1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * User-space Probes (UProbes) 4 * 5 * Copyright (C) IBM Corporation, 2008-2012 6 * Authors: 7 * Srikar Dronamraju 8 * Jim Keniston 9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> /* read_mapping_page */ 15 #include <linux/slab.h> 16 #include <linux/sched.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/coredump.h> 19 #include <linux/export.h> 20 #include <linux/rmap.h> /* anon_vma_prepare */ 21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 22 #include <linux/swap.h> /* folio_free_swap */ 23 #include <linux/ptrace.h> /* user_enable_single_step */ 24 #include <linux/kdebug.h> /* notifier mechanism */ 25 #include <linux/percpu-rwsem.h> 26 #include <linux/task_work.h> 27 #include <linux/shmem_fs.h> 28 #include <linux/khugepaged.h> 29 30 #include <linux/uprobes.h> 31 32 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 33 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 34 35 static struct rb_root uprobes_tree = RB_ROOT; 36 /* 37 * allows us to skip the uprobe_mmap if there are no uprobe events active 38 * at this time. Probably a fine grained per inode count is better? 39 */ 40 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 41 42 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 43 44 #define UPROBES_HASH_SZ 13 45 /* serialize uprobe->pending_list */ 46 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 47 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 48 49 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); 50 51 /* Have a copy of original instruction */ 52 #define UPROBE_COPY_INSN 0 53 54 struct uprobe { 55 struct rb_node rb_node; /* node in the rb tree */ 56 refcount_t ref; 57 struct rw_semaphore register_rwsem; 58 struct rw_semaphore consumer_rwsem; 59 struct list_head pending_list; 60 struct uprobe_consumer *consumers; 61 struct inode *inode; /* Also hold a ref to inode */ 62 loff_t offset; 63 loff_t ref_ctr_offset; 64 unsigned long flags; 65 66 /* 67 * The generic code assumes that it has two members of unknown type 68 * owned by the arch-specific code: 69 * 70 * insn - copy_insn() saves the original instruction here for 71 * arch_uprobe_analyze_insn(). 72 * 73 * ixol - potentially modified instruction to execute out of 74 * line, copied to xol_area by xol_get_insn_slot(). 75 */ 76 struct arch_uprobe arch; 77 }; 78 79 struct delayed_uprobe { 80 struct list_head list; 81 struct uprobe *uprobe; 82 struct mm_struct *mm; 83 }; 84 85 static DEFINE_MUTEX(delayed_uprobe_lock); 86 static LIST_HEAD(delayed_uprobe_list); 87 88 /* 89 * Execute out of line area: anonymous executable mapping installed 90 * by the probed task to execute the copy of the original instruction 91 * mangled by set_swbp(). 92 * 93 * On a breakpoint hit, thread contests for a slot. It frees the 94 * slot after singlestep. Currently a fixed number of slots are 95 * allocated. 96 */ 97 struct xol_area { 98 wait_queue_head_t wq; /* if all slots are busy */ 99 atomic_t slot_count; /* number of in-use slots */ 100 unsigned long *bitmap; /* 0 = free slot */ 101 102 struct vm_special_mapping xol_mapping; 103 struct page *pages[2]; 104 /* 105 * We keep the vma's vm_start rather than a pointer to the vma 106 * itself. The probed process or a naughty kernel module could make 107 * the vma go away, and we must handle that reasonably gracefully. 108 */ 109 unsigned long vaddr; /* Page(s) of instruction slots */ 110 }; 111 112 /* 113 * valid_vma: Verify if the specified vma is an executable vma 114 * Relax restrictions while unregistering: vm_flags might have 115 * changed after breakpoint was inserted. 116 * - is_register: indicates if we are in register context. 117 * - Return 1 if the specified virtual address is in an 118 * executable vma. 119 */ valid_vma(struct vm_area_struct * vma,bool is_register)120 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 121 { 122 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 123 124 if (is_register) 125 flags |= VM_WRITE; 126 127 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 128 } 129 offset_to_vaddr(struct vm_area_struct * vma,loff_t offset)130 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 131 { 132 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 133 } 134 vaddr_to_offset(struct vm_area_struct * vma,unsigned long vaddr)135 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 136 { 137 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 138 } 139 140 /** 141 * __replace_page - replace page in vma by new page. 142 * based on replace_page in mm/ksm.c 143 * 144 * @vma: vma that holds the pte pointing to page 145 * @addr: address the old @page is mapped at 146 * @old_page: the page we are replacing by new_page 147 * @new_page: the modified page we replace page by 148 * 149 * If @new_page is NULL, only unmap @old_page. 150 * 151 * Returns 0 on success, negative error code otherwise. 152 */ __replace_page(struct vm_area_struct * vma,unsigned long addr,struct page * old_page,struct page * new_page)153 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 154 struct page *old_page, struct page *new_page) 155 { 156 struct folio *old_folio = page_folio(old_page); 157 struct folio *new_folio; 158 struct mm_struct *mm = vma->vm_mm; 159 DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0); 160 int err; 161 struct mmu_notifier_range range; 162 163 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 164 addr + PAGE_SIZE); 165 166 if (new_page) { 167 new_folio = page_folio(new_page); 168 err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL); 169 if (err) 170 return err; 171 } 172 173 /* For folio_free_swap() below */ 174 folio_lock(old_folio); 175 176 mmu_notifier_invalidate_range_start(&range); 177 err = -EAGAIN; 178 if (!page_vma_mapped_walk(&pvmw)) 179 goto unlock; 180 VM_BUG_ON_PAGE(addr != pvmw.address, old_page); 181 182 if (new_page) { 183 folio_get(new_folio); 184 page_add_new_anon_rmap(new_page, vma, addr); 185 folio_add_lru_vma(new_folio, vma); 186 } else 187 /* no new page, just dec_mm_counter for old_page */ 188 dec_mm_counter(mm, MM_ANONPAGES); 189 190 if (!folio_test_anon(old_folio)) { 191 dec_mm_counter(mm, mm_counter_file(old_page)); 192 inc_mm_counter(mm, MM_ANONPAGES); 193 } 194 195 flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte))); 196 ptep_clear_flush(vma, addr, pvmw.pte); 197 if (new_page) 198 set_pte_at_notify(mm, addr, pvmw.pte, 199 mk_pte(new_page, vma->vm_page_prot)); 200 201 page_remove_rmap(old_page, vma, false); 202 if (!folio_mapped(old_folio)) 203 folio_free_swap(old_folio); 204 page_vma_mapped_walk_done(&pvmw); 205 folio_put(old_folio); 206 207 err = 0; 208 unlock: 209 mmu_notifier_invalidate_range_end(&range); 210 folio_unlock(old_folio); 211 return err; 212 } 213 214 /** 215 * is_swbp_insn - check if instruction is breakpoint instruction. 216 * @insn: instruction to be checked. 217 * Default implementation of is_swbp_insn 218 * Returns true if @insn is a breakpoint instruction. 219 */ is_swbp_insn(uprobe_opcode_t * insn)220 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 221 { 222 return *insn == UPROBE_SWBP_INSN; 223 } 224 225 /** 226 * is_trap_insn - check if instruction is breakpoint instruction. 227 * @insn: instruction to be checked. 228 * Default implementation of is_trap_insn 229 * Returns true if @insn is a breakpoint instruction. 230 * 231 * This function is needed for the case where an architecture has multiple 232 * trap instructions (like powerpc). 233 */ is_trap_insn(uprobe_opcode_t * insn)234 bool __weak is_trap_insn(uprobe_opcode_t *insn) 235 { 236 return is_swbp_insn(insn); 237 } 238 copy_from_page(struct page * page,unsigned long vaddr,void * dst,int len)239 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 240 { 241 void *kaddr = kmap_atomic(page); 242 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 243 kunmap_atomic(kaddr); 244 } 245 copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)246 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 247 { 248 void *kaddr = kmap_atomic(page); 249 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 250 kunmap_atomic(kaddr); 251 } 252 verify_opcode(struct page * page,unsigned long vaddr,uprobe_opcode_t * new_opcode)253 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 254 { 255 uprobe_opcode_t old_opcode; 256 bool is_swbp; 257 258 /* 259 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 260 * We do not check if it is any other 'trap variant' which could 261 * be conditional trap instruction such as the one powerpc supports. 262 * 263 * The logic is that we do not care if the underlying instruction 264 * is a trap variant; uprobes always wins over any other (gdb) 265 * breakpoint. 266 */ 267 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 268 is_swbp = is_swbp_insn(&old_opcode); 269 270 if (is_swbp_insn(new_opcode)) { 271 if (is_swbp) /* register: already installed? */ 272 return 0; 273 } else { 274 if (!is_swbp) /* unregister: was it changed by us? */ 275 return 0; 276 } 277 278 return 1; 279 } 280 281 static struct delayed_uprobe * delayed_uprobe_check(struct uprobe * uprobe,struct mm_struct * mm)282 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) 283 { 284 struct delayed_uprobe *du; 285 286 list_for_each_entry(du, &delayed_uprobe_list, list) 287 if (du->uprobe == uprobe && du->mm == mm) 288 return du; 289 return NULL; 290 } 291 delayed_uprobe_add(struct uprobe * uprobe,struct mm_struct * mm)292 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) 293 { 294 struct delayed_uprobe *du; 295 296 if (delayed_uprobe_check(uprobe, mm)) 297 return 0; 298 299 du = kzalloc(sizeof(*du), GFP_KERNEL); 300 if (!du) 301 return -ENOMEM; 302 303 du->uprobe = uprobe; 304 du->mm = mm; 305 list_add(&du->list, &delayed_uprobe_list); 306 return 0; 307 } 308 delayed_uprobe_delete(struct delayed_uprobe * du)309 static void delayed_uprobe_delete(struct delayed_uprobe *du) 310 { 311 if (WARN_ON(!du)) 312 return; 313 list_del(&du->list); 314 kfree(du); 315 } 316 delayed_uprobe_remove(struct uprobe * uprobe,struct mm_struct * mm)317 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) 318 { 319 struct list_head *pos, *q; 320 struct delayed_uprobe *du; 321 322 if (!uprobe && !mm) 323 return; 324 325 list_for_each_safe(pos, q, &delayed_uprobe_list) { 326 du = list_entry(pos, struct delayed_uprobe, list); 327 328 if (uprobe && du->uprobe != uprobe) 329 continue; 330 if (mm && du->mm != mm) 331 continue; 332 333 delayed_uprobe_delete(du); 334 } 335 } 336 valid_ref_ctr_vma(struct uprobe * uprobe,struct vm_area_struct * vma)337 static bool valid_ref_ctr_vma(struct uprobe *uprobe, 338 struct vm_area_struct *vma) 339 { 340 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); 341 342 return uprobe->ref_ctr_offset && 343 vma->vm_file && 344 file_inode(vma->vm_file) == uprobe->inode && 345 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 346 vma->vm_start <= vaddr && 347 vma->vm_end > vaddr; 348 } 349 350 static struct vm_area_struct * find_ref_ctr_vma(struct uprobe * uprobe,struct mm_struct * mm)351 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) 352 { 353 VMA_ITERATOR(vmi, mm, 0); 354 struct vm_area_struct *tmp; 355 356 for_each_vma(vmi, tmp) 357 if (valid_ref_ctr_vma(uprobe, tmp)) 358 return tmp; 359 360 return NULL; 361 } 362 363 static int __update_ref_ctr(struct mm_struct * mm,unsigned long vaddr,short d)364 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) 365 { 366 void *kaddr; 367 struct page *page; 368 int ret; 369 short *ptr; 370 371 if (!vaddr || !d) 372 return -EINVAL; 373 374 ret = get_user_pages_remote(mm, vaddr, 1, 375 FOLL_WRITE, &page, NULL); 376 if (unlikely(ret <= 0)) { 377 /* 378 * We are asking for 1 page. If get_user_pages_remote() fails, 379 * it may return 0, in that case we have to return error. 380 */ 381 return ret == 0 ? -EBUSY : ret; 382 } 383 384 kaddr = kmap_atomic(page); 385 ptr = kaddr + (vaddr & ~PAGE_MASK); 386 387 if (unlikely(*ptr + d < 0)) { 388 pr_warn("ref_ctr going negative. vaddr: 0x%lx, " 389 "curr val: %d, delta: %d\n", vaddr, *ptr, d); 390 ret = -EINVAL; 391 goto out; 392 } 393 394 *ptr += d; 395 ret = 0; 396 out: 397 kunmap_atomic(kaddr); 398 put_page(page); 399 return ret; 400 } 401 update_ref_ctr_warn(struct uprobe * uprobe,struct mm_struct * mm,short d)402 static void update_ref_ctr_warn(struct uprobe *uprobe, 403 struct mm_struct *mm, short d) 404 { 405 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " 406 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n", 407 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, 408 (unsigned long long) uprobe->offset, 409 (unsigned long long) uprobe->ref_ctr_offset, mm); 410 } 411 update_ref_ctr(struct uprobe * uprobe,struct mm_struct * mm,short d)412 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, 413 short d) 414 { 415 struct vm_area_struct *rc_vma; 416 unsigned long rc_vaddr; 417 int ret = 0; 418 419 rc_vma = find_ref_ctr_vma(uprobe, mm); 420 421 if (rc_vma) { 422 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); 423 ret = __update_ref_ctr(mm, rc_vaddr, d); 424 if (ret) 425 update_ref_ctr_warn(uprobe, mm, d); 426 427 if (d > 0) 428 return ret; 429 } 430 431 mutex_lock(&delayed_uprobe_lock); 432 if (d > 0) 433 ret = delayed_uprobe_add(uprobe, mm); 434 else 435 delayed_uprobe_remove(uprobe, mm); 436 mutex_unlock(&delayed_uprobe_lock); 437 438 return ret; 439 } 440 441 /* 442 * NOTE: 443 * Expect the breakpoint instruction to be the smallest size instruction for 444 * the architecture. If an arch has variable length instruction and the 445 * breakpoint instruction is not of the smallest length instruction 446 * supported by that architecture then we need to modify is_trap_at_addr and 447 * uprobe_write_opcode accordingly. This would never be a problem for archs 448 * that have fixed length instructions. 449 * 450 * uprobe_write_opcode - write the opcode at a given virtual address. 451 * @auprobe: arch specific probepoint information. 452 * @mm: the probed process address space. 453 * @vaddr: the virtual address to store the opcode. 454 * @opcode: opcode to be written at @vaddr. 455 * 456 * Called with mm->mmap_lock held for write. 457 * Return 0 (success) or a negative errno. 458 */ uprobe_write_opcode(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr,uprobe_opcode_t opcode)459 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 460 unsigned long vaddr, uprobe_opcode_t opcode) 461 { 462 struct uprobe *uprobe; 463 struct page *old_page, *new_page; 464 struct vm_area_struct *vma; 465 int ret, is_register, ref_ctr_updated = 0; 466 bool orig_page_huge = false; 467 unsigned int gup_flags = FOLL_FORCE; 468 469 is_register = is_swbp_insn(&opcode); 470 uprobe = container_of(auprobe, struct uprobe, arch); 471 472 retry: 473 if (is_register) 474 gup_flags |= FOLL_SPLIT_PMD; 475 /* Read the page with vaddr into memory */ 476 old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma); 477 if (IS_ERR_OR_NULL(old_page)) 478 return old_page ? PTR_ERR(old_page) : 0; 479 480 ret = verify_opcode(old_page, vaddr, &opcode); 481 if (ret <= 0) 482 goto put_old; 483 484 if (is_zero_page(old_page)) { 485 ret = -EINVAL; 486 goto put_old; 487 } 488 489 if (WARN(!is_register && PageCompound(old_page), 490 "uprobe unregister should never work on compound page\n")) { 491 ret = -EINVAL; 492 goto put_old; 493 } 494 495 /* We are going to replace instruction, update ref_ctr. */ 496 if (!ref_ctr_updated && uprobe->ref_ctr_offset) { 497 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); 498 if (ret) 499 goto put_old; 500 501 ref_ctr_updated = 1; 502 } 503 504 ret = 0; 505 if (!is_register && !PageAnon(old_page)) 506 goto put_old; 507 508 ret = anon_vma_prepare(vma); 509 if (ret) 510 goto put_old; 511 512 ret = -ENOMEM; 513 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 514 if (!new_page) 515 goto put_old; 516 517 __SetPageUptodate(new_page); 518 copy_highpage(new_page, old_page); 519 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 520 521 if (!is_register) { 522 struct page *orig_page; 523 pgoff_t index; 524 525 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page); 526 527 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT; 528 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping, 529 index); 530 531 if (orig_page) { 532 if (PageUptodate(orig_page) && 533 pages_identical(new_page, orig_page)) { 534 /* let go new_page */ 535 put_page(new_page); 536 new_page = NULL; 537 538 if (PageCompound(orig_page)) 539 orig_page_huge = true; 540 } 541 put_page(orig_page); 542 } 543 } 544 545 ret = __replace_page(vma, vaddr, old_page, new_page); 546 if (new_page) 547 put_page(new_page); 548 put_old: 549 put_page(old_page); 550 551 if (unlikely(ret == -EAGAIN)) 552 goto retry; 553 554 /* Revert back reference counter if instruction update failed. */ 555 if (ret && is_register && ref_ctr_updated) 556 update_ref_ctr(uprobe, mm, -1); 557 558 /* try collapse pmd for compound page */ 559 if (!ret && orig_page_huge) 560 collapse_pte_mapped_thp(mm, vaddr, false); 561 562 return ret; 563 } 564 565 /** 566 * set_swbp - store breakpoint at a given address. 567 * @auprobe: arch specific probepoint information. 568 * @mm: the probed process address space. 569 * @vaddr: the virtual address to insert the opcode. 570 * 571 * For mm @mm, store the breakpoint instruction at @vaddr. 572 * Return 0 (success) or a negative errno. 573 */ set_swbp(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)574 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 575 { 576 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 577 } 578 579 /** 580 * set_orig_insn - Restore the original instruction. 581 * @mm: the probed process address space. 582 * @auprobe: arch specific probepoint information. 583 * @vaddr: the virtual address to insert the opcode. 584 * 585 * For mm @mm, restore the original opcode (opcode) at @vaddr. 586 * Return 0 (success) or a negative errno. 587 */ 588 int __weak set_orig_insn(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)589 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 590 { 591 return uprobe_write_opcode(auprobe, mm, vaddr, 592 *(uprobe_opcode_t *)&auprobe->insn); 593 } 594 get_uprobe(struct uprobe * uprobe)595 static struct uprobe *get_uprobe(struct uprobe *uprobe) 596 { 597 refcount_inc(&uprobe->ref); 598 return uprobe; 599 } 600 put_uprobe(struct uprobe * uprobe)601 static void put_uprobe(struct uprobe *uprobe) 602 { 603 if (refcount_dec_and_test(&uprobe->ref)) { 604 /* 605 * If application munmap(exec_vma) before uprobe_unregister() 606 * gets called, we don't get a chance to remove uprobe from 607 * delayed_uprobe_list from remove_breakpoint(). Do it here. 608 */ 609 mutex_lock(&delayed_uprobe_lock); 610 delayed_uprobe_remove(uprobe, NULL); 611 mutex_unlock(&delayed_uprobe_lock); 612 kfree(uprobe); 613 } 614 } 615 616 static __always_inline uprobe_cmp(const struct inode * l_inode,const loff_t l_offset,const struct uprobe * r)617 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset, 618 const struct uprobe *r) 619 { 620 if (l_inode < r->inode) 621 return -1; 622 623 if (l_inode > r->inode) 624 return 1; 625 626 if (l_offset < r->offset) 627 return -1; 628 629 if (l_offset > r->offset) 630 return 1; 631 632 return 0; 633 } 634 635 #define __node_2_uprobe(node) \ 636 rb_entry((node), struct uprobe, rb_node) 637 638 struct __uprobe_key { 639 struct inode *inode; 640 loff_t offset; 641 }; 642 __uprobe_cmp_key(const void * key,const struct rb_node * b)643 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b) 644 { 645 const struct __uprobe_key *a = key; 646 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b)); 647 } 648 __uprobe_cmp(struct rb_node * a,const struct rb_node * b)649 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b) 650 { 651 struct uprobe *u = __node_2_uprobe(a); 652 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b)); 653 } 654 __find_uprobe(struct inode * inode,loff_t offset)655 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 656 { 657 struct __uprobe_key key = { 658 .inode = inode, 659 .offset = offset, 660 }; 661 struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key); 662 663 if (node) 664 return get_uprobe(__node_2_uprobe(node)); 665 666 return NULL; 667 } 668 669 /* 670 * Find a uprobe corresponding to a given inode:offset 671 * Acquires uprobes_treelock 672 */ find_uprobe(struct inode * inode,loff_t offset)673 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 674 { 675 struct uprobe *uprobe; 676 677 spin_lock(&uprobes_treelock); 678 uprobe = __find_uprobe(inode, offset); 679 spin_unlock(&uprobes_treelock); 680 681 return uprobe; 682 } 683 __insert_uprobe(struct uprobe * uprobe)684 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 685 { 686 struct rb_node *node; 687 688 node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp); 689 if (node) 690 return get_uprobe(__node_2_uprobe(node)); 691 692 /* get access + creation ref */ 693 refcount_set(&uprobe->ref, 2); 694 return NULL; 695 } 696 697 /* 698 * Acquire uprobes_treelock. 699 * Matching uprobe already exists in rbtree; 700 * increment (access refcount) and return the matching uprobe. 701 * 702 * No matching uprobe; insert the uprobe in rb_tree; 703 * get a double refcount (access + creation) and return NULL. 704 */ insert_uprobe(struct uprobe * uprobe)705 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 706 { 707 struct uprobe *u; 708 709 spin_lock(&uprobes_treelock); 710 u = __insert_uprobe(uprobe); 711 spin_unlock(&uprobes_treelock); 712 713 return u; 714 } 715 716 static void ref_ctr_mismatch_warn(struct uprobe * cur_uprobe,struct uprobe * uprobe)717 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) 718 { 719 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " 720 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", 721 uprobe->inode->i_ino, (unsigned long long) uprobe->offset, 722 (unsigned long long) cur_uprobe->ref_ctr_offset, 723 (unsigned long long) uprobe->ref_ctr_offset); 724 } 725 alloc_uprobe(struct inode * inode,loff_t offset,loff_t ref_ctr_offset)726 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, 727 loff_t ref_ctr_offset) 728 { 729 struct uprobe *uprobe, *cur_uprobe; 730 731 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 732 if (!uprobe) 733 return NULL; 734 735 uprobe->inode = inode; 736 uprobe->offset = offset; 737 uprobe->ref_ctr_offset = ref_ctr_offset; 738 init_rwsem(&uprobe->register_rwsem); 739 init_rwsem(&uprobe->consumer_rwsem); 740 741 /* add to uprobes_tree, sorted on inode:offset */ 742 cur_uprobe = insert_uprobe(uprobe); 743 /* a uprobe exists for this inode:offset combination */ 744 if (cur_uprobe) { 745 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { 746 ref_ctr_mismatch_warn(cur_uprobe, uprobe); 747 put_uprobe(cur_uprobe); 748 kfree(uprobe); 749 return ERR_PTR(-EINVAL); 750 } 751 kfree(uprobe); 752 uprobe = cur_uprobe; 753 } 754 755 return uprobe; 756 } 757 consumer_add(struct uprobe * uprobe,struct uprobe_consumer * uc)758 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 759 { 760 down_write(&uprobe->consumer_rwsem); 761 uc->next = uprobe->consumers; 762 uprobe->consumers = uc; 763 up_write(&uprobe->consumer_rwsem); 764 } 765 766 /* 767 * For uprobe @uprobe, delete the consumer @uc. 768 * Return true if the @uc is deleted successfully 769 * or return false. 770 */ consumer_del(struct uprobe * uprobe,struct uprobe_consumer * uc)771 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 772 { 773 struct uprobe_consumer **con; 774 bool ret = false; 775 776 down_write(&uprobe->consumer_rwsem); 777 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 778 if (*con == uc) { 779 *con = uc->next; 780 ret = true; 781 break; 782 } 783 } 784 up_write(&uprobe->consumer_rwsem); 785 786 return ret; 787 } 788 __copy_insn(struct address_space * mapping,struct file * filp,void * insn,int nbytes,loff_t offset)789 static int __copy_insn(struct address_space *mapping, struct file *filp, 790 void *insn, int nbytes, loff_t offset) 791 { 792 struct page *page; 793 /* 794 * Ensure that the page that has the original instruction is populated 795 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(), 796 * see uprobe_register(). 797 */ 798 if (mapping->a_ops->read_folio) 799 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 800 else 801 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 802 if (IS_ERR(page)) 803 return PTR_ERR(page); 804 805 copy_from_page(page, offset, insn, nbytes); 806 put_page(page); 807 808 return 0; 809 } 810 copy_insn(struct uprobe * uprobe,struct file * filp)811 static int copy_insn(struct uprobe *uprobe, struct file *filp) 812 { 813 struct address_space *mapping = uprobe->inode->i_mapping; 814 loff_t offs = uprobe->offset; 815 void *insn = &uprobe->arch.insn; 816 int size = sizeof(uprobe->arch.insn); 817 int len, err = -EIO; 818 819 /* Copy only available bytes, -EIO if nothing was read */ 820 do { 821 if (offs >= i_size_read(uprobe->inode)) 822 break; 823 824 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 825 err = __copy_insn(mapping, filp, insn, len, offs); 826 if (err) 827 break; 828 829 insn += len; 830 offs += len; 831 size -= len; 832 } while (size); 833 834 return err; 835 } 836 prepare_uprobe(struct uprobe * uprobe,struct file * file,struct mm_struct * mm,unsigned long vaddr)837 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 838 struct mm_struct *mm, unsigned long vaddr) 839 { 840 int ret = 0; 841 842 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 843 return ret; 844 845 /* TODO: move this into _register, until then we abuse this sem. */ 846 down_write(&uprobe->consumer_rwsem); 847 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 848 goto out; 849 850 ret = copy_insn(uprobe, file); 851 if (ret) 852 goto out; 853 854 ret = -ENOTSUPP; 855 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 856 goto out; 857 858 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 859 if (ret) 860 goto out; 861 862 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ 863 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 864 865 out: 866 up_write(&uprobe->consumer_rwsem); 867 868 return ret; 869 } 870 consumer_filter(struct uprobe_consumer * uc,enum uprobe_filter_ctx ctx,struct mm_struct * mm)871 static inline bool consumer_filter(struct uprobe_consumer *uc, 872 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 873 { 874 return !uc->filter || uc->filter(uc, ctx, mm); 875 } 876 filter_chain(struct uprobe * uprobe,enum uprobe_filter_ctx ctx,struct mm_struct * mm)877 static bool filter_chain(struct uprobe *uprobe, 878 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 879 { 880 struct uprobe_consumer *uc; 881 bool ret = false; 882 883 down_read(&uprobe->consumer_rwsem); 884 for (uc = uprobe->consumers; uc; uc = uc->next) { 885 ret = consumer_filter(uc, ctx, mm); 886 if (ret) 887 break; 888 } 889 up_read(&uprobe->consumer_rwsem); 890 891 return ret; 892 } 893 894 static int install_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long vaddr)895 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 896 struct vm_area_struct *vma, unsigned long vaddr) 897 { 898 bool first_uprobe; 899 int ret; 900 901 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 902 if (ret) 903 return ret; 904 905 /* 906 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 907 * the task can hit this breakpoint right after __replace_page(). 908 */ 909 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 910 if (first_uprobe) 911 set_bit(MMF_HAS_UPROBES, &mm->flags); 912 913 ret = set_swbp(&uprobe->arch, mm, vaddr); 914 if (!ret) 915 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 916 else if (first_uprobe) 917 clear_bit(MMF_HAS_UPROBES, &mm->flags); 918 919 return ret; 920 } 921 922 static int remove_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,unsigned long vaddr)923 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 924 { 925 set_bit(MMF_RECALC_UPROBES, &mm->flags); 926 return set_orig_insn(&uprobe->arch, mm, vaddr); 927 } 928 uprobe_is_active(struct uprobe * uprobe)929 static inline bool uprobe_is_active(struct uprobe *uprobe) 930 { 931 return !RB_EMPTY_NODE(&uprobe->rb_node); 932 } 933 /* 934 * There could be threads that have already hit the breakpoint. They 935 * will recheck the current insn and restart if find_uprobe() fails. 936 * See find_active_uprobe(). 937 */ delete_uprobe(struct uprobe * uprobe)938 static void delete_uprobe(struct uprobe *uprobe) 939 { 940 if (WARN_ON(!uprobe_is_active(uprobe))) 941 return; 942 943 spin_lock(&uprobes_treelock); 944 rb_erase(&uprobe->rb_node, &uprobes_tree); 945 spin_unlock(&uprobes_treelock); 946 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 947 put_uprobe(uprobe); 948 } 949 950 struct map_info { 951 struct map_info *next; 952 struct mm_struct *mm; 953 unsigned long vaddr; 954 }; 955 free_map_info(struct map_info * info)956 static inline struct map_info *free_map_info(struct map_info *info) 957 { 958 struct map_info *next = info->next; 959 kfree(info); 960 return next; 961 } 962 963 static struct map_info * build_map_info(struct address_space * mapping,loff_t offset,bool is_register)964 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 965 { 966 unsigned long pgoff = offset >> PAGE_SHIFT; 967 struct vm_area_struct *vma; 968 struct map_info *curr = NULL; 969 struct map_info *prev = NULL; 970 struct map_info *info; 971 int more = 0; 972 973 again: 974 i_mmap_lock_read(mapping); 975 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 976 if (!valid_vma(vma, is_register)) 977 continue; 978 979 if (!prev && !more) { 980 /* 981 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 982 * reclaim. This is optimistic, no harm done if it fails. 983 */ 984 prev = kmalloc(sizeof(struct map_info), 985 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 986 if (prev) 987 prev->next = NULL; 988 } 989 if (!prev) { 990 more++; 991 continue; 992 } 993 994 if (!mmget_not_zero(vma->vm_mm)) 995 continue; 996 997 info = prev; 998 prev = prev->next; 999 info->next = curr; 1000 curr = info; 1001 1002 info->mm = vma->vm_mm; 1003 info->vaddr = offset_to_vaddr(vma, offset); 1004 } 1005 i_mmap_unlock_read(mapping); 1006 1007 if (!more) 1008 goto out; 1009 1010 prev = curr; 1011 while (curr) { 1012 mmput(curr->mm); 1013 curr = curr->next; 1014 } 1015 1016 do { 1017 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 1018 if (!info) { 1019 curr = ERR_PTR(-ENOMEM); 1020 goto out; 1021 } 1022 info->next = prev; 1023 prev = info; 1024 } while (--more); 1025 1026 goto again; 1027 out: 1028 while (prev) 1029 prev = free_map_info(prev); 1030 return curr; 1031 } 1032 1033 static int register_for_each_vma(struct uprobe * uprobe,struct uprobe_consumer * new)1034 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 1035 { 1036 bool is_register = !!new; 1037 struct map_info *info; 1038 int err = 0; 1039 1040 percpu_down_write(&dup_mmap_sem); 1041 info = build_map_info(uprobe->inode->i_mapping, 1042 uprobe->offset, is_register); 1043 if (IS_ERR(info)) { 1044 err = PTR_ERR(info); 1045 goto out; 1046 } 1047 1048 while (info) { 1049 struct mm_struct *mm = info->mm; 1050 struct vm_area_struct *vma; 1051 1052 if (err && is_register) 1053 goto free; 1054 1055 mmap_write_lock(mm); 1056 vma = find_vma(mm, info->vaddr); 1057 if (!vma || !valid_vma(vma, is_register) || 1058 file_inode(vma->vm_file) != uprobe->inode) 1059 goto unlock; 1060 1061 if (vma->vm_start > info->vaddr || 1062 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 1063 goto unlock; 1064 1065 if (is_register) { 1066 /* consult only the "caller", new consumer. */ 1067 if (consumer_filter(new, 1068 UPROBE_FILTER_REGISTER, mm)) 1069 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 1070 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 1071 if (!filter_chain(uprobe, 1072 UPROBE_FILTER_UNREGISTER, mm)) 1073 err |= remove_breakpoint(uprobe, mm, info->vaddr); 1074 } 1075 1076 unlock: 1077 mmap_write_unlock(mm); 1078 free: 1079 mmput(mm); 1080 info = free_map_info(info); 1081 } 1082 out: 1083 percpu_up_write(&dup_mmap_sem); 1084 return err; 1085 } 1086 1087 static void __uprobe_unregister(struct uprobe * uprobe,struct uprobe_consumer * uc)1088 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 1089 { 1090 int err; 1091 1092 if (WARN_ON(!consumer_del(uprobe, uc))) 1093 return; 1094 1095 err = register_for_each_vma(uprobe, NULL); 1096 /* TODO : cant unregister? schedule a worker thread */ 1097 if (!uprobe->consumers && !err) 1098 delete_uprobe(uprobe); 1099 } 1100 1101 /* 1102 * uprobe_unregister - unregister an already registered probe. 1103 * @inode: the file in which the probe has to be removed. 1104 * @offset: offset from the start of the file. 1105 * @uc: identify which probe if multiple probes are colocated. 1106 */ uprobe_unregister(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)1107 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 1108 { 1109 struct uprobe *uprobe; 1110 1111 uprobe = find_uprobe(inode, offset); 1112 if (WARN_ON(!uprobe)) 1113 return; 1114 1115 down_write(&uprobe->register_rwsem); 1116 __uprobe_unregister(uprobe, uc); 1117 up_write(&uprobe->register_rwsem); 1118 put_uprobe(uprobe); 1119 } 1120 EXPORT_SYMBOL_GPL(uprobe_unregister); 1121 1122 /* 1123 * __uprobe_register - register a probe 1124 * @inode: the file in which the probe has to be placed. 1125 * @offset: offset from the start of the file. 1126 * @uc: information on howto handle the probe.. 1127 * 1128 * Apart from the access refcount, __uprobe_register() takes a creation 1129 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 1130 * inserted into the rbtree (i.e first consumer for a @inode:@offset 1131 * tuple). Creation refcount stops uprobe_unregister from freeing the 1132 * @uprobe even before the register operation is complete. Creation 1133 * refcount is released when the last @uc for the @uprobe 1134 * unregisters. Caller of __uprobe_register() is required to keep @inode 1135 * (and the containing mount) referenced. 1136 * 1137 * Return errno if it cannot successully install probes 1138 * else return 0 (success) 1139 */ __uprobe_register(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1140 static int __uprobe_register(struct inode *inode, loff_t offset, 1141 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1142 { 1143 struct uprobe *uprobe; 1144 int ret; 1145 1146 /* Uprobe must have at least one set consumer */ 1147 if (!uc->handler && !uc->ret_handler) 1148 return -EINVAL; 1149 1150 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 1151 if (!inode->i_mapping->a_ops->read_folio && 1152 !shmem_mapping(inode->i_mapping)) 1153 return -EIO; 1154 /* Racy, just to catch the obvious mistakes */ 1155 if (offset > i_size_read(inode)) 1156 return -EINVAL; 1157 1158 /* 1159 * This ensures that copy_from_page(), copy_to_page() and 1160 * __update_ref_ctr() can't cross page boundary. 1161 */ 1162 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE)) 1163 return -EINVAL; 1164 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short))) 1165 return -EINVAL; 1166 1167 retry: 1168 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); 1169 if (!uprobe) 1170 return -ENOMEM; 1171 if (IS_ERR(uprobe)) 1172 return PTR_ERR(uprobe); 1173 1174 /* 1175 * We can race with uprobe_unregister()->delete_uprobe(). 1176 * Check uprobe_is_active() and retry if it is false. 1177 */ 1178 down_write(&uprobe->register_rwsem); 1179 ret = -EAGAIN; 1180 if (likely(uprobe_is_active(uprobe))) { 1181 consumer_add(uprobe, uc); 1182 ret = register_for_each_vma(uprobe, uc); 1183 if (ret) 1184 __uprobe_unregister(uprobe, uc); 1185 } 1186 up_write(&uprobe->register_rwsem); 1187 put_uprobe(uprobe); 1188 1189 if (unlikely(ret == -EAGAIN)) 1190 goto retry; 1191 return ret; 1192 } 1193 uprobe_register(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)1194 int uprobe_register(struct inode *inode, loff_t offset, 1195 struct uprobe_consumer *uc) 1196 { 1197 return __uprobe_register(inode, offset, 0, uc); 1198 } 1199 EXPORT_SYMBOL_GPL(uprobe_register); 1200 uprobe_register_refctr(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1201 int uprobe_register_refctr(struct inode *inode, loff_t offset, 1202 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1203 { 1204 return __uprobe_register(inode, offset, ref_ctr_offset, uc); 1205 } 1206 EXPORT_SYMBOL_GPL(uprobe_register_refctr); 1207 1208 /* 1209 * uprobe_apply - unregister an already registered probe. 1210 * @inode: the file in which the probe has to be removed. 1211 * @offset: offset from the start of the file. 1212 * @uc: consumer which wants to add more or remove some breakpoints 1213 * @add: add or remove the breakpoints 1214 */ uprobe_apply(struct inode * inode,loff_t offset,struct uprobe_consumer * uc,bool add)1215 int uprobe_apply(struct inode *inode, loff_t offset, 1216 struct uprobe_consumer *uc, bool add) 1217 { 1218 struct uprobe *uprobe; 1219 struct uprobe_consumer *con; 1220 int ret = -ENOENT; 1221 1222 uprobe = find_uprobe(inode, offset); 1223 if (WARN_ON(!uprobe)) 1224 return ret; 1225 1226 down_write(&uprobe->register_rwsem); 1227 for (con = uprobe->consumers; con && con != uc ; con = con->next) 1228 ; 1229 if (con) 1230 ret = register_for_each_vma(uprobe, add ? uc : NULL); 1231 up_write(&uprobe->register_rwsem); 1232 put_uprobe(uprobe); 1233 1234 return ret; 1235 } 1236 unapply_uprobe(struct uprobe * uprobe,struct mm_struct * mm)1237 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 1238 { 1239 VMA_ITERATOR(vmi, mm, 0); 1240 struct vm_area_struct *vma; 1241 int err = 0; 1242 1243 mmap_read_lock(mm); 1244 for_each_vma(vmi, vma) { 1245 unsigned long vaddr; 1246 loff_t offset; 1247 1248 if (!valid_vma(vma, false) || 1249 file_inode(vma->vm_file) != uprobe->inode) 1250 continue; 1251 1252 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 1253 if (uprobe->offset < offset || 1254 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 1255 continue; 1256 1257 vaddr = offset_to_vaddr(vma, uprobe->offset); 1258 err |= remove_breakpoint(uprobe, mm, vaddr); 1259 } 1260 mmap_read_unlock(mm); 1261 1262 return err; 1263 } 1264 1265 static struct rb_node * find_node_in_range(struct inode * inode,loff_t min,loff_t max)1266 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1267 { 1268 struct rb_node *n = uprobes_tree.rb_node; 1269 1270 while (n) { 1271 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1272 1273 if (inode < u->inode) { 1274 n = n->rb_left; 1275 } else if (inode > u->inode) { 1276 n = n->rb_right; 1277 } else { 1278 if (max < u->offset) 1279 n = n->rb_left; 1280 else if (min > u->offset) 1281 n = n->rb_right; 1282 else 1283 break; 1284 } 1285 } 1286 1287 return n; 1288 } 1289 1290 /* 1291 * For a given range in vma, build a list of probes that need to be inserted. 1292 */ build_probe_list(struct inode * inode,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * head)1293 static void build_probe_list(struct inode *inode, 1294 struct vm_area_struct *vma, 1295 unsigned long start, unsigned long end, 1296 struct list_head *head) 1297 { 1298 loff_t min, max; 1299 struct rb_node *n, *t; 1300 struct uprobe *u; 1301 1302 INIT_LIST_HEAD(head); 1303 min = vaddr_to_offset(vma, start); 1304 max = min + (end - start) - 1; 1305 1306 spin_lock(&uprobes_treelock); 1307 n = find_node_in_range(inode, min, max); 1308 if (n) { 1309 for (t = n; t; t = rb_prev(t)) { 1310 u = rb_entry(t, struct uprobe, rb_node); 1311 if (u->inode != inode || u->offset < min) 1312 break; 1313 list_add(&u->pending_list, head); 1314 get_uprobe(u); 1315 } 1316 for (t = n; (t = rb_next(t)); ) { 1317 u = rb_entry(t, struct uprobe, rb_node); 1318 if (u->inode != inode || u->offset > max) 1319 break; 1320 list_add(&u->pending_list, head); 1321 get_uprobe(u); 1322 } 1323 } 1324 spin_unlock(&uprobes_treelock); 1325 } 1326 1327 /* @vma contains reference counter, not the probed instruction. */ delayed_ref_ctr_inc(struct vm_area_struct * vma)1328 static int delayed_ref_ctr_inc(struct vm_area_struct *vma) 1329 { 1330 struct list_head *pos, *q; 1331 struct delayed_uprobe *du; 1332 unsigned long vaddr; 1333 int ret = 0, err = 0; 1334 1335 mutex_lock(&delayed_uprobe_lock); 1336 list_for_each_safe(pos, q, &delayed_uprobe_list) { 1337 du = list_entry(pos, struct delayed_uprobe, list); 1338 1339 if (du->mm != vma->vm_mm || 1340 !valid_ref_ctr_vma(du->uprobe, vma)) 1341 continue; 1342 1343 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); 1344 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); 1345 if (ret) { 1346 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); 1347 if (!err) 1348 err = ret; 1349 } 1350 delayed_uprobe_delete(du); 1351 } 1352 mutex_unlock(&delayed_uprobe_lock); 1353 return err; 1354 } 1355 1356 /* 1357 * Called from mmap_region/vma_merge with mm->mmap_lock acquired. 1358 * 1359 * Currently we ignore all errors and always return 0, the callers 1360 * can't handle the failure anyway. 1361 */ uprobe_mmap(struct vm_area_struct * vma)1362 int uprobe_mmap(struct vm_area_struct *vma) 1363 { 1364 struct list_head tmp_list; 1365 struct uprobe *uprobe, *u; 1366 struct inode *inode; 1367 1368 if (no_uprobe_events()) 1369 return 0; 1370 1371 if (vma->vm_file && 1372 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 1373 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) 1374 delayed_ref_ctr_inc(vma); 1375 1376 if (!valid_vma(vma, true)) 1377 return 0; 1378 1379 inode = file_inode(vma->vm_file); 1380 if (!inode) 1381 return 0; 1382 1383 mutex_lock(uprobes_mmap_hash(inode)); 1384 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1385 /* 1386 * We can race with uprobe_unregister(), this uprobe can be already 1387 * removed. But in this case filter_chain() must return false, all 1388 * consumers have gone away. 1389 */ 1390 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1391 if (!fatal_signal_pending(current) && 1392 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1393 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1394 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1395 } 1396 put_uprobe(uprobe); 1397 } 1398 mutex_unlock(uprobes_mmap_hash(inode)); 1399 1400 return 0; 1401 } 1402 1403 static bool vma_has_uprobes(struct vm_area_struct * vma,unsigned long start,unsigned long end)1404 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1405 { 1406 loff_t min, max; 1407 struct inode *inode; 1408 struct rb_node *n; 1409 1410 inode = file_inode(vma->vm_file); 1411 1412 min = vaddr_to_offset(vma, start); 1413 max = min + (end - start) - 1; 1414 1415 spin_lock(&uprobes_treelock); 1416 n = find_node_in_range(inode, min, max); 1417 spin_unlock(&uprobes_treelock); 1418 1419 return !!n; 1420 } 1421 1422 /* 1423 * Called in context of a munmap of a vma. 1424 */ uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1425 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1426 { 1427 if (no_uprobe_events() || !valid_vma(vma, false)) 1428 return; 1429 1430 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1431 return; 1432 1433 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1434 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1435 return; 1436 1437 if (vma_has_uprobes(vma, start, end)) 1438 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1439 } 1440 1441 /* Slot allocation for XOL */ xol_add_vma(struct mm_struct * mm,struct xol_area * area)1442 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1443 { 1444 struct vm_area_struct *vma; 1445 int ret; 1446 1447 if (mmap_write_lock_killable(mm)) 1448 return -EINTR; 1449 1450 if (mm->uprobes_state.xol_area) { 1451 ret = -EALREADY; 1452 goto fail; 1453 } 1454 1455 if (!area->vaddr) { 1456 /* Try to map as high as possible, this is only a hint. */ 1457 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1458 PAGE_SIZE, 0, 0); 1459 if (IS_ERR_VALUE(area->vaddr)) { 1460 ret = area->vaddr; 1461 goto fail; 1462 } 1463 } 1464 1465 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1466 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1467 &area->xol_mapping); 1468 if (IS_ERR(vma)) { 1469 ret = PTR_ERR(vma); 1470 goto fail; 1471 } 1472 1473 ret = 0; 1474 /* pairs with get_xol_area() */ 1475 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ 1476 fail: 1477 mmap_write_unlock(mm); 1478 1479 return ret; 1480 } 1481 __create_xol_area(unsigned long vaddr)1482 static struct xol_area *__create_xol_area(unsigned long vaddr) 1483 { 1484 struct mm_struct *mm = current->mm; 1485 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1486 struct xol_area *area; 1487 1488 area = kzalloc(sizeof(*area), GFP_KERNEL); 1489 if (unlikely(!area)) 1490 goto out; 1491 1492 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), 1493 GFP_KERNEL); 1494 if (!area->bitmap) 1495 goto free_area; 1496 1497 area->xol_mapping.name = "[uprobes]"; 1498 area->xol_mapping.pages = area->pages; 1499 area->pages[0] = alloc_page(GFP_HIGHUSER | __GFP_ZERO); 1500 if (!area->pages[0]) 1501 goto free_bitmap; 1502 area->pages[1] = NULL; 1503 1504 area->vaddr = vaddr; 1505 init_waitqueue_head(&area->wq); 1506 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1507 set_bit(0, area->bitmap); 1508 atomic_set(&area->slot_count, 1); 1509 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE); 1510 1511 if (!xol_add_vma(mm, area)) 1512 return area; 1513 1514 __free_page(area->pages[0]); 1515 free_bitmap: 1516 kfree(area->bitmap); 1517 free_area: 1518 kfree(area); 1519 out: 1520 return NULL; 1521 } 1522 1523 /* 1524 * get_xol_area - Allocate process's xol_area if necessary. 1525 * This area will be used for storing instructions for execution out of line. 1526 * 1527 * Returns the allocated area or NULL. 1528 */ get_xol_area(void)1529 static struct xol_area *get_xol_area(void) 1530 { 1531 struct mm_struct *mm = current->mm; 1532 struct xol_area *area; 1533 1534 if (!mm->uprobes_state.xol_area) 1535 __create_xol_area(0); 1536 1537 /* Pairs with xol_add_vma() smp_store_release() */ 1538 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ 1539 return area; 1540 } 1541 1542 /* 1543 * uprobe_clear_state - Free the area allocated for slots. 1544 */ uprobe_clear_state(struct mm_struct * mm)1545 void uprobe_clear_state(struct mm_struct *mm) 1546 { 1547 struct xol_area *area = mm->uprobes_state.xol_area; 1548 1549 mutex_lock(&delayed_uprobe_lock); 1550 delayed_uprobe_remove(NULL, mm); 1551 mutex_unlock(&delayed_uprobe_lock); 1552 1553 if (!area) 1554 return; 1555 1556 put_page(area->pages[0]); 1557 kfree(area->bitmap); 1558 kfree(area); 1559 } 1560 uprobe_start_dup_mmap(void)1561 void uprobe_start_dup_mmap(void) 1562 { 1563 percpu_down_read(&dup_mmap_sem); 1564 } 1565 uprobe_end_dup_mmap(void)1566 void uprobe_end_dup_mmap(void) 1567 { 1568 percpu_up_read(&dup_mmap_sem); 1569 } 1570 uprobe_dup_mmap(struct mm_struct * oldmm,struct mm_struct * newmm)1571 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1572 { 1573 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1574 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1575 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1576 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1577 } 1578 } 1579 1580 /* 1581 * - search for a free slot. 1582 */ xol_take_insn_slot(struct xol_area * area)1583 static unsigned long xol_take_insn_slot(struct xol_area *area) 1584 { 1585 unsigned long slot_addr; 1586 int slot_nr; 1587 1588 do { 1589 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1590 if (slot_nr < UINSNS_PER_PAGE) { 1591 if (!test_and_set_bit(slot_nr, area->bitmap)) 1592 break; 1593 1594 slot_nr = UINSNS_PER_PAGE; 1595 continue; 1596 } 1597 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1598 } while (slot_nr >= UINSNS_PER_PAGE); 1599 1600 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1601 atomic_inc(&area->slot_count); 1602 1603 return slot_addr; 1604 } 1605 1606 /* 1607 * xol_get_insn_slot - allocate a slot for xol. 1608 * Returns the allocated slot address or 0. 1609 */ xol_get_insn_slot(struct uprobe * uprobe)1610 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1611 { 1612 struct xol_area *area; 1613 unsigned long xol_vaddr; 1614 1615 area = get_xol_area(); 1616 if (!area) 1617 return 0; 1618 1619 xol_vaddr = xol_take_insn_slot(area); 1620 if (unlikely(!xol_vaddr)) 1621 return 0; 1622 1623 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, 1624 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1625 1626 return xol_vaddr; 1627 } 1628 1629 /* 1630 * xol_free_insn_slot - If slot was earlier allocated by 1631 * @xol_get_insn_slot(), make the slot available for 1632 * subsequent requests. 1633 */ xol_free_insn_slot(struct task_struct * tsk)1634 static void xol_free_insn_slot(struct task_struct *tsk) 1635 { 1636 struct xol_area *area; 1637 unsigned long vma_end; 1638 unsigned long slot_addr; 1639 1640 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1641 return; 1642 1643 slot_addr = tsk->utask->xol_vaddr; 1644 if (unlikely(!slot_addr)) 1645 return; 1646 1647 area = tsk->mm->uprobes_state.xol_area; 1648 vma_end = area->vaddr + PAGE_SIZE; 1649 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1650 unsigned long offset; 1651 int slot_nr; 1652 1653 offset = slot_addr - area->vaddr; 1654 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1655 if (slot_nr >= UINSNS_PER_PAGE) 1656 return; 1657 1658 clear_bit(slot_nr, area->bitmap); 1659 atomic_dec(&area->slot_count); 1660 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1661 if (waitqueue_active(&area->wq)) 1662 wake_up(&area->wq); 1663 1664 tsk->utask->xol_vaddr = 0; 1665 } 1666 } 1667 arch_uprobe_copy_ixol(struct page * page,unsigned long vaddr,void * src,unsigned long len)1668 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1669 void *src, unsigned long len) 1670 { 1671 /* Initialize the slot */ 1672 copy_to_page(page, vaddr, src, len); 1673 1674 /* 1675 * We probably need flush_icache_user_page() but it needs vma. 1676 * This should work on most of architectures by default. If 1677 * architecture needs to do something different it can define 1678 * its own version of the function. 1679 */ 1680 flush_dcache_page(page); 1681 } 1682 1683 /** 1684 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1685 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1686 * instruction. 1687 * Return the address of the breakpoint instruction. 1688 */ uprobe_get_swbp_addr(struct pt_regs * regs)1689 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1690 { 1691 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1692 } 1693 uprobe_get_trap_addr(struct pt_regs * regs)1694 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1695 { 1696 struct uprobe_task *utask = current->utask; 1697 1698 if (unlikely(utask && utask->active_uprobe)) 1699 return utask->vaddr; 1700 1701 return instruction_pointer(regs); 1702 } 1703 free_ret_instance(struct return_instance * ri)1704 static struct return_instance *free_ret_instance(struct return_instance *ri) 1705 { 1706 struct return_instance *next = ri->next; 1707 put_uprobe(ri->uprobe); 1708 kfree(ri); 1709 return next; 1710 } 1711 1712 /* 1713 * Called with no locks held. 1714 * Called in context of an exiting or an exec-ing thread. 1715 */ uprobe_free_utask(struct task_struct * t)1716 void uprobe_free_utask(struct task_struct *t) 1717 { 1718 struct uprobe_task *utask = t->utask; 1719 struct return_instance *ri; 1720 1721 if (!utask) 1722 return; 1723 1724 t->utask = NULL; 1725 if (utask->active_uprobe) 1726 put_uprobe(utask->active_uprobe); 1727 1728 ri = utask->return_instances; 1729 while (ri) 1730 ri = free_ret_instance(ri); 1731 1732 xol_free_insn_slot(t); 1733 kfree(utask); 1734 } 1735 1736 /* 1737 * Allocate a uprobe_task object for the task if necessary. 1738 * Called when the thread hits a breakpoint. 1739 * 1740 * Returns: 1741 * - pointer to new uprobe_task on success 1742 * - NULL otherwise 1743 */ get_utask(void)1744 static struct uprobe_task *get_utask(void) 1745 { 1746 if (!current->utask) 1747 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1748 return current->utask; 1749 } 1750 dup_utask(struct task_struct * t,struct uprobe_task * o_utask)1751 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1752 { 1753 struct uprobe_task *n_utask; 1754 struct return_instance **p, *o, *n; 1755 1756 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1757 if (!n_utask) 1758 return -ENOMEM; 1759 t->utask = n_utask; 1760 1761 p = &n_utask->return_instances; 1762 for (o = o_utask->return_instances; o; o = o->next) { 1763 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1764 if (!n) 1765 return -ENOMEM; 1766 1767 *n = *o; 1768 get_uprobe(n->uprobe); 1769 n->next = NULL; 1770 1771 *p = n; 1772 p = &n->next; 1773 n_utask->depth++; 1774 } 1775 1776 return 0; 1777 } 1778 uprobe_warn(struct task_struct * t,const char * msg)1779 static void uprobe_warn(struct task_struct *t, const char *msg) 1780 { 1781 pr_warn("uprobe: %s:%d failed to %s\n", 1782 current->comm, current->pid, msg); 1783 } 1784 dup_xol_work(struct callback_head * work)1785 static void dup_xol_work(struct callback_head *work) 1786 { 1787 if (current->flags & PF_EXITING) 1788 return; 1789 1790 if (!__create_xol_area(current->utask->dup_xol_addr) && 1791 !fatal_signal_pending(current)) 1792 uprobe_warn(current, "dup xol area"); 1793 } 1794 1795 /* 1796 * Called in context of a new clone/fork from copy_process. 1797 */ uprobe_copy_process(struct task_struct * t,unsigned long flags)1798 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1799 { 1800 struct uprobe_task *utask = current->utask; 1801 struct mm_struct *mm = current->mm; 1802 struct xol_area *area; 1803 1804 t->utask = NULL; 1805 1806 if (!utask || !utask->return_instances) 1807 return; 1808 1809 if (mm == t->mm && !(flags & CLONE_VFORK)) 1810 return; 1811 1812 if (dup_utask(t, utask)) 1813 return uprobe_warn(t, "dup ret instances"); 1814 1815 /* The task can fork() after dup_xol_work() fails */ 1816 area = mm->uprobes_state.xol_area; 1817 if (!area) 1818 return uprobe_warn(t, "dup xol area"); 1819 1820 if (mm == t->mm) 1821 return; 1822 1823 t->utask->dup_xol_addr = area->vaddr; 1824 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1825 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME); 1826 } 1827 1828 /* 1829 * Current area->vaddr notion assume the trampoline address is always 1830 * equal area->vaddr. 1831 * 1832 * Returns -1 in case the xol_area is not allocated. 1833 */ get_trampoline_vaddr(void)1834 static unsigned long get_trampoline_vaddr(void) 1835 { 1836 struct xol_area *area; 1837 unsigned long trampoline_vaddr = -1; 1838 1839 /* Pairs with xol_add_vma() smp_store_release() */ 1840 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ 1841 if (area) 1842 trampoline_vaddr = area->vaddr; 1843 1844 return trampoline_vaddr; 1845 } 1846 cleanup_return_instances(struct uprobe_task * utask,bool chained,struct pt_regs * regs)1847 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1848 struct pt_regs *regs) 1849 { 1850 struct return_instance *ri = utask->return_instances; 1851 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1852 1853 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1854 ri = free_ret_instance(ri); 1855 utask->depth--; 1856 } 1857 utask->return_instances = ri; 1858 } 1859 prepare_uretprobe(struct uprobe * uprobe,struct pt_regs * regs)1860 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1861 { 1862 struct return_instance *ri; 1863 struct uprobe_task *utask; 1864 unsigned long orig_ret_vaddr, trampoline_vaddr; 1865 bool chained; 1866 1867 if (!get_xol_area()) 1868 return; 1869 1870 utask = get_utask(); 1871 if (!utask) 1872 return; 1873 1874 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1875 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1876 " nestedness limit pid/tgid=%d/%d\n", 1877 current->pid, current->tgid); 1878 return; 1879 } 1880 1881 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1882 if (!ri) 1883 return; 1884 1885 trampoline_vaddr = get_trampoline_vaddr(); 1886 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1887 if (orig_ret_vaddr == -1) 1888 goto fail; 1889 1890 /* drop the entries invalidated by longjmp() */ 1891 chained = (orig_ret_vaddr == trampoline_vaddr); 1892 cleanup_return_instances(utask, chained, regs); 1893 1894 /* 1895 * We don't want to keep trampoline address in stack, rather keep the 1896 * original return address of first caller thru all the consequent 1897 * instances. This also makes breakpoint unwrapping easier. 1898 */ 1899 if (chained) { 1900 if (!utask->return_instances) { 1901 /* 1902 * This situation is not possible. Likely we have an 1903 * attack from user-space. 1904 */ 1905 uprobe_warn(current, "handle tail call"); 1906 goto fail; 1907 } 1908 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1909 } 1910 1911 ri->uprobe = get_uprobe(uprobe); 1912 ri->func = instruction_pointer(regs); 1913 ri->stack = user_stack_pointer(regs); 1914 ri->orig_ret_vaddr = orig_ret_vaddr; 1915 ri->chained = chained; 1916 1917 utask->depth++; 1918 ri->next = utask->return_instances; 1919 utask->return_instances = ri; 1920 1921 return; 1922 fail: 1923 kfree(ri); 1924 } 1925 1926 /* Prepare to single-step probed instruction out of line. */ 1927 static int pre_ssout(struct uprobe * uprobe,struct pt_regs * regs,unsigned long bp_vaddr)1928 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1929 { 1930 struct uprobe_task *utask; 1931 unsigned long xol_vaddr; 1932 int err; 1933 1934 utask = get_utask(); 1935 if (!utask) 1936 return -ENOMEM; 1937 1938 xol_vaddr = xol_get_insn_slot(uprobe); 1939 if (!xol_vaddr) 1940 return -ENOMEM; 1941 1942 utask->xol_vaddr = xol_vaddr; 1943 utask->vaddr = bp_vaddr; 1944 1945 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1946 if (unlikely(err)) { 1947 xol_free_insn_slot(current); 1948 return err; 1949 } 1950 1951 utask->active_uprobe = uprobe; 1952 utask->state = UTASK_SSTEP; 1953 return 0; 1954 } 1955 1956 /* 1957 * If we are singlestepping, then ensure this thread is not connected to 1958 * non-fatal signals until completion of singlestep. When xol insn itself 1959 * triggers the signal, restart the original insn even if the task is 1960 * already SIGKILL'ed (since coredump should report the correct ip). This 1961 * is even more important if the task has a handler for SIGSEGV/etc, The 1962 * _same_ instruction should be repeated again after return from the signal 1963 * handler, and SSTEP can never finish in this case. 1964 */ uprobe_deny_signal(void)1965 bool uprobe_deny_signal(void) 1966 { 1967 struct task_struct *t = current; 1968 struct uprobe_task *utask = t->utask; 1969 1970 if (likely(!utask || !utask->active_uprobe)) 1971 return false; 1972 1973 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1974 1975 if (task_sigpending(t)) { 1976 spin_lock_irq(&t->sighand->siglock); 1977 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1978 spin_unlock_irq(&t->sighand->siglock); 1979 1980 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1981 utask->state = UTASK_SSTEP_TRAPPED; 1982 set_tsk_thread_flag(t, TIF_UPROBE); 1983 } 1984 } 1985 1986 return true; 1987 } 1988 mmf_recalc_uprobes(struct mm_struct * mm)1989 static void mmf_recalc_uprobes(struct mm_struct *mm) 1990 { 1991 VMA_ITERATOR(vmi, mm, 0); 1992 struct vm_area_struct *vma; 1993 1994 for_each_vma(vmi, vma) { 1995 if (!valid_vma(vma, false)) 1996 continue; 1997 /* 1998 * This is not strictly accurate, we can race with 1999 * uprobe_unregister() and see the already removed 2000 * uprobe if delete_uprobe() was not yet called. 2001 * Or this uprobe can be filtered out. 2002 */ 2003 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 2004 return; 2005 } 2006 2007 clear_bit(MMF_HAS_UPROBES, &mm->flags); 2008 } 2009 is_trap_at_addr(struct mm_struct * mm,unsigned long vaddr)2010 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 2011 { 2012 struct page *page; 2013 uprobe_opcode_t opcode; 2014 int result; 2015 2016 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE))) 2017 return -EINVAL; 2018 2019 pagefault_disable(); 2020 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 2021 pagefault_enable(); 2022 2023 if (likely(result == 0)) 2024 goto out; 2025 2026 /* 2027 * The NULL 'tsk' here ensures that any faults that occur here 2028 * will not be accounted to the task. 'mm' *is* current->mm, 2029 * but we treat this as a 'remote' access since it is 2030 * essentially a kernel access to the memory. 2031 */ 2032 result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page, NULL); 2033 if (result < 0) 2034 return result; 2035 2036 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 2037 put_page(page); 2038 out: 2039 /* This needs to return true for any variant of the trap insn */ 2040 return is_trap_insn(&opcode); 2041 } 2042 find_active_uprobe(unsigned long bp_vaddr,int * is_swbp)2043 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 2044 { 2045 struct mm_struct *mm = current->mm; 2046 struct uprobe *uprobe = NULL; 2047 struct vm_area_struct *vma; 2048 2049 mmap_read_lock(mm); 2050 vma = vma_lookup(mm, bp_vaddr); 2051 if (vma) { 2052 if (valid_vma(vma, false)) { 2053 struct inode *inode = file_inode(vma->vm_file); 2054 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 2055 2056 uprobe = find_uprobe(inode, offset); 2057 } 2058 2059 if (!uprobe) 2060 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 2061 } else { 2062 *is_swbp = -EFAULT; 2063 } 2064 2065 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 2066 mmf_recalc_uprobes(mm); 2067 mmap_read_unlock(mm); 2068 2069 return uprobe; 2070 } 2071 handler_chain(struct uprobe * uprobe,struct pt_regs * regs)2072 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 2073 { 2074 struct uprobe_consumer *uc; 2075 int remove = UPROBE_HANDLER_REMOVE; 2076 bool need_prep = false; /* prepare return uprobe, when needed */ 2077 2078 down_read(&uprobe->register_rwsem); 2079 current->utask->auprobe = &uprobe->arch; 2080 for (uc = uprobe->consumers; uc; uc = uc->next) { 2081 int rc = 0; 2082 2083 if (uc->handler) { 2084 rc = uc->handler(uc, regs); 2085 WARN(rc & ~UPROBE_HANDLER_MASK, 2086 "bad rc=0x%x from %ps()\n", rc, uc->handler); 2087 } 2088 2089 if (uc->ret_handler) 2090 need_prep = true; 2091 2092 remove &= rc; 2093 } 2094 current->utask->auprobe = NULL; 2095 2096 if (need_prep && !remove) 2097 prepare_uretprobe(uprobe, regs); /* put bp at return */ 2098 2099 if (remove && uprobe->consumers) { 2100 WARN_ON(!uprobe_is_active(uprobe)); 2101 unapply_uprobe(uprobe, current->mm); 2102 } 2103 up_read(&uprobe->register_rwsem); 2104 } 2105 2106 static void handle_uretprobe_chain(struct return_instance * ri,struct pt_regs * regs)2107 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 2108 { 2109 struct uprobe *uprobe = ri->uprobe; 2110 struct uprobe_consumer *uc; 2111 2112 down_read(&uprobe->register_rwsem); 2113 for (uc = uprobe->consumers; uc; uc = uc->next) { 2114 if (uc->ret_handler) 2115 uc->ret_handler(uc, ri->func, regs); 2116 } 2117 up_read(&uprobe->register_rwsem); 2118 } 2119 find_next_ret_chain(struct return_instance * ri)2120 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 2121 { 2122 bool chained; 2123 2124 do { 2125 chained = ri->chained; 2126 ri = ri->next; /* can't be NULL if chained */ 2127 } while (chained); 2128 2129 return ri; 2130 } 2131 handle_trampoline(struct pt_regs * regs)2132 static void handle_trampoline(struct pt_regs *regs) 2133 { 2134 struct uprobe_task *utask; 2135 struct return_instance *ri, *next; 2136 bool valid; 2137 2138 utask = current->utask; 2139 if (!utask) 2140 goto sigill; 2141 2142 ri = utask->return_instances; 2143 if (!ri) 2144 goto sigill; 2145 2146 do { 2147 /* 2148 * We should throw out the frames invalidated by longjmp(). 2149 * If this chain is valid, then the next one should be alive 2150 * or NULL; the latter case means that nobody but ri->func 2151 * could hit this trampoline on return. TODO: sigaltstack(). 2152 */ 2153 next = find_next_ret_chain(ri); 2154 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 2155 2156 instruction_pointer_set(regs, ri->orig_ret_vaddr); 2157 do { 2158 if (valid) 2159 handle_uretprobe_chain(ri, regs); 2160 ri = free_ret_instance(ri); 2161 utask->depth--; 2162 } while (ri != next); 2163 } while (!valid); 2164 2165 utask->return_instances = ri; 2166 return; 2167 2168 sigill: 2169 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 2170 force_sig(SIGILL); 2171 2172 } 2173 arch_uprobe_ignore(struct arch_uprobe * aup,struct pt_regs * regs)2174 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 2175 { 2176 return false; 2177 } 2178 arch_uretprobe_is_alive(struct return_instance * ret,enum rp_check ctx,struct pt_regs * regs)2179 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 2180 struct pt_regs *regs) 2181 { 2182 return true; 2183 } 2184 2185 /* 2186 * Run handler and ask thread to singlestep. 2187 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 2188 */ handle_swbp(struct pt_regs * regs)2189 static void handle_swbp(struct pt_regs *regs) 2190 { 2191 struct uprobe *uprobe; 2192 unsigned long bp_vaddr; 2193 int is_swbp; 2194 2195 bp_vaddr = uprobe_get_swbp_addr(regs); 2196 if (bp_vaddr == get_trampoline_vaddr()) 2197 return handle_trampoline(regs); 2198 2199 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 2200 if (!uprobe) { 2201 if (is_swbp > 0) { 2202 /* No matching uprobe; signal SIGTRAP. */ 2203 force_sig(SIGTRAP); 2204 } else { 2205 /* 2206 * Either we raced with uprobe_unregister() or we can't 2207 * access this memory. The latter is only possible if 2208 * another thread plays with our ->mm. In both cases 2209 * we can simply restart. If this vma was unmapped we 2210 * can pretend this insn was not executed yet and get 2211 * the (correct) SIGSEGV after restart. 2212 */ 2213 instruction_pointer_set(regs, bp_vaddr); 2214 } 2215 return; 2216 } 2217 2218 /* change it in advance for ->handler() and restart */ 2219 instruction_pointer_set(regs, bp_vaddr); 2220 2221 /* 2222 * TODO: move copy_insn/etc into _register and remove this hack. 2223 * After we hit the bp, _unregister + _register can install the 2224 * new and not-yet-analyzed uprobe at the same address, restart. 2225 */ 2226 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 2227 goto out; 2228 2229 /* 2230 * Pairs with the smp_wmb() in prepare_uprobe(). 2231 * 2232 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then 2233 * we must also see the stores to &uprobe->arch performed by the 2234 * prepare_uprobe() call. 2235 */ 2236 smp_rmb(); 2237 2238 /* Tracing handlers use ->utask to communicate with fetch methods */ 2239 if (!get_utask()) 2240 goto out; 2241 2242 if (arch_uprobe_ignore(&uprobe->arch, regs)) 2243 goto out; 2244 2245 handler_chain(uprobe, regs); 2246 2247 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 2248 goto out; 2249 2250 if (!pre_ssout(uprobe, regs, bp_vaddr)) 2251 return; 2252 2253 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 2254 out: 2255 put_uprobe(uprobe); 2256 } 2257 2258 /* 2259 * Perform required fix-ups and disable singlestep. 2260 * Allow pending signals to take effect. 2261 */ handle_singlestep(struct uprobe_task * utask,struct pt_regs * regs)2262 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 2263 { 2264 struct uprobe *uprobe; 2265 int err = 0; 2266 2267 uprobe = utask->active_uprobe; 2268 if (utask->state == UTASK_SSTEP_ACK) 2269 err = arch_uprobe_post_xol(&uprobe->arch, regs); 2270 else if (utask->state == UTASK_SSTEP_TRAPPED) 2271 arch_uprobe_abort_xol(&uprobe->arch, regs); 2272 else 2273 WARN_ON_ONCE(1); 2274 2275 put_uprobe(uprobe); 2276 utask->active_uprobe = NULL; 2277 utask->state = UTASK_RUNNING; 2278 xol_free_insn_slot(current); 2279 2280 spin_lock_irq(¤t->sighand->siglock); 2281 recalc_sigpending(); /* see uprobe_deny_signal() */ 2282 spin_unlock_irq(¤t->sighand->siglock); 2283 2284 if (unlikely(err)) { 2285 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 2286 force_sig(SIGILL); 2287 } 2288 } 2289 2290 /* 2291 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 2292 * allows the thread to return from interrupt. After that handle_swbp() 2293 * sets utask->active_uprobe. 2294 * 2295 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 2296 * and allows the thread to return from interrupt. 2297 * 2298 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 2299 * uprobe_notify_resume(). 2300 */ uprobe_notify_resume(struct pt_regs * regs)2301 void uprobe_notify_resume(struct pt_regs *regs) 2302 { 2303 struct uprobe_task *utask; 2304 2305 clear_thread_flag(TIF_UPROBE); 2306 2307 utask = current->utask; 2308 if (utask && utask->active_uprobe) 2309 handle_singlestep(utask, regs); 2310 else 2311 handle_swbp(regs); 2312 } 2313 2314 /* 2315 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 2316 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 2317 */ uprobe_pre_sstep_notifier(struct pt_regs * regs)2318 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 2319 { 2320 if (!current->mm) 2321 return 0; 2322 2323 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2324 (!current->utask || !current->utask->return_instances)) 2325 return 0; 2326 2327 set_thread_flag(TIF_UPROBE); 2328 return 1; 2329 } 2330 2331 /* 2332 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2333 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2334 */ uprobe_post_sstep_notifier(struct pt_regs * regs)2335 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2336 { 2337 struct uprobe_task *utask = current->utask; 2338 2339 if (!current->mm || !utask || !utask->active_uprobe) 2340 /* task is currently not uprobed */ 2341 return 0; 2342 2343 utask->state = UTASK_SSTEP_ACK; 2344 set_thread_flag(TIF_UPROBE); 2345 return 1; 2346 } 2347 2348 static struct notifier_block uprobe_exception_nb = { 2349 .notifier_call = arch_uprobe_exception_notify, 2350 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2351 }; 2352 uprobes_init(void)2353 void __init uprobes_init(void) 2354 { 2355 int i; 2356 2357 for (i = 0; i < UPROBES_HASH_SZ; i++) 2358 mutex_init(&uprobes_mmap_mutex[i]); 2359 2360 BUG_ON(register_die_notifier(&uprobe_exception_nb)); 2361 } 2362