xref: /openbmc/linux/kernel/events/uprobes.c (revision 8ebc80a25f9d9bf7a8e368b266d5b740c485c362)
1  // SPDX-License-Identifier: GPL-2.0+
2  /*
3   * User-space Probes (UProbes)
4   *
5   * Copyright (C) IBM Corporation, 2008-2012
6   * Authors:
7   *	Srikar Dronamraju
8   *	Jim Keniston
9   * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10   */
11  
12  #include <linux/kernel.h>
13  #include <linux/highmem.h>
14  #include <linux/pagemap.h>	/* read_mapping_page */
15  #include <linux/slab.h>
16  #include <linux/sched.h>
17  #include <linux/sched/mm.h>
18  #include <linux/sched/coredump.h>
19  #include <linux/export.h>
20  #include <linux/rmap.h>		/* anon_vma_prepare */
21  #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
22  #include <linux/swap.h>		/* folio_free_swap */
23  #include <linux/ptrace.h>	/* user_enable_single_step */
24  #include <linux/kdebug.h>	/* notifier mechanism */
25  #include <linux/percpu-rwsem.h>
26  #include <linux/task_work.h>
27  #include <linux/shmem_fs.h>
28  #include <linux/khugepaged.h>
29  
30  #include <linux/uprobes.h>
31  
32  #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
33  #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
34  
35  static struct rb_root uprobes_tree = RB_ROOT;
36  /*
37   * allows us to skip the uprobe_mmap if there are no uprobe events active
38   * at this time.  Probably a fine grained per inode count is better?
39   */
40  #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
41  
42  static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
43  
44  #define UPROBES_HASH_SZ	13
45  /* serialize uprobe->pending_list */
46  static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
47  #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
48  
49  DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
50  
51  /* Have a copy of original instruction */
52  #define UPROBE_COPY_INSN	0
53  
54  struct uprobe {
55  	struct rb_node		rb_node;	/* node in the rb tree */
56  	refcount_t		ref;
57  	struct rw_semaphore	register_rwsem;
58  	struct rw_semaphore	consumer_rwsem;
59  	struct list_head	pending_list;
60  	struct uprobe_consumer	*consumers;
61  	struct inode		*inode;		/* Also hold a ref to inode */
62  	loff_t			offset;
63  	loff_t			ref_ctr_offset;
64  	unsigned long		flags;
65  
66  	/*
67  	 * The generic code assumes that it has two members of unknown type
68  	 * owned by the arch-specific code:
69  	 *
70  	 * 	insn -	copy_insn() saves the original instruction here for
71  	 *		arch_uprobe_analyze_insn().
72  	 *
73  	 *	ixol -	potentially modified instruction to execute out of
74  	 *		line, copied to xol_area by xol_get_insn_slot().
75  	 */
76  	struct arch_uprobe	arch;
77  };
78  
79  struct delayed_uprobe {
80  	struct list_head list;
81  	struct uprobe *uprobe;
82  	struct mm_struct *mm;
83  };
84  
85  static DEFINE_MUTEX(delayed_uprobe_lock);
86  static LIST_HEAD(delayed_uprobe_list);
87  
88  /*
89   * Execute out of line area: anonymous executable mapping installed
90   * by the probed task to execute the copy of the original instruction
91   * mangled by set_swbp().
92   *
93   * On a breakpoint hit, thread contests for a slot.  It frees the
94   * slot after singlestep. Currently a fixed number of slots are
95   * allocated.
96   */
97  struct xol_area {
98  	wait_queue_head_t 		wq;		/* if all slots are busy */
99  	atomic_t 			slot_count;	/* number of in-use slots */
100  	unsigned long 			*bitmap;	/* 0 = free slot */
101  
102  	struct vm_special_mapping	xol_mapping;
103  	struct page 			*pages[2];
104  	/*
105  	 * We keep the vma's vm_start rather than a pointer to the vma
106  	 * itself.  The probed process or a naughty kernel module could make
107  	 * the vma go away, and we must handle that reasonably gracefully.
108  	 */
109  	unsigned long 			vaddr;		/* Page(s) of instruction slots */
110  };
111  
112  /*
113   * valid_vma: Verify if the specified vma is an executable vma
114   * Relax restrictions while unregistering: vm_flags might have
115   * changed after breakpoint was inserted.
116   *	- is_register: indicates if we are in register context.
117   *	- Return 1 if the specified virtual address is in an
118   *	  executable vma.
119   */
valid_vma(struct vm_area_struct * vma,bool is_register)120  static bool valid_vma(struct vm_area_struct *vma, bool is_register)
121  {
122  	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
123  
124  	if (is_register)
125  		flags |= VM_WRITE;
126  
127  	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
128  }
129  
offset_to_vaddr(struct vm_area_struct * vma,loff_t offset)130  static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
131  {
132  	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
133  }
134  
vaddr_to_offset(struct vm_area_struct * vma,unsigned long vaddr)135  static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
136  {
137  	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
138  }
139  
140  /**
141   * __replace_page - replace page in vma by new page.
142   * based on replace_page in mm/ksm.c
143   *
144   * @vma:      vma that holds the pte pointing to page
145   * @addr:     address the old @page is mapped at
146   * @old_page: the page we are replacing by new_page
147   * @new_page: the modified page we replace page by
148   *
149   * If @new_page is NULL, only unmap @old_page.
150   *
151   * Returns 0 on success, negative error code otherwise.
152   */
__replace_page(struct vm_area_struct * vma,unsigned long addr,struct page * old_page,struct page * new_page)153  static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
154  				struct page *old_page, struct page *new_page)
155  {
156  	struct folio *old_folio = page_folio(old_page);
157  	struct folio *new_folio;
158  	struct mm_struct *mm = vma->vm_mm;
159  	DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0);
160  	int err;
161  	struct mmu_notifier_range range;
162  
163  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
164  				addr + PAGE_SIZE);
165  
166  	if (new_page) {
167  		new_folio = page_folio(new_page);
168  		err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL);
169  		if (err)
170  			return err;
171  	}
172  
173  	/* For folio_free_swap() below */
174  	folio_lock(old_folio);
175  
176  	mmu_notifier_invalidate_range_start(&range);
177  	err = -EAGAIN;
178  	if (!page_vma_mapped_walk(&pvmw))
179  		goto unlock;
180  	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
181  
182  	if (new_page) {
183  		folio_get(new_folio);
184  		page_add_new_anon_rmap(new_page, vma, addr);
185  		folio_add_lru_vma(new_folio, vma);
186  	} else
187  		/* no new page, just dec_mm_counter for old_page */
188  		dec_mm_counter(mm, MM_ANONPAGES);
189  
190  	if (!folio_test_anon(old_folio)) {
191  		dec_mm_counter(mm, mm_counter_file(old_page));
192  		inc_mm_counter(mm, MM_ANONPAGES);
193  	}
194  
195  	flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte)));
196  	ptep_clear_flush(vma, addr, pvmw.pte);
197  	if (new_page)
198  		set_pte_at_notify(mm, addr, pvmw.pte,
199  				  mk_pte(new_page, vma->vm_page_prot));
200  
201  	page_remove_rmap(old_page, vma, false);
202  	if (!folio_mapped(old_folio))
203  		folio_free_swap(old_folio);
204  	page_vma_mapped_walk_done(&pvmw);
205  	folio_put(old_folio);
206  
207  	err = 0;
208   unlock:
209  	mmu_notifier_invalidate_range_end(&range);
210  	folio_unlock(old_folio);
211  	return err;
212  }
213  
214  /**
215   * is_swbp_insn - check if instruction is breakpoint instruction.
216   * @insn: instruction to be checked.
217   * Default implementation of is_swbp_insn
218   * Returns true if @insn is a breakpoint instruction.
219   */
is_swbp_insn(uprobe_opcode_t * insn)220  bool __weak is_swbp_insn(uprobe_opcode_t *insn)
221  {
222  	return *insn == UPROBE_SWBP_INSN;
223  }
224  
225  /**
226   * is_trap_insn - check if instruction is breakpoint instruction.
227   * @insn: instruction to be checked.
228   * Default implementation of is_trap_insn
229   * Returns true if @insn is a breakpoint instruction.
230   *
231   * This function is needed for the case where an architecture has multiple
232   * trap instructions (like powerpc).
233   */
is_trap_insn(uprobe_opcode_t * insn)234  bool __weak is_trap_insn(uprobe_opcode_t *insn)
235  {
236  	return is_swbp_insn(insn);
237  }
238  
copy_from_page(struct page * page,unsigned long vaddr,void * dst,int len)239  static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
240  {
241  	void *kaddr = kmap_atomic(page);
242  	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
243  	kunmap_atomic(kaddr);
244  }
245  
copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)246  static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
247  {
248  	void *kaddr = kmap_atomic(page);
249  	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
250  	kunmap_atomic(kaddr);
251  }
252  
verify_opcode(struct page * page,unsigned long vaddr,uprobe_opcode_t * new_opcode)253  static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
254  {
255  	uprobe_opcode_t old_opcode;
256  	bool is_swbp;
257  
258  	/*
259  	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
260  	 * We do not check if it is any other 'trap variant' which could
261  	 * be conditional trap instruction such as the one powerpc supports.
262  	 *
263  	 * The logic is that we do not care if the underlying instruction
264  	 * is a trap variant; uprobes always wins over any other (gdb)
265  	 * breakpoint.
266  	 */
267  	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
268  	is_swbp = is_swbp_insn(&old_opcode);
269  
270  	if (is_swbp_insn(new_opcode)) {
271  		if (is_swbp)		/* register: already installed? */
272  			return 0;
273  	} else {
274  		if (!is_swbp)		/* unregister: was it changed by us? */
275  			return 0;
276  	}
277  
278  	return 1;
279  }
280  
281  static struct delayed_uprobe *
delayed_uprobe_check(struct uprobe * uprobe,struct mm_struct * mm)282  delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
283  {
284  	struct delayed_uprobe *du;
285  
286  	list_for_each_entry(du, &delayed_uprobe_list, list)
287  		if (du->uprobe == uprobe && du->mm == mm)
288  			return du;
289  	return NULL;
290  }
291  
delayed_uprobe_add(struct uprobe * uprobe,struct mm_struct * mm)292  static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
293  {
294  	struct delayed_uprobe *du;
295  
296  	if (delayed_uprobe_check(uprobe, mm))
297  		return 0;
298  
299  	du  = kzalloc(sizeof(*du), GFP_KERNEL);
300  	if (!du)
301  		return -ENOMEM;
302  
303  	du->uprobe = uprobe;
304  	du->mm = mm;
305  	list_add(&du->list, &delayed_uprobe_list);
306  	return 0;
307  }
308  
delayed_uprobe_delete(struct delayed_uprobe * du)309  static void delayed_uprobe_delete(struct delayed_uprobe *du)
310  {
311  	if (WARN_ON(!du))
312  		return;
313  	list_del(&du->list);
314  	kfree(du);
315  }
316  
delayed_uprobe_remove(struct uprobe * uprobe,struct mm_struct * mm)317  static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
318  {
319  	struct list_head *pos, *q;
320  	struct delayed_uprobe *du;
321  
322  	if (!uprobe && !mm)
323  		return;
324  
325  	list_for_each_safe(pos, q, &delayed_uprobe_list) {
326  		du = list_entry(pos, struct delayed_uprobe, list);
327  
328  		if (uprobe && du->uprobe != uprobe)
329  			continue;
330  		if (mm && du->mm != mm)
331  			continue;
332  
333  		delayed_uprobe_delete(du);
334  	}
335  }
336  
valid_ref_ctr_vma(struct uprobe * uprobe,struct vm_area_struct * vma)337  static bool valid_ref_ctr_vma(struct uprobe *uprobe,
338  			      struct vm_area_struct *vma)
339  {
340  	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
341  
342  	return uprobe->ref_ctr_offset &&
343  		vma->vm_file &&
344  		file_inode(vma->vm_file) == uprobe->inode &&
345  		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
346  		vma->vm_start <= vaddr &&
347  		vma->vm_end > vaddr;
348  }
349  
350  static struct vm_area_struct *
find_ref_ctr_vma(struct uprobe * uprobe,struct mm_struct * mm)351  find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
352  {
353  	VMA_ITERATOR(vmi, mm, 0);
354  	struct vm_area_struct *tmp;
355  
356  	for_each_vma(vmi, tmp)
357  		if (valid_ref_ctr_vma(uprobe, tmp))
358  			return tmp;
359  
360  	return NULL;
361  }
362  
363  static int
__update_ref_ctr(struct mm_struct * mm,unsigned long vaddr,short d)364  __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
365  {
366  	void *kaddr;
367  	struct page *page;
368  	int ret;
369  	short *ptr;
370  
371  	if (!vaddr || !d)
372  		return -EINVAL;
373  
374  	ret = get_user_pages_remote(mm, vaddr, 1,
375  				    FOLL_WRITE, &page, NULL);
376  	if (unlikely(ret <= 0)) {
377  		/*
378  		 * We are asking for 1 page. If get_user_pages_remote() fails,
379  		 * it may return 0, in that case we have to return error.
380  		 */
381  		return ret == 0 ? -EBUSY : ret;
382  	}
383  
384  	kaddr = kmap_atomic(page);
385  	ptr = kaddr + (vaddr & ~PAGE_MASK);
386  
387  	if (unlikely(*ptr + d < 0)) {
388  		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
389  			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
390  		ret = -EINVAL;
391  		goto out;
392  	}
393  
394  	*ptr += d;
395  	ret = 0;
396  out:
397  	kunmap_atomic(kaddr);
398  	put_page(page);
399  	return ret;
400  }
401  
update_ref_ctr_warn(struct uprobe * uprobe,struct mm_struct * mm,short d)402  static void update_ref_ctr_warn(struct uprobe *uprobe,
403  				struct mm_struct *mm, short d)
404  {
405  	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
406  		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
407  		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
408  		(unsigned long long) uprobe->offset,
409  		(unsigned long long) uprobe->ref_ctr_offset, mm);
410  }
411  
update_ref_ctr(struct uprobe * uprobe,struct mm_struct * mm,short d)412  static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
413  			  short d)
414  {
415  	struct vm_area_struct *rc_vma;
416  	unsigned long rc_vaddr;
417  	int ret = 0;
418  
419  	rc_vma = find_ref_ctr_vma(uprobe, mm);
420  
421  	if (rc_vma) {
422  		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
423  		ret = __update_ref_ctr(mm, rc_vaddr, d);
424  		if (ret)
425  			update_ref_ctr_warn(uprobe, mm, d);
426  
427  		if (d > 0)
428  			return ret;
429  	}
430  
431  	mutex_lock(&delayed_uprobe_lock);
432  	if (d > 0)
433  		ret = delayed_uprobe_add(uprobe, mm);
434  	else
435  		delayed_uprobe_remove(uprobe, mm);
436  	mutex_unlock(&delayed_uprobe_lock);
437  
438  	return ret;
439  }
440  
441  /*
442   * NOTE:
443   * Expect the breakpoint instruction to be the smallest size instruction for
444   * the architecture. If an arch has variable length instruction and the
445   * breakpoint instruction is not of the smallest length instruction
446   * supported by that architecture then we need to modify is_trap_at_addr and
447   * uprobe_write_opcode accordingly. This would never be a problem for archs
448   * that have fixed length instructions.
449   *
450   * uprobe_write_opcode - write the opcode at a given virtual address.
451   * @auprobe: arch specific probepoint information.
452   * @mm: the probed process address space.
453   * @vaddr: the virtual address to store the opcode.
454   * @opcode: opcode to be written at @vaddr.
455   *
456   * Called with mm->mmap_lock held for write.
457   * Return 0 (success) or a negative errno.
458   */
uprobe_write_opcode(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr,uprobe_opcode_t opcode)459  int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
460  			unsigned long vaddr, uprobe_opcode_t opcode)
461  {
462  	struct uprobe *uprobe;
463  	struct page *old_page, *new_page;
464  	struct vm_area_struct *vma;
465  	int ret, is_register, ref_ctr_updated = 0;
466  	bool orig_page_huge = false;
467  	unsigned int gup_flags = FOLL_FORCE;
468  
469  	is_register = is_swbp_insn(&opcode);
470  	uprobe = container_of(auprobe, struct uprobe, arch);
471  
472  retry:
473  	if (is_register)
474  		gup_flags |= FOLL_SPLIT_PMD;
475  	/* Read the page with vaddr into memory */
476  	old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma);
477  	if (IS_ERR_OR_NULL(old_page))
478  		return old_page ? PTR_ERR(old_page) : 0;
479  
480  	ret = verify_opcode(old_page, vaddr, &opcode);
481  	if (ret <= 0)
482  		goto put_old;
483  
484  	if (is_zero_page(old_page)) {
485  		ret = -EINVAL;
486  		goto put_old;
487  	}
488  
489  	if (WARN(!is_register && PageCompound(old_page),
490  		 "uprobe unregister should never work on compound page\n")) {
491  		ret = -EINVAL;
492  		goto put_old;
493  	}
494  
495  	/* We are going to replace instruction, update ref_ctr. */
496  	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
497  		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
498  		if (ret)
499  			goto put_old;
500  
501  		ref_ctr_updated = 1;
502  	}
503  
504  	ret = 0;
505  	if (!is_register && !PageAnon(old_page))
506  		goto put_old;
507  
508  	ret = anon_vma_prepare(vma);
509  	if (ret)
510  		goto put_old;
511  
512  	ret = -ENOMEM;
513  	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
514  	if (!new_page)
515  		goto put_old;
516  
517  	__SetPageUptodate(new_page);
518  	copy_highpage(new_page, old_page);
519  	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
520  
521  	if (!is_register) {
522  		struct page *orig_page;
523  		pgoff_t index;
524  
525  		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
526  
527  		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
528  		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
529  					  index);
530  
531  		if (orig_page) {
532  			if (PageUptodate(orig_page) &&
533  			    pages_identical(new_page, orig_page)) {
534  				/* let go new_page */
535  				put_page(new_page);
536  				new_page = NULL;
537  
538  				if (PageCompound(orig_page))
539  					orig_page_huge = true;
540  			}
541  			put_page(orig_page);
542  		}
543  	}
544  
545  	ret = __replace_page(vma, vaddr, old_page, new_page);
546  	if (new_page)
547  		put_page(new_page);
548  put_old:
549  	put_page(old_page);
550  
551  	if (unlikely(ret == -EAGAIN))
552  		goto retry;
553  
554  	/* Revert back reference counter if instruction update failed. */
555  	if (ret && is_register && ref_ctr_updated)
556  		update_ref_ctr(uprobe, mm, -1);
557  
558  	/* try collapse pmd for compound page */
559  	if (!ret && orig_page_huge)
560  		collapse_pte_mapped_thp(mm, vaddr, false);
561  
562  	return ret;
563  }
564  
565  /**
566   * set_swbp - store breakpoint at a given address.
567   * @auprobe: arch specific probepoint information.
568   * @mm: the probed process address space.
569   * @vaddr: the virtual address to insert the opcode.
570   *
571   * For mm @mm, store the breakpoint instruction at @vaddr.
572   * Return 0 (success) or a negative errno.
573   */
set_swbp(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)574  int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
575  {
576  	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
577  }
578  
579  /**
580   * set_orig_insn - Restore the original instruction.
581   * @mm: the probed process address space.
582   * @auprobe: arch specific probepoint information.
583   * @vaddr: the virtual address to insert the opcode.
584   *
585   * For mm @mm, restore the original opcode (opcode) at @vaddr.
586   * Return 0 (success) or a negative errno.
587   */
588  int __weak
set_orig_insn(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)589  set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
590  {
591  	return uprobe_write_opcode(auprobe, mm, vaddr,
592  			*(uprobe_opcode_t *)&auprobe->insn);
593  }
594  
get_uprobe(struct uprobe * uprobe)595  static struct uprobe *get_uprobe(struct uprobe *uprobe)
596  {
597  	refcount_inc(&uprobe->ref);
598  	return uprobe;
599  }
600  
put_uprobe(struct uprobe * uprobe)601  static void put_uprobe(struct uprobe *uprobe)
602  {
603  	if (refcount_dec_and_test(&uprobe->ref)) {
604  		/*
605  		 * If application munmap(exec_vma) before uprobe_unregister()
606  		 * gets called, we don't get a chance to remove uprobe from
607  		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
608  		 */
609  		mutex_lock(&delayed_uprobe_lock);
610  		delayed_uprobe_remove(uprobe, NULL);
611  		mutex_unlock(&delayed_uprobe_lock);
612  		kfree(uprobe);
613  	}
614  }
615  
616  static __always_inline
uprobe_cmp(const struct inode * l_inode,const loff_t l_offset,const struct uprobe * r)617  int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
618  	       const struct uprobe *r)
619  {
620  	if (l_inode < r->inode)
621  		return -1;
622  
623  	if (l_inode > r->inode)
624  		return 1;
625  
626  	if (l_offset < r->offset)
627  		return -1;
628  
629  	if (l_offset > r->offset)
630  		return 1;
631  
632  	return 0;
633  }
634  
635  #define __node_2_uprobe(node) \
636  	rb_entry((node), struct uprobe, rb_node)
637  
638  struct __uprobe_key {
639  	struct inode *inode;
640  	loff_t offset;
641  };
642  
__uprobe_cmp_key(const void * key,const struct rb_node * b)643  static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
644  {
645  	const struct __uprobe_key *a = key;
646  	return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
647  }
648  
__uprobe_cmp(struct rb_node * a,const struct rb_node * b)649  static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
650  {
651  	struct uprobe *u = __node_2_uprobe(a);
652  	return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
653  }
654  
__find_uprobe(struct inode * inode,loff_t offset)655  static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
656  {
657  	struct __uprobe_key key = {
658  		.inode = inode,
659  		.offset = offset,
660  	};
661  	struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
662  
663  	if (node)
664  		return get_uprobe(__node_2_uprobe(node));
665  
666  	return NULL;
667  }
668  
669  /*
670   * Find a uprobe corresponding to a given inode:offset
671   * Acquires uprobes_treelock
672   */
find_uprobe(struct inode * inode,loff_t offset)673  static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
674  {
675  	struct uprobe *uprobe;
676  
677  	spin_lock(&uprobes_treelock);
678  	uprobe = __find_uprobe(inode, offset);
679  	spin_unlock(&uprobes_treelock);
680  
681  	return uprobe;
682  }
683  
__insert_uprobe(struct uprobe * uprobe)684  static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
685  {
686  	struct rb_node *node;
687  
688  	node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
689  	if (node)
690  		return get_uprobe(__node_2_uprobe(node));
691  
692  	/* get access + creation ref */
693  	refcount_set(&uprobe->ref, 2);
694  	return NULL;
695  }
696  
697  /*
698   * Acquire uprobes_treelock.
699   * Matching uprobe already exists in rbtree;
700   *	increment (access refcount) and return the matching uprobe.
701   *
702   * No matching uprobe; insert the uprobe in rb_tree;
703   *	get a double refcount (access + creation) and return NULL.
704   */
insert_uprobe(struct uprobe * uprobe)705  static struct uprobe *insert_uprobe(struct uprobe *uprobe)
706  {
707  	struct uprobe *u;
708  
709  	spin_lock(&uprobes_treelock);
710  	u = __insert_uprobe(uprobe);
711  	spin_unlock(&uprobes_treelock);
712  
713  	return u;
714  }
715  
716  static void
ref_ctr_mismatch_warn(struct uprobe * cur_uprobe,struct uprobe * uprobe)717  ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
718  {
719  	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
720  		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
721  		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
722  		(unsigned long long) cur_uprobe->ref_ctr_offset,
723  		(unsigned long long) uprobe->ref_ctr_offset);
724  }
725  
alloc_uprobe(struct inode * inode,loff_t offset,loff_t ref_ctr_offset)726  static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
727  				   loff_t ref_ctr_offset)
728  {
729  	struct uprobe *uprobe, *cur_uprobe;
730  
731  	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
732  	if (!uprobe)
733  		return NULL;
734  
735  	uprobe->inode = inode;
736  	uprobe->offset = offset;
737  	uprobe->ref_ctr_offset = ref_ctr_offset;
738  	init_rwsem(&uprobe->register_rwsem);
739  	init_rwsem(&uprobe->consumer_rwsem);
740  
741  	/* add to uprobes_tree, sorted on inode:offset */
742  	cur_uprobe = insert_uprobe(uprobe);
743  	/* a uprobe exists for this inode:offset combination */
744  	if (cur_uprobe) {
745  		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
746  			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
747  			put_uprobe(cur_uprobe);
748  			kfree(uprobe);
749  			return ERR_PTR(-EINVAL);
750  		}
751  		kfree(uprobe);
752  		uprobe = cur_uprobe;
753  	}
754  
755  	return uprobe;
756  }
757  
consumer_add(struct uprobe * uprobe,struct uprobe_consumer * uc)758  static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
759  {
760  	down_write(&uprobe->consumer_rwsem);
761  	uc->next = uprobe->consumers;
762  	uprobe->consumers = uc;
763  	up_write(&uprobe->consumer_rwsem);
764  }
765  
766  /*
767   * For uprobe @uprobe, delete the consumer @uc.
768   * Return true if the @uc is deleted successfully
769   * or return false.
770   */
consumer_del(struct uprobe * uprobe,struct uprobe_consumer * uc)771  static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
772  {
773  	struct uprobe_consumer **con;
774  	bool ret = false;
775  
776  	down_write(&uprobe->consumer_rwsem);
777  	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
778  		if (*con == uc) {
779  			*con = uc->next;
780  			ret = true;
781  			break;
782  		}
783  	}
784  	up_write(&uprobe->consumer_rwsem);
785  
786  	return ret;
787  }
788  
__copy_insn(struct address_space * mapping,struct file * filp,void * insn,int nbytes,loff_t offset)789  static int __copy_insn(struct address_space *mapping, struct file *filp,
790  			void *insn, int nbytes, loff_t offset)
791  {
792  	struct page *page;
793  	/*
794  	 * Ensure that the page that has the original instruction is populated
795  	 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
796  	 * see uprobe_register().
797  	 */
798  	if (mapping->a_ops->read_folio)
799  		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
800  	else
801  		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
802  	if (IS_ERR(page))
803  		return PTR_ERR(page);
804  
805  	copy_from_page(page, offset, insn, nbytes);
806  	put_page(page);
807  
808  	return 0;
809  }
810  
copy_insn(struct uprobe * uprobe,struct file * filp)811  static int copy_insn(struct uprobe *uprobe, struct file *filp)
812  {
813  	struct address_space *mapping = uprobe->inode->i_mapping;
814  	loff_t offs = uprobe->offset;
815  	void *insn = &uprobe->arch.insn;
816  	int size = sizeof(uprobe->arch.insn);
817  	int len, err = -EIO;
818  
819  	/* Copy only available bytes, -EIO if nothing was read */
820  	do {
821  		if (offs >= i_size_read(uprobe->inode))
822  			break;
823  
824  		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
825  		err = __copy_insn(mapping, filp, insn, len, offs);
826  		if (err)
827  			break;
828  
829  		insn += len;
830  		offs += len;
831  		size -= len;
832  	} while (size);
833  
834  	return err;
835  }
836  
prepare_uprobe(struct uprobe * uprobe,struct file * file,struct mm_struct * mm,unsigned long vaddr)837  static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
838  				struct mm_struct *mm, unsigned long vaddr)
839  {
840  	int ret = 0;
841  
842  	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
843  		return ret;
844  
845  	/* TODO: move this into _register, until then we abuse this sem. */
846  	down_write(&uprobe->consumer_rwsem);
847  	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
848  		goto out;
849  
850  	ret = copy_insn(uprobe, file);
851  	if (ret)
852  		goto out;
853  
854  	ret = -ENOTSUPP;
855  	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
856  		goto out;
857  
858  	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
859  	if (ret)
860  		goto out;
861  
862  	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
863  	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
864  
865   out:
866  	up_write(&uprobe->consumer_rwsem);
867  
868  	return ret;
869  }
870  
consumer_filter(struct uprobe_consumer * uc,enum uprobe_filter_ctx ctx,struct mm_struct * mm)871  static inline bool consumer_filter(struct uprobe_consumer *uc,
872  				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
873  {
874  	return !uc->filter || uc->filter(uc, ctx, mm);
875  }
876  
filter_chain(struct uprobe * uprobe,enum uprobe_filter_ctx ctx,struct mm_struct * mm)877  static bool filter_chain(struct uprobe *uprobe,
878  			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
879  {
880  	struct uprobe_consumer *uc;
881  	bool ret = false;
882  
883  	down_read(&uprobe->consumer_rwsem);
884  	for (uc = uprobe->consumers; uc; uc = uc->next) {
885  		ret = consumer_filter(uc, ctx, mm);
886  		if (ret)
887  			break;
888  	}
889  	up_read(&uprobe->consumer_rwsem);
890  
891  	return ret;
892  }
893  
894  static int
install_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long vaddr)895  install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
896  			struct vm_area_struct *vma, unsigned long vaddr)
897  {
898  	bool first_uprobe;
899  	int ret;
900  
901  	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
902  	if (ret)
903  		return ret;
904  
905  	/*
906  	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
907  	 * the task can hit this breakpoint right after __replace_page().
908  	 */
909  	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
910  	if (first_uprobe)
911  		set_bit(MMF_HAS_UPROBES, &mm->flags);
912  
913  	ret = set_swbp(&uprobe->arch, mm, vaddr);
914  	if (!ret)
915  		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
916  	else if (first_uprobe)
917  		clear_bit(MMF_HAS_UPROBES, &mm->flags);
918  
919  	return ret;
920  }
921  
922  static int
remove_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,unsigned long vaddr)923  remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
924  {
925  	set_bit(MMF_RECALC_UPROBES, &mm->flags);
926  	return set_orig_insn(&uprobe->arch, mm, vaddr);
927  }
928  
uprobe_is_active(struct uprobe * uprobe)929  static inline bool uprobe_is_active(struct uprobe *uprobe)
930  {
931  	return !RB_EMPTY_NODE(&uprobe->rb_node);
932  }
933  /*
934   * There could be threads that have already hit the breakpoint. They
935   * will recheck the current insn and restart if find_uprobe() fails.
936   * See find_active_uprobe().
937   */
delete_uprobe(struct uprobe * uprobe)938  static void delete_uprobe(struct uprobe *uprobe)
939  {
940  	if (WARN_ON(!uprobe_is_active(uprobe)))
941  		return;
942  
943  	spin_lock(&uprobes_treelock);
944  	rb_erase(&uprobe->rb_node, &uprobes_tree);
945  	spin_unlock(&uprobes_treelock);
946  	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
947  	put_uprobe(uprobe);
948  }
949  
950  struct map_info {
951  	struct map_info *next;
952  	struct mm_struct *mm;
953  	unsigned long vaddr;
954  };
955  
free_map_info(struct map_info * info)956  static inline struct map_info *free_map_info(struct map_info *info)
957  {
958  	struct map_info *next = info->next;
959  	kfree(info);
960  	return next;
961  }
962  
963  static struct map_info *
build_map_info(struct address_space * mapping,loff_t offset,bool is_register)964  build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
965  {
966  	unsigned long pgoff = offset >> PAGE_SHIFT;
967  	struct vm_area_struct *vma;
968  	struct map_info *curr = NULL;
969  	struct map_info *prev = NULL;
970  	struct map_info *info;
971  	int more = 0;
972  
973   again:
974  	i_mmap_lock_read(mapping);
975  	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
976  		if (!valid_vma(vma, is_register))
977  			continue;
978  
979  		if (!prev && !more) {
980  			/*
981  			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
982  			 * reclaim. This is optimistic, no harm done if it fails.
983  			 */
984  			prev = kmalloc(sizeof(struct map_info),
985  					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
986  			if (prev)
987  				prev->next = NULL;
988  		}
989  		if (!prev) {
990  			more++;
991  			continue;
992  		}
993  
994  		if (!mmget_not_zero(vma->vm_mm))
995  			continue;
996  
997  		info = prev;
998  		prev = prev->next;
999  		info->next = curr;
1000  		curr = info;
1001  
1002  		info->mm = vma->vm_mm;
1003  		info->vaddr = offset_to_vaddr(vma, offset);
1004  	}
1005  	i_mmap_unlock_read(mapping);
1006  
1007  	if (!more)
1008  		goto out;
1009  
1010  	prev = curr;
1011  	while (curr) {
1012  		mmput(curr->mm);
1013  		curr = curr->next;
1014  	}
1015  
1016  	do {
1017  		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1018  		if (!info) {
1019  			curr = ERR_PTR(-ENOMEM);
1020  			goto out;
1021  		}
1022  		info->next = prev;
1023  		prev = info;
1024  	} while (--more);
1025  
1026  	goto again;
1027   out:
1028  	while (prev)
1029  		prev = free_map_info(prev);
1030  	return curr;
1031  }
1032  
1033  static int
register_for_each_vma(struct uprobe * uprobe,struct uprobe_consumer * new)1034  register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1035  {
1036  	bool is_register = !!new;
1037  	struct map_info *info;
1038  	int err = 0;
1039  
1040  	percpu_down_write(&dup_mmap_sem);
1041  	info = build_map_info(uprobe->inode->i_mapping,
1042  					uprobe->offset, is_register);
1043  	if (IS_ERR(info)) {
1044  		err = PTR_ERR(info);
1045  		goto out;
1046  	}
1047  
1048  	while (info) {
1049  		struct mm_struct *mm = info->mm;
1050  		struct vm_area_struct *vma;
1051  
1052  		if (err && is_register)
1053  			goto free;
1054  
1055  		mmap_write_lock(mm);
1056  		vma = find_vma(mm, info->vaddr);
1057  		if (!vma || !valid_vma(vma, is_register) ||
1058  		    file_inode(vma->vm_file) != uprobe->inode)
1059  			goto unlock;
1060  
1061  		if (vma->vm_start > info->vaddr ||
1062  		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1063  			goto unlock;
1064  
1065  		if (is_register) {
1066  			/* consult only the "caller", new consumer. */
1067  			if (consumer_filter(new,
1068  					UPROBE_FILTER_REGISTER, mm))
1069  				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1070  		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1071  			if (!filter_chain(uprobe,
1072  					UPROBE_FILTER_UNREGISTER, mm))
1073  				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1074  		}
1075  
1076   unlock:
1077  		mmap_write_unlock(mm);
1078   free:
1079  		mmput(mm);
1080  		info = free_map_info(info);
1081  	}
1082   out:
1083  	percpu_up_write(&dup_mmap_sem);
1084  	return err;
1085  }
1086  
1087  static void
__uprobe_unregister(struct uprobe * uprobe,struct uprobe_consumer * uc)1088  __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1089  {
1090  	int err;
1091  
1092  	if (WARN_ON(!consumer_del(uprobe, uc)))
1093  		return;
1094  
1095  	err = register_for_each_vma(uprobe, NULL);
1096  	/* TODO : cant unregister? schedule a worker thread */
1097  	if (!uprobe->consumers && !err)
1098  		delete_uprobe(uprobe);
1099  }
1100  
1101  /*
1102   * uprobe_unregister - unregister an already registered probe.
1103   * @inode: the file in which the probe has to be removed.
1104   * @offset: offset from the start of the file.
1105   * @uc: identify which probe if multiple probes are colocated.
1106   */
uprobe_unregister(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)1107  void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1108  {
1109  	struct uprobe *uprobe;
1110  
1111  	uprobe = find_uprobe(inode, offset);
1112  	if (WARN_ON(!uprobe))
1113  		return;
1114  
1115  	down_write(&uprobe->register_rwsem);
1116  	__uprobe_unregister(uprobe, uc);
1117  	up_write(&uprobe->register_rwsem);
1118  	put_uprobe(uprobe);
1119  }
1120  EXPORT_SYMBOL_GPL(uprobe_unregister);
1121  
1122  /*
1123   * __uprobe_register - register a probe
1124   * @inode: the file in which the probe has to be placed.
1125   * @offset: offset from the start of the file.
1126   * @uc: information on howto handle the probe..
1127   *
1128   * Apart from the access refcount, __uprobe_register() takes a creation
1129   * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1130   * inserted into the rbtree (i.e first consumer for a @inode:@offset
1131   * tuple).  Creation refcount stops uprobe_unregister from freeing the
1132   * @uprobe even before the register operation is complete. Creation
1133   * refcount is released when the last @uc for the @uprobe
1134   * unregisters. Caller of __uprobe_register() is required to keep @inode
1135   * (and the containing mount) referenced.
1136   *
1137   * Return errno if it cannot successully install probes
1138   * else return 0 (success)
1139   */
__uprobe_register(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1140  static int __uprobe_register(struct inode *inode, loff_t offset,
1141  			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1142  {
1143  	struct uprobe *uprobe;
1144  	int ret;
1145  
1146  	/* Uprobe must have at least one set consumer */
1147  	if (!uc->handler && !uc->ret_handler)
1148  		return -EINVAL;
1149  
1150  	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1151  	if (!inode->i_mapping->a_ops->read_folio &&
1152  	    !shmem_mapping(inode->i_mapping))
1153  		return -EIO;
1154  	/* Racy, just to catch the obvious mistakes */
1155  	if (offset > i_size_read(inode))
1156  		return -EINVAL;
1157  
1158  	/*
1159  	 * This ensures that copy_from_page(), copy_to_page() and
1160  	 * __update_ref_ctr() can't cross page boundary.
1161  	 */
1162  	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1163  		return -EINVAL;
1164  	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1165  		return -EINVAL;
1166  
1167   retry:
1168  	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1169  	if (!uprobe)
1170  		return -ENOMEM;
1171  	if (IS_ERR(uprobe))
1172  		return PTR_ERR(uprobe);
1173  
1174  	/*
1175  	 * We can race with uprobe_unregister()->delete_uprobe().
1176  	 * Check uprobe_is_active() and retry if it is false.
1177  	 */
1178  	down_write(&uprobe->register_rwsem);
1179  	ret = -EAGAIN;
1180  	if (likely(uprobe_is_active(uprobe))) {
1181  		consumer_add(uprobe, uc);
1182  		ret = register_for_each_vma(uprobe, uc);
1183  		if (ret)
1184  			__uprobe_unregister(uprobe, uc);
1185  	}
1186  	up_write(&uprobe->register_rwsem);
1187  	put_uprobe(uprobe);
1188  
1189  	if (unlikely(ret == -EAGAIN))
1190  		goto retry;
1191  	return ret;
1192  }
1193  
uprobe_register(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)1194  int uprobe_register(struct inode *inode, loff_t offset,
1195  		    struct uprobe_consumer *uc)
1196  {
1197  	return __uprobe_register(inode, offset, 0, uc);
1198  }
1199  EXPORT_SYMBOL_GPL(uprobe_register);
1200  
uprobe_register_refctr(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1201  int uprobe_register_refctr(struct inode *inode, loff_t offset,
1202  			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1203  {
1204  	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1205  }
1206  EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1207  
1208  /*
1209   * uprobe_apply - unregister an already registered probe.
1210   * @inode: the file in which the probe has to be removed.
1211   * @offset: offset from the start of the file.
1212   * @uc: consumer which wants to add more or remove some breakpoints
1213   * @add: add or remove the breakpoints
1214   */
uprobe_apply(struct inode * inode,loff_t offset,struct uprobe_consumer * uc,bool add)1215  int uprobe_apply(struct inode *inode, loff_t offset,
1216  			struct uprobe_consumer *uc, bool add)
1217  {
1218  	struct uprobe *uprobe;
1219  	struct uprobe_consumer *con;
1220  	int ret = -ENOENT;
1221  
1222  	uprobe = find_uprobe(inode, offset);
1223  	if (WARN_ON(!uprobe))
1224  		return ret;
1225  
1226  	down_write(&uprobe->register_rwsem);
1227  	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1228  		;
1229  	if (con)
1230  		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1231  	up_write(&uprobe->register_rwsem);
1232  	put_uprobe(uprobe);
1233  
1234  	return ret;
1235  }
1236  
unapply_uprobe(struct uprobe * uprobe,struct mm_struct * mm)1237  static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1238  {
1239  	VMA_ITERATOR(vmi, mm, 0);
1240  	struct vm_area_struct *vma;
1241  	int err = 0;
1242  
1243  	mmap_read_lock(mm);
1244  	for_each_vma(vmi, vma) {
1245  		unsigned long vaddr;
1246  		loff_t offset;
1247  
1248  		if (!valid_vma(vma, false) ||
1249  		    file_inode(vma->vm_file) != uprobe->inode)
1250  			continue;
1251  
1252  		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1253  		if (uprobe->offset <  offset ||
1254  		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1255  			continue;
1256  
1257  		vaddr = offset_to_vaddr(vma, uprobe->offset);
1258  		err |= remove_breakpoint(uprobe, mm, vaddr);
1259  	}
1260  	mmap_read_unlock(mm);
1261  
1262  	return err;
1263  }
1264  
1265  static struct rb_node *
find_node_in_range(struct inode * inode,loff_t min,loff_t max)1266  find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1267  {
1268  	struct rb_node *n = uprobes_tree.rb_node;
1269  
1270  	while (n) {
1271  		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1272  
1273  		if (inode < u->inode) {
1274  			n = n->rb_left;
1275  		} else if (inode > u->inode) {
1276  			n = n->rb_right;
1277  		} else {
1278  			if (max < u->offset)
1279  				n = n->rb_left;
1280  			else if (min > u->offset)
1281  				n = n->rb_right;
1282  			else
1283  				break;
1284  		}
1285  	}
1286  
1287  	return n;
1288  }
1289  
1290  /*
1291   * For a given range in vma, build a list of probes that need to be inserted.
1292   */
build_probe_list(struct inode * inode,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * head)1293  static void build_probe_list(struct inode *inode,
1294  				struct vm_area_struct *vma,
1295  				unsigned long start, unsigned long end,
1296  				struct list_head *head)
1297  {
1298  	loff_t min, max;
1299  	struct rb_node *n, *t;
1300  	struct uprobe *u;
1301  
1302  	INIT_LIST_HEAD(head);
1303  	min = vaddr_to_offset(vma, start);
1304  	max = min + (end - start) - 1;
1305  
1306  	spin_lock(&uprobes_treelock);
1307  	n = find_node_in_range(inode, min, max);
1308  	if (n) {
1309  		for (t = n; t; t = rb_prev(t)) {
1310  			u = rb_entry(t, struct uprobe, rb_node);
1311  			if (u->inode != inode || u->offset < min)
1312  				break;
1313  			list_add(&u->pending_list, head);
1314  			get_uprobe(u);
1315  		}
1316  		for (t = n; (t = rb_next(t)); ) {
1317  			u = rb_entry(t, struct uprobe, rb_node);
1318  			if (u->inode != inode || u->offset > max)
1319  				break;
1320  			list_add(&u->pending_list, head);
1321  			get_uprobe(u);
1322  		}
1323  	}
1324  	spin_unlock(&uprobes_treelock);
1325  }
1326  
1327  /* @vma contains reference counter, not the probed instruction. */
delayed_ref_ctr_inc(struct vm_area_struct * vma)1328  static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1329  {
1330  	struct list_head *pos, *q;
1331  	struct delayed_uprobe *du;
1332  	unsigned long vaddr;
1333  	int ret = 0, err = 0;
1334  
1335  	mutex_lock(&delayed_uprobe_lock);
1336  	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1337  		du = list_entry(pos, struct delayed_uprobe, list);
1338  
1339  		if (du->mm != vma->vm_mm ||
1340  		    !valid_ref_ctr_vma(du->uprobe, vma))
1341  			continue;
1342  
1343  		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1344  		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1345  		if (ret) {
1346  			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1347  			if (!err)
1348  				err = ret;
1349  		}
1350  		delayed_uprobe_delete(du);
1351  	}
1352  	mutex_unlock(&delayed_uprobe_lock);
1353  	return err;
1354  }
1355  
1356  /*
1357   * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1358   *
1359   * Currently we ignore all errors and always return 0, the callers
1360   * can't handle the failure anyway.
1361   */
uprobe_mmap(struct vm_area_struct * vma)1362  int uprobe_mmap(struct vm_area_struct *vma)
1363  {
1364  	struct list_head tmp_list;
1365  	struct uprobe *uprobe, *u;
1366  	struct inode *inode;
1367  
1368  	if (no_uprobe_events())
1369  		return 0;
1370  
1371  	if (vma->vm_file &&
1372  	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1373  	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1374  		delayed_ref_ctr_inc(vma);
1375  
1376  	if (!valid_vma(vma, true))
1377  		return 0;
1378  
1379  	inode = file_inode(vma->vm_file);
1380  	if (!inode)
1381  		return 0;
1382  
1383  	mutex_lock(uprobes_mmap_hash(inode));
1384  	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1385  	/*
1386  	 * We can race with uprobe_unregister(), this uprobe can be already
1387  	 * removed. But in this case filter_chain() must return false, all
1388  	 * consumers have gone away.
1389  	 */
1390  	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1391  		if (!fatal_signal_pending(current) &&
1392  		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1393  			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1394  			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1395  		}
1396  		put_uprobe(uprobe);
1397  	}
1398  	mutex_unlock(uprobes_mmap_hash(inode));
1399  
1400  	return 0;
1401  }
1402  
1403  static bool
vma_has_uprobes(struct vm_area_struct * vma,unsigned long start,unsigned long end)1404  vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1405  {
1406  	loff_t min, max;
1407  	struct inode *inode;
1408  	struct rb_node *n;
1409  
1410  	inode = file_inode(vma->vm_file);
1411  
1412  	min = vaddr_to_offset(vma, start);
1413  	max = min + (end - start) - 1;
1414  
1415  	spin_lock(&uprobes_treelock);
1416  	n = find_node_in_range(inode, min, max);
1417  	spin_unlock(&uprobes_treelock);
1418  
1419  	return !!n;
1420  }
1421  
1422  /*
1423   * Called in context of a munmap of a vma.
1424   */
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1425  void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1426  {
1427  	if (no_uprobe_events() || !valid_vma(vma, false))
1428  		return;
1429  
1430  	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1431  		return;
1432  
1433  	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1434  	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1435  		return;
1436  
1437  	if (vma_has_uprobes(vma, start, end))
1438  		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1439  }
1440  
1441  /* Slot allocation for XOL */
xol_add_vma(struct mm_struct * mm,struct xol_area * area)1442  static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1443  {
1444  	struct vm_area_struct *vma;
1445  	int ret;
1446  
1447  	if (mmap_write_lock_killable(mm))
1448  		return -EINTR;
1449  
1450  	if (mm->uprobes_state.xol_area) {
1451  		ret = -EALREADY;
1452  		goto fail;
1453  	}
1454  
1455  	if (!area->vaddr) {
1456  		/* Try to map as high as possible, this is only a hint. */
1457  		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1458  						PAGE_SIZE, 0, 0);
1459  		if (IS_ERR_VALUE(area->vaddr)) {
1460  			ret = area->vaddr;
1461  			goto fail;
1462  		}
1463  	}
1464  
1465  	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1466  				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1467  				&area->xol_mapping);
1468  	if (IS_ERR(vma)) {
1469  		ret = PTR_ERR(vma);
1470  		goto fail;
1471  	}
1472  
1473  	ret = 0;
1474  	/* pairs with get_xol_area() */
1475  	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1476   fail:
1477  	mmap_write_unlock(mm);
1478  
1479  	return ret;
1480  }
1481  
__create_xol_area(unsigned long vaddr)1482  static struct xol_area *__create_xol_area(unsigned long vaddr)
1483  {
1484  	struct mm_struct *mm = current->mm;
1485  	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1486  	struct xol_area *area;
1487  
1488  	area = kzalloc(sizeof(*area), GFP_KERNEL);
1489  	if (unlikely(!area))
1490  		goto out;
1491  
1492  	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1493  			       GFP_KERNEL);
1494  	if (!area->bitmap)
1495  		goto free_area;
1496  
1497  	area->xol_mapping.name = "[uprobes]";
1498  	area->xol_mapping.pages = area->pages;
1499  	area->pages[0] = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1500  	if (!area->pages[0])
1501  		goto free_bitmap;
1502  	area->pages[1] = NULL;
1503  
1504  	area->vaddr = vaddr;
1505  	init_waitqueue_head(&area->wq);
1506  	/* Reserve the 1st slot for get_trampoline_vaddr() */
1507  	set_bit(0, area->bitmap);
1508  	atomic_set(&area->slot_count, 1);
1509  	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1510  
1511  	if (!xol_add_vma(mm, area))
1512  		return area;
1513  
1514  	__free_page(area->pages[0]);
1515   free_bitmap:
1516  	kfree(area->bitmap);
1517   free_area:
1518  	kfree(area);
1519   out:
1520  	return NULL;
1521  }
1522  
1523  /*
1524   * get_xol_area - Allocate process's xol_area if necessary.
1525   * This area will be used for storing instructions for execution out of line.
1526   *
1527   * Returns the allocated area or NULL.
1528   */
get_xol_area(void)1529  static struct xol_area *get_xol_area(void)
1530  {
1531  	struct mm_struct *mm = current->mm;
1532  	struct xol_area *area;
1533  
1534  	if (!mm->uprobes_state.xol_area)
1535  		__create_xol_area(0);
1536  
1537  	/* Pairs with xol_add_vma() smp_store_release() */
1538  	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1539  	return area;
1540  }
1541  
1542  /*
1543   * uprobe_clear_state - Free the area allocated for slots.
1544   */
uprobe_clear_state(struct mm_struct * mm)1545  void uprobe_clear_state(struct mm_struct *mm)
1546  {
1547  	struct xol_area *area = mm->uprobes_state.xol_area;
1548  
1549  	mutex_lock(&delayed_uprobe_lock);
1550  	delayed_uprobe_remove(NULL, mm);
1551  	mutex_unlock(&delayed_uprobe_lock);
1552  
1553  	if (!area)
1554  		return;
1555  
1556  	put_page(area->pages[0]);
1557  	kfree(area->bitmap);
1558  	kfree(area);
1559  }
1560  
uprobe_start_dup_mmap(void)1561  void uprobe_start_dup_mmap(void)
1562  {
1563  	percpu_down_read(&dup_mmap_sem);
1564  }
1565  
uprobe_end_dup_mmap(void)1566  void uprobe_end_dup_mmap(void)
1567  {
1568  	percpu_up_read(&dup_mmap_sem);
1569  }
1570  
uprobe_dup_mmap(struct mm_struct * oldmm,struct mm_struct * newmm)1571  void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1572  {
1573  	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1574  		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1575  		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1576  		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1577  	}
1578  }
1579  
1580  /*
1581   *  - search for a free slot.
1582   */
xol_take_insn_slot(struct xol_area * area)1583  static unsigned long xol_take_insn_slot(struct xol_area *area)
1584  {
1585  	unsigned long slot_addr;
1586  	int slot_nr;
1587  
1588  	do {
1589  		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1590  		if (slot_nr < UINSNS_PER_PAGE) {
1591  			if (!test_and_set_bit(slot_nr, area->bitmap))
1592  				break;
1593  
1594  			slot_nr = UINSNS_PER_PAGE;
1595  			continue;
1596  		}
1597  		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1598  	} while (slot_nr >= UINSNS_PER_PAGE);
1599  
1600  	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1601  	atomic_inc(&area->slot_count);
1602  
1603  	return slot_addr;
1604  }
1605  
1606  /*
1607   * xol_get_insn_slot - allocate a slot for xol.
1608   * Returns the allocated slot address or 0.
1609   */
xol_get_insn_slot(struct uprobe * uprobe)1610  static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1611  {
1612  	struct xol_area *area;
1613  	unsigned long xol_vaddr;
1614  
1615  	area = get_xol_area();
1616  	if (!area)
1617  		return 0;
1618  
1619  	xol_vaddr = xol_take_insn_slot(area);
1620  	if (unlikely(!xol_vaddr))
1621  		return 0;
1622  
1623  	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1624  			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1625  
1626  	return xol_vaddr;
1627  }
1628  
1629  /*
1630   * xol_free_insn_slot - If slot was earlier allocated by
1631   * @xol_get_insn_slot(), make the slot available for
1632   * subsequent requests.
1633   */
xol_free_insn_slot(struct task_struct * tsk)1634  static void xol_free_insn_slot(struct task_struct *tsk)
1635  {
1636  	struct xol_area *area;
1637  	unsigned long vma_end;
1638  	unsigned long slot_addr;
1639  
1640  	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1641  		return;
1642  
1643  	slot_addr = tsk->utask->xol_vaddr;
1644  	if (unlikely(!slot_addr))
1645  		return;
1646  
1647  	area = tsk->mm->uprobes_state.xol_area;
1648  	vma_end = area->vaddr + PAGE_SIZE;
1649  	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1650  		unsigned long offset;
1651  		int slot_nr;
1652  
1653  		offset = slot_addr - area->vaddr;
1654  		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1655  		if (slot_nr >= UINSNS_PER_PAGE)
1656  			return;
1657  
1658  		clear_bit(slot_nr, area->bitmap);
1659  		atomic_dec(&area->slot_count);
1660  		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1661  		if (waitqueue_active(&area->wq))
1662  			wake_up(&area->wq);
1663  
1664  		tsk->utask->xol_vaddr = 0;
1665  	}
1666  }
1667  
arch_uprobe_copy_ixol(struct page * page,unsigned long vaddr,void * src,unsigned long len)1668  void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1669  				  void *src, unsigned long len)
1670  {
1671  	/* Initialize the slot */
1672  	copy_to_page(page, vaddr, src, len);
1673  
1674  	/*
1675  	 * We probably need flush_icache_user_page() but it needs vma.
1676  	 * This should work on most of architectures by default. If
1677  	 * architecture needs to do something different it can define
1678  	 * its own version of the function.
1679  	 */
1680  	flush_dcache_page(page);
1681  }
1682  
1683  /**
1684   * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1685   * @regs: Reflects the saved state of the task after it has hit a breakpoint
1686   * instruction.
1687   * Return the address of the breakpoint instruction.
1688   */
uprobe_get_swbp_addr(struct pt_regs * regs)1689  unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1690  {
1691  	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1692  }
1693  
uprobe_get_trap_addr(struct pt_regs * regs)1694  unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1695  {
1696  	struct uprobe_task *utask = current->utask;
1697  
1698  	if (unlikely(utask && utask->active_uprobe))
1699  		return utask->vaddr;
1700  
1701  	return instruction_pointer(regs);
1702  }
1703  
free_ret_instance(struct return_instance * ri)1704  static struct return_instance *free_ret_instance(struct return_instance *ri)
1705  {
1706  	struct return_instance *next = ri->next;
1707  	put_uprobe(ri->uprobe);
1708  	kfree(ri);
1709  	return next;
1710  }
1711  
1712  /*
1713   * Called with no locks held.
1714   * Called in context of an exiting or an exec-ing thread.
1715   */
uprobe_free_utask(struct task_struct * t)1716  void uprobe_free_utask(struct task_struct *t)
1717  {
1718  	struct uprobe_task *utask = t->utask;
1719  	struct return_instance *ri;
1720  
1721  	if (!utask)
1722  		return;
1723  
1724  	t->utask = NULL;
1725  	if (utask->active_uprobe)
1726  		put_uprobe(utask->active_uprobe);
1727  
1728  	ri = utask->return_instances;
1729  	while (ri)
1730  		ri = free_ret_instance(ri);
1731  
1732  	xol_free_insn_slot(t);
1733  	kfree(utask);
1734  }
1735  
1736  /*
1737   * Allocate a uprobe_task object for the task if necessary.
1738   * Called when the thread hits a breakpoint.
1739   *
1740   * Returns:
1741   * - pointer to new uprobe_task on success
1742   * - NULL otherwise
1743   */
get_utask(void)1744  static struct uprobe_task *get_utask(void)
1745  {
1746  	if (!current->utask)
1747  		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1748  	return current->utask;
1749  }
1750  
dup_utask(struct task_struct * t,struct uprobe_task * o_utask)1751  static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1752  {
1753  	struct uprobe_task *n_utask;
1754  	struct return_instance **p, *o, *n;
1755  
1756  	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1757  	if (!n_utask)
1758  		return -ENOMEM;
1759  	t->utask = n_utask;
1760  
1761  	p = &n_utask->return_instances;
1762  	for (o = o_utask->return_instances; o; o = o->next) {
1763  		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1764  		if (!n)
1765  			return -ENOMEM;
1766  
1767  		*n = *o;
1768  		get_uprobe(n->uprobe);
1769  		n->next = NULL;
1770  
1771  		*p = n;
1772  		p = &n->next;
1773  		n_utask->depth++;
1774  	}
1775  
1776  	return 0;
1777  }
1778  
uprobe_warn(struct task_struct * t,const char * msg)1779  static void uprobe_warn(struct task_struct *t, const char *msg)
1780  {
1781  	pr_warn("uprobe: %s:%d failed to %s\n",
1782  			current->comm, current->pid, msg);
1783  }
1784  
dup_xol_work(struct callback_head * work)1785  static void dup_xol_work(struct callback_head *work)
1786  {
1787  	if (current->flags & PF_EXITING)
1788  		return;
1789  
1790  	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1791  			!fatal_signal_pending(current))
1792  		uprobe_warn(current, "dup xol area");
1793  }
1794  
1795  /*
1796   * Called in context of a new clone/fork from copy_process.
1797   */
uprobe_copy_process(struct task_struct * t,unsigned long flags)1798  void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1799  {
1800  	struct uprobe_task *utask = current->utask;
1801  	struct mm_struct *mm = current->mm;
1802  	struct xol_area *area;
1803  
1804  	t->utask = NULL;
1805  
1806  	if (!utask || !utask->return_instances)
1807  		return;
1808  
1809  	if (mm == t->mm && !(flags & CLONE_VFORK))
1810  		return;
1811  
1812  	if (dup_utask(t, utask))
1813  		return uprobe_warn(t, "dup ret instances");
1814  
1815  	/* The task can fork() after dup_xol_work() fails */
1816  	area = mm->uprobes_state.xol_area;
1817  	if (!area)
1818  		return uprobe_warn(t, "dup xol area");
1819  
1820  	if (mm == t->mm)
1821  		return;
1822  
1823  	t->utask->dup_xol_addr = area->vaddr;
1824  	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1825  	task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1826  }
1827  
1828  /*
1829   * Current area->vaddr notion assume the trampoline address is always
1830   * equal area->vaddr.
1831   *
1832   * Returns -1 in case the xol_area is not allocated.
1833   */
get_trampoline_vaddr(void)1834  static unsigned long get_trampoline_vaddr(void)
1835  {
1836  	struct xol_area *area;
1837  	unsigned long trampoline_vaddr = -1;
1838  
1839  	/* Pairs with xol_add_vma() smp_store_release() */
1840  	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1841  	if (area)
1842  		trampoline_vaddr = area->vaddr;
1843  
1844  	return trampoline_vaddr;
1845  }
1846  
cleanup_return_instances(struct uprobe_task * utask,bool chained,struct pt_regs * regs)1847  static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1848  					struct pt_regs *regs)
1849  {
1850  	struct return_instance *ri = utask->return_instances;
1851  	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1852  
1853  	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1854  		ri = free_ret_instance(ri);
1855  		utask->depth--;
1856  	}
1857  	utask->return_instances = ri;
1858  }
1859  
prepare_uretprobe(struct uprobe * uprobe,struct pt_regs * regs)1860  static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1861  {
1862  	struct return_instance *ri;
1863  	struct uprobe_task *utask;
1864  	unsigned long orig_ret_vaddr, trampoline_vaddr;
1865  	bool chained;
1866  
1867  	if (!get_xol_area())
1868  		return;
1869  
1870  	utask = get_utask();
1871  	if (!utask)
1872  		return;
1873  
1874  	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1875  		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1876  				" nestedness limit pid/tgid=%d/%d\n",
1877  				current->pid, current->tgid);
1878  		return;
1879  	}
1880  
1881  	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1882  	if (!ri)
1883  		return;
1884  
1885  	trampoline_vaddr = get_trampoline_vaddr();
1886  	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1887  	if (orig_ret_vaddr == -1)
1888  		goto fail;
1889  
1890  	/* drop the entries invalidated by longjmp() */
1891  	chained = (orig_ret_vaddr == trampoline_vaddr);
1892  	cleanup_return_instances(utask, chained, regs);
1893  
1894  	/*
1895  	 * We don't want to keep trampoline address in stack, rather keep the
1896  	 * original return address of first caller thru all the consequent
1897  	 * instances. This also makes breakpoint unwrapping easier.
1898  	 */
1899  	if (chained) {
1900  		if (!utask->return_instances) {
1901  			/*
1902  			 * This situation is not possible. Likely we have an
1903  			 * attack from user-space.
1904  			 */
1905  			uprobe_warn(current, "handle tail call");
1906  			goto fail;
1907  		}
1908  		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1909  	}
1910  
1911  	ri->uprobe = get_uprobe(uprobe);
1912  	ri->func = instruction_pointer(regs);
1913  	ri->stack = user_stack_pointer(regs);
1914  	ri->orig_ret_vaddr = orig_ret_vaddr;
1915  	ri->chained = chained;
1916  
1917  	utask->depth++;
1918  	ri->next = utask->return_instances;
1919  	utask->return_instances = ri;
1920  
1921  	return;
1922   fail:
1923  	kfree(ri);
1924  }
1925  
1926  /* Prepare to single-step probed instruction out of line. */
1927  static int
pre_ssout(struct uprobe * uprobe,struct pt_regs * regs,unsigned long bp_vaddr)1928  pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1929  {
1930  	struct uprobe_task *utask;
1931  	unsigned long xol_vaddr;
1932  	int err;
1933  
1934  	utask = get_utask();
1935  	if (!utask)
1936  		return -ENOMEM;
1937  
1938  	xol_vaddr = xol_get_insn_slot(uprobe);
1939  	if (!xol_vaddr)
1940  		return -ENOMEM;
1941  
1942  	utask->xol_vaddr = xol_vaddr;
1943  	utask->vaddr = bp_vaddr;
1944  
1945  	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1946  	if (unlikely(err)) {
1947  		xol_free_insn_slot(current);
1948  		return err;
1949  	}
1950  
1951  	utask->active_uprobe = uprobe;
1952  	utask->state = UTASK_SSTEP;
1953  	return 0;
1954  }
1955  
1956  /*
1957   * If we are singlestepping, then ensure this thread is not connected to
1958   * non-fatal signals until completion of singlestep.  When xol insn itself
1959   * triggers the signal,  restart the original insn even if the task is
1960   * already SIGKILL'ed (since coredump should report the correct ip).  This
1961   * is even more important if the task has a handler for SIGSEGV/etc, The
1962   * _same_ instruction should be repeated again after return from the signal
1963   * handler, and SSTEP can never finish in this case.
1964   */
uprobe_deny_signal(void)1965  bool uprobe_deny_signal(void)
1966  {
1967  	struct task_struct *t = current;
1968  	struct uprobe_task *utask = t->utask;
1969  
1970  	if (likely(!utask || !utask->active_uprobe))
1971  		return false;
1972  
1973  	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1974  
1975  	if (task_sigpending(t)) {
1976  		spin_lock_irq(&t->sighand->siglock);
1977  		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1978  		spin_unlock_irq(&t->sighand->siglock);
1979  
1980  		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1981  			utask->state = UTASK_SSTEP_TRAPPED;
1982  			set_tsk_thread_flag(t, TIF_UPROBE);
1983  		}
1984  	}
1985  
1986  	return true;
1987  }
1988  
mmf_recalc_uprobes(struct mm_struct * mm)1989  static void mmf_recalc_uprobes(struct mm_struct *mm)
1990  {
1991  	VMA_ITERATOR(vmi, mm, 0);
1992  	struct vm_area_struct *vma;
1993  
1994  	for_each_vma(vmi, vma) {
1995  		if (!valid_vma(vma, false))
1996  			continue;
1997  		/*
1998  		 * This is not strictly accurate, we can race with
1999  		 * uprobe_unregister() and see the already removed
2000  		 * uprobe if delete_uprobe() was not yet called.
2001  		 * Or this uprobe can be filtered out.
2002  		 */
2003  		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2004  			return;
2005  	}
2006  
2007  	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2008  }
2009  
is_trap_at_addr(struct mm_struct * mm,unsigned long vaddr)2010  static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2011  {
2012  	struct page *page;
2013  	uprobe_opcode_t opcode;
2014  	int result;
2015  
2016  	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2017  		return -EINVAL;
2018  
2019  	pagefault_disable();
2020  	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2021  	pagefault_enable();
2022  
2023  	if (likely(result == 0))
2024  		goto out;
2025  
2026  	/*
2027  	 * The NULL 'tsk' here ensures that any faults that occur here
2028  	 * will not be accounted to the task.  'mm' *is* current->mm,
2029  	 * but we treat this as a 'remote' access since it is
2030  	 * essentially a kernel access to the memory.
2031  	 */
2032  	result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page, NULL);
2033  	if (result < 0)
2034  		return result;
2035  
2036  	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2037  	put_page(page);
2038   out:
2039  	/* This needs to return true for any variant of the trap insn */
2040  	return is_trap_insn(&opcode);
2041  }
2042  
find_active_uprobe(unsigned long bp_vaddr,int * is_swbp)2043  static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2044  {
2045  	struct mm_struct *mm = current->mm;
2046  	struct uprobe *uprobe = NULL;
2047  	struct vm_area_struct *vma;
2048  
2049  	mmap_read_lock(mm);
2050  	vma = vma_lookup(mm, bp_vaddr);
2051  	if (vma) {
2052  		if (valid_vma(vma, false)) {
2053  			struct inode *inode = file_inode(vma->vm_file);
2054  			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2055  
2056  			uprobe = find_uprobe(inode, offset);
2057  		}
2058  
2059  		if (!uprobe)
2060  			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2061  	} else {
2062  		*is_swbp = -EFAULT;
2063  	}
2064  
2065  	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2066  		mmf_recalc_uprobes(mm);
2067  	mmap_read_unlock(mm);
2068  
2069  	return uprobe;
2070  }
2071  
handler_chain(struct uprobe * uprobe,struct pt_regs * regs)2072  static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2073  {
2074  	struct uprobe_consumer *uc;
2075  	int remove = UPROBE_HANDLER_REMOVE;
2076  	bool need_prep = false; /* prepare return uprobe, when needed */
2077  
2078  	down_read(&uprobe->register_rwsem);
2079  	current->utask->auprobe = &uprobe->arch;
2080  	for (uc = uprobe->consumers; uc; uc = uc->next) {
2081  		int rc = 0;
2082  
2083  		if (uc->handler) {
2084  			rc = uc->handler(uc, regs);
2085  			WARN(rc & ~UPROBE_HANDLER_MASK,
2086  				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2087  		}
2088  
2089  		if (uc->ret_handler)
2090  			need_prep = true;
2091  
2092  		remove &= rc;
2093  	}
2094  	current->utask->auprobe = NULL;
2095  
2096  	if (need_prep && !remove)
2097  		prepare_uretprobe(uprobe, regs); /* put bp at return */
2098  
2099  	if (remove && uprobe->consumers) {
2100  		WARN_ON(!uprobe_is_active(uprobe));
2101  		unapply_uprobe(uprobe, current->mm);
2102  	}
2103  	up_read(&uprobe->register_rwsem);
2104  }
2105  
2106  static void
handle_uretprobe_chain(struct return_instance * ri,struct pt_regs * regs)2107  handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2108  {
2109  	struct uprobe *uprobe = ri->uprobe;
2110  	struct uprobe_consumer *uc;
2111  
2112  	down_read(&uprobe->register_rwsem);
2113  	for (uc = uprobe->consumers; uc; uc = uc->next) {
2114  		if (uc->ret_handler)
2115  			uc->ret_handler(uc, ri->func, regs);
2116  	}
2117  	up_read(&uprobe->register_rwsem);
2118  }
2119  
find_next_ret_chain(struct return_instance * ri)2120  static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2121  {
2122  	bool chained;
2123  
2124  	do {
2125  		chained = ri->chained;
2126  		ri = ri->next;	/* can't be NULL if chained */
2127  	} while (chained);
2128  
2129  	return ri;
2130  }
2131  
handle_trampoline(struct pt_regs * regs)2132  static void handle_trampoline(struct pt_regs *regs)
2133  {
2134  	struct uprobe_task *utask;
2135  	struct return_instance *ri, *next;
2136  	bool valid;
2137  
2138  	utask = current->utask;
2139  	if (!utask)
2140  		goto sigill;
2141  
2142  	ri = utask->return_instances;
2143  	if (!ri)
2144  		goto sigill;
2145  
2146  	do {
2147  		/*
2148  		 * We should throw out the frames invalidated by longjmp().
2149  		 * If this chain is valid, then the next one should be alive
2150  		 * or NULL; the latter case means that nobody but ri->func
2151  		 * could hit this trampoline on return. TODO: sigaltstack().
2152  		 */
2153  		next = find_next_ret_chain(ri);
2154  		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2155  
2156  		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2157  		do {
2158  			if (valid)
2159  				handle_uretprobe_chain(ri, regs);
2160  			ri = free_ret_instance(ri);
2161  			utask->depth--;
2162  		} while (ri != next);
2163  	} while (!valid);
2164  
2165  	utask->return_instances = ri;
2166  	return;
2167  
2168   sigill:
2169  	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2170  	force_sig(SIGILL);
2171  
2172  }
2173  
arch_uprobe_ignore(struct arch_uprobe * aup,struct pt_regs * regs)2174  bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2175  {
2176  	return false;
2177  }
2178  
arch_uretprobe_is_alive(struct return_instance * ret,enum rp_check ctx,struct pt_regs * regs)2179  bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2180  					struct pt_regs *regs)
2181  {
2182  	return true;
2183  }
2184  
2185  /*
2186   * Run handler and ask thread to singlestep.
2187   * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2188   */
handle_swbp(struct pt_regs * regs)2189  static void handle_swbp(struct pt_regs *regs)
2190  {
2191  	struct uprobe *uprobe;
2192  	unsigned long bp_vaddr;
2193  	int is_swbp;
2194  
2195  	bp_vaddr = uprobe_get_swbp_addr(regs);
2196  	if (bp_vaddr == get_trampoline_vaddr())
2197  		return handle_trampoline(regs);
2198  
2199  	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2200  	if (!uprobe) {
2201  		if (is_swbp > 0) {
2202  			/* No matching uprobe; signal SIGTRAP. */
2203  			force_sig(SIGTRAP);
2204  		} else {
2205  			/*
2206  			 * Either we raced with uprobe_unregister() or we can't
2207  			 * access this memory. The latter is only possible if
2208  			 * another thread plays with our ->mm. In both cases
2209  			 * we can simply restart. If this vma was unmapped we
2210  			 * can pretend this insn was not executed yet and get
2211  			 * the (correct) SIGSEGV after restart.
2212  			 */
2213  			instruction_pointer_set(regs, bp_vaddr);
2214  		}
2215  		return;
2216  	}
2217  
2218  	/* change it in advance for ->handler() and restart */
2219  	instruction_pointer_set(regs, bp_vaddr);
2220  
2221  	/*
2222  	 * TODO: move copy_insn/etc into _register and remove this hack.
2223  	 * After we hit the bp, _unregister + _register can install the
2224  	 * new and not-yet-analyzed uprobe at the same address, restart.
2225  	 */
2226  	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2227  		goto out;
2228  
2229  	/*
2230  	 * Pairs with the smp_wmb() in prepare_uprobe().
2231  	 *
2232  	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2233  	 * we must also see the stores to &uprobe->arch performed by the
2234  	 * prepare_uprobe() call.
2235  	 */
2236  	smp_rmb();
2237  
2238  	/* Tracing handlers use ->utask to communicate with fetch methods */
2239  	if (!get_utask())
2240  		goto out;
2241  
2242  	if (arch_uprobe_ignore(&uprobe->arch, regs))
2243  		goto out;
2244  
2245  	handler_chain(uprobe, regs);
2246  
2247  	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2248  		goto out;
2249  
2250  	if (!pre_ssout(uprobe, regs, bp_vaddr))
2251  		return;
2252  
2253  	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2254  out:
2255  	put_uprobe(uprobe);
2256  }
2257  
2258  /*
2259   * Perform required fix-ups and disable singlestep.
2260   * Allow pending signals to take effect.
2261   */
handle_singlestep(struct uprobe_task * utask,struct pt_regs * regs)2262  static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2263  {
2264  	struct uprobe *uprobe;
2265  	int err = 0;
2266  
2267  	uprobe = utask->active_uprobe;
2268  	if (utask->state == UTASK_SSTEP_ACK)
2269  		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2270  	else if (utask->state == UTASK_SSTEP_TRAPPED)
2271  		arch_uprobe_abort_xol(&uprobe->arch, regs);
2272  	else
2273  		WARN_ON_ONCE(1);
2274  
2275  	put_uprobe(uprobe);
2276  	utask->active_uprobe = NULL;
2277  	utask->state = UTASK_RUNNING;
2278  	xol_free_insn_slot(current);
2279  
2280  	spin_lock_irq(&current->sighand->siglock);
2281  	recalc_sigpending(); /* see uprobe_deny_signal() */
2282  	spin_unlock_irq(&current->sighand->siglock);
2283  
2284  	if (unlikely(err)) {
2285  		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2286  		force_sig(SIGILL);
2287  	}
2288  }
2289  
2290  /*
2291   * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2292   * allows the thread to return from interrupt. After that handle_swbp()
2293   * sets utask->active_uprobe.
2294   *
2295   * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2296   * and allows the thread to return from interrupt.
2297   *
2298   * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2299   * uprobe_notify_resume().
2300   */
uprobe_notify_resume(struct pt_regs * regs)2301  void uprobe_notify_resume(struct pt_regs *regs)
2302  {
2303  	struct uprobe_task *utask;
2304  
2305  	clear_thread_flag(TIF_UPROBE);
2306  
2307  	utask = current->utask;
2308  	if (utask && utask->active_uprobe)
2309  		handle_singlestep(utask, regs);
2310  	else
2311  		handle_swbp(regs);
2312  }
2313  
2314  /*
2315   * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2316   * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2317   */
uprobe_pre_sstep_notifier(struct pt_regs * regs)2318  int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2319  {
2320  	if (!current->mm)
2321  		return 0;
2322  
2323  	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2324  	    (!current->utask || !current->utask->return_instances))
2325  		return 0;
2326  
2327  	set_thread_flag(TIF_UPROBE);
2328  	return 1;
2329  }
2330  
2331  /*
2332   * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2333   * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2334   */
uprobe_post_sstep_notifier(struct pt_regs * regs)2335  int uprobe_post_sstep_notifier(struct pt_regs *regs)
2336  {
2337  	struct uprobe_task *utask = current->utask;
2338  
2339  	if (!current->mm || !utask || !utask->active_uprobe)
2340  		/* task is currently not uprobed */
2341  		return 0;
2342  
2343  	utask->state = UTASK_SSTEP_ACK;
2344  	set_thread_flag(TIF_UPROBE);
2345  	return 1;
2346  }
2347  
2348  static struct notifier_block uprobe_exception_nb = {
2349  	.notifier_call		= arch_uprobe_exception_notify,
2350  	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2351  };
2352  
uprobes_init(void)2353  void __init uprobes_init(void)
2354  {
2355  	int i;
2356  
2357  	for (i = 0; i < UPROBES_HASH_SZ; i++)
2358  		mutex_init(&uprobes_mmap_mutex[i]);
2359  
2360  	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2361  }
2362