xref: /openbmc/linux/arch/mips/cavium-octeon/setup.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  /*
2   * This file is subject to the terms and conditions of the GNU General Public
3   * License.  See the file "COPYING" in the main directory of this archive
4   * for more details.
5   *
6   * Copyright (C) 2004-2007 Cavium Networks
7   * Copyright (C) 2008, 2009 Wind River Systems
8   *   written by Ralf Baechle <ralf@linux-mips.org>
9   */
10  #include <linux/compiler.h>
11  #include <linux/vmalloc.h>
12  #include <linux/init.h>
13  #include <linux/kernel.h>
14  #include <linux/console.h>
15  #include <linux/delay.h>
16  #include <linux/export.h>
17  #include <linux/interrupt.h>
18  #include <linux/io.h>
19  #include <linux/memblock.h>
20  #include <linux/serial.h>
21  #include <linux/smp.h>
22  #include <linux/types.h>
23  #include <linux/string.h>	/* for memset */
24  #include <linux/tty.h>
25  #include <linux/time.h>
26  #include <linux/platform_device.h>
27  #include <linux/serial_core.h>
28  #include <linux/serial_8250.h>
29  #include <linux/of_fdt.h>
30  #include <linux/libfdt.h>
31  #include <linux/kexec.h>
32  
33  #include <asm/processor.h>
34  #include <asm/reboot.h>
35  #include <asm/smp-ops.h>
36  #include <asm/irq_cpu.h>
37  #include <asm/mipsregs.h>
38  #include <asm/bootinfo.h>
39  #include <asm/sections.h>
40  #include <asm/fw/fw.h>
41  #include <asm/setup.h>
42  #include <asm/prom.h>
43  #include <asm/time.h>
44  
45  #include <asm/octeon/octeon.h>
46  #include <asm/octeon/pci-octeon.h>
47  #include <asm/octeon/cvmx-rst-defs.h>
48  
49  /*
50   * TRUE for devices having registers with little-endian byte
51   * order, FALSE for registers with native-endian byte order.
52   * PCI mandates little-endian, USB and SATA are configuraable,
53   * but we chose little-endian for these.
54   */
55  const bool octeon_should_swizzle_table[256] = {
56  	[0x00] = true,	/* bootbus/CF */
57  	[0x1b] = true,	/* PCI mmio window */
58  	[0x1c] = true,	/* PCI mmio window */
59  	[0x1d] = true,	/* PCI mmio window */
60  	[0x1e] = true,	/* PCI mmio window */
61  	[0x68] = true,	/* OCTEON III USB */
62  	[0x69] = true,	/* OCTEON III USB */
63  	[0x6c] = true,	/* OCTEON III SATA */
64  	[0x6f] = true,	/* OCTEON II USB */
65  };
66  EXPORT_SYMBOL(octeon_should_swizzle_table);
67  
68  #ifdef CONFIG_PCI
69  extern void pci_console_init(const char *arg);
70  #endif
71  
72  static unsigned long long max_memory = ULLONG_MAX;
73  static unsigned long long reserve_low_mem;
74  
75  DEFINE_SEMAPHORE(octeon_bootbus_sem, 1);
76  EXPORT_SYMBOL(octeon_bootbus_sem);
77  
78  static struct octeon_boot_descriptor *octeon_boot_desc_ptr;
79  
80  struct cvmx_bootinfo *octeon_bootinfo;
81  EXPORT_SYMBOL(octeon_bootinfo);
82  
83  #ifdef CONFIG_KEXEC
84  #ifdef CONFIG_SMP
85  /*
86   * Wait for relocation code is prepared and send
87   * secondary CPUs to spin until kernel is relocated.
88   */
octeon_kexec_smp_down(void * ignored)89  static void octeon_kexec_smp_down(void *ignored)
90  {
91  	int cpu = smp_processor_id();
92  
93  	local_irq_disable();
94  	set_cpu_online(cpu, false);
95  	while (!atomic_read(&kexec_ready_to_reboot))
96  		cpu_relax();
97  
98  	asm volatile (
99  	"	sync						\n"
100  	"	synci	($0)					\n");
101  
102  	kexec_reboot();
103  }
104  #endif
105  
106  #define OCTEON_DDR0_BASE    (0x0ULL)
107  #define OCTEON_DDR0_SIZE    (0x010000000ULL)
108  #define OCTEON_DDR1_BASE    (0x410000000ULL)
109  #define OCTEON_DDR1_SIZE    (0x010000000ULL)
110  #define OCTEON_DDR2_BASE    (0x020000000ULL)
111  #define OCTEON_DDR2_SIZE    (0x3e0000000ULL)
112  #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
113  
114  static struct kimage *kimage_ptr;
115  
kexec_bootmem_init(uint64_t mem_size,uint32_t low_reserved_bytes)116  static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
117  {
118  	int64_t addr;
119  	struct cvmx_bootmem_desc *bootmem_desc;
120  
121  	bootmem_desc = cvmx_bootmem_get_desc();
122  
123  	if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
124  		mem_size = OCTEON_MAX_PHY_MEM_SIZE;
125  		pr_err("Error: requested memory too large,"
126  		       "truncating to maximum size\n");
127  	}
128  
129  	bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
130  	bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
131  
132  	addr = (OCTEON_DDR0_BASE + reserve_low_mem + low_reserved_bytes);
133  	bootmem_desc->head_addr = 0;
134  
135  	if (mem_size <= OCTEON_DDR0_SIZE) {
136  		__cvmx_bootmem_phy_free(addr,
137  				mem_size - reserve_low_mem -
138  				low_reserved_bytes, 0);
139  		return;
140  	}
141  
142  	__cvmx_bootmem_phy_free(addr,
143  			OCTEON_DDR0_SIZE - reserve_low_mem -
144  			low_reserved_bytes, 0);
145  
146  	mem_size -= OCTEON_DDR0_SIZE;
147  
148  	if (mem_size > OCTEON_DDR1_SIZE) {
149  		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
150  		__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
151  				mem_size - OCTEON_DDR1_SIZE, 0);
152  	} else
153  		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
154  }
155  
octeon_kexec_prepare(struct kimage * image)156  static int octeon_kexec_prepare(struct kimage *image)
157  {
158  	int i;
159  	char *bootloader = "kexec";
160  
161  	octeon_boot_desc_ptr->argc = 0;
162  	for (i = 0; i < image->nr_segments; i++) {
163  		if (!strncmp(bootloader, (char *)image->segment[i].buf,
164  				strlen(bootloader))) {
165  			/*
166  			 * convert command line string to array
167  			 * of parameters (as bootloader does).
168  			 */
169  			int argc = 0, offt;
170  			char *str = (char *)image->segment[i].buf;
171  			char *ptr = strchr(str, ' ');
172  			while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
173  				*ptr = '\0';
174  				if (ptr[1] != ' ') {
175  					offt = (int)(ptr - str + 1);
176  					octeon_boot_desc_ptr->argv[argc] =
177  						image->segment[i].mem + offt;
178  					argc++;
179  				}
180  				ptr = strchr(ptr + 1, ' ');
181  			}
182  			octeon_boot_desc_ptr->argc = argc;
183  			break;
184  		}
185  	}
186  
187  	/*
188  	 * Information about segments will be needed during pre-boot memory
189  	 * initialization.
190  	 */
191  	kimage_ptr = image;
192  	return 0;
193  }
194  
octeon_generic_shutdown(void)195  static void octeon_generic_shutdown(void)
196  {
197  	int i;
198  #ifdef CONFIG_SMP
199  	int cpu;
200  #endif
201  	struct cvmx_bootmem_desc *bootmem_desc;
202  	void *named_block_array_ptr;
203  
204  	bootmem_desc = cvmx_bootmem_get_desc();
205  	named_block_array_ptr =
206  		cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
207  
208  #ifdef CONFIG_SMP
209  	/* disable watchdogs */
210  	for_each_online_cpu(cpu)
211  		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
212  #else
213  	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
214  #endif
215  	if (kimage_ptr != kexec_crash_image) {
216  		memset(named_block_array_ptr,
217  			0x0,
218  			CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
219  			sizeof(struct cvmx_bootmem_named_block_desc));
220  		/*
221  		 * Mark all memory (except low 0x100000 bytes) as free.
222  		 * It is the same thing that bootloader does.
223  		 */
224  		kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
225  				0x100000);
226  		/*
227  		 * Allocate all segments to avoid their corruption during boot.
228  		 */
229  		for (i = 0; i < kimage_ptr->nr_segments; i++)
230  			cvmx_bootmem_alloc_address(
231  				kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
232  				kimage_ptr->segment[i].mem - PAGE_SIZE,
233  				PAGE_SIZE);
234  	} else {
235  		/*
236  		 * Do not mark all memory as free. Free only named sections
237  		 * leaving the rest of memory unchanged.
238  		 */
239  		struct cvmx_bootmem_named_block_desc *ptr =
240  			(struct cvmx_bootmem_named_block_desc *)
241  			named_block_array_ptr;
242  
243  		for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
244  			if (ptr[i].size)
245  				cvmx_bootmem_free_named(ptr[i].name);
246  	}
247  	kexec_args[2] = 1UL; /* running on octeon_main_processor */
248  	kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
249  #ifdef CONFIG_SMP
250  	secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
251  	secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
252  #endif
253  }
254  
octeon_shutdown(void)255  static void octeon_shutdown(void)
256  {
257  	octeon_generic_shutdown();
258  #ifdef CONFIG_SMP
259  	smp_call_function(octeon_kexec_smp_down, NULL, 0);
260  	smp_wmb();
261  	while (num_online_cpus() > 1) {
262  		cpu_relax();
263  		mdelay(1);
264  	}
265  #endif
266  }
267  
octeon_crash_shutdown(struct pt_regs * regs)268  static void octeon_crash_shutdown(struct pt_regs *regs)
269  {
270  	octeon_generic_shutdown();
271  	default_machine_crash_shutdown(regs);
272  }
273  
274  #ifdef CONFIG_SMP
octeon_crash_smp_send_stop(void)275  void octeon_crash_smp_send_stop(void)
276  {
277  	int cpu;
278  
279  	/* disable watchdogs */
280  	for_each_online_cpu(cpu)
281  		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
282  }
283  #endif
284  
285  #endif /* CONFIG_KEXEC */
286  
287  uint64_t octeon_reserve32_memory;
288  EXPORT_SYMBOL(octeon_reserve32_memory);
289  
290  #ifdef CONFIG_KEXEC
291  /* crashkernel cmdline parameter is parsed _after_ memory setup
292   * we also parse it here (workaround for EHB5200) */
293  static uint64_t crashk_size, crashk_base;
294  #endif
295  
296  static int octeon_uart;
297  
298  extern asmlinkage void handle_int(void);
299  
300  /**
301   * octeon_is_simulation - Return non-zero if we are currently running
302   * in the Octeon simulator
303   *
304   * Return: non-0 if running in the Octeon simulator, 0 otherwise
305   */
octeon_is_simulation(void)306  int octeon_is_simulation(void)
307  {
308  	return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
309  }
310  EXPORT_SYMBOL(octeon_is_simulation);
311  
312  /**
313   * octeon_is_pci_host - Return true if Octeon is in PCI Host mode. This means
314   * Linux can control the PCI bus.
315   *
316   * Return: Non-zero if Octeon is in host mode.
317   */
octeon_is_pci_host(void)318  int octeon_is_pci_host(void)
319  {
320  #ifdef CONFIG_PCI
321  	return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
322  #else
323  	return 0;
324  #endif
325  }
326  
327  /**
328   * octeon_get_clock_rate - Get the clock rate of Octeon
329   *
330   * Return: Clock rate in HZ
331   */
octeon_get_clock_rate(void)332  uint64_t octeon_get_clock_rate(void)
333  {
334  	struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
335  
336  	return sysinfo->cpu_clock_hz;
337  }
338  EXPORT_SYMBOL(octeon_get_clock_rate);
339  
340  static u64 octeon_io_clock_rate;
341  
octeon_get_io_clock_rate(void)342  u64 octeon_get_io_clock_rate(void)
343  {
344  	return octeon_io_clock_rate;
345  }
346  EXPORT_SYMBOL(octeon_get_io_clock_rate);
347  
348  
349  /**
350   * octeon_write_lcd - Write to the LCD display connected to the bootbus.
351   * @s:	    String to write
352   *
353   * This display exists on most Cavium evaluation boards. If it doesn't exist,
354   * then this function doesn't do anything.
355   */
octeon_write_lcd(const char * s)356  static void octeon_write_lcd(const char *s)
357  {
358  	if (octeon_bootinfo->led_display_base_addr) {
359  		void __iomem *lcd_address =
360  			ioremap(octeon_bootinfo->led_display_base_addr,
361  					8);
362  		int i;
363  		for (i = 0; i < 8; i++, s++) {
364  			if (*s)
365  				iowrite8(*s, lcd_address + i);
366  			else
367  				iowrite8(' ', lcd_address + i);
368  		}
369  		iounmap(lcd_address);
370  	}
371  }
372  
373  /**
374   * octeon_get_boot_uart - Return the console uart passed by the bootloader
375   *
376   * Return: uart number (0 or 1)
377   */
octeon_get_boot_uart(void)378  static int octeon_get_boot_uart(void)
379  {
380  	return (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
381  		1 : 0;
382  }
383  
384  /**
385   * octeon_get_boot_coremask - Get the coremask Linux was booted on.
386   *
387   * Return: Core mask
388   */
octeon_get_boot_coremask(void)389  int octeon_get_boot_coremask(void)
390  {
391  	return octeon_boot_desc_ptr->core_mask;
392  }
393  
394  /**
395   * octeon_check_cpu_bist - Check the hardware BIST results for a CPU
396   */
octeon_check_cpu_bist(void)397  void octeon_check_cpu_bist(void)
398  {
399  	const int coreid = cvmx_get_core_num();
400  	unsigned long long mask;
401  	unsigned long long bist_val;
402  
403  	/* Check BIST results for COP0 registers */
404  	mask = 0x1f00000000ull;
405  	bist_val = read_octeon_c0_icacheerr();
406  	if (bist_val & mask)
407  		pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
408  		       coreid, bist_val);
409  
410  	bist_val = read_octeon_c0_dcacheerr();
411  	if (bist_val & 1)
412  		pr_err("Core%d L1 Dcache parity error: "
413  		       "CacheErr(dcache) = 0x%llx\n",
414  		       coreid, bist_val);
415  
416  	mask = 0xfc00000000000000ull;
417  	bist_val = read_c0_cvmmemctl();
418  	if (bist_val & mask)
419  		pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
420  		       coreid, bist_val);
421  
422  	write_octeon_c0_dcacheerr(0);
423  }
424  
425  /**
426   * octeon_restart - Reboot Octeon
427   *
428   * @command: Command to pass to the bootloader. Currently ignored.
429   */
octeon_restart(char * command)430  static void octeon_restart(char *command)
431  {
432  	/* Disable all watchdogs before soft reset. They don't get cleared */
433  #ifdef CONFIG_SMP
434  	int cpu;
435  	for_each_online_cpu(cpu)
436  		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
437  #else
438  	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
439  #endif
440  
441  	mb();
442  	while (1)
443  		if (OCTEON_IS_OCTEON3())
444  			cvmx_write_csr(CVMX_RST_SOFT_RST, 1);
445  		else
446  			cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
447  }
448  
449  
450  /**
451   * octeon_kill_core - Permanently stop a core.
452   *
453   * @arg: Ignored.
454   */
octeon_kill_core(void * arg)455  static void octeon_kill_core(void *arg)
456  {
457  	if (octeon_is_simulation())
458  		/* A break instruction causes the simulator stop a core */
459  		asm volatile ("break" ::: "memory");
460  
461  	local_irq_disable();
462  	/* Disable watchdog on this core. */
463  	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
464  	/* Spin in a low power mode. */
465  	while (true)
466  		asm volatile ("wait" ::: "memory");
467  }
468  
469  
470  /**
471   * octeon_halt - Halt the system
472   */
octeon_halt(void)473  static void octeon_halt(void)
474  {
475  	smp_call_function(octeon_kill_core, NULL, 0);
476  
477  	switch (octeon_bootinfo->board_type) {
478  	case CVMX_BOARD_TYPE_NAO38:
479  		/* Driving a 1 to GPIO 12 shuts off this board */
480  		cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
481  		cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
482  		break;
483  	default:
484  		octeon_write_lcd("PowerOff");
485  		break;
486  	}
487  
488  	octeon_kill_core(NULL);
489  }
490  
491  static char __read_mostly octeon_system_type[80];
492  
init_octeon_system_type(void)493  static void __init init_octeon_system_type(void)
494  {
495  	char const *board_type;
496  
497  	board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type);
498  	if (board_type == NULL) {
499  		struct device_node *root;
500  		int ret;
501  
502  		root = of_find_node_by_path("/");
503  		ret = of_property_read_string(root, "model", &board_type);
504  		of_node_put(root);
505  		if (ret)
506  			board_type = "Unsupported Board";
507  	}
508  
509  	snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
510  		 board_type, octeon_model_get_string(read_c0_prid()));
511  }
512  
513  /**
514   * octeon_board_type_string - Return a string representing the system type
515   *
516   * Return: system type string
517   */
octeon_board_type_string(void)518  const char *octeon_board_type_string(void)
519  {
520  	return octeon_system_type;
521  }
522  
523  const char *get_system_type(void)
524  	__attribute__ ((alias("octeon_board_type_string")));
525  
octeon_user_io_init(void)526  void octeon_user_io_init(void)
527  {
528  	union octeon_cvmemctl cvmmemctl;
529  
530  	/* Get the current settings for CP0_CVMMEMCTL_REG */
531  	cvmmemctl.u64 = read_c0_cvmmemctl();
532  	/* R/W If set, marked write-buffer entries time out the same
533  	 * as other entries; if clear, marked write-buffer entries
534  	 * use the maximum timeout. */
535  	cvmmemctl.s.dismarkwblongto = 1;
536  	/* R/W If set, a merged store does not clear the write-buffer
537  	 * entry timeout state. */
538  	cvmmemctl.s.dismrgclrwbto = 0;
539  	/* R/W Two bits that are the MSBs of the resultant CVMSEG LM
540  	 * word location for an IOBDMA. The other 8 bits come from the
541  	 * SCRADDR field of the IOBDMA. */
542  	cvmmemctl.s.iobdmascrmsb = 0;
543  	/* R/W If set, SYNCWS and SYNCS only order marked stores; if
544  	 * clear, SYNCWS and SYNCS only order unmarked
545  	 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
546  	 * set. */
547  	cvmmemctl.s.syncwsmarked = 0;
548  	/* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
549  	cvmmemctl.s.dissyncws = 0;
550  	/* R/W If set, no stall happens on write buffer full. */
551  	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
552  		cvmmemctl.s.diswbfst = 1;
553  	else
554  		cvmmemctl.s.diswbfst = 0;
555  	/* R/W If set (and SX set), supervisor-level loads/stores can
556  	 * use XKPHYS addresses with <48>==0 */
557  	cvmmemctl.s.xkmemenas = 0;
558  
559  	/* R/W If set (and UX set), user-level loads/stores can use
560  	 * XKPHYS addresses with VA<48>==0 */
561  	cvmmemctl.s.xkmemenau = 0;
562  
563  	/* R/W If set (and SX set), supervisor-level loads/stores can
564  	 * use XKPHYS addresses with VA<48>==1 */
565  	cvmmemctl.s.xkioenas = 0;
566  
567  	/* R/W If set (and UX set), user-level loads/stores can use
568  	 * XKPHYS addresses with VA<48>==1 */
569  	cvmmemctl.s.xkioenau = 0;
570  
571  	/* R/W If set, all stores act as SYNCW (NOMERGE must be set
572  	 * when this is set) RW, reset to 0. */
573  	cvmmemctl.s.allsyncw = 0;
574  
575  	/* R/W If set, no stores merge, and all stores reach the
576  	 * coherent bus in order. */
577  	cvmmemctl.s.nomerge = 0;
578  	/* R/W Selects the bit in the counter used for DID time-outs 0
579  	 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
580  	 * between 1x and 2x this interval. For example, with
581  	 * DIDTTO=3, expiration interval is between 16K and 32K. */
582  	cvmmemctl.s.didtto = 0;
583  	/* R/W If set, the (mem) CSR clock never turns off. */
584  	cvmmemctl.s.csrckalwys = 0;
585  	/* R/W If set, mclk never turns off. */
586  	cvmmemctl.s.mclkalwys = 0;
587  	/* R/W Selects the bit in the counter used for write buffer
588  	 * flush time-outs (WBFLT+11) is the bit position in an
589  	 * internal counter used to determine expiration. The write
590  	 * buffer expires between 1x and 2x this interval. For
591  	 * example, with WBFLT = 0, a write buffer expires between 2K
592  	 * and 4K cycles after the write buffer entry is allocated. */
593  	cvmmemctl.s.wbfltime = 0;
594  	/* R/W If set, do not put Istream in the L2 cache. */
595  	cvmmemctl.s.istrnol2 = 0;
596  
597  	/*
598  	 * R/W The write buffer threshold. As per erratum Core-14752
599  	 * for CN63XX, a sc/scd might fail if the write buffer is
600  	 * full.  Lowering WBTHRESH greatly lowers the chances of the
601  	 * write buffer ever being full and triggering the erratum.
602  	 */
603  	if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
604  		cvmmemctl.s.wbthresh = 4;
605  	else
606  		cvmmemctl.s.wbthresh = 10;
607  
608  	/* R/W If set, CVMSEG is available for loads/stores in
609  	 * kernel/debug mode. */
610  #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
611  	cvmmemctl.s.cvmsegenak = 1;
612  #else
613  	cvmmemctl.s.cvmsegenak = 0;
614  #endif
615  	/* R/W If set, CVMSEG is available for loads/stores in
616  	 * supervisor mode. */
617  	cvmmemctl.s.cvmsegenas = 0;
618  	/* R/W If set, CVMSEG is available for loads/stores in user
619  	 * mode. */
620  	cvmmemctl.s.cvmsegenau = 0;
621  
622  	write_c0_cvmmemctl(cvmmemctl.u64);
623  
624  	/* Setup of CVMSEG is done in kernel-entry-init.h */
625  	if (smp_processor_id() == 0)
626  		pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
627  			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
628  			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
629  
630  	if (octeon_has_feature(OCTEON_FEATURE_FAU)) {
631  		union cvmx_iob_fau_timeout fau_timeout;
632  
633  		/* Set a default for the hardware timeouts */
634  		fau_timeout.u64 = 0;
635  		fau_timeout.s.tout_val = 0xfff;
636  		/* Disable tagwait FAU timeout */
637  		fau_timeout.s.tout_enb = 0;
638  		cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
639  	}
640  
641  	if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) &&
642  	     !OCTEON_IS_MODEL(OCTEON_CN7XXX)) ||
643  	    OCTEON_IS_MODEL(OCTEON_CN70XX)) {
644  		union cvmx_pow_nw_tim nm_tim;
645  
646  		nm_tim.u64 = 0;
647  		/* 4096 cycles */
648  		nm_tim.s.nw_tim = 3;
649  		cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
650  	}
651  
652  	write_octeon_c0_icacheerr(0);
653  	write_c0_derraddr1(0);
654  }
655  
656  /**
657   * prom_init - Early entry point for arch setup
658   */
prom_init(void)659  void __init prom_init(void)
660  {
661  	struct cvmx_sysinfo *sysinfo;
662  	const char *arg;
663  	char *p;
664  	int i;
665  	u64 t;
666  	int argc;
667  	/*
668  	 * The bootloader passes a pointer to the boot descriptor in
669  	 * $a3, this is available as fw_arg3.
670  	 */
671  	octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
672  	octeon_bootinfo =
673  		cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
674  	cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
675  
676  	sysinfo = cvmx_sysinfo_get();
677  	memset(sysinfo, 0, sizeof(*sysinfo));
678  	sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
679  	sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr);
680  
681  	if ((octeon_bootinfo->major_version > 1) ||
682  	    (octeon_bootinfo->major_version == 1 &&
683  	     octeon_bootinfo->minor_version >= 4))
684  		cvmx_coremask_copy(&sysinfo->core_mask,
685  				   &octeon_bootinfo->ext_core_mask);
686  	else
687  		cvmx_coremask_set64(&sysinfo->core_mask,
688  				    octeon_bootinfo->core_mask);
689  
690  	/* Some broken u-boot pass garbage in upper bits, clear them out */
691  	if (!OCTEON_IS_MODEL(OCTEON_CN78XX))
692  		for (i = 512; i < 1024; i++)
693  			cvmx_coremask_clear_core(&sysinfo->core_mask, i);
694  
695  	sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
696  	sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
697  	sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
698  	sysinfo->board_type = octeon_bootinfo->board_type;
699  	sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
700  	sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
701  	memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
702  	       sizeof(sysinfo->mac_addr_base));
703  	sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
704  	memcpy(sysinfo->board_serial_number,
705  	       octeon_bootinfo->board_serial_number,
706  	       sizeof(sysinfo->board_serial_number));
707  	sysinfo->compact_flash_common_base_addr =
708  		octeon_bootinfo->compact_flash_common_base_addr;
709  	sysinfo->compact_flash_attribute_base_addr =
710  		octeon_bootinfo->compact_flash_attribute_base_addr;
711  	sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
712  	sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
713  	sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
714  
715  	if (OCTEON_IS_OCTEON2()) {
716  		/* I/O clock runs at a different rate than the CPU. */
717  		union cvmx_mio_rst_boot rst_boot;
718  		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
719  		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
720  	} else if (OCTEON_IS_OCTEON3()) {
721  		/* I/O clock runs at a different rate than the CPU. */
722  		union cvmx_rst_boot rst_boot;
723  		rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
724  		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
725  	} else {
726  		octeon_io_clock_rate = sysinfo->cpu_clock_hz;
727  	}
728  
729  	t = read_c0_cvmctl();
730  	if ((t & (1ull << 27)) == 0) {
731  		/*
732  		 * Setup the multiplier save/restore code if
733  		 * CvmCtl[NOMUL] clear.
734  		 */
735  		void *save;
736  		void *save_end;
737  		void *restore;
738  		void *restore_end;
739  		int save_len;
740  		int restore_len;
741  		int save_max = (char *)octeon_mult_save_end -
742  			(char *)octeon_mult_save;
743  		int restore_max = (char *)octeon_mult_restore_end -
744  			(char *)octeon_mult_restore;
745  		if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
746  			save = octeon_mult_save3;
747  			save_end = octeon_mult_save3_end;
748  			restore = octeon_mult_restore3;
749  			restore_end = octeon_mult_restore3_end;
750  		} else {
751  			save = octeon_mult_save2;
752  			save_end = octeon_mult_save2_end;
753  			restore = octeon_mult_restore2;
754  			restore_end = octeon_mult_restore2_end;
755  		}
756  		save_len = (char *)save_end - (char *)save;
757  		restore_len = (char *)restore_end - (char *)restore;
758  		if (!WARN_ON(save_len > save_max ||
759  				restore_len > restore_max)) {
760  			memcpy(octeon_mult_save, save, save_len);
761  			memcpy(octeon_mult_restore, restore, restore_len);
762  		}
763  	}
764  
765  	/*
766  	 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
767  	 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
768  	 */
769  	if (!octeon_is_simulation() &&
770  	    octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
771  		cvmx_write_csr(CVMX_LED_EN, 0);
772  		cvmx_write_csr(CVMX_LED_PRT, 0);
773  		cvmx_write_csr(CVMX_LED_DBG, 0);
774  		cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
775  		cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
776  		cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
777  		cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
778  		cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
779  		cvmx_write_csr(CVMX_LED_EN, 1);
780  	}
781  
782  	/*
783  	 * We need to temporarily allocate all memory in the reserve32
784  	 * region. This makes sure the kernel doesn't allocate this
785  	 * memory when it is getting memory from the
786  	 * bootloader. Later, after the memory allocations are
787  	 * complete, the reserve32 will be freed.
788  	 *
789  	 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
790  	 * is in case we later use hugetlb entries with it.
791  	 */
792  	if (CONFIG_CAVIUM_RESERVE32) {
793  		int64_t addr =
794  			cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
795  							   0, 0, 2 << 20,
796  							   "CAVIUM_RESERVE32", 0);
797  		if (addr < 0)
798  			pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
799  		else
800  			octeon_reserve32_memory = addr;
801  	}
802  
803  #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
804  	if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
805  		pr_info("Skipping L2 locking due to reduced L2 cache size\n");
806  	} else {
807  		uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
808  #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
809  		/* TLB refill */
810  		cvmx_l2c_lock_mem_region(ebase, 0x100);
811  #endif
812  #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
813  		/* General exception */
814  		cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
815  #endif
816  #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
817  		/* Interrupt handler */
818  		cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
819  #endif
820  #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
821  		cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
822  		cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
823  #endif
824  #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
825  		cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
826  #endif
827  	}
828  #endif
829  
830  	octeon_check_cpu_bist();
831  
832  	octeon_uart = octeon_get_boot_uart();
833  
834  #ifdef CONFIG_SMP
835  	octeon_write_lcd("LinuxSMP");
836  #else
837  	octeon_write_lcd("Linux");
838  #endif
839  
840  	octeon_setup_delays();
841  
842  	/*
843  	 * BIST should always be enabled when doing a soft reset. L2
844  	 * Cache locking for instance is not cleared unless BIST is
845  	 * enabled.  Unfortunately due to a chip errata G-200 for
846  	 * Cn38XX and CN31XX, BIST must be disabled on these parts.
847  	 */
848  	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
849  	    OCTEON_IS_MODEL(OCTEON_CN31XX))
850  		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
851  	else
852  		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
853  
854  	/* Default to 64MB in the simulator to speed things up */
855  	if (octeon_is_simulation())
856  		max_memory = 64ull << 20;
857  
858  	arg = strstr(arcs_cmdline, "mem=");
859  	if (arg) {
860  		max_memory = memparse(arg + 4, &p);
861  		if (max_memory == 0)
862  			max_memory = 32ull << 30;
863  		if (*p == '@')
864  			reserve_low_mem = memparse(p + 1, &p);
865  	}
866  
867  	arcs_cmdline[0] = 0;
868  	argc = octeon_boot_desc_ptr->argc;
869  	for (i = 0; i < argc; i++) {
870  		const char *arg =
871  			cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
872  		if ((strncmp(arg, "MEM=", 4) == 0) ||
873  		    (strncmp(arg, "mem=", 4) == 0)) {
874  			max_memory = memparse(arg + 4, &p);
875  			if (max_memory == 0)
876  				max_memory = 32ull << 30;
877  			if (*p == '@')
878  				reserve_low_mem = memparse(p + 1, &p);
879  #ifdef CONFIG_KEXEC
880  		} else if (strncmp(arg, "crashkernel=", 12) == 0) {
881  			crashk_size = memparse(arg+12, &p);
882  			if (*p == '@')
883  				crashk_base = memparse(p+1, &p);
884  			strcat(arcs_cmdline, " ");
885  			strcat(arcs_cmdline, arg);
886  			/*
887  			 * To do: switch parsing to new style, something like:
888  			 * parse_crashkernel(arg, sysinfo->system_dram_size,
889  			 *		  &crashk_size, &crashk_base);
890  			 */
891  #endif
892  		} else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
893  			   sizeof(arcs_cmdline) - 1) {
894  			strcat(arcs_cmdline, " ");
895  			strcat(arcs_cmdline, arg);
896  		}
897  	}
898  
899  	if (strstr(arcs_cmdline, "console=") == NULL) {
900  		if (octeon_uart == 1)
901  			strcat(arcs_cmdline, " console=ttyS1,115200");
902  		else
903  			strcat(arcs_cmdline, " console=ttyS0,115200");
904  	}
905  
906  	mips_hpt_frequency = octeon_get_clock_rate();
907  
908  	octeon_init_cvmcount();
909  
910  	_machine_restart = octeon_restart;
911  	_machine_halt = octeon_halt;
912  
913  #ifdef CONFIG_KEXEC
914  	_machine_kexec_shutdown = octeon_shutdown;
915  	_machine_crash_shutdown = octeon_crash_shutdown;
916  	_machine_kexec_prepare = octeon_kexec_prepare;
917  #ifdef CONFIG_SMP
918  	_crash_smp_send_stop = octeon_crash_smp_send_stop;
919  #endif
920  #endif
921  
922  	octeon_user_io_init();
923  	octeon_setup_smp();
924  }
925  
926  /* Exclude a single page from the regions obtained in plat_mem_setup. */
927  #ifndef CONFIG_CRASH_DUMP
memory_exclude_page(u64 addr,u64 * mem,u64 * size)928  static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
929  {
930  	if (addr > *mem && addr < *mem + *size) {
931  		u64 inc = addr - *mem;
932  		memblock_add(*mem, inc);
933  		*mem += inc;
934  		*size -= inc;
935  	}
936  
937  	if (addr == *mem && *size > PAGE_SIZE) {
938  		*mem += PAGE_SIZE;
939  		*size -= PAGE_SIZE;
940  	}
941  }
942  #endif /* CONFIG_CRASH_DUMP */
943  
fw_init_cmdline(void)944  void __init fw_init_cmdline(void)
945  {
946  	int i;
947  
948  	octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
949  	for (i = 0; i < octeon_boot_desc_ptr->argc; i++) {
950  		const char *arg =
951  			cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
952  		if (strlen(arcs_cmdline) + strlen(arg) + 1 <
953  			   sizeof(arcs_cmdline) - 1) {
954  			strcat(arcs_cmdline, " ");
955  			strcat(arcs_cmdline, arg);
956  		}
957  	}
958  }
959  
plat_get_fdt(void)960  void __init *plat_get_fdt(void)
961  {
962  	octeon_bootinfo =
963  		cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
964  	return phys_to_virt(octeon_bootinfo->fdt_addr);
965  }
966  
plat_mem_setup(void)967  void __init plat_mem_setup(void)
968  {
969  	uint64_t mem_alloc_size;
970  	uint64_t total;
971  	uint64_t crashk_end;
972  #ifndef CONFIG_CRASH_DUMP
973  	int64_t memory;
974  #endif
975  
976  	total = 0;
977  	crashk_end = 0;
978  
979  	/*
980  	 * The Mips memory init uses the first memory location for
981  	 * some memory vectors. When SPARSEMEM is in use, it doesn't
982  	 * verify that the size is big enough for the final
983  	 * vectors. Making the smallest chuck 4MB seems to be enough
984  	 * to consistently work.
985  	 */
986  	mem_alloc_size = 4 << 20;
987  	if (mem_alloc_size > max_memory)
988  		mem_alloc_size = max_memory;
989  
990  /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
991  #ifdef CONFIG_CRASH_DUMP
992  	memblock_add(reserve_low_mem, max_memory);
993  	total += max_memory;
994  #else
995  #ifdef CONFIG_KEXEC
996  	if (crashk_size > 0) {
997  		memblock_add(crashk_base, crashk_size);
998  		crashk_end = crashk_base + crashk_size;
999  	}
1000  #endif
1001  	/*
1002  	 * When allocating memory, we want incrementing addresses,
1003  	 * which is handled by memblock
1004  	 */
1005  	cvmx_bootmem_lock();
1006  	while (total < max_memory) {
1007  		memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
1008  						__pa_symbol(&_end), -1,
1009  						0x100000,
1010  						CVMX_BOOTMEM_FLAG_NO_LOCKING);
1011  		if (memory >= 0) {
1012  			u64 size = mem_alloc_size;
1013  #ifdef CONFIG_KEXEC
1014  			uint64_t end;
1015  #endif
1016  
1017  			/*
1018  			 * exclude a page at the beginning and end of
1019  			 * the 256MB PCIe 'hole' so the kernel will not
1020  			 * try to allocate multi-page buffers that
1021  			 * span the discontinuity.
1022  			 */
1023  			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
1024  					    &memory, &size);
1025  			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
1026  					    CVMX_PCIE_BAR1_PHYS_SIZE,
1027  					    &memory, &size);
1028  #ifdef CONFIG_KEXEC
1029  			end = memory + mem_alloc_size;
1030  
1031  			/*
1032  			 * This function automatically merges address regions
1033  			 * next to each other if they are received in
1034  			 * incrementing order
1035  			 */
1036  			if (memory < crashk_base && end >  crashk_end) {
1037  				/* region is fully in */
1038  				memblock_add(memory, crashk_base - memory);
1039  				total += crashk_base - memory;
1040  				memblock_add(crashk_end, end - crashk_end);
1041  				total += end - crashk_end;
1042  				continue;
1043  			}
1044  
1045  			if (memory >= crashk_base && end <= crashk_end)
1046  				/*
1047  				 * Entire memory region is within the new
1048  				 *  kernel's memory, ignore it.
1049  				 */
1050  				continue;
1051  
1052  			if (memory > crashk_base && memory < crashk_end &&
1053  			    end > crashk_end) {
1054  				/*
1055  				 * Overlap with the beginning of the region,
1056  				 * reserve the beginning.
1057  				  */
1058  				mem_alloc_size -= crashk_end - memory;
1059  				memory = crashk_end;
1060  			} else if (memory < crashk_base && end > crashk_base &&
1061  				   end < crashk_end)
1062  				/*
1063  				 * Overlap with the beginning of the region,
1064  				 * chop of end.
1065  				 */
1066  				mem_alloc_size -= end - crashk_base;
1067  #endif
1068  			memblock_add(memory, mem_alloc_size);
1069  			total += mem_alloc_size;
1070  			/* Recovering mem_alloc_size */
1071  			mem_alloc_size = 4 << 20;
1072  		} else {
1073  			break;
1074  		}
1075  	}
1076  	cvmx_bootmem_unlock();
1077  #endif /* CONFIG_CRASH_DUMP */
1078  
1079  	/*
1080  	 * Now that we've allocated the kernel memory it is safe to
1081  	 * free the reserved region. We free it here so that builtin
1082  	 * drivers can use the memory.
1083  	 */
1084  	if (octeon_reserve32_memory)
1085  		cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1086  
1087  	if (total == 0)
1088  		panic("Unable to allocate memory from "
1089  		      "cvmx_bootmem_phy_alloc");
1090  }
1091  
1092  /*
1093   * Emit one character to the boot UART.	 Exported for use by the
1094   * watchdog timer.
1095   */
prom_putchar(char c)1096  void prom_putchar(char c)
1097  {
1098  	uint64_t lsrval;
1099  
1100  	/* Spin until there is room */
1101  	do {
1102  		lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1103  	} while ((lsrval & 0x20) == 0);
1104  
1105  	/* Write the byte */
1106  	cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1107  }
1108  EXPORT_SYMBOL(prom_putchar);
1109  
prom_free_prom_memory(void)1110  void __init prom_free_prom_memory(void)
1111  {
1112  	if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
1113  		/* Check for presence of Core-14449 fix.  */
1114  		u32 insn;
1115  		u32 *foo;
1116  
1117  		foo = &insn;
1118  
1119  		asm volatile("# before" : : : "memory");
1120  		prefetch(foo);
1121  		asm volatile(
1122  			".set push\n\t"
1123  			".set noreorder\n\t"
1124  			"bal 1f\n\t"
1125  			"nop\n"
1126  			"1:\tlw %0,-12($31)\n\t"
1127  			".set pop\n\t"
1128  			: "=r" (insn) : : "$31", "memory");
1129  
1130  		if ((insn >> 26) != 0x33)
1131  			panic("No PREF instruction at Core-14449 probe point.");
1132  
1133  		if (((insn >> 16) & 0x1f) != 28)
1134  			panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1135  			      "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1136  			      insn);
1137  	}
1138  }
1139  
1140  void __init octeon_fill_mac_addresses(void);
1141  
device_tree_init(void)1142  void __init device_tree_init(void)
1143  {
1144  	const void *fdt;
1145  	bool do_prune;
1146  	bool fill_mac;
1147  
1148  #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
1149  	if (!fdt_check_header(&__appended_dtb)) {
1150  		fdt = &__appended_dtb;
1151  		do_prune = false;
1152  		fill_mac = true;
1153  		pr_info("Using appended Device Tree.\n");
1154  	} else
1155  #endif
1156  	if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1157  		fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1158  		if (fdt_check_header(fdt))
1159  			panic("Corrupt Device Tree passed to kernel.");
1160  		do_prune = false;
1161  		fill_mac = false;
1162  		pr_info("Using passed Device Tree.\n");
1163  	} else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1164  		fdt = &__dtb_octeon_68xx_begin;
1165  		do_prune = true;
1166  		fill_mac = true;
1167  	} else {
1168  		fdt = &__dtb_octeon_3xxx_begin;
1169  		do_prune = true;
1170  		fill_mac = true;
1171  	}
1172  
1173  	initial_boot_params = (void *)fdt;
1174  
1175  	if (do_prune) {
1176  		octeon_prune_device_tree();
1177  		pr_info("Using internal Device Tree.\n");
1178  	}
1179  	if (fill_mac)
1180  		octeon_fill_mac_addresses();
1181  	unflatten_and_copy_device_tree();
1182  	init_octeon_system_type();
1183  }
1184  
1185  static int __initdata disable_octeon_edac_p;
1186  
disable_octeon_edac(char * str)1187  static int __init disable_octeon_edac(char *str)
1188  {
1189  	disable_octeon_edac_p = 1;
1190  	return 0;
1191  }
1192  early_param("disable_octeon_edac", disable_octeon_edac);
1193  
1194  static char *edac_device_names[] = {
1195  	"octeon_l2c_edac",
1196  	"octeon_pc_edac",
1197  };
1198  
edac_devinit(void)1199  static int __init edac_devinit(void)
1200  {
1201  	struct platform_device *dev;
1202  	int i, err = 0;
1203  	int num_lmc;
1204  	char *name;
1205  
1206  	if (disable_octeon_edac_p)
1207  		return 0;
1208  
1209  	for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1210  		name = edac_device_names[i];
1211  		dev = platform_device_register_simple(name, -1, NULL, 0);
1212  		if (IS_ERR(dev)) {
1213  			pr_err("Registration of %s failed!\n", name);
1214  			err = PTR_ERR(dev);
1215  		}
1216  	}
1217  
1218  	num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1219  		(OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1220  	for (i = 0; i < num_lmc; i++) {
1221  		dev = platform_device_register_simple("octeon_lmc_edac",
1222  						      i, NULL, 0);
1223  		if (IS_ERR(dev)) {
1224  			pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1225  			err = PTR_ERR(dev);
1226  		}
1227  	}
1228  
1229  	return err;
1230  }
1231  device_initcall(edac_devinit);
1232  
1233  static void __initdata *octeon_dummy_iospace;
1234  
octeon_no_pci_init(void)1235  static int __init octeon_no_pci_init(void)
1236  {
1237  	/*
1238  	 * Initially assume there is no PCI. The PCI/PCIe platform code will
1239  	 * later re-initialize these to correct values if they are present.
1240  	 */
1241  	octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1242  	set_io_port_base((unsigned long)octeon_dummy_iospace);
1243  	ioport_resource.start = RESOURCE_SIZE_MAX;
1244  	ioport_resource.end = 0;
1245  	return 0;
1246  }
1247  core_initcall(octeon_no_pci_init);
1248  
octeon_no_pci_release(void)1249  static int __init octeon_no_pci_release(void)
1250  {
1251  	/*
1252  	 * Release the allocated memory if a real IO space is there.
1253  	 */
1254  	if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1255  		vfree(octeon_dummy_iospace);
1256  	return 0;
1257  }
1258  late_initcall(octeon_no_pci_release);
1259