore */
920 		break;
921 
922 	default: {
923 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
924 
925 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
926 			dt[entry] = *(struct desc_struct *)desc;
927 	}
928 
929 	}
930 }
931 
xen_load_sp0(unsigned long sp0)932 static void xen_load_sp0(unsigned long sp0)
933 {
934 	struct multicall_space mcs;
935 
936 	mcs = xen_mc_entry(0);
937 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
938 	xen_mc_issue(XEN_LAZY_CPU);
939 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
940 }
941 
942 #ifdef CONFIG_X86_IOPL_IOPERM
xen_invalidate_io_bitmap(void)943 static void xen_invalidate_io_bitmap(void)
944 {
945 	struct physdev_set_iobitmap iobitmap = {
946 		.bitmap = NULL,
947 		.nr_ports = 0,
948 	};
949 
950 	native_tss_invalidate_io_bitmap();
951 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
952 }
953 
xen_update_io_bitmap(void)954 static void xen_update_io_bitmap(void)
955 {
956 	struct physdev_set_iobitmap iobitmap;
957 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
958 
959 	native_tss_update_io_bitmap();
960 
961 	iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
962 			  tss->x86_tss.io_bitmap_base;
963 	if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
964 		iobitmap.nr_ports = 0;
965 	else
966 		iobitmap.nr_ports = IO_BITMAP_BITS;
967 
968 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
969 }
970 #endif
971 
xen_io_delay(void)972 static void xen_io_delay(void)
973 {
974 }
975 
976 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
977 
xen_read_cr0(void)978 static unsigned long xen_read_cr0(void)
979 {
980 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
981 
982 	if (unlikely(cr0 == 0)) {
983 		cr0 = native_read_cr0();
984 		this_cpu_write(xen_cr0_value, cr0);
985 	}
986 
987 	return cr0;
988 }
989 
xen_write_cr0(unsigned long cr0)990 static void xen_write_cr0(unsigned long cr0)
991 {
992 	struct multicall_space mcs;
993 
994 	this_cpu_write(xen_cr0_value, cr0);
995 
996 	/* Only pay attention to cr0.TS; everything else is
997 	   ignored. */
998 	mcs = xen_mc_entry(0);
999 
1000 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1001 
1002 	xen_mc_issue(XEN_LAZY_CPU);
1003 }
1004 
xen_write_cr4(unsigned long cr4)1005 static void xen_write_cr4(unsigned long cr4)
1006 {
1007 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1008 
1009 	native_write_cr4(cr4);
1010 }
1011 
xen_do_read_msr(unsigned int msr,int * err)1012 static u64 xen_do_read_msr(unsigned int msr, int *err)
1013 {
1014 	u64 val = 0;	/* Avoid uninitialized value for safe variant. */
1015 
1016 	if (pmu_msr_read(msr, &val, err))
1017 		return val;
1018 
1019 	if (err)
1020 		val = native_read_msr_safe(msr, err);
1021 	else
1022 		val = native_read_msr(msr);
1023 
1024 	switch (msr) {
1025 	case MSR_IA32_APICBASE:
1026 		val &= ~X2APIC_ENABLE;
1027 		break;
1028 	}
1029 	return val;
1030 }
1031 
set_seg(unsigned int which,unsigned int low,unsigned int high,int * err)1032 static void set_seg(unsigned int which, unsigned int low, unsigned int high,
1033 		    int *err)
1034 {
1035 	u64 base = ((u64)high << 32) | low;
1036 
1037 	if (HYPERVISOR_set_segment_base(which, base) == 0)
1038 		return;
1039 
1040 	if (err)
1041 		*err = -EIO;
1042 	else
1043 		WARN(1, "Xen set_segment_base(%u, %llx) failed\n", which, base);
1044 }
1045 
1046 /*
1047  * Support write_msr_safe() and write_msr() semantics.
1048  * With err == NULL write_msr() semantics are selected.
1049  * Supplying an err pointer requires err to be pre-initialized with 0.
1050  */
xen_do_write_msr(unsigned int msr,unsigned int low,unsigned int high,int * err)1051 static void xen_do_write_msr(unsigned int msr, unsigned int low,
1052 			     unsigned int high, int *err)
1053 {
1054 	switch (msr) {
1055 	case MSR_FS_BASE:
1056 		set_seg(SEGBASE_FS, low, high, err);
1057 		break;
1058 
1059 	case MSR_KERNEL_GS_BASE:
1060 		set_seg(SEGBASE_GS_USER, low, high, err);
1061 		break;
1062 
1063 	case MSR_GS_BASE:
1064 		set_seg(SEGBASE_GS_KERNEL, low, high, err);
1065 		break;
1066 
1067 	case MSR_STAR:
1068 	case MSR_CSTAR:
1069 	case MSR_LSTAR:
1070 	case MSR_SYSCALL_MASK:
1071 	case MSR_IA32_SYSENTER_CS:
1072 	case MSR_IA32_SYSENTER_ESP:
1073 	case MSR_IA32_SYSENTER_EIP:
1074 		/* Fast syscall setup is all done in hypercalls, so
1075 		   these are all ignored.  Stub them out here to stop
1076 		   Xen console noise. */
1077 		break;
1078 
1079 	default:
1080 		if (!pmu_msr_write(msr, low, high, err)) {
1081 			if (err)
1082 				*err = native_write_msr_safe(msr, low, high);
1083 			else
1084 				native_write_msr(msr, low, high);
1085 		}
1086 	}
1087 }
1088 
xen_read_msr_safe(unsigned int msr,int * err)1089 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1090 {
1091 	return xen_do_read_msr(msr, err);
1092 }
1093 
xen_write_msr_safe(unsigned int msr,unsigned int low,unsigned int high)1094 static int xen_write_msr_safe(unsigned int msr, unsigned int low,
1095 			      unsigned int high)
1096 {
1097 	int err = 0;
1098 
1099 	xen_do_write_msr(msr, low, high, &err);
1100 
1101 	return err;
1102 }
1103 
xen_read_msr(unsigned int msr)1104 static u64 xen_read_msr(unsigned int msr)
1105 {
1106 	int err;
1107 
1108 	return xen_do_read_msr(msr, xen_msr_safe ? &err : NULL);
1109 }
1110 
xen_write_msr(unsigned int msr,unsigned low,unsigned high)1111 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1112 {
1113 	int err;
1114 
1115 	xen_do_write_msr(msr, low, high, xen_msr_safe ? &err : NULL);
1116 }
1117 
1118 /* This is called once we have the cpu_possible_mask */
xen_setup_vcpu_info_placement(void)1119 void __init xen_setup_vcpu_info_placement(void)
1120 {
1121 	int cpu;
1122 
1123 	for_each_possible_cpu(cpu) {
1124 		/* Set up direct vCPU id mapping for PV guests. */
1125 		per_cpu(xen_vcpu_id, cpu) = cpu;
1126 		xen_vcpu_setup(cpu);
1127 	}
1128 
1129 	pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1130 	pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1131 	pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1132 	pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1133 }
1134 
1135 static const struct pv_info xen_info __initconst = {
1136 	.extra_user_64bit_cs = FLAT_USER_CS64,
1137 	.name = "Xen",
1138 };
1139 
1140 static const typeof(pv_ops) xen_cpu_ops __initconst = {
1141 	.cpu = {
1142 		.cpuid = xen_cpuid,
1143 
1144 		.set_debugreg = xen_set_debugreg,
1145 		.get_debugreg = xen_get_debugreg,
1146 
1147 		.read_cr0 = xen_read_cr0,
1148 		.write_cr0 = xen_write_cr0,
1149 
1150 		.write_cr4 = xen_write_cr4,
1151 
1152 		.wbinvd = pv_native_wbinvd,
1153 
1154 		.read_msr = xen_read_msr,
1155 		.write_msr = xen_write_msr,
1156 
1157 		.read_msr_safe = xen_read_msr_safe,
1158 		.write_msr_safe = xen_write_msr_safe,
1159 
1160 		.read_pmc = xen_read_pmc,
1161 
1162 		.load_tr_desc = paravirt_nop,
1163 		.set_ldt = xen_set_ldt,
1164 		.load_gdt = xen_load_gdt,
1165 		.load_idt = xen_load_idt,
1166 		.load_tls = xen_load_tls,
1167 		.load_gs_index = xen_load_gs_index,
1168 
1169 		.alloc_ldt = xen_alloc_ldt,
1170 		.free_ldt = xen_free_ldt,
1171 
1172 		.store_tr = xen_store_tr,
1173 
1174 		.write_ldt_entry = xen_write_ldt_entry,
1175 		.write_gdt_entry = xen_write_gdt_entry,
1176 		.write_idt_entry = xen_write_idt_entry,
1177 		.load_sp0 = xen_load_sp0,
1178 
1179 #ifdef CONFIG_X86_IOPL_IOPERM
1180 		.invalidate_io_bitmap = xen_invalidate_io_bitmap,
1181 		.update_io_bitmap = xen_update_io_bitmap,
1182 #endif
1183 		.io_delay = xen_io_delay,
1184 
1185 		.start_context_switch = xen_start_context_switch,
1186 		.end_context_switch = xen_end_context_switch,
1187 	},
1188 };
1189 
xen_restart(char * msg)1190 static void xen_restart(char *msg)
1191 {
1192 	xen_reboot(SHUTDOWN_reboot);
1193 }
1194 
xen_machine_halt(void)1195 static void xen_machine_halt(void)
1196 {
1197 	xen_reboot(SHUTDOWN_poweroff);
1198 }
1199 
xen_machine_power_off(void)1200 static void xen_machine_power_off(void)
1201 {
1202 	do_kernel_power_off();
1203 	xen_reboot(SHUTDOWN_poweroff);
1204 }
1205 
xen_crash_shutdown(struct pt_regs * regs)1206 static void xen_crash_shutdown(struct pt_regs *regs)
1207 {
1208 	xen_reboot(SHUTDOWN_crash);
1209 }
1210 
1211 static const struct machine_ops xen_machine_ops __initconst = {
1212 	.restart = xen_restart,
1213 	.halt = xen_machine_halt,
1214 	.power_off = xen_machine_power_off,
1215 	.shutdown = xen_machine_halt,
1216 	.crash_shutdown = xen_crash_shutdown,
1217 	.emergency_restart = xen_emergency_restart,
1218 };
1219 
xen_get_nmi_reason(void)1220 static unsigned char xen_get_nmi_reason(void)
1221 {
1222 	unsigned char reason = 0;
1223 
1224 	/* Construct a value which looks like it came from port 0x61. */
1225 	if (test_bit(_XEN_NMIREASON_io_error,
1226 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1227 		reason |= NMI_REASON_IOCHK;
1228 	if (test_bit(_XEN_NMIREASON_pci_serr,
1229 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1230 		reason |= NMI_REASON_SERR;
1231 
1232 	return reason;
1233 }
1234 
xen_boot_params_init_edd(void)1235 static void __init xen_boot_params_init_edd(void)
1236 {
1237 #if IS_ENABLED(CONFIG_EDD)
1238 	struct xen_platform_op op;
1239 	struct edd_info *edd_info;
1240 	u32 *mbr_signature;
1241 	unsigned nr;
1242 	int ret;
1243 
1244 	edd_info = boot_params.eddbuf;
1245 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1246 
1247 	op.cmd = XENPF_firmware_info;
1248 
1249 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1250 	for (nr = 0; nr < EDDMAXNR; nr++) {
1251 		struct edd_info *info = edd_info + nr;
1252 
1253 		op.u.firmware_info.index = nr;
1254 		info->params.length = sizeof(info->params);
1255 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1256 				     &info->params);
1257 		ret = HYPERVISOR_platform_op(&op);
1258 		if (ret)
1259 			break;
1260 
1261 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1262 		C(device);
1263 		C(version);
1264 		C(interface_support);
1265 		C(legacy_max_cylinder);
1266 		C(legacy_max_head);
1267 		C(legacy_sectors_per_track);
1268 #undef C
1269 	}
1270 	boot_params.eddbuf_entries = nr;
1271 
1272 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1273 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1274 		op.u.firmware_info.index = nr;
1275 		ret = HYPERVISOR_platform_op(&op);
1276 		if (ret)
1277 			break;
1278 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1279 	}
1280 	boot_params.edd_mbr_sig_buf_entries = nr;
1281 #endif
1282 }
1283 
1284 /*
1285  * Set up the GDT and segment registers for -fstack-protector.  Until
1286  * we do this, we have to be careful not to call any stack-protected
1287  * function, which is most of the kernel.
1288  */
xen_setup_gdt(int cpu)1289 static void __init xen_setup_gdt(int cpu)
1290 {
1291 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1292 	pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1293 
1294 	switch_gdt_and_percpu_base(cpu);
1295 
1296 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1297 	pv_ops.cpu.load_gdt = xen_load_gdt;
1298 }
1299 
xen_dom0_set_legacy_features(void)1300 static void __init xen_dom0_set_legacy_features(void)
1301 {
1302 	x86_platform.legacy.rtc = 1;
1303 }
1304 
xen_domu_set_legacy_features(void)1305 static void __init xen_domu_set_legacy_features(void)
1306 {
1307 	x86_platform.legacy.rtc = 0;
1308 }
1309 
1310 extern void early_xen_iret_patch(void);
1311 
1312 /* First C function to be called on Xen boot */
xen_start_kernel(struct start_info * si)1313 asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
1314 {
1315 	struct physdev_set_iopl set_iopl;
1316 	unsigned long initrd_start = 0;
1317 	int rc;
1318 
1319 	if (!si)
1320 		return;
1321 
1322 	clear_bss();
1323 
1324 	xen_start_info = si;
1325 
1326 	__text_gen_insn(&early_xen_iret_patch,
1327 			JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret,
1328 			JMP32_INSN_SIZE);
1329 
1330 	xen_domain_type = XEN_PV_DOMAIN;
1331 	xen_start_flags = xen_start_info->flags;
1332 	/* Interrupts are guaranteed to be off initially. */
1333 	early_boot_irqs_disabled = true;
1334 	static_call_update_early(xen_hypercall, xen_hypercall_pv);
1335 
1336 	xen_setup_features();
1337 
1338 	/* Install Xen paravirt ops */
1339 	pv_info = xen_info;
1340 	pv_ops.cpu = xen_cpu_ops.cpu;
1341 	xen_init_irq_ops();
1342 
1343 	/*
1344 	 * Setup xen_vcpu early because it is needed for
1345 	 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1346 	 *
1347 	 * Don't do the full vcpu_info placement stuff until we have
1348 	 * the cpu_possible_mask and a non-dummy shared_info.
1349 	 */
1350 	xen_vcpu_info_reset(0);
1351 
1352 	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1353 	x86_platform.realmode_reserve = x86_init_noop;
1354 	x86_platform.realmode_init = x86_init_noop;
1355 
1356 	x86_init.resources.memory_setup = xen_memory_setup;
1357 	x86_init.irqs.intr_mode_select	= x86_init_noop;
1358 	x86_init.irqs.intr_mode_init	= x86_64_probe_apic;
1359 	x86_init.oem.arch_setup = xen_arch_setup;
1360 	x86_init.oem.banner = xen_banner;
1361 	x86_init.hyper.init_platform = xen_pv_init_platform;
1362 	x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1363 
1364 	/*
1365 	 * Set up some pagetable state before starting to set any ptes.
1366 	 */
1367 
1368 	xen_setup_machphys_mapping();
1369 	xen_init_mmu_ops();
1370 
1371 	/* Prevent unwanted bits from being set in PTEs. */
1372 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1373 	__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1374 
1375 	/* Get mfn list */
1376 	xen_build_dynamic_phys_to_machine();
1377 
1378 	/* Work out if we support NX */
1379 	get_cpu_cap(&boot_cpu_data);
1380 	x86_configure_nx();
1381 
1382 	/*
1383 	 * Set up kernel GDT and segment registers, mainly so that
1384 	 * -fstack-protector code can be executed.
1385 	 */
1386 	xen_setup_gdt(0);
1387 
1388 	/* Determine virtual and physical address sizes */
1389 	get_cpu_address_sizes(&boot_cpu_data);
1390 
1391 	/* Let's presume PV guests always boot on vCPU with id 0. */
1392 	per_cpu(xen_vcpu_id, 0) = 0;
1393 
1394 	idt_setup_early_handler();
1395 
1396 	xen_init_capabilities();
1397 
1398 	/*
1399 	 * set up the basic apic ops.
1400 	 */
1401 	xen_init_apic();
1402 
1403 	machine_ops = xen_machine_ops;
1404 
1405 	/*
1406 	 * The only reliable way to retain the initial address of the
1407 	 * percpu gdt_page is to remember it here, so we can go and
1408 	 * mark it RW later, when the initial percpu area is freed.
1409 	 */
1410 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1411 
1412 	xen_smp_init();
1413 
1414 #ifdef CONFIG_ACPI_NUMA
1415 	/*
1416 	 * The pages we from Xen are not related to machine pages, so
1417 	 * any NUMA information the kernel tries to get from ACPI will
1418 	 * be meaningless.  Prevent it from trying.
1419 	 */
1420 	disable_srat();
1421 #endif
1422 	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1423 
1424 	local_irq_disable();
1425 
1426 	xen_raw_console_write("mapping kernel into physical memory\n");
1427 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1428 				   xen_start_info->nr_pages);
1429 	xen_reserve_special_pages();
1430 
1431 	/*
1432 	 * We used to do this in xen_arch_setup, but that is too late
1433 	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1434 	 * early_amd_init which pokes 0xcf8 port.
1435 	 */
1436 	set_iopl.iopl = 1;
1437 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1438 	if (rc != 0)
1439 		xen_raw_printk("physdev_op failed %d\n", rc);
1440 
1441 
1442 	if (xen_start_info->mod_start) {
1443 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1444 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1445 	    else
1446 		initrd_start = __pa(xen_start_info->mod_start);
1447 	}
1448 
1449 	/* Poke various useful things into boot_params */
1450 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1451 	boot_params.hdr.ramdisk_image = initrd_start;
1452 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1453 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1454 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1455 
1456 	if (!xen_initial_domain()) {
1457 		if (pci_xen)
1458 			x86_init.pci.arch_init = pci_xen_init;
1459 		x86_platform.set_legacy_features =
1460 				xen_domu_set_legacy_features;
1461 	} else {
1462 		const struct dom0_vga_console_info *info =
1463 			(void *)((char *)xen_start_info +
1464 				 xen_start_info->console.dom0.info_off);
1465 		struct xen_platform_op op = {
1466 			.cmd = XENPF_firmware_info,
1467 			.interface_version = XENPF_INTERFACE_VERSION,
1468 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1469 		};
1470 
1471 		x86_platform.set_legacy_features =
1472 				xen_dom0_set_legacy_features;
1473 		xen_init_vga(info, xen_start_info->console.dom0.info_size,
1474 			     &boot_params.screen_info);
1475 		xen_start_info->console.domU.mfn = 0;
1476 		xen_start_info->console.domU.evtchn = 0;
1477 
1478 		if (HYPERVISOR_platform_op(&op) == 0)
1479 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1480 
1481 		/* Make sure ACS will be enabled */
1482 		pci_request_acs();
1483 
1484 		xen_acpi_sleep_register();
1485 
1486 		xen_boot_params_init_edd();
1487 
1488 #ifdef CONFIG_ACPI
1489 		/*
1490 		 * Disable selecting "Firmware First mode" for correctable
1491 		 * memory errors, as this is the duty of the hypervisor to
1492 		 * decide.
1493 		 */
1494 		acpi_disable_cmcff = 1;
1495 #endif
1496 	}
1497 
1498 	xen_add_preferred_consoles();
1499 
1500 #ifdef CONFIG_PCI
1501 	/* PCI BIOS service won't work from a PV guest. */
1502 	pci_probe &= ~PCI_PROBE_BIOS;
1503 #endif
1504 	xen_raw_console_write("about to get started...\n");
1505 
1506 	/* We need this for printk timestamps */
1507 	xen_setup_runstate_info(0);
1508 
1509 	xen_efi_init(&boot_params);
1510 
1511 	/* Start the world */
1512 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1513 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1514 }
1515 
xen_cpu_up_prepare_pv(unsigned int cpu)1516 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1517 {
1518 	int rc;
1519 
1520 	if (per_cpu(xen_vcpu, cpu) == NULL)
1521 		return -ENODEV;
1522 
1523 	xen_setup_timer(cpu);
1524 
1525 	rc = xen_smp_intr_init(cpu);
1526 	if (rc) {
1527 		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1528 		     cpu, rc);
1529 		return rc;
1530 	}
1531 
1532 	rc = xen_smp_intr_init_pv(cpu);
1533 	if (rc) {
1534 		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1535 		     cpu, rc);
1536 		return rc;
1537 	}
1538 
1539 	return 0;
1540 }
1541 
xen_cpu_dead_pv(unsigned int cpu)1542 static int xen_cpu_dead_pv(unsigned int cpu)
1543 {
1544 	xen_smp_intr_free(cpu);
1545 	xen_smp_intr_free_pv(cpu);
1546 
1547 	xen_teardown_timer(cpu);
1548 
1549 	return 0;
1550 }
1551 
xen_platform_pv(void)1552 static uint32_t __init xen_platform_pv(void)
1553 {
1554 	if (xen_pv_domain())
1555 		return xen_cpuid_base();
1556 
1557 	return 0;
1558 }
1559 
1560 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1561 	.name                   = "Xen PV",
1562 	.detect                 = xen_platform_pv,
1563 	.type			= X86_HYPER_XEN_PV,
1564 	.runtime.pin_vcpu       = xen_pin_vcpu,
1565 	.ignore_nopv		= true,
1566 };
1567