1 /*
2 * ARM v8.5-MemTag Operations
3 *
4 * Copyright (c) 2020 Linaro, Ltd.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "internals.h"
24 #include "exec/exec-all.h"
25 #include "exec/page-protection.h"
26 #ifdef CONFIG_USER_ONLY
27 #include "user/cpu_loop.h"
28 #include "user/page-protection.h"
29 #else
30 #include "exec/ram_addr.h"
31 #endif
32 #include "exec/cpu_ldst.h"
33 #include "exec/helper-proto.h"
34 #include "accel/tcg/cpu-ops.h"
35 #include "qapi/error.h"
36 #include "qemu/guest-random.h"
37 #include "mte_helper.h"
38
39
choose_nonexcluded_tag(int tag,int offset,uint16_t exclude)40 static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
41 {
42 if (exclude == 0xffff) {
43 return 0;
44 }
45 if (offset == 0) {
46 while (exclude & (1 << tag)) {
47 tag = (tag + 1) & 15;
48 }
49 } else {
50 do {
51 do {
52 tag = (tag + 1) & 15;
53 } while (exclude & (1 << tag));
54 } while (--offset > 0);
55 }
56 return tag;
57 }
58
allocation_tag_mem_probe(CPUARMState * env,int ptr_mmu_idx,uint64_t ptr,MMUAccessType ptr_access,int ptr_size,MMUAccessType tag_access,bool probe,uintptr_t ra)59 uint8_t *allocation_tag_mem_probe(CPUARMState *env, int ptr_mmu_idx,
60 uint64_t ptr, MMUAccessType ptr_access,
61 int ptr_size, MMUAccessType tag_access,
62 bool probe, uintptr_t ra)
63 {
64 #ifdef CONFIG_USER_ONLY
65 uint64_t clean_ptr = useronly_clean_ptr(ptr);
66 int flags = page_get_flags(clean_ptr);
67 uint8_t *tags;
68 uintptr_t index;
69
70 assert(!(probe && ra));
71
72 if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) {
73 if (probe) {
74 return NULL;
75 }
76 cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access,
77 !(flags & PAGE_VALID), ra);
78 }
79
80 /* Require both MAP_ANON and PROT_MTE for the page. */
81 if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) {
82 return NULL;
83 }
84
85 tags = page_get_target_data(clean_ptr);
86
87 index = extract32(ptr, LOG2_TAG_GRANULE + 1,
88 TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1);
89 return tags + index;
90 #else
91 CPUTLBEntryFull *full;
92 MemTxAttrs attrs;
93 int in_page, flags;
94 hwaddr ptr_paddr, tag_paddr, xlat;
95 MemoryRegion *mr;
96 ARMASIdx tag_asi;
97 AddressSpace *tag_as;
98 void *host;
99
100 /*
101 * Probe the first byte of the virtual address. This raises an
102 * exception for inaccessible pages, and resolves the virtual address
103 * into the softmmu tlb.
104 *
105 * When RA == 0, this is either a pure probe or a no-fault-expected probe.
106 * Indicate to probe_access_flags no-fault, then either return NULL
107 * for the pure probe, or assert that we received a valid page for the
108 * no-fault-expected probe.
109 */
110 flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx,
111 ra == 0, &host, &full, ra);
112 if (probe && (flags & TLB_INVALID_MASK)) {
113 return NULL;
114 }
115 assert(!(flags & TLB_INVALID_MASK));
116
117 /* If the virtual page MemAttr != Tagged, access unchecked. */
118 if (full->extra.arm.pte_attrs != 0xf0) {
119 return NULL;
120 }
121
122 /*
123 * If not backed by host ram, there is no tag storage: access unchecked.
124 * This is probably a guest os bug though, so log it.
125 */
126 if (unlikely(flags & TLB_MMIO)) {
127 qemu_log_mask(LOG_GUEST_ERROR,
128 "Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
129 "but is not backed by host ram\n", ptr);
130 return NULL;
131 }
132
133 /*
134 * Remember these values across the second lookup below,
135 * which may invalidate this pointer via tlb resize.
136 */
137 ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK);
138 attrs = full->attrs;
139 full = NULL;
140
141 /*
142 * The Normal memory access can extend to the next page. E.g. a single
143 * 8-byte access to the last byte of a page will check only the last
144 * tag on the first page.
145 * Any page access exception has priority over tag check exception.
146 */
147 in_page = -(ptr | TARGET_PAGE_MASK);
148 if (unlikely(ptr_size > in_page)) {
149 flags |= probe_access_full(env, ptr + in_page, 0, ptr_access,
150 ptr_mmu_idx, ra == 0, &host, &full, ra);
151 assert(!(flags & TLB_INVALID_MASK));
152 }
153
154 /* Any debug exception has priority over a tag check exception. */
155 if (!probe && unlikely(flags & TLB_WATCHPOINT)) {
156 int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
157 assert(ra != 0);
158 cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra);
159 }
160
161 /* Convert to the physical address in tag space. */
162 tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);
163
164 /* Look up the address in tag space. */
165 tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
166 tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
167 mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
168 tag_access == MMU_DATA_STORE, attrs);
169
170 /*
171 * Note that @mr will never be NULL. If there is nothing in the address
172 * space at @tag_paddr, the translation will return the unallocated memory
173 * region. For our purposes, the result must be ram.
174 */
175 if (unlikely(!memory_region_is_ram(mr))) {
176 /* ??? Failure is a board configuration error. */
177 qemu_log_mask(LOG_UNIMP,
178 "Tag Memory @ 0x%" HWADDR_PRIx " not found for "
179 "Normal Memory @ 0x%" HWADDR_PRIx "\n",
180 tag_paddr, ptr_paddr);
181 return NULL;
182 }
183
184 /*
185 * Ensure the tag memory is dirty on write, for migration.
186 * Tag memory can never contain code or display memory (vga).
187 */
188 if (tag_access == MMU_DATA_STORE) {
189 ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
190 cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
191 }
192
193 return memory_region_get_ram_ptr(mr) + xlat;
194 #endif
195 }
196
allocation_tag_mem(CPUARMState * env,int ptr_mmu_idx,uint64_t ptr,MMUAccessType ptr_access,int ptr_size,MMUAccessType tag_access,uintptr_t ra)197 static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
198 uint64_t ptr, MMUAccessType ptr_access,
199 int ptr_size, MMUAccessType tag_access,
200 uintptr_t ra)
201 {
202 return allocation_tag_mem_probe(env, ptr_mmu_idx, ptr, ptr_access,
203 ptr_size, tag_access, false, ra);
204 }
205
HELPER(irg)206 uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
207 {
208 uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
209 int rrnd = extract32(env->cp15.gcr_el1, 16, 1);
210 int start = extract32(env->cp15.rgsr_el1, 0, 4);
211 int seed = extract32(env->cp15.rgsr_el1, 8, 16);
212 int offset, i, rtag;
213
214 /*
215 * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
216 * deterministic algorithm. Except that with RRND==1 the kernel is
217 * not required to have set RGSR_EL1.SEED != 0, which is required for
218 * the deterministic algorithm to function. So we force a non-zero
219 * SEED for that case.
220 */
221 if (unlikely(seed == 0) && rrnd) {
222 do {
223 Error *err = NULL;
224 uint16_t two;
225
226 if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) {
227 /*
228 * Failed, for unknown reasons in the crypto subsystem.
229 * Best we can do is log the reason and use a constant seed.
230 */
231 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n",
232 error_get_pretty(err));
233 error_free(err);
234 two = 1;
235 }
236 seed = two;
237 } while (seed == 0);
238 }
239
240 /* RandomTag */
241 for (i = offset = 0; i < 4; ++i) {
242 /* NextRandomTagBit */
243 int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
244 extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
245 seed = (top << 15) | (seed >> 1);
246 offset |= top << i;
247 }
248 rtag = choose_nonexcluded_tag(start, offset, exclude);
249 env->cp15.rgsr_el1 = rtag | (seed << 8);
250
251 return address_with_allocation_tag(rn, rtag);
252 }
253
HELPER(addsubg)254 uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
255 int32_t offset, uint32_t tag_offset)
256 {
257 int start_tag = allocation_tag_from_addr(ptr);
258 uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
259 int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
260
261 return address_with_allocation_tag(ptr + offset, rtag);
262 }
263
load_tag1(uint64_t ptr,uint8_t * mem)264 int load_tag1(uint64_t ptr, uint8_t *mem)
265 {
266 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
267 return extract32(*mem, ofs, 4);
268 }
269
HELPER(ldg)270 uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
271 {
272 int mmu_idx = arm_env_mmu_index(env);
273 uint8_t *mem;
274 int rtag = 0;
275
276 /* Trap if accessing an invalid page. */
277 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
278 MMU_DATA_LOAD, GETPC());
279
280 /* Load if page supports tags. */
281 if (mem) {
282 rtag = load_tag1(ptr, mem);
283 }
284
285 return address_with_allocation_tag(xt, rtag);
286 }
287
check_tag_aligned(CPUARMState * env,uint64_t ptr,uintptr_t ra)288 static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
289 {
290 if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
291 arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
292 arm_env_mmu_index(env), ra);
293 g_assert_not_reached();
294 }
295 }
296
297 /* For use in a non-parallel context, store to the given nibble. */
store_tag1(uint64_t ptr,uint8_t * mem,int tag)298 void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
299 {
300 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
301 *mem = deposit32(*mem, ofs, 4, tag);
302 }
303
304 /* For use in a parallel context, atomically store to the given nibble. */
store_tag1_parallel(uint64_t ptr,uint8_t * mem,int tag)305 static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
306 {
307 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
308 uint8_t old = qatomic_read(mem);
309
310 while (1) {
311 uint8_t new = deposit32(old, ofs, 4, tag);
312 uint8_t cmp = qatomic_cmpxchg(mem, old, new);
313 if (likely(cmp == old)) {
314 return;
315 }
316 old = cmp;
317 }
318 }
319
320 typedef void stg_store1(uint64_t, uint8_t *, int);
321
do_stg(CPUARMState * env,uint64_t ptr,uint64_t xt,uintptr_t ra,stg_store1 store1)322 static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
323 uintptr_t ra, stg_store1 store1)
324 {
325 int mmu_idx = arm_env_mmu_index(env);
326 uint8_t *mem;
327
328 check_tag_aligned(env, ptr, ra);
329
330 /* Trap if accessing an invalid page. */
331 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
332 MMU_DATA_STORE, ra);
333
334 /* Store if page supports tags. */
335 if (mem) {
336 store1(ptr, mem, allocation_tag_from_addr(xt));
337 }
338 }
339
HELPER(stg)340 void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
341 {
342 do_stg(env, ptr, xt, GETPC(), store_tag1);
343 }
344
HELPER(stg_parallel)345 void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
346 {
347 do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
348 }
349
HELPER(stg_stub)350 void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
351 {
352 int mmu_idx = arm_env_mmu_index(env);
353 uintptr_t ra = GETPC();
354
355 check_tag_aligned(env, ptr, ra);
356 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
357 }
358
do_st2g(CPUARMState * env,uint64_t ptr,uint64_t xt,uintptr_t ra,stg_store1 store1)359 static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
360 uintptr_t ra, stg_store1 store1)
361 {
362 int mmu_idx = arm_env_mmu_index(env);
363 int tag = allocation_tag_from_addr(xt);
364 uint8_t *mem1, *mem2;
365
366 check_tag_aligned(env, ptr, ra);
367
368 /*
369 * Trap if accessing an invalid page(s).
370 * This takes priority over !allocation_tag_access_enabled.
371 */
372 if (ptr & TAG_GRANULE) {
373 /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
374 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
375 TAG_GRANULE, MMU_DATA_STORE, ra);
376 mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
377 MMU_DATA_STORE, TAG_GRANULE,
378 MMU_DATA_STORE, ra);
379
380 /* Store if page(s) support tags. */
381 if (mem1) {
382 store1(TAG_GRANULE, mem1, tag);
383 }
384 if (mem2) {
385 store1(0, mem2, tag);
386 }
387 } else {
388 /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
389 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
390 2 * TAG_GRANULE, MMU_DATA_STORE, ra);
391 if (mem1) {
392 tag |= tag << 4;
393 qatomic_set(mem1, tag);
394 }
395 }
396 }
397
HELPER(st2g)398 void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
399 {
400 do_st2g(env, ptr, xt, GETPC(), store_tag1);
401 }
402
HELPER(st2g_parallel)403 void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
404 {
405 do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
406 }
407
HELPER(st2g_stub)408 void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
409 {
410 int mmu_idx = arm_env_mmu_index(env);
411 uintptr_t ra = GETPC();
412 int in_page = -(ptr | TARGET_PAGE_MASK);
413
414 check_tag_aligned(env, ptr, ra);
415
416 if (likely(in_page >= 2 * TAG_GRANULE)) {
417 probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
418 } else {
419 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
420 probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
421 }
422 }
423
HELPER(ldgm)424 uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
425 {
426 int mmu_idx = arm_env_mmu_index(env);
427 uintptr_t ra = GETPC();
428 int gm_bs = env_archcpu(env)->gm_blocksize;
429 int gm_bs_bytes = 4 << gm_bs;
430 void *tag_mem;
431 uint64_t ret;
432 int shift;
433
434 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes);
435
436 /* Trap if accessing an invalid page. */
437 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
438 gm_bs_bytes, MMU_DATA_LOAD, ra);
439
440 /* The tag is squashed to zero if the page does not support tags. */
441 if (!tag_mem) {
442 return 0;
443 }
444
445 /*
446 * The ordering of elements within the word corresponds to
447 * a little-endian operation. Computation of shift comes from
448 *
449 * index = address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE>
450 * data<index*4+3:index*4> = tag
451 *
452 * Because of the alignment of ptr above, BS=6 has shift=0.
453 * All memory operations are aligned. Defer support for BS=2,
454 * requiring insertion or extraction of a nibble, until we
455 * support a cpu that requires it.
456 */
457 switch (gm_bs) {
458 case 3:
459 /* 32 bytes -> 2 tags -> 8 result bits */
460 ret = *(uint8_t *)tag_mem;
461 break;
462 case 4:
463 /* 64 bytes -> 4 tags -> 16 result bits */
464 ret = cpu_to_le16(*(uint16_t *)tag_mem);
465 break;
466 case 5:
467 /* 128 bytes -> 8 tags -> 32 result bits */
468 ret = cpu_to_le32(*(uint32_t *)tag_mem);
469 break;
470 case 6:
471 /* 256 bytes -> 16 tags -> 64 result bits */
472 return cpu_to_le64(*(uint64_t *)tag_mem);
473 default:
474 /*
475 * CPU configured with unsupported/invalid gm blocksize.
476 * This is detected early in arm_cpu_realizefn.
477 */
478 g_assert_not_reached();
479 }
480 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4;
481 return ret << shift;
482 }
483
HELPER(stgm)484 void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
485 {
486 int mmu_idx = arm_env_mmu_index(env);
487 uintptr_t ra = GETPC();
488 int gm_bs = env_archcpu(env)->gm_blocksize;
489 int gm_bs_bytes = 4 << gm_bs;
490 void *tag_mem;
491 int shift;
492
493 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes);
494
495 /* Trap if accessing an invalid page. */
496 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
497 gm_bs_bytes, MMU_DATA_LOAD, ra);
498
499 /*
500 * Tag store only happens if the page support tags,
501 * and if the OS has enabled access to the tags.
502 */
503 if (!tag_mem) {
504 return;
505 }
506
507 /* See LDGM for comments on BS and on shift. */
508 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4;
509 val >>= shift;
510 switch (gm_bs) {
511 case 3:
512 /* 32 bytes -> 2 tags -> 8 result bits */
513 *(uint8_t *)tag_mem = val;
514 break;
515 case 4:
516 /* 64 bytes -> 4 tags -> 16 result bits */
517 *(uint16_t *)tag_mem = cpu_to_le16(val);
518 break;
519 case 5:
520 /* 128 bytes -> 8 tags -> 32 result bits */
521 *(uint32_t *)tag_mem = cpu_to_le32(val);
522 break;
523 case 6:
524 /* 256 bytes -> 16 tags -> 64 result bits */
525 *(uint64_t *)tag_mem = cpu_to_le64(val);
526 break;
527 default:
528 /* cpu configured with unsupported gm blocksize. */
529 g_assert_not_reached();
530 }
531 }
532
HELPER(stzgm_tags)533 void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
534 {
535 uintptr_t ra = GETPC();
536 int mmu_idx = arm_env_mmu_index(env);
537 int log2_dcz_bytes, log2_tag_bytes;
538 intptr_t dcz_bytes, tag_bytes;
539 uint8_t *mem;
540
541 /*
542 * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
543 * i.e. 32 bytes, which is an unreasonably small dcz anyway,
544 * to make sure that we can access one complete tag byte here.
545 */
546 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
547 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
548 dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
549 tag_bytes = (intptr_t)1 << log2_tag_bytes;
550 ptr &= -dcz_bytes;
551
552 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
553 MMU_DATA_STORE, ra);
554 if (mem) {
555 int tag_pair = (val & 0xf) * 0x11;
556 memset(mem, tag_pair, tag_bytes);
557 }
558 }
559
mte_sync_check_fail(CPUARMState * env,uint32_t desc,uint64_t dirty_ptr,uintptr_t ra)560 static void mte_sync_check_fail(CPUARMState *env, uint32_t desc,
561 uint64_t dirty_ptr, uintptr_t ra)
562 {
563 int is_write, syn;
564
565 env->exception.vaddress = dirty_ptr;
566
567 is_write = FIELD_EX32(desc, MTEDESC, WRITE);
568 syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write,
569 0x11);
570 raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra);
571 g_assert_not_reached();
572 }
573
mte_async_check_fail(CPUARMState * env,uint64_t dirty_ptr,uintptr_t ra,ARMMMUIdx arm_mmu_idx,int el)574 static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr,
575 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el)
576 {
577 int select;
578
579 if (regime_has_2_ranges(arm_mmu_idx)) {
580 select = extract64(dirty_ptr, 55, 1);
581 } else {
582 select = 0;
583 }
584 env->cp15.tfsr_el[el] |= 1 << select;
585 #ifdef CONFIG_USER_ONLY
586 /*
587 * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT,
588 * which then sends a SIGSEGV when the thread is next scheduled.
589 * This cpu will return to the main loop at the end of the TB,
590 * which is rather sooner than "normal". But the alternative
591 * is waiting until the next syscall.
592 */
593 qemu_cpu_kick(env_cpu(env));
594 #endif
595 }
596
597 /* Record a tag check failure. */
mte_check_fail(CPUARMState * env,uint32_t desc,uint64_t dirty_ptr,uintptr_t ra)598 void mte_check_fail(CPUARMState *env, uint32_t desc,
599 uint64_t dirty_ptr, uintptr_t ra)
600 {
601 int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
602 ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
603 int el, reg_el, tcf;
604 uint64_t sctlr;
605
606 reg_el = regime_el(env, arm_mmu_idx);
607 sctlr = env->cp15.sctlr_el[reg_el];
608
609 switch (arm_mmu_idx) {
610 case ARMMMUIdx_E10_0:
611 case ARMMMUIdx_E20_0:
612 el = 0;
613 tcf = extract64(sctlr, 38, 2);
614 break;
615 default:
616 el = reg_el;
617 tcf = extract64(sctlr, 40, 2);
618 }
619
620 switch (tcf) {
621 case 1:
622 /* Tag check fail causes a synchronous exception. */
623 mte_sync_check_fail(env, desc, dirty_ptr, ra);
624 break;
625
626 case 0:
627 /*
628 * Tag check fail does not affect the PE.
629 * We eliminate this case by not setting MTE_ACTIVE
630 * in tb_flags, so that we never make this runtime call.
631 */
632 g_assert_not_reached();
633
634 case 2:
635 /* Tag check fail causes asynchronous flag set. */
636 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
637 break;
638
639 case 3:
640 /*
641 * Tag check fail causes asynchronous flag set for stores, or
642 * a synchronous exception for loads.
643 */
644 if (FIELD_EX32(desc, MTEDESC, WRITE)) {
645 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
646 } else {
647 mte_sync_check_fail(env, desc, dirty_ptr, ra);
648 }
649 break;
650 }
651 }
652
653 /**
654 * checkN:
655 * @tag: tag memory to test
656 * @odd: true to begin testing at tags at odd nibble
657 * @cmp: the tag to compare against
658 * @count: number of tags to test
659 *
660 * Return the number of successful tests.
661 * Thus a return value < @count indicates a failure.
662 *
663 * A note about sizes: count is expected to be small.
664 *
665 * The most common use will be LDP/STP of two integer registers,
666 * which means 16 bytes of memory touching at most 2 tags, but
667 * often the access is aligned and thus just 1 tag.
668 *
669 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
670 * touching at most 5 tags. SVE LDR/STR (vector) with the default
671 * vector length is also 64 bytes; the maximum architectural length
672 * is 256 bytes touching at most 9 tags.
673 *
674 * The loop below uses 7 logical operations and 1 memory operation
675 * per tag pair. An implementation that loads an aligned word and
676 * uses masking to ignore adjacent tags requires 18 logical operations
677 * and thus does not begin to pay off until 6 tags.
678 * Which, according to the survey above, is unlikely to be common.
679 */
checkN(uint8_t * mem,int odd,int cmp,int count)680 static int checkN(uint8_t *mem, int odd, int cmp, int count)
681 {
682 int n = 0, diff;
683
684 /* Replicate the test tag and compare. */
685 cmp *= 0x11;
686 diff = *mem++ ^ cmp;
687
688 if (odd) {
689 goto start_odd;
690 }
691
692 while (1) {
693 /* Test even tag. */
694 if (unlikely((diff) & 0x0f)) {
695 break;
696 }
697 if (++n == count) {
698 break;
699 }
700
701 start_odd:
702 /* Test odd tag. */
703 if (unlikely((diff) & 0xf0)) {
704 break;
705 }
706 if (++n == count) {
707 break;
708 }
709
710 diff = *mem++ ^ cmp;
711 }
712 return n;
713 }
714
715 /**
716 * checkNrev:
717 * @tag: tag memory to test
718 * @odd: true to begin testing at tags at odd nibble
719 * @cmp: the tag to compare against
720 * @count: number of tags to test
721 *
722 * Return the number of successful tests.
723 * Thus a return value < @count indicates a failure.
724 *
725 * This is like checkN, but it runs backwards, checking the
726 * tags starting with @tag and then the tags preceding it.
727 * This is needed by the backwards-memory-copying operations.
728 */
checkNrev(uint8_t * mem,int odd,int cmp,int count)729 static int checkNrev(uint8_t *mem, int odd, int cmp, int count)
730 {
731 int n = 0, diff;
732
733 /* Replicate the test tag and compare. */
734 cmp *= 0x11;
735 diff = *mem-- ^ cmp;
736
737 if (!odd) {
738 goto start_even;
739 }
740
741 while (1) {
742 /* Test odd tag. */
743 if (unlikely((diff) & 0xf0)) {
744 break;
745 }
746 if (++n == count) {
747 break;
748 }
749
750 start_even:
751 /* Test even tag. */
752 if (unlikely((diff) & 0x0f)) {
753 break;
754 }
755 if (++n == count) {
756 break;
757 }
758
759 diff = *mem-- ^ cmp;
760 }
761 return n;
762 }
763
764 /**
765 * mte_probe_int() - helper for mte_probe and mte_check
766 * @env: CPU environment
767 * @desc: MTEDESC descriptor
768 * @ptr: virtual address of the base of the access
769 * @fault: return virtual address of the first check failure
770 *
771 * Internal routine for both mte_probe and mte_check.
772 * Return zero on failure, filling in *fault.
773 * Return negative on trivial success for tbi disabled.
774 * Return positive on success with tbi enabled.
775 */
mte_probe_int(CPUARMState * env,uint32_t desc,uint64_t ptr,uintptr_t ra,uint64_t * fault)776 static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
777 uintptr_t ra, uint64_t *fault)
778 {
779 int mmu_idx, ptr_tag, bit55;
780 uint64_t ptr_last, prev_page, next_page;
781 uint64_t tag_first, tag_last;
782 uint32_t sizem1, tag_count, n, c;
783 uint8_t *mem1, *mem2;
784 MMUAccessType type;
785
786 bit55 = extract64(ptr, 55, 1);
787 *fault = ptr;
788
789 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
790 if (unlikely(!tbi_check(desc, bit55))) {
791 return -1;
792 }
793
794 ptr_tag = allocation_tag_from_addr(ptr);
795
796 if (tcma_check(desc, bit55, ptr_tag)) {
797 return 1;
798 }
799
800 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
801 type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
802 sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1);
803
804 /* Find the addr of the end of the access */
805 ptr_last = ptr + sizem1;
806
807 /* Round the bounds to the tag granule, and compute the number of tags. */
808 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
809 tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE);
810 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
811
812 /* Locate the page boundaries. */
813 prev_page = ptr & TARGET_PAGE_MASK;
814 next_page = prev_page + TARGET_PAGE_SIZE;
815
816 if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) {
817 /* Memory access stays on one page. */
818 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1,
819 MMU_DATA_LOAD, ra);
820 if (!mem1) {
821 return 1;
822 }
823 /* Perform all of the comparisons. */
824 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
825 } else {
826 /* Memory access crosses to next page. */
827 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
828 MMU_DATA_LOAD, ra);
829
830 mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
831 ptr_last - next_page + 1,
832 MMU_DATA_LOAD, ra);
833
834 /*
835 * Perform all of the comparisons.
836 * Note the possible but unlikely case of the operation spanning
837 * two pages that do not both have tagging enabled.
838 */
839 n = c = (next_page - tag_first) / TAG_GRANULE;
840 if (mem1) {
841 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
842 }
843 if (n == c) {
844 if (!mem2) {
845 return 1;
846 }
847 n += checkN(mem2, 0, ptr_tag, tag_count - c);
848 }
849 }
850
851 if (likely(n == tag_count)) {
852 return 1;
853 }
854
855 /*
856 * If we failed, we know which granule. For the first granule, the
857 * failure address is @ptr, the first byte accessed. Otherwise the
858 * failure address is the first byte of the nth granule.
859 */
860 if (n > 0) {
861 *fault = tag_first + n * TAG_GRANULE;
862 }
863 return 0;
864 }
865
mte_check(CPUARMState * env,uint32_t desc,uint64_t ptr,uintptr_t ra)866 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra)
867 {
868 uint64_t fault;
869 int ret = mte_probe_int(env, desc, ptr, ra, &fault);
870
871 if (unlikely(ret == 0)) {
872 mte_check_fail(env, desc, fault, ra);
873 } else if (ret < 0) {
874 return ptr;
875 }
876 return useronly_clean_ptr(ptr);
877 }
878
HELPER(mte_check)879 uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr)
880 {
881 /*
882 * R_XCHFJ: Alignment check not caused by memory type is priority 1,
883 * higher than any translation fault. When MTE is disabled, tcg
884 * performs the alignment check during the code generated for the
885 * memory access. With MTE enabled, we must check this here before
886 * raising any translation fault in allocation_tag_mem.
887 */
888 unsigned align = FIELD_EX32(desc, MTEDESC, ALIGN);
889 if (unlikely(align)) {
890 align = (1u << align) - 1;
891 if (unlikely(ptr & align)) {
892 int idx = FIELD_EX32(desc, MTEDESC, MIDX);
893 bool w = FIELD_EX32(desc, MTEDESC, WRITE);
894 MMUAccessType type = w ? MMU_DATA_STORE : MMU_DATA_LOAD;
895 arm_cpu_do_unaligned_access(env_cpu(env), ptr, type, idx, GETPC());
896 }
897 }
898
899 return mte_check(env, desc, ptr, GETPC());
900 }
901
902 /*
903 * No-fault version of mte_check, to be used by SVE for MemSingleNF.
904 * Returns false if the access is Checked and the check failed. This
905 * is only intended to probe the tag -- the validity of the page must
906 * be checked beforehand.
907 */
mte_probe(CPUARMState * env,uint32_t desc,uint64_t ptr)908 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr)
909 {
910 uint64_t fault;
911 int ret = mte_probe_int(env, desc, ptr, 0, &fault);
912
913 return ret != 0;
914 }
915
916 /*
917 * Perform an MTE checked access for DC_ZVA.
918 */
HELPER(mte_check_zva)919 uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
920 {
921 uintptr_t ra = GETPC();
922 int log2_dcz_bytes, log2_tag_bytes;
923 int mmu_idx, bit55;
924 intptr_t dcz_bytes, tag_bytes, i;
925 void *mem;
926 uint64_t ptr_tag, mem_tag, align_ptr;
927
928 bit55 = extract64(ptr, 55, 1);
929
930 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
931 if (unlikely(!tbi_check(desc, bit55))) {
932 return ptr;
933 }
934
935 ptr_tag = allocation_tag_from_addr(ptr);
936
937 if (tcma_check(desc, bit55, ptr_tag)) {
938 goto done;
939 }
940
941 /*
942 * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
943 * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
944 * sure that we can access one complete tag byte here.
945 */
946 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
947 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
948 dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
949 tag_bytes = (intptr_t)1 << log2_tag_bytes;
950 align_ptr = ptr & -dcz_bytes;
951
952 /*
953 * Trap if accessing an invalid page. DC_ZVA requires that we supply
954 * the original pointer for an invalid page. But watchpoints require
955 * that we probe the actual space. So do both.
956 */
957 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
958 (void) probe_write(env, ptr, 1, mmu_idx, ra);
959 mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
960 dcz_bytes, MMU_DATA_LOAD, ra);
961 if (!mem) {
962 goto done;
963 }
964
965 /*
966 * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
967 * it is quite easy to perform all of the comparisons at once without
968 * any extra masking.
969 *
970 * The most common zva block size is 64; some of the thunderx cpus use
971 * a block size of 128. For user-only, aarch64_max_initfn will set the
972 * block size to 512. Fill out the other cases for future-proofing.
973 *
974 * In order to be able to find the first miscompare later, we want the
975 * tag bytes to be in little-endian order.
976 */
977 switch (log2_tag_bytes) {
978 case 0: /* zva_blocksize 32 */
979 mem_tag = *(uint8_t *)mem;
980 ptr_tag *= 0x11u;
981 break;
982 case 1: /* zva_blocksize 64 */
983 mem_tag = cpu_to_le16(*(uint16_t *)mem);
984 ptr_tag *= 0x1111u;
985 break;
986 case 2: /* zva_blocksize 128 */
987 mem_tag = cpu_to_le32(*(uint32_t *)mem);
988 ptr_tag *= 0x11111111u;
989 break;
990 case 3: /* zva_blocksize 256 */
991 mem_tag = cpu_to_le64(*(uint64_t *)mem);
992 ptr_tag *= 0x1111111111111111ull;
993 break;
994
995 default: /* zva_blocksize 512, 1024, 2048 */
996 ptr_tag *= 0x1111111111111111ull;
997 i = 0;
998 do {
999 mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
1000 if (unlikely(mem_tag != ptr_tag)) {
1001 goto fail;
1002 }
1003 i += 8;
1004 align_ptr += 16 * TAG_GRANULE;
1005 } while (i < tag_bytes);
1006 goto done;
1007 }
1008
1009 if (likely(mem_tag == ptr_tag)) {
1010 goto done;
1011 }
1012
1013 fail:
1014 /* Locate the first nibble that differs. */
1015 i = ctz64(mem_tag ^ ptr_tag) >> 4;
1016 mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);
1017
1018 done:
1019 return useronly_clean_ptr(ptr);
1020 }
1021
mte_mops_probe(CPUARMState * env,uint64_t ptr,uint64_t size,uint32_t desc)1022 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
1023 uint32_t desc)
1024 {
1025 int mmu_idx, tag_count;
1026 uint64_t ptr_tag, tag_first, tag_last;
1027 void *mem;
1028 bool w = FIELD_EX32(desc, MTEDESC, WRITE);
1029 uint32_t n;
1030
1031 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
1032 /* True probe; this will never fault */
1033 mem = allocation_tag_mem_probe(env, mmu_idx, ptr,
1034 w ? MMU_DATA_STORE : MMU_DATA_LOAD,
1035 size, MMU_DATA_LOAD, true, 0);
1036 if (!mem) {
1037 return size;
1038 }
1039
1040 /*
1041 * TODO: checkN() is not designed for checks of the size we expect
1042 * for FEAT_MOPS operations, so we should implement this differently.
1043 * Maybe we should do something like
1044 * if (region start and size are aligned nicely) {
1045 * do direct loads of 64 tag bits at a time;
1046 * } else {
1047 * call checkN()
1048 * }
1049 */
1050 /* Round the bounds to the tag granule, and compute the number of tags. */
1051 ptr_tag = allocation_tag_from_addr(ptr);
1052 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
1053 tag_last = QEMU_ALIGN_DOWN(ptr + size - 1, TAG_GRANULE);
1054 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
1055 n = checkN(mem, ptr & TAG_GRANULE, ptr_tag, tag_count);
1056 if (likely(n == tag_count)) {
1057 return size;
1058 }
1059
1060 /*
1061 * Failure; for the first granule, it's at @ptr. Otherwise
1062 * it's at the first byte of the nth granule. Calculate how
1063 * many bytes we can access without hitting that failure.
1064 */
1065 if (n == 0) {
1066 return 0;
1067 } else {
1068 return n * TAG_GRANULE - (ptr - tag_first);
1069 }
1070 }
1071
mte_mops_probe_rev(CPUARMState * env,uint64_t ptr,uint64_t size,uint32_t desc)1072 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
1073 uint32_t desc)
1074 {
1075 int mmu_idx, tag_count;
1076 uint64_t ptr_tag, tag_first, tag_last;
1077 void *mem;
1078 bool w = FIELD_EX32(desc, MTEDESC, WRITE);
1079 uint32_t n;
1080
1081 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
1082 /*
1083 * True probe; this will never fault. Note that our caller passes
1084 * us a pointer to the end of the region, but allocation_tag_mem_probe()
1085 * wants a pointer to the start. Because we know we don't span a page
1086 * boundary and that allocation_tag_mem_probe() doesn't otherwise care
1087 * about the size, pass in a size of 1 byte. This is simpler than
1088 * adjusting the ptr to point to the start of the region and then having
1089 * to adjust the returned 'mem' to get the end of the tag memory.
1090 */
1091 mem = allocation_tag_mem_probe(env, mmu_idx, ptr,
1092 w ? MMU_DATA_STORE : MMU_DATA_LOAD,
1093 1, MMU_DATA_LOAD, true, 0);
1094 if (!mem) {
1095 return size;
1096 }
1097
1098 /*
1099 * TODO: checkNrev() is not designed for checks of the size we expect
1100 * for FEAT_MOPS operations, so we should implement this differently.
1101 * Maybe we should do something like
1102 * if (region start and size are aligned nicely) {
1103 * do direct loads of 64 tag bits at a time;
1104 * } else {
1105 * call checkN()
1106 * }
1107 */
1108 /* Round the bounds to the tag granule, and compute the number of tags. */
1109 ptr_tag = allocation_tag_from_addr(ptr);
1110 tag_first = QEMU_ALIGN_DOWN(ptr - (size - 1), TAG_GRANULE);
1111 tag_last = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
1112 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
1113 n = checkNrev(mem, ptr & TAG_GRANULE, ptr_tag, tag_count);
1114 if (likely(n == tag_count)) {
1115 return size;
1116 }
1117
1118 /*
1119 * Failure; for the first granule, it's at @ptr. Otherwise
1120 * it's at the last byte of the nth granule. Calculate how
1121 * many bytes we can access without hitting that failure.
1122 */
1123 if (n == 0) {
1124 return 0;
1125 } else {
1126 return (n - 1) * TAG_GRANULE + ((ptr + 1) - tag_last);
1127 }
1128 }
1129
mte_mops_set_tags(CPUARMState * env,uint64_t ptr,uint64_t size,uint32_t desc)1130 void mte_mops_set_tags(CPUARMState *env, uint64_t ptr, uint64_t size,
1131 uint32_t desc)
1132 {
1133 int mmu_idx, tag_count;
1134 uint64_t ptr_tag;
1135 void *mem;
1136
1137 if (!desc) {
1138 /* Tags not actually enabled */
1139 return;
1140 }
1141
1142 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
1143 /* True probe: this will never fault */
1144 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, MMU_DATA_STORE, size,
1145 MMU_DATA_STORE, true, 0);
1146 if (!mem) {
1147 return;
1148 }
1149
1150 /*
1151 * We know that ptr and size are both TAG_GRANULE aligned; store
1152 * the tag from the pointer value into the tag memory.
1153 */
1154 ptr_tag = allocation_tag_from_addr(ptr);
1155 tag_count = size / TAG_GRANULE;
1156 if (ptr & TAG_GRANULE) {
1157 /* Not 2*TAG_GRANULE-aligned: store tag to first nibble */
1158 store_tag1_parallel(TAG_GRANULE, mem, ptr_tag);
1159 mem++;
1160 tag_count--;
1161 }
1162 memset(mem, ptr_tag | (ptr_tag << 4), tag_count / 2);
1163 if (tag_count & 1) {
1164 /* Final trailing unaligned nibble */
1165 mem += tag_count / 2;
1166 store_tag1_parallel(0, mem, ptr_tag);
1167 }
1168 }
1169