xref: /openbmc/linux/tools/lib/bpf/btf.c (revision 1ac731c529cd4d6adbce134754b51ff7d822b145)
1  // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2  /* Copyright (c) 2018 Facebook */
3  
4  #include <byteswap.h>
5  #include <endian.h>
6  #include <stdio.h>
7  #include <stdlib.h>
8  #include <string.h>
9  #include <fcntl.h>
10  #include <unistd.h>
11  #include <errno.h>
12  #include <sys/utsname.h>
13  #include <sys/param.h>
14  #include <sys/stat.h>
15  #include <linux/kernel.h>
16  #include <linux/err.h>
17  #include <linux/btf.h>
18  #include <gelf.h>
19  #include "btf.h"
20  #include "bpf.h"
21  #include "libbpf.h"
22  #include "libbpf_internal.h"
23  #include "hashmap.h"
24  #include "strset.h"
25  
26  #define BTF_MAX_NR_TYPES 0x7fffffffU
27  #define BTF_MAX_STR_OFFSET 0x7fffffffU
28  
29  static struct btf_type btf_void;
30  
31  struct btf {
32  	/* raw BTF data in native endianness */
33  	void *raw_data;
34  	/* raw BTF data in non-native endianness */
35  	void *raw_data_swapped;
36  	__u32 raw_size;
37  	/* whether target endianness differs from the native one */
38  	bool swapped_endian;
39  
40  	/*
41  	 * When BTF is loaded from an ELF or raw memory it is stored
42  	 * in a contiguous memory block. The hdr, type_data, and, strs_data
43  	 * point inside that memory region to their respective parts of BTF
44  	 * representation:
45  	 *
46  	 * +--------------------------------+
47  	 * |  Header  |  Types  |  Strings  |
48  	 * +--------------------------------+
49  	 * ^          ^         ^
50  	 * |          |         |
51  	 * hdr        |         |
52  	 * types_data-+         |
53  	 * strs_data------------+
54  	 *
55  	 * If BTF data is later modified, e.g., due to types added or
56  	 * removed, BTF deduplication performed, etc, this contiguous
57  	 * representation is broken up into three independently allocated
58  	 * memory regions to be able to modify them independently.
59  	 * raw_data is nulled out at that point, but can be later allocated
60  	 * and cached again if user calls btf__raw_data(), at which point
61  	 * raw_data will contain a contiguous copy of header, types, and
62  	 * strings:
63  	 *
64  	 * +----------+  +---------+  +-----------+
65  	 * |  Header  |  |  Types  |  |  Strings  |
66  	 * +----------+  +---------+  +-----------+
67  	 * ^             ^            ^
68  	 * |             |            |
69  	 * hdr           |            |
70  	 * types_data----+            |
71  	 * strset__data(strs_set)-----+
72  	 *
73  	 *               +----------+---------+-----------+
74  	 *               |  Header  |  Types  |  Strings  |
75  	 * raw_data----->+----------+---------+-----------+
76  	 */
77  	struct btf_header *hdr;
78  
79  	void *types_data;
80  	size_t types_data_cap; /* used size stored in hdr->type_len */
81  
82  	/* type ID to `struct btf_type *` lookup index
83  	 * type_offs[0] corresponds to the first non-VOID type:
84  	 *   - for base BTF it's type [1];
85  	 *   - for split BTF it's the first non-base BTF type.
86  	 */
87  	__u32 *type_offs;
88  	size_t type_offs_cap;
89  	/* number of types in this BTF instance:
90  	 *   - doesn't include special [0] void type;
91  	 *   - for split BTF counts number of types added on top of base BTF.
92  	 */
93  	__u32 nr_types;
94  	/* if not NULL, points to the base BTF on top of which the current
95  	 * split BTF is based
96  	 */
97  	struct btf *base_btf;
98  	/* BTF type ID of the first type in this BTF instance:
99  	 *   - for base BTF it's equal to 1;
100  	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
101  	 */
102  	int start_id;
103  	/* logical string offset of this BTF instance:
104  	 *   - for base BTF it's equal to 0;
105  	 *   - for split BTF it's equal to total size of base BTF's string section size.
106  	 */
107  	int start_str_off;
108  
109  	/* only one of strs_data or strs_set can be non-NULL, depending on
110  	 * whether BTF is in a modifiable state (strs_set is used) or not
111  	 * (strs_data points inside raw_data)
112  	 */
113  	void *strs_data;
114  	/* a set of unique strings */
115  	struct strset *strs_set;
116  	/* whether strings are already deduplicated */
117  	bool strs_deduped;
118  
119  	/* BTF object FD, if loaded into kernel */
120  	int fd;
121  
122  	/* Pointer size (in bytes) for a target architecture of this BTF */
123  	int ptr_sz;
124  };
125  
ptr_to_u64(const void * ptr)126  static inline __u64 ptr_to_u64(const void *ptr)
127  {
128  	return (__u64) (unsigned long) ptr;
129  }
130  
131  /* Ensure given dynamically allocated memory region pointed to by *data* with
132   * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
133   * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements
134   * are already used. At most *max_cnt* elements can be ever allocated.
135   * If necessary, memory is reallocated and all existing data is copied over,
136   * new pointer to the memory region is stored at *data, new memory region
137   * capacity (in number of elements) is stored in *cap.
138   * On success, memory pointer to the beginning of unused memory is returned.
139   * On error, NULL is returned.
140   */
libbpf_add_mem(void ** data,size_t * cap_cnt,size_t elem_sz,size_t cur_cnt,size_t max_cnt,size_t add_cnt)141  void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
142  		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
143  {
144  	size_t new_cnt;
145  	void *new_data;
146  
147  	if (cur_cnt + add_cnt <= *cap_cnt)
148  		return *data + cur_cnt * elem_sz;
149  
150  	/* requested more than the set limit */
151  	if (cur_cnt + add_cnt > max_cnt)
152  		return NULL;
153  
154  	new_cnt = *cap_cnt;
155  	new_cnt += new_cnt / 4;		  /* expand by 25% */
156  	if (new_cnt < 16)		  /* but at least 16 elements */
157  		new_cnt = 16;
158  	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
159  		new_cnt = max_cnt;
160  	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
161  		new_cnt = cur_cnt + add_cnt;
162  
163  	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
164  	if (!new_data)
165  		return NULL;
166  
167  	/* zero out newly allocated portion of memory */
168  	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
169  
170  	*data = new_data;
171  	*cap_cnt = new_cnt;
172  	return new_data + cur_cnt * elem_sz;
173  }
174  
175  /* Ensure given dynamically allocated memory region has enough allocated space
176   * to accommodate *need_cnt* elements of size *elem_sz* bytes each
177   */
libbpf_ensure_mem(void ** data,size_t * cap_cnt,size_t elem_sz,size_t need_cnt)178  int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
179  {
180  	void *p;
181  
182  	if (need_cnt <= *cap_cnt)
183  		return 0;
184  
185  	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
186  	if (!p)
187  		return -ENOMEM;
188  
189  	return 0;
190  }
191  
btf_add_type_offs_mem(struct btf * btf,size_t add_cnt)192  static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
193  {
194  	return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
195  			      btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
196  }
197  
btf_add_type_idx_entry(struct btf * btf,__u32 type_off)198  static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
199  {
200  	__u32 *p;
201  
202  	p = btf_add_type_offs_mem(btf, 1);
203  	if (!p)
204  		return -ENOMEM;
205  
206  	*p = type_off;
207  	return 0;
208  }
209  
btf_bswap_hdr(struct btf_header * h)210  static void btf_bswap_hdr(struct btf_header *h)
211  {
212  	h->magic = bswap_16(h->magic);
213  	h->hdr_len = bswap_32(h->hdr_len);
214  	h->type_off = bswap_32(h->type_off);
215  	h->type_len = bswap_32(h->type_len);
216  	h->str_off = bswap_32(h->str_off);
217  	h->str_len = bswap_32(h->str_len);
218  }
219  
btf_parse_hdr(struct btf * btf)220  static int btf_parse_hdr(struct btf *btf)
221  {
222  	struct btf_header *hdr = btf->hdr;
223  	__u32 meta_left;
224  
225  	if (btf->raw_size < sizeof(struct btf_header)) {
226  		pr_debug("BTF header not found\n");
227  		return -EINVAL;
228  	}
229  
230  	if (hdr->magic == bswap_16(BTF_MAGIC)) {
231  		btf->swapped_endian = true;
232  		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
233  			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
234  				bswap_32(hdr->hdr_len));
235  			return -ENOTSUP;
236  		}
237  		btf_bswap_hdr(hdr);
238  	} else if (hdr->magic != BTF_MAGIC) {
239  		pr_debug("Invalid BTF magic: %x\n", hdr->magic);
240  		return -EINVAL;
241  	}
242  
243  	if (btf->raw_size < hdr->hdr_len) {
244  		pr_debug("BTF header len %u larger than data size %u\n",
245  			 hdr->hdr_len, btf->raw_size);
246  		return -EINVAL;
247  	}
248  
249  	meta_left = btf->raw_size - hdr->hdr_len;
250  	if (meta_left < (long long)hdr->str_off + hdr->str_len) {
251  		pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
252  		return -EINVAL;
253  	}
254  
255  	if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
256  		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
257  			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
258  		return -EINVAL;
259  	}
260  
261  	if (hdr->type_off % 4) {
262  		pr_debug("BTF type section is not aligned to 4 bytes\n");
263  		return -EINVAL;
264  	}
265  
266  	return 0;
267  }
268  
btf_parse_str_sec(struct btf * btf)269  static int btf_parse_str_sec(struct btf *btf)
270  {
271  	const struct btf_header *hdr = btf->hdr;
272  	const char *start = btf->strs_data;
273  	const char *end = start + btf->hdr->str_len;
274  
275  	if (btf->base_btf && hdr->str_len == 0)
276  		return 0;
277  	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
278  		pr_debug("Invalid BTF string section\n");
279  		return -EINVAL;
280  	}
281  	if (!btf->base_btf && start[0]) {
282  		pr_debug("Invalid BTF string section\n");
283  		return -EINVAL;
284  	}
285  	return 0;
286  }
287  
btf_type_size(const struct btf_type * t)288  static int btf_type_size(const struct btf_type *t)
289  {
290  	const int base_size = sizeof(struct btf_type);
291  	__u16 vlen = btf_vlen(t);
292  
293  	switch (btf_kind(t)) {
294  	case BTF_KIND_FWD:
295  	case BTF_KIND_CONST:
296  	case BTF_KIND_VOLATILE:
297  	case BTF_KIND_RESTRICT:
298  	case BTF_KIND_PTR:
299  	case BTF_KIND_TYPEDEF:
300  	case BTF_KIND_FUNC:
301  	case BTF_KIND_FLOAT:
302  	case BTF_KIND_TYPE_TAG:
303  		return base_size;
304  	case BTF_KIND_INT:
305  		return base_size + sizeof(__u32);
306  	case BTF_KIND_ENUM:
307  		return base_size + vlen * sizeof(struct btf_enum);
308  	case BTF_KIND_ENUM64:
309  		return base_size + vlen * sizeof(struct btf_enum64);
310  	case BTF_KIND_ARRAY:
311  		return base_size + sizeof(struct btf_array);
312  	case BTF_KIND_STRUCT:
313  	case BTF_KIND_UNION:
314  		return base_size + vlen * sizeof(struct btf_member);
315  	case BTF_KIND_FUNC_PROTO:
316  		return base_size + vlen * sizeof(struct btf_param);
317  	case BTF_KIND_VAR:
318  		return base_size + sizeof(struct btf_var);
319  	case BTF_KIND_DATASEC:
320  		return base_size + vlen * sizeof(struct btf_var_secinfo);
321  	case BTF_KIND_DECL_TAG:
322  		return base_size + sizeof(struct btf_decl_tag);
323  	default:
324  		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
325  		return -EINVAL;
326  	}
327  }
328  
btf_bswap_type_base(struct btf_type * t)329  static void btf_bswap_type_base(struct btf_type *t)
330  {
331  	t->name_off = bswap_32(t->name_off);
332  	t->info = bswap_32(t->info);
333  	t->type = bswap_32(t->type);
334  }
335  
btf_bswap_type_rest(struct btf_type * t)336  static int btf_bswap_type_rest(struct btf_type *t)
337  {
338  	struct btf_var_secinfo *v;
339  	struct btf_enum64 *e64;
340  	struct btf_member *m;
341  	struct btf_array *a;
342  	struct btf_param *p;
343  	struct btf_enum *e;
344  	__u16 vlen = btf_vlen(t);
345  	int i;
346  
347  	switch (btf_kind(t)) {
348  	case BTF_KIND_FWD:
349  	case BTF_KIND_CONST:
350  	case BTF_KIND_VOLATILE:
351  	case BTF_KIND_RESTRICT:
352  	case BTF_KIND_PTR:
353  	case BTF_KIND_TYPEDEF:
354  	case BTF_KIND_FUNC:
355  	case BTF_KIND_FLOAT:
356  	case BTF_KIND_TYPE_TAG:
357  		return 0;
358  	case BTF_KIND_INT:
359  		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
360  		return 0;
361  	case BTF_KIND_ENUM:
362  		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
363  			e->name_off = bswap_32(e->name_off);
364  			e->val = bswap_32(e->val);
365  		}
366  		return 0;
367  	case BTF_KIND_ENUM64:
368  		for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) {
369  			e64->name_off = bswap_32(e64->name_off);
370  			e64->val_lo32 = bswap_32(e64->val_lo32);
371  			e64->val_hi32 = bswap_32(e64->val_hi32);
372  		}
373  		return 0;
374  	case BTF_KIND_ARRAY:
375  		a = btf_array(t);
376  		a->type = bswap_32(a->type);
377  		a->index_type = bswap_32(a->index_type);
378  		a->nelems = bswap_32(a->nelems);
379  		return 0;
380  	case BTF_KIND_STRUCT:
381  	case BTF_KIND_UNION:
382  		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
383  			m->name_off = bswap_32(m->name_off);
384  			m->type = bswap_32(m->type);
385  			m->offset = bswap_32(m->offset);
386  		}
387  		return 0;
388  	case BTF_KIND_FUNC_PROTO:
389  		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
390  			p->name_off = bswap_32(p->name_off);
391  			p->type = bswap_32(p->type);
392  		}
393  		return 0;
394  	case BTF_KIND_VAR:
395  		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
396  		return 0;
397  	case BTF_KIND_DATASEC:
398  		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
399  			v->type = bswap_32(v->type);
400  			v->offset = bswap_32(v->offset);
401  			v->size = bswap_32(v->size);
402  		}
403  		return 0;
404  	case BTF_KIND_DECL_TAG:
405  		btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
406  		return 0;
407  	default:
408  		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
409  		return -EINVAL;
410  	}
411  }
412  
btf_parse_type_sec(struct btf * btf)413  static int btf_parse_type_sec(struct btf *btf)
414  {
415  	struct btf_header *hdr = btf->hdr;
416  	void *next_type = btf->types_data;
417  	void *end_type = next_type + hdr->type_len;
418  	int err, type_size;
419  
420  	while (next_type + sizeof(struct btf_type) <= end_type) {
421  		if (btf->swapped_endian)
422  			btf_bswap_type_base(next_type);
423  
424  		type_size = btf_type_size(next_type);
425  		if (type_size < 0)
426  			return type_size;
427  		if (next_type + type_size > end_type) {
428  			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
429  			return -EINVAL;
430  		}
431  
432  		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
433  			return -EINVAL;
434  
435  		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
436  		if (err)
437  			return err;
438  
439  		next_type += type_size;
440  		btf->nr_types++;
441  	}
442  
443  	if (next_type != end_type) {
444  		pr_warn("BTF types data is malformed\n");
445  		return -EINVAL;
446  	}
447  
448  	return 0;
449  }
450  
btf__type_cnt(const struct btf * btf)451  __u32 btf__type_cnt(const struct btf *btf)
452  {
453  	return btf->start_id + btf->nr_types;
454  }
455  
btf__base_btf(const struct btf * btf)456  const struct btf *btf__base_btf(const struct btf *btf)
457  {
458  	return btf->base_btf;
459  }
460  
461  /* internal helper returning non-const pointer to a type */
btf_type_by_id(const struct btf * btf,__u32 type_id)462  struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
463  {
464  	if (type_id == 0)
465  		return &btf_void;
466  	if (type_id < btf->start_id)
467  		return btf_type_by_id(btf->base_btf, type_id);
468  	return btf->types_data + btf->type_offs[type_id - btf->start_id];
469  }
470  
btf__type_by_id(const struct btf * btf,__u32 type_id)471  const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
472  {
473  	if (type_id >= btf->start_id + btf->nr_types)
474  		return errno = EINVAL, NULL;
475  	return btf_type_by_id((struct btf *)btf, type_id);
476  }
477  
determine_ptr_size(const struct btf * btf)478  static int determine_ptr_size(const struct btf *btf)
479  {
480  	static const char * const long_aliases[] = {
481  		"long",
482  		"long int",
483  		"int long",
484  		"unsigned long",
485  		"long unsigned",
486  		"unsigned long int",
487  		"unsigned int long",
488  		"long unsigned int",
489  		"long int unsigned",
490  		"int unsigned long",
491  		"int long unsigned",
492  	};
493  	const struct btf_type *t;
494  	const char *name;
495  	int i, j, n;
496  
497  	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
498  		return btf->base_btf->ptr_sz;
499  
500  	n = btf__type_cnt(btf);
501  	for (i = 1; i < n; i++) {
502  		t = btf__type_by_id(btf, i);
503  		if (!btf_is_int(t))
504  			continue;
505  
506  		if (t->size != 4 && t->size != 8)
507  			continue;
508  
509  		name = btf__name_by_offset(btf, t->name_off);
510  		if (!name)
511  			continue;
512  
513  		for (j = 0; j < ARRAY_SIZE(long_aliases); j++) {
514  			if (strcmp(name, long_aliases[j]) == 0)
515  				return t->size;
516  		}
517  	}
518  
519  	return -1;
520  }
521  
btf_ptr_sz(const struct btf * btf)522  static size_t btf_ptr_sz(const struct btf *btf)
523  {
524  	if (!btf->ptr_sz)
525  		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
526  	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
527  }
528  
529  /* Return pointer size this BTF instance assumes. The size is heuristically
530   * determined by looking for 'long' or 'unsigned long' integer type and
531   * recording its size in bytes. If BTF type information doesn't have any such
532   * type, this function returns 0. In the latter case, native architecture's
533   * pointer size is assumed, so will be either 4 or 8, depending on
534   * architecture that libbpf was compiled for. It's possible to override
535   * guessed value by using btf__set_pointer_size() API.
536   */
btf__pointer_size(const struct btf * btf)537  size_t btf__pointer_size(const struct btf *btf)
538  {
539  	if (!btf->ptr_sz)
540  		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
541  
542  	if (btf->ptr_sz < 0)
543  		/* not enough BTF type info to guess */
544  		return 0;
545  
546  	return btf->ptr_sz;
547  }
548  
549  /* Override or set pointer size in bytes. Only values of 4 and 8 are
550   * supported.
551   */
btf__set_pointer_size(struct btf * btf,size_t ptr_sz)552  int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
553  {
554  	if (ptr_sz != 4 && ptr_sz != 8)
555  		return libbpf_err(-EINVAL);
556  	btf->ptr_sz = ptr_sz;
557  	return 0;
558  }
559  
is_host_big_endian(void)560  static bool is_host_big_endian(void)
561  {
562  #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
563  	return false;
564  #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
565  	return true;
566  #else
567  # error "Unrecognized __BYTE_ORDER__"
568  #endif
569  }
570  
btf__endianness(const struct btf * btf)571  enum btf_endianness btf__endianness(const struct btf *btf)
572  {
573  	if (is_host_big_endian())
574  		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
575  	else
576  		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
577  }
578  
btf__set_endianness(struct btf * btf,enum btf_endianness endian)579  int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
580  {
581  	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
582  		return libbpf_err(-EINVAL);
583  
584  	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
585  	if (!btf->swapped_endian) {
586  		free(btf->raw_data_swapped);
587  		btf->raw_data_swapped = NULL;
588  	}
589  	return 0;
590  }
591  
btf_type_is_void(const struct btf_type * t)592  static bool btf_type_is_void(const struct btf_type *t)
593  {
594  	return t == &btf_void || btf_is_fwd(t);
595  }
596  
btf_type_is_void_or_null(const struct btf_type * t)597  static bool btf_type_is_void_or_null(const struct btf_type *t)
598  {
599  	return !t || btf_type_is_void(t);
600  }
601  
602  #define MAX_RESOLVE_DEPTH 32
603  
btf__resolve_size(const struct btf * btf,__u32 type_id)604  __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
605  {
606  	const struct btf_array *array;
607  	const struct btf_type *t;
608  	__u32 nelems = 1;
609  	__s64 size = -1;
610  	int i;
611  
612  	t = btf__type_by_id(btf, type_id);
613  	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
614  		switch (btf_kind(t)) {
615  		case BTF_KIND_INT:
616  		case BTF_KIND_STRUCT:
617  		case BTF_KIND_UNION:
618  		case BTF_KIND_ENUM:
619  		case BTF_KIND_ENUM64:
620  		case BTF_KIND_DATASEC:
621  		case BTF_KIND_FLOAT:
622  			size = t->size;
623  			goto done;
624  		case BTF_KIND_PTR:
625  			size = btf_ptr_sz(btf);
626  			goto done;
627  		case BTF_KIND_TYPEDEF:
628  		case BTF_KIND_VOLATILE:
629  		case BTF_KIND_CONST:
630  		case BTF_KIND_RESTRICT:
631  		case BTF_KIND_VAR:
632  		case BTF_KIND_DECL_TAG:
633  		case BTF_KIND_TYPE_TAG:
634  			type_id = t->type;
635  			break;
636  		case BTF_KIND_ARRAY:
637  			array = btf_array(t);
638  			if (nelems && array->nelems > UINT32_MAX / nelems)
639  				return libbpf_err(-E2BIG);
640  			nelems *= array->nelems;
641  			type_id = array->type;
642  			break;
643  		default:
644  			return libbpf_err(-EINVAL);
645  		}
646  
647  		t = btf__type_by_id(btf, type_id);
648  	}
649  
650  done:
651  	if (size < 0)
652  		return libbpf_err(-EINVAL);
653  	if (nelems && size > UINT32_MAX / nelems)
654  		return libbpf_err(-E2BIG);
655  
656  	return nelems * size;
657  }
658  
btf__align_of(const struct btf * btf,__u32 id)659  int btf__align_of(const struct btf *btf, __u32 id)
660  {
661  	const struct btf_type *t = btf__type_by_id(btf, id);
662  	__u16 kind = btf_kind(t);
663  
664  	switch (kind) {
665  	case BTF_KIND_INT:
666  	case BTF_KIND_ENUM:
667  	case BTF_KIND_ENUM64:
668  	case BTF_KIND_FLOAT:
669  		return min(btf_ptr_sz(btf), (size_t)t->size);
670  	case BTF_KIND_PTR:
671  		return btf_ptr_sz(btf);
672  	case BTF_KIND_TYPEDEF:
673  	case BTF_KIND_VOLATILE:
674  	case BTF_KIND_CONST:
675  	case BTF_KIND_RESTRICT:
676  	case BTF_KIND_TYPE_TAG:
677  		return btf__align_of(btf, t->type);
678  	case BTF_KIND_ARRAY:
679  		return btf__align_of(btf, btf_array(t)->type);
680  	case BTF_KIND_STRUCT:
681  	case BTF_KIND_UNION: {
682  		const struct btf_member *m = btf_members(t);
683  		__u16 vlen = btf_vlen(t);
684  		int i, max_align = 1, align;
685  
686  		for (i = 0; i < vlen; i++, m++) {
687  			align = btf__align_of(btf, m->type);
688  			if (align <= 0)
689  				return libbpf_err(align);
690  			max_align = max(max_align, align);
691  
692  			/* if field offset isn't aligned according to field
693  			 * type's alignment, then struct must be packed
694  			 */
695  			if (btf_member_bitfield_size(t, i) == 0 &&
696  			    (m->offset % (8 * align)) != 0)
697  				return 1;
698  		}
699  
700  		/* if struct/union size isn't a multiple of its alignment,
701  		 * then struct must be packed
702  		 */
703  		if ((t->size % max_align) != 0)
704  			return 1;
705  
706  		return max_align;
707  	}
708  	default:
709  		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
710  		return errno = EINVAL, 0;
711  	}
712  }
713  
btf__resolve_type(const struct btf * btf,__u32 type_id)714  int btf__resolve_type(const struct btf *btf, __u32 type_id)
715  {
716  	const struct btf_type *t;
717  	int depth = 0;
718  
719  	t = btf__type_by_id(btf, type_id);
720  	while (depth < MAX_RESOLVE_DEPTH &&
721  	       !btf_type_is_void_or_null(t) &&
722  	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
723  		type_id = t->type;
724  		t = btf__type_by_id(btf, type_id);
725  		depth++;
726  	}
727  
728  	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
729  		return libbpf_err(-EINVAL);
730  
731  	return type_id;
732  }
733  
btf__find_by_name(const struct btf * btf,const char * type_name)734  __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
735  {
736  	__u32 i, nr_types = btf__type_cnt(btf);
737  
738  	if (!strcmp(type_name, "void"))
739  		return 0;
740  
741  	for (i = 1; i < nr_types; i++) {
742  		const struct btf_type *t = btf__type_by_id(btf, i);
743  		const char *name = btf__name_by_offset(btf, t->name_off);
744  
745  		if (name && !strcmp(type_name, name))
746  			return i;
747  	}
748  
749  	return libbpf_err(-ENOENT);
750  }
751  
btf_find_by_name_kind(const struct btf * btf,int start_id,const char * type_name,__u32 kind)752  static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
753  				   const char *type_name, __u32 kind)
754  {
755  	__u32 i, nr_types = btf__type_cnt(btf);
756  
757  	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
758  		return 0;
759  
760  	for (i = start_id; i < nr_types; i++) {
761  		const struct btf_type *t = btf__type_by_id(btf, i);
762  		const char *name;
763  
764  		if (btf_kind(t) != kind)
765  			continue;
766  		name = btf__name_by_offset(btf, t->name_off);
767  		if (name && !strcmp(type_name, name))
768  			return i;
769  	}
770  
771  	return libbpf_err(-ENOENT);
772  }
773  
btf__find_by_name_kind_own(const struct btf * btf,const char * type_name,__u32 kind)774  __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
775  				 __u32 kind)
776  {
777  	return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
778  }
779  
btf__find_by_name_kind(const struct btf * btf,const char * type_name,__u32 kind)780  __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
781  			     __u32 kind)
782  {
783  	return btf_find_by_name_kind(btf, 1, type_name, kind);
784  }
785  
btf_is_modifiable(const struct btf * btf)786  static bool btf_is_modifiable(const struct btf *btf)
787  {
788  	return (void *)btf->hdr != btf->raw_data;
789  }
790  
btf__free(struct btf * btf)791  void btf__free(struct btf *btf)
792  {
793  	if (IS_ERR_OR_NULL(btf))
794  		return;
795  
796  	if (btf->fd >= 0)
797  		close(btf->fd);
798  
799  	if (btf_is_modifiable(btf)) {
800  		/* if BTF was modified after loading, it will have a split
801  		 * in-memory representation for header, types, and strings
802  		 * sections, so we need to free all of them individually. It
803  		 * might still have a cached contiguous raw data present,
804  		 * which will be unconditionally freed below.
805  		 */
806  		free(btf->hdr);
807  		free(btf->types_data);
808  		strset__free(btf->strs_set);
809  	}
810  	free(btf->raw_data);
811  	free(btf->raw_data_swapped);
812  	free(btf->type_offs);
813  	free(btf);
814  }
815  
btf_new_empty(struct btf * base_btf)816  static struct btf *btf_new_empty(struct btf *base_btf)
817  {
818  	struct btf *btf;
819  
820  	btf = calloc(1, sizeof(*btf));
821  	if (!btf)
822  		return ERR_PTR(-ENOMEM);
823  
824  	btf->nr_types = 0;
825  	btf->start_id = 1;
826  	btf->start_str_off = 0;
827  	btf->fd = -1;
828  	btf->ptr_sz = sizeof(void *);
829  	btf->swapped_endian = false;
830  
831  	if (base_btf) {
832  		btf->base_btf = base_btf;
833  		btf->start_id = btf__type_cnt(base_btf);
834  		btf->start_str_off = base_btf->hdr->str_len;
835  	}
836  
837  	/* +1 for empty string at offset 0 */
838  	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
839  	btf->raw_data = calloc(1, btf->raw_size);
840  	if (!btf->raw_data) {
841  		free(btf);
842  		return ERR_PTR(-ENOMEM);
843  	}
844  
845  	btf->hdr = btf->raw_data;
846  	btf->hdr->hdr_len = sizeof(struct btf_header);
847  	btf->hdr->magic = BTF_MAGIC;
848  	btf->hdr->version = BTF_VERSION;
849  
850  	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
851  	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
852  	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
853  
854  	return btf;
855  }
856  
btf__new_empty(void)857  struct btf *btf__new_empty(void)
858  {
859  	return libbpf_ptr(btf_new_empty(NULL));
860  }
861  
btf__new_empty_split(struct btf * base_btf)862  struct btf *btf__new_empty_split(struct btf *base_btf)
863  {
864  	return libbpf_ptr(btf_new_empty(base_btf));
865  }
866  
btf_new(const void * data,__u32 size,struct btf * base_btf)867  static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
868  {
869  	struct btf *btf;
870  	int err;
871  
872  	btf = calloc(1, sizeof(struct btf));
873  	if (!btf)
874  		return ERR_PTR(-ENOMEM);
875  
876  	btf->nr_types = 0;
877  	btf->start_id = 1;
878  	btf->start_str_off = 0;
879  	btf->fd = -1;
880  
881  	if (base_btf) {
882  		btf->base_btf = base_btf;
883  		btf->start_id = btf__type_cnt(base_btf);
884  		btf->start_str_off = base_btf->hdr->str_len;
885  	}
886  
887  	btf->raw_data = malloc(size);
888  	if (!btf->raw_data) {
889  		err = -ENOMEM;
890  		goto done;
891  	}
892  	memcpy(btf->raw_data, data, size);
893  	btf->raw_size = size;
894  
895  	btf->hdr = btf->raw_data;
896  	err = btf_parse_hdr(btf);
897  	if (err)
898  		goto done;
899  
900  	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
901  	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
902  
903  	err = btf_parse_str_sec(btf);
904  	err = err ?: btf_parse_type_sec(btf);
905  	if (err)
906  		goto done;
907  
908  done:
909  	if (err) {
910  		btf__free(btf);
911  		return ERR_PTR(err);
912  	}
913  
914  	return btf;
915  }
916  
btf__new(const void * data,__u32 size)917  struct btf *btf__new(const void *data, __u32 size)
918  {
919  	return libbpf_ptr(btf_new(data, size, NULL));
920  }
921  
btf_parse_elf(const char * path,struct btf * base_btf,struct btf_ext ** btf_ext)922  static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
923  				 struct btf_ext **btf_ext)
924  {
925  	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
926  	int err = 0, fd = -1, idx = 0;
927  	struct btf *btf = NULL;
928  	Elf_Scn *scn = NULL;
929  	Elf *elf = NULL;
930  	GElf_Ehdr ehdr;
931  	size_t shstrndx;
932  
933  	if (elf_version(EV_CURRENT) == EV_NONE) {
934  		pr_warn("failed to init libelf for %s\n", path);
935  		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
936  	}
937  
938  	fd = open(path, O_RDONLY | O_CLOEXEC);
939  	if (fd < 0) {
940  		err = -errno;
941  		pr_warn("failed to open %s: %s\n", path, strerror(errno));
942  		return ERR_PTR(err);
943  	}
944  
945  	err = -LIBBPF_ERRNO__FORMAT;
946  
947  	elf = elf_begin(fd, ELF_C_READ, NULL);
948  	if (!elf) {
949  		pr_warn("failed to open %s as ELF file\n", path);
950  		goto done;
951  	}
952  	if (!gelf_getehdr(elf, &ehdr)) {
953  		pr_warn("failed to get EHDR from %s\n", path);
954  		goto done;
955  	}
956  
957  	if (elf_getshdrstrndx(elf, &shstrndx)) {
958  		pr_warn("failed to get section names section index for %s\n",
959  			path);
960  		goto done;
961  	}
962  
963  	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
964  		pr_warn("failed to get e_shstrndx from %s\n", path);
965  		goto done;
966  	}
967  
968  	while ((scn = elf_nextscn(elf, scn)) != NULL) {
969  		GElf_Shdr sh;
970  		char *name;
971  
972  		idx++;
973  		if (gelf_getshdr(scn, &sh) != &sh) {
974  			pr_warn("failed to get section(%d) header from %s\n",
975  				idx, path);
976  			goto done;
977  		}
978  		name = elf_strptr(elf, shstrndx, sh.sh_name);
979  		if (!name) {
980  			pr_warn("failed to get section(%d) name from %s\n",
981  				idx, path);
982  			goto done;
983  		}
984  		if (strcmp(name, BTF_ELF_SEC) == 0) {
985  			btf_data = elf_getdata(scn, 0);
986  			if (!btf_data) {
987  				pr_warn("failed to get section(%d, %s) data from %s\n",
988  					idx, name, path);
989  				goto done;
990  			}
991  			continue;
992  		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
993  			btf_ext_data = elf_getdata(scn, 0);
994  			if (!btf_ext_data) {
995  				pr_warn("failed to get section(%d, %s) data from %s\n",
996  					idx, name, path);
997  				goto done;
998  			}
999  			continue;
1000  		}
1001  	}
1002  
1003  	if (!btf_data) {
1004  		pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path);
1005  		err = -ENODATA;
1006  		goto done;
1007  	}
1008  	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
1009  	err = libbpf_get_error(btf);
1010  	if (err)
1011  		goto done;
1012  
1013  	switch (gelf_getclass(elf)) {
1014  	case ELFCLASS32:
1015  		btf__set_pointer_size(btf, 4);
1016  		break;
1017  	case ELFCLASS64:
1018  		btf__set_pointer_size(btf, 8);
1019  		break;
1020  	default:
1021  		pr_warn("failed to get ELF class (bitness) for %s\n", path);
1022  		break;
1023  	}
1024  
1025  	if (btf_ext && btf_ext_data) {
1026  		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
1027  		err = libbpf_get_error(*btf_ext);
1028  		if (err)
1029  			goto done;
1030  	} else if (btf_ext) {
1031  		*btf_ext = NULL;
1032  	}
1033  done:
1034  	if (elf)
1035  		elf_end(elf);
1036  	close(fd);
1037  
1038  	if (!err)
1039  		return btf;
1040  
1041  	if (btf_ext)
1042  		btf_ext__free(*btf_ext);
1043  	btf__free(btf);
1044  
1045  	return ERR_PTR(err);
1046  }
1047  
btf__parse_elf(const char * path,struct btf_ext ** btf_ext)1048  struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1049  {
1050  	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1051  }
1052  
btf__parse_elf_split(const char * path,struct btf * base_btf)1053  struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1054  {
1055  	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1056  }
1057  
btf_parse_raw(const char * path,struct btf * base_btf)1058  static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1059  {
1060  	struct btf *btf = NULL;
1061  	void *data = NULL;
1062  	FILE *f = NULL;
1063  	__u16 magic;
1064  	int err = 0;
1065  	long sz;
1066  
1067  	f = fopen(path, "rbe");
1068  	if (!f) {
1069  		err = -errno;
1070  		goto err_out;
1071  	}
1072  
1073  	/* check BTF magic */
1074  	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1075  		err = -EIO;
1076  		goto err_out;
1077  	}
1078  	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1079  		/* definitely not a raw BTF */
1080  		err = -EPROTO;
1081  		goto err_out;
1082  	}
1083  
1084  	/* get file size */
1085  	if (fseek(f, 0, SEEK_END)) {
1086  		err = -errno;
1087  		goto err_out;
1088  	}
1089  	sz = ftell(f);
1090  	if (sz < 0) {
1091  		err = -errno;
1092  		goto err_out;
1093  	}
1094  	/* rewind to the start */
1095  	if (fseek(f, 0, SEEK_SET)) {
1096  		err = -errno;
1097  		goto err_out;
1098  	}
1099  
1100  	/* pre-alloc memory and read all of BTF data */
1101  	data = malloc(sz);
1102  	if (!data) {
1103  		err = -ENOMEM;
1104  		goto err_out;
1105  	}
1106  	if (fread(data, 1, sz, f) < sz) {
1107  		err = -EIO;
1108  		goto err_out;
1109  	}
1110  
1111  	/* finally parse BTF data */
1112  	btf = btf_new(data, sz, base_btf);
1113  
1114  err_out:
1115  	free(data);
1116  	if (f)
1117  		fclose(f);
1118  	return err ? ERR_PTR(err) : btf;
1119  }
1120  
btf__parse_raw(const char * path)1121  struct btf *btf__parse_raw(const char *path)
1122  {
1123  	return libbpf_ptr(btf_parse_raw(path, NULL));
1124  }
1125  
btf__parse_raw_split(const char * path,struct btf * base_btf)1126  struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1127  {
1128  	return libbpf_ptr(btf_parse_raw(path, base_btf));
1129  }
1130  
btf_parse(const char * path,struct btf * base_btf,struct btf_ext ** btf_ext)1131  static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1132  {
1133  	struct btf *btf;
1134  	int err;
1135  
1136  	if (btf_ext)
1137  		*btf_ext = NULL;
1138  
1139  	btf = btf_parse_raw(path, base_btf);
1140  	err = libbpf_get_error(btf);
1141  	if (!err)
1142  		return btf;
1143  	if (err != -EPROTO)
1144  		return ERR_PTR(err);
1145  	return btf_parse_elf(path, base_btf, btf_ext);
1146  }
1147  
btf__parse(const char * path,struct btf_ext ** btf_ext)1148  struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1149  {
1150  	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1151  }
1152  
btf__parse_split(const char * path,struct btf * base_btf)1153  struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1154  {
1155  	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1156  }
1157  
1158  static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1159  
btf_load_into_kernel(struct btf * btf,char * log_buf,size_t log_sz,__u32 log_level)1160  int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level)
1161  {
1162  	LIBBPF_OPTS(bpf_btf_load_opts, opts);
1163  	__u32 buf_sz = 0, raw_size;
1164  	char *buf = NULL, *tmp;
1165  	void *raw_data;
1166  	int err = 0;
1167  
1168  	if (btf->fd >= 0)
1169  		return libbpf_err(-EEXIST);
1170  	if (log_sz && !log_buf)
1171  		return libbpf_err(-EINVAL);
1172  
1173  	/* cache native raw data representation */
1174  	raw_data = btf_get_raw_data(btf, &raw_size, false);
1175  	if (!raw_data) {
1176  		err = -ENOMEM;
1177  		goto done;
1178  	}
1179  	btf->raw_size = raw_size;
1180  	btf->raw_data = raw_data;
1181  
1182  retry_load:
1183  	/* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1184  	 * initially. Only if BTF loading fails, we bump log_level to 1 and
1185  	 * retry, using either auto-allocated or custom log_buf. This way
1186  	 * non-NULL custom log_buf provides a buffer just in case, but hopes
1187  	 * for successful load and no need for log_buf.
1188  	 */
1189  	if (log_level) {
1190  		/* if caller didn't provide custom log_buf, we'll keep
1191  		 * allocating our own progressively bigger buffers for BTF
1192  		 * verification log
1193  		 */
1194  		if (!log_buf) {
1195  			buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1196  			tmp = realloc(buf, buf_sz);
1197  			if (!tmp) {
1198  				err = -ENOMEM;
1199  				goto done;
1200  			}
1201  			buf = tmp;
1202  			buf[0] = '\0';
1203  		}
1204  
1205  		opts.log_buf = log_buf ? log_buf : buf;
1206  		opts.log_size = log_buf ? log_sz : buf_sz;
1207  		opts.log_level = log_level;
1208  	}
1209  
1210  	btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1211  	if (btf->fd < 0) {
1212  		/* time to turn on verbose mode and try again */
1213  		if (log_level == 0) {
1214  			log_level = 1;
1215  			goto retry_load;
1216  		}
1217  		/* only retry if caller didn't provide custom log_buf, but
1218  		 * make sure we can never overflow buf_sz
1219  		 */
1220  		if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1221  			goto retry_load;
1222  
1223  		err = -errno;
1224  		pr_warn("BTF loading error: %d\n", err);
1225  		/* don't print out contents of custom log_buf */
1226  		if (!log_buf && buf[0])
1227  			pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1228  	}
1229  
1230  done:
1231  	free(buf);
1232  	return libbpf_err(err);
1233  }
1234  
btf__load_into_kernel(struct btf * btf)1235  int btf__load_into_kernel(struct btf *btf)
1236  {
1237  	return btf_load_into_kernel(btf, NULL, 0, 0);
1238  }
1239  
btf__fd(const struct btf * btf)1240  int btf__fd(const struct btf *btf)
1241  {
1242  	return btf->fd;
1243  }
1244  
btf__set_fd(struct btf * btf,int fd)1245  void btf__set_fd(struct btf *btf, int fd)
1246  {
1247  	btf->fd = fd;
1248  }
1249  
btf_strs_data(const struct btf * btf)1250  static const void *btf_strs_data(const struct btf *btf)
1251  {
1252  	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1253  }
1254  
btf_get_raw_data(const struct btf * btf,__u32 * size,bool swap_endian)1255  static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1256  {
1257  	struct btf_header *hdr = btf->hdr;
1258  	struct btf_type *t;
1259  	void *data, *p;
1260  	__u32 data_sz;
1261  	int i;
1262  
1263  	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1264  	if (data) {
1265  		*size = btf->raw_size;
1266  		return data;
1267  	}
1268  
1269  	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1270  	data = calloc(1, data_sz);
1271  	if (!data)
1272  		return NULL;
1273  	p = data;
1274  
1275  	memcpy(p, hdr, hdr->hdr_len);
1276  	if (swap_endian)
1277  		btf_bswap_hdr(p);
1278  	p += hdr->hdr_len;
1279  
1280  	memcpy(p, btf->types_data, hdr->type_len);
1281  	if (swap_endian) {
1282  		for (i = 0; i < btf->nr_types; i++) {
1283  			t = p + btf->type_offs[i];
1284  			/* btf_bswap_type_rest() relies on native t->info, so
1285  			 * we swap base type info after we swapped all the
1286  			 * additional information
1287  			 */
1288  			if (btf_bswap_type_rest(t))
1289  				goto err_out;
1290  			btf_bswap_type_base(t);
1291  		}
1292  	}
1293  	p += hdr->type_len;
1294  
1295  	memcpy(p, btf_strs_data(btf), hdr->str_len);
1296  	p += hdr->str_len;
1297  
1298  	*size = data_sz;
1299  	return data;
1300  err_out:
1301  	free(data);
1302  	return NULL;
1303  }
1304  
btf__raw_data(const struct btf * btf_ro,__u32 * size)1305  const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1306  {
1307  	struct btf *btf = (struct btf *)btf_ro;
1308  	__u32 data_sz;
1309  	void *data;
1310  
1311  	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1312  	if (!data)
1313  		return errno = ENOMEM, NULL;
1314  
1315  	btf->raw_size = data_sz;
1316  	if (btf->swapped_endian)
1317  		btf->raw_data_swapped = data;
1318  	else
1319  		btf->raw_data = data;
1320  	*size = data_sz;
1321  	return data;
1322  }
1323  
1324  __attribute__((alias("btf__raw_data")))
1325  const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1326  
btf__str_by_offset(const struct btf * btf,__u32 offset)1327  const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1328  {
1329  	if (offset < btf->start_str_off)
1330  		return btf__str_by_offset(btf->base_btf, offset);
1331  	else if (offset - btf->start_str_off < btf->hdr->str_len)
1332  		return btf_strs_data(btf) + (offset - btf->start_str_off);
1333  	else
1334  		return errno = EINVAL, NULL;
1335  }
1336  
btf__name_by_offset(const struct btf * btf,__u32 offset)1337  const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1338  {
1339  	return btf__str_by_offset(btf, offset);
1340  }
1341  
btf_get_from_fd(int btf_fd,struct btf * base_btf)1342  struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1343  {
1344  	struct bpf_btf_info btf_info;
1345  	__u32 len = sizeof(btf_info);
1346  	__u32 last_size;
1347  	struct btf *btf;
1348  	void *ptr;
1349  	int err;
1350  
1351  	/* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so
1352  	 * let's start with a sane default - 4KiB here - and resize it only if
1353  	 * bpf_btf_get_info_by_fd() needs a bigger buffer.
1354  	 */
1355  	last_size = 4096;
1356  	ptr = malloc(last_size);
1357  	if (!ptr)
1358  		return ERR_PTR(-ENOMEM);
1359  
1360  	memset(&btf_info, 0, sizeof(btf_info));
1361  	btf_info.btf = ptr_to_u64(ptr);
1362  	btf_info.btf_size = last_size;
1363  	err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1364  
1365  	if (!err && btf_info.btf_size > last_size) {
1366  		void *temp_ptr;
1367  
1368  		last_size = btf_info.btf_size;
1369  		temp_ptr = realloc(ptr, last_size);
1370  		if (!temp_ptr) {
1371  			btf = ERR_PTR(-ENOMEM);
1372  			goto exit_free;
1373  		}
1374  		ptr = temp_ptr;
1375  
1376  		len = sizeof(btf_info);
1377  		memset(&btf_info, 0, sizeof(btf_info));
1378  		btf_info.btf = ptr_to_u64(ptr);
1379  		btf_info.btf_size = last_size;
1380  
1381  		err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1382  	}
1383  
1384  	if (err || btf_info.btf_size > last_size) {
1385  		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1386  		goto exit_free;
1387  	}
1388  
1389  	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1390  
1391  exit_free:
1392  	free(ptr);
1393  	return btf;
1394  }
1395  
btf__load_from_kernel_by_id_split(__u32 id,struct btf * base_btf)1396  struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1397  {
1398  	struct btf *btf;
1399  	int btf_fd;
1400  
1401  	btf_fd = bpf_btf_get_fd_by_id(id);
1402  	if (btf_fd < 0)
1403  		return libbpf_err_ptr(-errno);
1404  
1405  	btf = btf_get_from_fd(btf_fd, base_btf);
1406  	close(btf_fd);
1407  
1408  	return libbpf_ptr(btf);
1409  }
1410  
btf__load_from_kernel_by_id(__u32 id)1411  struct btf *btf__load_from_kernel_by_id(__u32 id)
1412  {
1413  	return btf__load_from_kernel_by_id_split(id, NULL);
1414  }
1415  
btf_invalidate_raw_data(struct btf * btf)1416  static void btf_invalidate_raw_data(struct btf *btf)
1417  {
1418  	if (btf->raw_data) {
1419  		free(btf->raw_data);
1420  		btf->raw_data = NULL;
1421  	}
1422  	if (btf->raw_data_swapped) {
1423  		free(btf->raw_data_swapped);
1424  		btf->raw_data_swapped = NULL;
1425  	}
1426  }
1427  
1428  /* Ensure BTF is ready to be modified (by splitting into a three memory
1429   * regions for header, types, and strings). Also invalidate cached
1430   * raw_data, if any.
1431   */
btf_ensure_modifiable(struct btf * btf)1432  static int btf_ensure_modifiable(struct btf *btf)
1433  {
1434  	void *hdr, *types;
1435  	struct strset *set = NULL;
1436  	int err = -ENOMEM;
1437  
1438  	if (btf_is_modifiable(btf)) {
1439  		/* any BTF modification invalidates raw_data */
1440  		btf_invalidate_raw_data(btf);
1441  		return 0;
1442  	}
1443  
1444  	/* split raw data into three memory regions */
1445  	hdr = malloc(btf->hdr->hdr_len);
1446  	types = malloc(btf->hdr->type_len);
1447  	if (!hdr || !types)
1448  		goto err_out;
1449  
1450  	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1451  	memcpy(types, btf->types_data, btf->hdr->type_len);
1452  
1453  	/* build lookup index for all strings */
1454  	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1455  	if (IS_ERR(set)) {
1456  		err = PTR_ERR(set);
1457  		goto err_out;
1458  	}
1459  
1460  	/* only when everything was successful, update internal state */
1461  	btf->hdr = hdr;
1462  	btf->types_data = types;
1463  	btf->types_data_cap = btf->hdr->type_len;
1464  	btf->strs_data = NULL;
1465  	btf->strs_set = set;
1466  	/* if BTF was created from scratch, all strings are guaranteed to be
1467  	 * unique and deduplicated
1468  	 */
1469  	if (btf->hdr->str_len == 0)
1470  		btf->strs_deduped = true;
1471  	if (!btf->base_btf && btf->hdr->str_len == 1)
1472  		btf->strs_deduped = true;
1473  
1474  	/* invalidate raw_data representation */
1475  	btf_invalidate_raw_data(btf);
1476  
1477  	return 0;
1478  
1479  err_out:
1480  	strset__free(set);
1481  	free(hdr);
1482  	free(types);
1483  	return err;
1484  }
1485  
1486  /* Find an offset in BTF string section that corresponds to a given string *s*.
1487   * Returns:
1488   *   - >0 offset into string section, if string is found;
1489   *   - -ENOENT, if string is not in the string section;
1490   *   - <0, on any other error.
1491   */
btf__find_str(struct btf * btf,const char * s)1492  int btf__find_str(struct btf *btf, const char *s)
1493  {
1494  	int off;
1495  
1496  	if (btf->base_btf) {
1497  		off = btf__find_str(btf->base_btf, s);
1498  		if (off != -ENOENT)
1499  			return off;
1500  	}
1501  
1502  	/* BTF needs to be in a modifiable state to build string lookup index */
1503  	if (btf_ensure_modifiable(btf))
1504  		return libbpf_err(-ENOMEM);
1505  
1506  	off = strset__find_str(btf->strs_set, s);
1507  	if (off < 0)
1508  		return libbpf_err(off);
1509  
1510  	return btf->start_str_off + off;
1511  }
1512  
1513  /* Add a string s to the BTF string section.
1514   * Returns:
1515   *   - > 0 offset into string section, on success;
1516   *   - < 0, on error.
1517   */
btf__add_str(struct btf * btf,const char * s)1518  int btf__add_str(struct btf *btf, const char *s)
1519  {
1520  	int off;
1521  
1522  	if (btf->base_btf) {
1523  		off = btf__find_str(btf->base_btf, s);
1524  		if (off != -ENOENT)
1525  			return off;
1526  	}
1527  
1528  	if (btf_ensure_modifiable(btf))
1529  		return libbpf_err(-ENOMEM);
1530  
1531  	off = strset__add_str(btf->strs_set, s);
1532  	if (off < 0)
1533  		return libbpf_err(off);
1534  
1535  	btf->hdr->str_len = strset__data_size(btf->strs_set);
1536  
1537  	return btf->start_str_off + off;
1538  }
1539  
btf_add_type_mem(struct btf * btf,size_t add_sz)1540  static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1541  {
1542  	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1543  			      btf->hdr->type_len, UINT_MAX, add_sz);
1544  }
1545  
btf_type_inc_vlen(struct btf_type * t)1546  static void btf_type_inc_vlen(struct btf_type *t)
1547  {
1548  	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1549  }
1550  
btf_commit_type(struct btf * btf,int data_sz)1551  static int btf_commit_type(struct btf *btf, int data_sz)
1552  {
1553  	int err;
1554  
1555  	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1556  	if (err)
1557  		return libbpf_err(err);
1558  
1559  	btf->hdr->type_len += data_sz;
1560  	btf->hdr->str_off += data_sz;
1561  	btf->nr_types++;
1562  	return btf->start_id + btf->nr_types - 1;
1563  }
1564  
1565  struct btf_pipe {
1566  	const struct btf *src;
1567  	struct btf *dst;
1568  	struct hashmap *str_off_map; /* map string offsets from src to dst */
1569  };
1570  
btf_rewrite_str(__u32 * str_off,void * ctx)1571  static int btf_rewrite_str(__u32 *str_off, void *ctx)
1572  {
1573  	struct btf_pipe *p = ctx;
1574  	long mapped_off;
1575  	int off, err;
1576  
1577  	if (!*str_off) /* nothing to do for empty strings */
1578  		return 0;
1579  
1580  	if (p->str_off_map &&
1581  	    hashmap__find(p->str_off_map, *str_off, &mapped_off)) {
1582  		*str_off = mapped_off;
1583  		return 0;
1584  	}
1585  
1586  	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1587  	if (off < 0)
1588  		return off;
1589  
1590  	/* Remember string mapping from src to dst.  It avoids
1591  	 * performing expensive string comparisons.
1592  	 */
1593  	if (p->str_off_map) {
1594  		err = hashmap__append(p->str_off_map, *str_off, off);
1595  		if (err)
1596  			return err;
1597  	}
1598  
1599  	*str_off = off;
1600  	return 0;
1601  }
1602  
btf__add_type(struct btf * btf,const struct btf * src_btf,const struct btf_type * src_type)1603  int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1604  {
1605  	struct btf_pipe p = { .src = src_btf, .dst = btf };
1606  	struct btf_type *t;
1607  	int sz, err;
1608  
1609  	sz = btf_type_size(src_type);
1610  	if (sz < 0)
1611  		return libbpf_err(sz);
1612  
1613  	/* deconstruct BTF, if necessary, and invalidate raw_data */
1614  	if (btf_ensure_modifiable(btf))
1615  		return libbpf_err(-ENOMEM);
1616  
1617  	t = btf_add_type_mem(btf, sz);
1618  	if (!t)
1619  		return libbpf_err(-ENOMEM);
1620  
1621  	memcpy(t, src_type, sz);
1622  
1623  	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1624  	if (err)
1625  		return libbpf_err(err);
1626  
1627  	return btf_commit_type(btf, sz);
1628  }
1629  
btf_rewrite_type_ids(__u32 * type_id,void * ctx)1630  static int btf_rewrite_type_ids(__u32 *type_id, void *ctx)
1631  {
1632  	struct btf *btf = ctx;
1633  
1634  	if (!*type_id) /* nothing to do for VOID references */
1635  		return 0;
1636  
1637  	/* we haven't updated btf's type count yet, so
1638  	 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1639  	 * add to all newly added BTF types
1640  	 */
1641  	*type_id += btf->start_id + btf->nr_types - 1;
1642  	return 0;
1643  }
1644  
1645  static size_t btf_dedup_identity_hash_fn(long key, void *ctx);
1646  static bool btf_dedup_equal_fn(long k1, long k2, void *ctx);
1647  
btf__add_btf(struct btf * btf,const struct btf * src_btf)1648  int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1649  {
1650  	struct btf_pipe p = { .src = src_btf, .dst = btf };
1651  	int data_sz, sz, cnt, i, err, old_strs_len;
1652  	__u32 *off;
1653  	void *t;
1654  
1655  	/* appending split BTF isn't supported yet */
1656  	if (src_btf->base_btf)
1657  		return libbpf_err(-ENOTSUP);
1658  
1659  	/* deconstruct BTF, if necessary, and invalidate raw_data */
1660  	if (btf_ensure_modifiable(btf))
1661  		return libbpf_err(-ENOMEM);
1662  
1663  	/* remember original strings section size if we have to roll back
1664  	 * partial strings section changes
1665  	 */
1666  	old_strs_len = btf->hdr->str_len;
1667  
1668  	data_sz = src_btf->hdr->type_len;
1669  	cnt = btf__type_cnt(src_btf) - 1;
1670  
1671  	/* pre-allocate enough memory for new types */
1672  	t = btf_add_type_mem(btf, data_sz);
1673  	if (!t)
1674  		return libbpf_err(-ENOMEM);
1675  
1676  	/* pre-allocate enough memory for type offset index for new types */
1677  	off = btf_add_type_offs_mem(btf, cnt);
1678  	if (!off)
1679  		return libbpf_err(-ENOMEM);
1680  
1681  	/* Map the string offsets from src_btf to the offsets from btf to improve performance */
1682  	p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1683  	if (IS_ERR(p.str_off_map))
1684  		return libbpf_err(-ENOMEM);
1685  
1686  	/* bulk copy types data for all types from src_btf */
1687  	memcpy(t, src_btf->types_data, data_sz);
1688  
1689  	for (i = 0; i < cnt; i++) {
1690  		sz = btf_type_size(t);
1691  		if (sz < 0) {
1692  			/* unlikely, has to be corrupted src_btf */
1693  			err = sz;
1694  			goto err_out;
1695  		}
1696  
1697  		/* fill out type ID to type offset mapping for lookups by type ID */
1698  		*off = t - btf->types_data;
1699  
1700  		/* add, dedup, and remap strings referenced by this BTF type */
1701  		err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1702  		if (err)
1703  			goto err_out;
1704  
1705  		/* remap all type IDs referenced from this BTF type */
1706  		err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf);
1707  		if (err)
1708  			goto err_out;
1709  
1710  		/* go to next type data and type offset index entry */
1711  		t += sz;
1712  		off++;
1713  	}
1714  
1715  	/* Up until now any of the copied type data was effectively invisible,
1716  	 * so if we exited early before this point due to error, BTF would be
1717  	 * effectively unmodified. There would be extra internal memory
1718  	 * pre-allocated, but it would not be available for querying.  But now
1719  	 * that we've copied and rewritten all the data successfully, we can
1720  	 * update type count and various internal offsets and sizes to
1721  	 * "commit" the changes and made them visible to the outside world.
1722  	 */
1723  	btf->hdr->type_len += data_sz;
1724  	btf->hdr->str_off += data_sz;
1725  	btf->nr_types += cnt;
1726  
1727  	hashmap__free(p.str_off_map);
1728  
1729  	/* return type ID of the first added BTF type */
1730  	return btf->start_id + btf->nr_types - cnt;
1731  err_out:
1732  	/* zero out preallocated memory as if it was just allocated with
1733  	 * libbpf_add_mem()
1734  	 */
1735  	memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1736  	memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1737  
1738  	/* and now restore original strings section size; types data size
1739  	 * wasn't modified, so doesn't need restoring, see big comment above
1740  	 */
1741  	btf->hdr->str_len = old_strs_len;
1742  
1743  	hashmap__free(p.str_off_map);
1744  
1745  	return libbpf_err(err);
1746  }
1747  
1748  /*
1749   * Append new BTF_KIND_INT type with:
1750   *   - *name* - non-empty, non-NULL type name;
1751   *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1752   *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1753   * Returns:
1754   *   - >0, type ID of newly added BTF type;
1755   *   - <0, on error.
1756   */
btf__add_int(struct btf * btf,const char * name,size_t byte_sz,int encoding)1757  int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1758  {
1759  	struct btf_type *t;
1760  	int sz, name_off;
1761  
1762  	/* non-empty name */
1763  	if (!name || !name[0])
1764  		return libbpf_err(-EINVAL);
1765  	/* byte_sz must be power of 2 */
1766  	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1767  		return libbpf_err(-EINVAL);
1768  	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1769  		return libbpf_err(-EINVAL);
1770  
1771  	/* deconstruct BTF, if necessary, and invalidate raw_data */
1772  	if (btf_ensure_modifiable(btf))
1773  		return libbpf_err(-ENOMEM);
1774  
1775  	sz = sizeof(struct btf_type) + sizeof(int);
1776  	t = btf_add_type_mem(btf, sz);
1777  	if (!t)
1778  		return libbpf_err(-ENOMEM);
1779  
1780  	/* if something goes wrong later, we might end up with an extra string,
1781  	 * but that shouldn't be a problem, because BTF can't be constructed
1782  	 * completely anyway and will most probably be just discarded
1783  	 */
1784  	name_off = btf__add_str(btf, name);
1785  	if (name_off < 0)
1786  		return name_off;
1787  
1788  	t->name_off = name_off;
1789  	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1790  	t->size = byte_sz;
1791  	/* set INT info, we don't allow setting legacy bit offset/size */
1792  	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1793  
1794  	return btf_commit_type(btf, sz);
1795  }
1796  
1797  /*
1798   * Append new BTF_KIND_FLOAT type with:
1799   *   - *name* - non-empty, non-NULL type name;
1800   *   - *sz* - size of the type, in bytes;
1801   * Returns:
1802   *   - >0, type ID of newly added BTF type;
1803   *   - <0, on error.
1804   */
btf__add_float(struct btf * btf,const char * name,size_t byte_sz)1805  int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1806  {
1807  	struct btf_type *t;
1808  	int sz, name_off;
1809  
1810  	/* non-empty name */
1811  	if (!name || !name[0])
1812  		return libbpf_err(-EINVAL);
1813  
1814  	/* byte_sz must be one of the explicitly allowed values */
1815  	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1816  	    byte_sz != 16)
1817  		return libbpf_err(-EINVAL);
1818  
1819  	if (btf_ensure_modifiable(btf))
1820  		return libbpf_err(-ENOMEM);
1821  
1822  	sz = sizeof(struct btf_type);
1823  	t = btf_add_type_mem(btf, sz);
1824  	if (!t)
1825  		return libbpf_err(-ENOMEM);
1826  
1827  	name_off = btf__add_str(btf, name);
1828  	if (name_off < 0)
1829  		return name_off;
1830  
1831  	t->name_off = name_off;
1832  	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1833  	t->size = byte_sz;
1834  
1835  	return btf_commit_type(btf, sz);
1836  }
1837  
1838  /* it's completely legal to append BTF types with type IDs pointing forward to
1839   * types that haven't been appended yet, so we only make sure that id looks
1840   * sane, we can't guarantee that ID will always be valid
1841   */
validate_type_id(int id)1842  static int validate_type_id(int id)
1843  {
1844  	if (id < 0 || id > BTF_MAX_NR_TYPES)
1845  		return -EINVAL;
1846  	return 0;
1847  }
1848  
1849  /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
btf_add_ref_kind(struct btf * btf,int kind,const char * name,int ref_type_id)1850  static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1851  {
1852  	struct btf_type *t;
1853  	int sz, name_off = 0;
1854  
1855  	if (validate_type_id(ref_type_id))
1856  		return libbpf_err(-EINVAL);
1857  
1858  	if (btf_ensure_modifiable(btf))
1859  		return libbpf_err(-ENOMEM);
1860  
1861  	sz = sizeof(struct btf_type);
1862  	t = btf_add_type_mem(btf, sz);
1863  	if (!t)
1864  		return libbpf_err(-ENOMEM);
1865  
1866  	if (name && name[0]) {
1867  		name_off = btf__add_str(btf, name);
1868  		if (name_off < 0)
1869  			return name_off;
1870  	}
1871  
1872  	t->name_off = name_off;
1873  	t->info = btf_type_info(kind, 0, 0);
1874  	t->type = ref_type_id;
1875  
1876  	return btf_commit_type(btf, sz);
1877  }
1878  
1879  /*
1880   * Append new BTF_KIND_PTR type with:
1881   *   - *ref_type_id* - referenced type ID, it might not exist yet;
1882   * Returns:
1883   *   - >0, type ID of newly added BTF type;
1884   *   - <0, on error.
1885   */
btf__add_ptr(struct btf * btf,int ref_type_id)1886  int btf__add_ptr(struct btf *btf, int ref_type_id)
1887  {
1888  	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1889  }
1890  
1891  /*
1892   * Append new BTF_KIND_ARRAY type with:
1893   *   - *index_type_id* - type ID of the type describing array index;
1894   *   - *elem_type_id* - type ID of the type describing array element;
1895   *   - *nr_elems* - the size of the array;
1896   * Returns:
1897   *   - >0, type ID of newly added BTF type;
1898   *   - <0, on error.
1899   */
btf__add_array(struct btf * btf,int index_type_id,int elem_type_id,__u32 nr_elems)1900  int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1901  {
1902  	struct btf_type *t;
1903  	struct btf_array *a;
1904  	int sz;
1905  
1906  	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1907  		return libbpf_err(-EINVAL);
1908  
1909  	if (btf_ensure_modifiable(btf))
1910  		return libbpf_err(-ENOMEM);
1911  
1912  	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1913  	t = btf_add_type_mem(btf, sz);
1914  	if (!t)
1915  		return libbpf_err(-ENOMEM);
1916  
1917  	t->name_off = 0;
1918  	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1919  	t->size = 0;
1920  
1921  	a = btf_array(t);
1922  	a->type = elem_type_id;
1923  	a->index_type = index_type_id;
1924  	a->nelems = nr_elems;
1925  
1926  	return btf_commit_type(btf, sz);
1927  }
1928  
1929  /* generic STRUCT/UNION append function */
btf_add_composite(struct btf * btf,int kind,const char * name,__u32 bytes_sz)1930  static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1931  {
1932  	struct btf_type *t;
1933  	int sz, name_off = 0;
1934  
1935  	if (btf_ensure_modifiable(btf))
1936  		return libbpf_err(-ENOMEM);
1937  
1938  	sz = sizeof(struct btf_type);
1939  	t = btf_add_type_mem(btf, sz);
1940  	if (!t)
1941  		return libbpf_err(-ENOMEM);
1942  
1943  	if (name && name[0]) {
1944  		name_off = btf__add_str(btf, name);
1945  		if (name_off < 0)
1946  			return name_off;
1947  	}
1948  
1949  	/* start out with vlen=0 and no kflag; this will be adjusted when
1950  	 * adding each member
1951  	 */
1952  	t->name_off = name_off;
1953  	t->info = btf_type_info(kind, 0, 0);
1954  	t->size = bytes_sz;
1955  
1956  	return btf_commit_type(btf, sz);
1957  }
1958  
1959  /*
1960   * Append new BTF_KIND_STRUCT type with:
1961   *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1962   *   - *byte_sz* - size of the struct, in bytes;
1963   *
1964   * Struct initially has no fields in it. Fields can be added by
1965   * btf__add_field() right after btf__add_struct() succeeds.
1966   *
1967   * Returns:
1968   *   - >0, type ID of newly added BTF type;
1969   *   - <0, on error.
1970   */
btf__add_struct(struct btf * btf,const char * name,__u32 byte_sz)1971  int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1972  {
1973  	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1974  }
1975  
1976  /*
1977   * Append new BTF_KIND_UNION type with:
1978   *   - *name* - name of the union, can be NULL or empty for anonymous union;
1979   *   - *byte_sz* - size of the union, in bytes;
1980   *
1981   * Union initially has no fields in it. Fields can be added by
1982   * btf__add_field() right after btf__add_union() succeeds. All fields
1983   * should have *bit_offset* of 0.
1984   *
1985   * Returns:
1986   *   - >0, type ID of newly added BTF type;
1987   *   - <0, on error.
1988   */
btf__add_union(struct btf * btf,const char * name,__u32 byte_sz)1989  int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1990  {
1991  	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1992  }
1993  
btf_last_type(struct btf * btf)1994  static struct btf_type *btf_last_type(struct btf *btf)
1995  {
1996  	return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
1997  }
1998  
1999  /*
2000   * Append new field for the current STRUCT/UNION type with:
2001   *   - *name* - name of the field, can be NULL or empty for anonymous field;
2002   *   - *type_id* - type ID for the type describing field type;
2003   *   - *bit_offset* - bit offset of the start of the field within struct/union;
2004   *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
2005   * Returns:
2006   *   -  0, on success;
2007   *   - <0, on error.
2008   */
btf__add_field(struct btf * btf,const char * name,int type_id,__u32 bit_offset,__u32 bit_size)2009  int btf__add_field(struct btf *btf, const char *name, int type_id,
2010  		   __u32 bit_offset, __u32 bit_size)
2011  {
2012  	struct btf_type *t;
2013  	struct btf_member *m;
2014  	bool is_bitfield;
2015  	int sz, name_off = 0;
2016  
2017  	/* last type should be union/struct */
2018  	if (btf->nr_types == 0)
2019  		return libbpf_err(-EINVAL);
2020  	t = btf_last_type(btf);
2021  	if (!btf_is_composite(t))
2022  		return libbpf_err(-EINVAL);
2023  
2024  	if (validate_type_id(type_id))
2025  		return libbpf_err(-EINVAL);
2026  	/* best-effort bit field offset/size enforcement */
2027  	is_bitfield = bit_size || (bit_offset % 8 != 0);
2028  	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2029  		return libbpf_err(-EINVAL);
2030  
2031  	/* only offset 0 is allowed for unions */
2032  	if (btf_is_union(t) && bit_offset)
2033  		return libbpf_err(-EINVAL);
2034  
2035  	/* decompose and invalidate raw data */
2036  	if (btf_ensure_modifiable(btf))
2037  		return libbpf_err(-ENOMEM);
2038  
2039  	sz = sizeof(struct btf_member);
2040  	m = btf_add_type_mem(btf, sz);
2041  	if (!m)
2042  		return libbpf_err(-ENOMEM);
2043  
2044  	if (name && name[0]) {
2045  		name_off = btf__add_str(btf, name);
2046  		if (name_off < 0)
2047  			return name_off;
2048  	}
2049  
2050  	m->name_off = name_off;
2051  	m->type = type_id;
2052  	m->offset = bit_offset | (bit_size << 24);
2053  
2054  	/* btf_add_type_mem can invalidate t pointer */
2055  	t = btf_last_type(btf);
2056  	/* update parent type's vlen and kflag */
2057  	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2058  
2059  	btf->hdr->type_len += sz;
2060  	btf->hdr->str_off += sz;
2061  	return 0;
2062  }
2063  
btf_add_enum_common(struct btf * btf,const char * name,__u32 byte_sz,bool is_signed,__u8 kind)2064  static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz,
2065  			       bool is_signed, __u8 kind)
2066  {
2067  	struct btf_type *t;
2068  	int sz, name_off = 0;
2069  
2070  	/* byte_sz must be power of 2 */
2071  	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2072  		return libbpf_err(-EINVAL);
2073  
2074  	if (btf_ensure_modifiable(btf))
2075  		return libbpf_err(-ENOMEM);
2076  
2077  	sz = sizeof(struct btf_type);
2078  	t = btf_add_type_mem(btf, sz);
2079  	if (!t)
2080  		return libbpf_err(-ENOMEM);
2081  
2082  	if (name && name[0]) {
2083  		name_off = btf__add_str(btf, name);
2084  		if (name_off < 0)
2085  			return name_off;
2086  	}
2087  
2088  	/* start out with vlen=0; it will be adjusted when adding enum values */
2089  	t->name_off = name_off;
2090  	t->info = btf_type_info(kind, 0, is_signed);
2091  	t->size = byte_sz;
2092  
2093  	return btf_commit_type(btf, sz);
2094  }
2095  
2096  /*
2097   * Append new BTF_KIND_ENUM type with:
2098   *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2099   *   - *byte_sz* - size of the enum, in bytes.
2100   *
2101   * Enum initially has no enum values in it (and corresponds to enum forward
2102   * declaration). Enumerator values can be added by btf__add_enum_value()
2103   * immediately after btf__add_enum() succeeds.
2104   *
2105   * Returns:
2106   *   - >0, type ID of newly added BTF type;
2107   *   - <0, on error.
2108   */
btf__add_enum(struct btf * btf,const char * name,__u32 byte_sz)2109  int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2110  {
2111  	/*
2112  	 * set the signedness to be unsigned, it will change to signed
2113  	 * if any later enumerator is negative.
2114  	 */
2115  	return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM);
2116  }
2117  
2118  /*
2119   * Append new enum value for the current ENUM type with:
2120   *   - *name* - name of the enumerator value, can't be NULL or empty;
2121   *   - *value* - integer value corresponding to enum value *name*;
2122   * Returns:
2123   *   -  0, on success;
2124   *   - <0, on error.
2125   */
btf__add_enum_value(struct btf * btf,const char * name,__s64 value)2126  int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2127  {
2128  	struct btf_type *t;
2129  	struct btf_enum *v;
2130  	int sz, name_off;
2131  
2132  	/* last type should be BTF_KIND_ENUM */
2133  	if (btf->nr_types == 0)
2134  		return libbpf_err(-EINVAL);
2135  	t = btf_last_type(btf);
2136  	if (!btf_is_enum(t))
2137  		return libbpf_err(-EINVAL);
2138  
2139  	/* non-empty name */
2140  	if (!name || !name[0])
2141  		return libbpf_err(-EINVAL);
2142  	if (value < INT_MIN || value > UINT_MAX)
2143  		return libbpf_err(-E2BIG);
2144  
2145  	/* decompose and invalidate raw data */
2146  	if (btf_ensure_modifiable(btf))
2147  		return libbpf_err(-ENOMEM);
2148  
2149  	sz = sizeof(struct btf_enum);
2150  	v = btf_add_type_mem(btf, sz);
2151  	if (!v)
2152  		return libbpf_err(-ENOMEM);
2153  
2154  	name_off = btf__add_str(btf, name);
2155  	if (name_off < 0)
2156  		return name_off;
2157  
2158  	v->name_off = name_off;
2159  	v->val = value;
2160  
2161  	/* update parent type's vlen */
2162  	t = btf_last_type(btf);
2163  	btf_type_inc_vlen(t);
2164  
2165  	/* if negative value, set signedness to signed */
2166  	if (value < 0)
2167  		t->info = btf_type_info(btf_kind(t), btf_vlen(t), true);
2168  
2169  	btf->hdr->type_len += sz;
2170  	btf->hdr->str_off += sz;
2171  	return 0;
2172  }
2173  
2174  /*
2175   * Append new BTF_KIND_ENUM64 type with:
2176   *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2177   *   - *byte_sz* - size of the enum, in bytes.
2178   *   - *is_signed* - whether the enum values are signed or not;
2179   *
2180   * Enum initially has no enum values in it (and corresponds to enum forward
2181   * declaration). Enumerator values can be added by btf__add_enum64_value()
2182   * immediately after btf__add_enum64() succeeds.
2183   *
2184   * Returns:
2185   *   - >0, type ID of newly added BTF type;
2186   *   - <0, on error.
2187   */
btf__add_enum64(struct btf * btf,const char * name,__u32 byte_sz,bool is_signed)2188  int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz,
2189  		    bool is_signed)
2190  {
2191  	return btf_add_enum_common(btf, name, byte_sz, is_signed,
2192  				   BTF_KIND_ENUM64);
2193  }
2194  
2195  /*
2196   * Append new enum value for the current ENUM64 type with:
2197   *   - *name* - name of the enumerator value, can't be NULL or empty;
2198   *   - *value* - integer value corresponding to enum value *name*;
2199   * Returns:
2200   *   -  0, on success;
2201   *   - <0, on error.
2202   */
btf__add_enum64_value(struct btf * btf,const char * name,__u64 value)2203  int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value)
2204  {
2205  	struct btf_enum64 *v;
2206  	struct btf_type *t;
2207  	int sz, name_off;
2208  
2209  	/* last type should be BTF_KIND_ENUM64 */
2210  	if (btf->nr_types == 0)
2211  		return libbpf_err(-EINVAL);
2212  	t = btf_last_type(btf);
2213  	if (!btf_is_enum64(t))
2214  		return libbpf_err(-EINVAL);
2215  
2216  	/* non-empty name */
2217  	if (!name || !name[0])
2218  		return libbpf_err(-EINVAL);
2219  
2220  	/* decompose and invalidate raw data */
2221  	if (btf_ensure_modifiable(btf))
2222  		return libbpf_err(-ENOMEM);
2223  
2224  	sz = sizeof(struct btf_enum64);
2225  	v = btf_add_type_mem(btf, sz);
2226  	if (!v)
2227  		return libbpf_err(-ENOMEM);
2228  
2229  	name_off = btf__add_str(btf, name);
2230  	if (name_off < 0)
2231  		return name_off;
2232  
2233  	v->name_off = name_off;
2234  	v->val_lo32 = (__u32)value;
2235  	v->val_hi32 = value >> 32;
2236  
2237  	/* update parent type's vlen */
2238  	t = btf_last_type(btf);
2239  	btf_type_inc_vlen(t);
2240  
2241  	btf->hdr->type_len += sz;
2242  	btf->hdr->str_off += sz;
2243  	return 0;
2244  }
2245  
2246  /*
2247   * Append new BTF_KIND_FWD type with:
2248   *   - *name*, non-empty/non-NULL name;
2249   *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2250   *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2251   * Returns:
2252   *   - >0, type ID of newly added BTF type;
2253   *   - <0, on error.
2254   */
btf__add_fwd(struct btf * btf,const char * name,enum btf_fwd_kind fwd_kind)2255  int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2256  {
2257  	if (!name || !name[0])
2258  		return libbpf_err(-EINVAL);
2259  
2260  	switch (fwd_kind) {
2261  	case BTF_FWD_STRUCT:
2262  	case BTF_FWD_UNION: {
2263  		struct btf_type *t;
2264  		int id;
2265  
2266  		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2267  		if (id <= 0)
2268  			return id;
2269  		t = btf_type_by_id(btf, id);
2270  		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2271  		return id;
2272  	}
2273  	case BTF_FWD_ENUM:
2274  		/* enum forward in BTF currently is just an enum with no enum
2275  		 * values; we also assume a standard 4-byte size for it
2276  		 */
2277  		return btf__add_enum(btf, name, sizeof(int));
2278  	default:
2279  		return libbpf_err(-EINVAL);
2280  	}
2281  }
2282  
2283  /*
2284   * Append new BTF_KING_TYPEDEF type with:
2285   *   - *name*, non-empty/non-NULL name;
2286   *   - *ref_type_id* - referenced type ID, it might not exist yet;
2287   * Returns:
2288   *   - >0, type ID of newly added BTF type;
2289   *   - <0, on error.
2290   */
btf__add_typedef(struct btf * btf,const char * name,int ref_type_id)2291  int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2292  {
2293  	if (!name || !name[0])
2294  		return libbpf_err(-EINVAL);
2295  
2296  	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2297  }
2298  
2299  /*
2300   * Append new BTF_KIND_VOLATILE type with:
2301   *   - *ref_type_id* - referenced type ID, it might not exist yet;
2302   * Returns:
2303   *   - >0, type ID of newly added BTF type;
2304   *   - <0, on error.
2305   */
btf__add_volatile(struct btf * btf,int ref_type_id)2306  int btf__add_volatile(struct btf *btf, int ref_type_id)
2307  {
2308  	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2309  }
2310  
2311  /*
2312   * Append new BTF_KIND_CONST type with:
2313   *   - *ref_type_id* - referenced type ID, it might not exist yet;
2314   * Returns:
2315   *   - >0, type ID of newly added BTF type;
2316   *   - <0, on error.
2317   */
btf__add_const(struct btf * btf,int ref_type_id)2318  int btf__add_const(struct btf *btf, int ref_type_id)
2319  {
2320  	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2321  }
2322  
2323  /*
2324   * Append new BTF_KIND_RESTRICT type with:
2325   *   - *ref_type_id* - referenced type ID, it might not exist yet;
2326   * Returns:
2327   *   - >0, type ID of newly added BTF type;
2328   *   - <0, on error.
2329   */
btf__add_restrict(struct btf * btf,int ref_type_id)2330  int btf__add_restrict(struct btf *btf, int ref_type_id)
2331  {
2332  	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2333  }
2334  
2335  /*
2336   * Append new BTF_KIND_TYPE_TAG type with:
2337   *   - *value*, non-empty/non-NULL tag value;
2338   *   - *ref_type_id* - referenced type ID, it might not exist yet;
2339   * Returns:
2340   *   - >0, type ID of newly added BTF type;
2341   *   - <0, on error.
2342   */
btf__add_type_tag(struct btf * btf,const char * value,int ref_type_id)2343  int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2344  {
2345  	if (!value || !value[0])
2346  		return libbpf_err(-EINVAL);
2347  
2348  	return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2349  }
2350  
2351  /*
2352   * Append new BTF_KIND_FUNC type with:
2353   *   - *name*, non-empty/non-NULL name;
2354   *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2355   * Returns:
2356   *   - >0, type ID of newly added BTF type;
2357   *   - <0, on error.
2358   */
btf__add_func(struct btf * btf,const char * name,enum btf_func_linkage linkage,int proto_type_id)2359  int btf__add_func(struct btf *btf, const char *name,
2360  		  enum btf_func_linkage linkage, int proto_type_id)
2361  {
2362  	int id;
2363  
2364  	if (!name || !name[0])
2365  		return libbpf_err(-EINVAL);
2366  	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2367  	    linkage != BTF_FUNC_EXTERN)
2368  		return libbpf_err(-EINVAL);
2369  
2370  	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2371  	if (id > 0) {
2372  		struct btf_type *t = btf_type_by_id(btf, id);
2373  
2374  		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2375  	}
2376  	return libbpf_err(id);
2377  }
2378  
2379  /*
2380   * Append new BTF_KIND_FUNC_PROTO with:
2381   *   - *ret_type_id* - type ID for return result of a function.
2382   *
2383   * Function prototype initially has no arguments, but they can be added by
2384   * btf__add_func_param() one by one, immediately after
2385   * btf__add_func_proto() succeeded.
2386   *
2387   * Returns:
2388   *   - >0, type ID of newly added BTF type;
2389   *   - <0, on error.
2390   */
btf__add_func_proto(struct btf * btf,int ret_type_id)2391  int btf__add_func_proto(struct btf *btf, int ret_type_id)
2392  {
2393  	struct btf_type *t;
2394  	int sz;
2395  
2396  	if (validate_type_id(ret_type_id))
2397  		return libbpf_err(-EINVAL);
2398  
2399  	if (btf_ensure_modifiable(btf))
2400  		return libbpf_err(-ENOMEM);
2401  
2402  	sz = sizeof(struct btf_type);
2403  	t = btf_add_type_mem(btf, sz);
2404  	if (!t)
2405  		return libbpf_err(-ENOMEM);
2406  
2407  	/* start out with vlen=0; this will be adjusted when adding enum
2408  	 * values, if necessary
2409  	 */
2410  	t->name_off = 0;
2411  	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2412  	t->type = ret_type_id;
2413  
2414  	return btf_commit_type(btf, sz);
2415  }
2416  
2417  /*
2418   * Append new function parameter for current FUNC_PROTO type with:
2419   *   - *name* - parameter name, can be NULL or empty;
2420   *   - *type_id* - type ID describing the type of the parameter.
2421   * Returns:
2422   *   -  0, on success;
2423   *   - <0, on error.
2424   */
btf__add_func_param(struct btf * btf,const char * name,int type_id)2425  int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2426  {
2427  	struct btf_type *t;
2428  	struct btf_param *p;
2429  	int sz, name_off = 0;
2430  
2431  	if (validate_type_id(type_id))
2432  		return libbpf_err(-EINVAL);
2433  
2434  	/* last type should be BTF_KIND_FUNC_PROTO */
2435  	if (btf->nr_types == 0)
2436  		return libbpf_err(-EINVAL);
2437  	t = btf_last_type(btf);
2438  	if (!btf_is_func_proto(t))
2439  		return libbpf_err(-EINVAL);
2440  
2441  	/* decompose and invalidate raw data */
2442  	if (btf_ensure_modifiable(btf))
2443  		return libbpf_err(-ENOMEM);
2444  
2445  	sz = sizeof(struct btf_param);
2446  	p = btf_add_type_mem(btf, sz);
2447  	if (!p)
2448  		return libbpf_err(-ENOMEM);
2449  
2450  	if (name && name[0]) {
2451  		name_off = btf__add_str(btf, name);
2452  		if (name_off < 0)
2453  			return name_off;
2454  	}
2455  
2456  	p->name_off = name_off;
2457  	p->type = type_id;
2458  
2459  	/* update parent type's vlen */
2460  	t = btf_last_type(btf);
2461  	btf_type_inc_vlen(t);
2462  
2463  	btf->hdr->type_len += sz;
2464  	btf->hdr->str_off += sz;
2465  	return 0;
2466  }
2467  
2468  /*
2469   * Append new BTF_KIND_VAR type with:
2470   *   - *name* - non-empty/non-NULL name;
2471   *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2472   *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2473   *   - *type_id* - type ID of the type describing the type of the variable.
2474   * Returns:
2475   *   - >0, type ID of newly added BTF type;
2476   *   - <0, on error.
2477   */
btf__add_var(struct btf * btf,const char * name,int linkage,int type_id)2478  int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2479  {
2480  	struct btf_type *t;
2481  	struct btf_var *v;
2482  	int sz, name_off;
2483  
2484  	/* non-empty name */
2485  	if (!name || !name[0])
2486  		return libbpf_err(-EINVAL);
2487  	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2488  	    linkage != BTF_VAR_GLOBAL_EXTERN)
2489  		return libbpf_err(-EINVAL);
2490  	if (validate_type_id(type_id))
2491  		return libbpf_err(-EINVAL);
2492  
2493  	/* deconstruct BTF, if necessary, and invalidate raw_data */
2494  	if (btf_ensure_modifiable(btf))
2495  		return libbpf_err(-ENOMEM);
2496  
2497  	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2498  	t = btf_add_type_mem(btf, sz);
2499  	if (!t)
2500  		return libbpf_err(-ENOMEM);
2501  
2502  	name_off = btf__add_str(btf, name);
2503  	if (name_off < 0)
2504  		return name_off;
2505  
2506  	t->name_off = name_off;
2507  	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2508  	t->type = type_id;
2509  
2510  	v = btf_var(t);
2511  	v->linkage = linkage;
2512  
2513  	return btf_commit_type(btf, sz);
2514  }
2515  
2516  /*
2517   * Append new BTF_KIND_DATASEC type with:
2518   *   - *name* - non-empty/non-NULL name;
2519   *   - *byte_sz* - data section size, in bytes.
2520   *
2521   * Data section is initially empty. Variables info can be added with
2522   * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2523   *
2524   * Returns:
2525   *   - >0, type ID of newly added BTF type;
2526   *   - <0, on error.
2527   */
btf__add_datasec(struct btf * btf,const char * name,__u32 byte_sz)2528  int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2529  {
2530  	struct btf_type *t;
2531  	int sz, name_off;
2532  
2533  	/* non-empty name */
2534  	if (!name || !name[0])
2535  		return libbpf_err(-EINVAL);
2536  
2537  	if (btf_ensure_modifiable(btf))
2538  		return libbpf_err(-ENOMEM);
2539  
2540  	sz = sizeof(struct btf_type);
2541  	t = btf_add_type_mem(btf, sz);
2542  	if (!t)
2543  		return libbpf_err(-ENOMEM);
2544  
2545  	name_off = btf__add_str(btf, name);
2546  	if (name_off < 0)
2547  		return name_off;
2548  
2549  	/* start with vlen=0, which will be update as var_secinfos are added */
2550  	t->name_off = name_off;
2551  	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2552  	t->size = byte_sz;
2553  
2554  	return btf_commit_type(btf, sz);
2555  }
2556  
2557  /*
2558   * Append new data section variable information entry for current DATASEC type:
2559   *   - *var_type_id* - type ID, describing type of the variable;
2560   *   - *offset* - variable offset within data section, in bytes;
2561   *   - *byte_sz* - variable size, in bytes.
2562   *
2563   * Returns:
2564   *   -  0, on success;
2565   *   - <0, on error.
2566   */
btf__add_datasec_var_info(struct btf * btf,int var_type_id,__u32 offset,__u32 byte_sz)2567  int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2568  {
2569  	struct btf_type *t;
2570  	struct btf_var_secinfo *v;
2571  	int sz;
2572  
2573  	/* last type should be BTF_KIND_DATASEC */
2574  	if (btf->nr_types == 0)
2575  		return libbpf_err(-EINVAL);
2576  	t = btf_last_type(btf);
2577  	if (!btf_is_datasec(t))
2578  		return libbpf_err(-EINVAL);
2579  
2580  	if (validate_type_id(var_type_id))
2581  		return libbpf_err(-EINVAL);
2582  
2583  	/* decompose and invalidate raw data */
2584  	if (btf_ensure_modifiable(btf))
2585  		return libbpf_err(-ENOMEM);
2586  
2587  	sz = sizeof(struct btf_var_secinfo);
2588  	v = btf_add_type_mem(btf, sz);
2589  	if (!v)
2590  		return libbpf_err(-ENOMEM);
2591  
2592  	v->type = var_type_id;
2593  	v->offset = offset;
2594  	v->size = byte_sz;
2595  
2596  	/* update parent type's vlen */
2597  	t = btf_last_type(btf);
2598  	btf_type_inc_vlen(t);
2599  
2600  	btf->hdr->type_len += sz;
2601  	btf->hdr->str_off += sz;
2602  	return 0;
2603  }
2604  
2605  /*
2606   * Append new BTF_KIND_DECL_TAG type with:
2607   *   - *value* - non-empty/non-NULL string;
2608   *   - *ref_type_id* - referenced type ID, it might not exist yet;
2609   *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2610   *     member or function argument index;
2611   * Returns:
2612   *   - >0, type ID of newly added BTF type;
2613   *   - <0, on error.
2614   */
btf__add_decl_tag(struct btf * btf,const char * value,int ref_type_id,int component_idx)2615  int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2616  		 int component_idx)
2617  {
2618  	struct btf_type *t;
2619  	int sz, value_off;
2620  
2621  	if (!value || !value[0] || component_idx < -1)
2622  		return libbpf_err(-EINVAL);
2623  
2624  	if (validate_type_id(ref_type_id))
2625  		return libbpf_err(-EINVAL);
2626  
2627  	if (btf_ensure_modifiable(btf))
2628  		return libbpf_err(-ENOMEM);
2629  
2630  	sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2631  	t = btf_add_type_mem(btf, sz);
2632  	if (!t)
2633  		return libbpf_err(-ENOMEM);
2634  
2635  	value_off = btf__add_str(btf, value);
2636  	if (value_off < 0)
2637  		return value_off;
2638  
2639  	t->name_off = value_off;
2640  	t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2641  	t->type = ref_type_id;
2642  	btf_decl_tag(t)->component_idx = component_idx;
2643  
2644  	return btf_commit_type(btf, sz);
2645  }
2646  
2647  struct btf_ext_sec_setup_param {
2648  	__u32 off;
2649  	__u32 len;
2650  	__u32 min_rec_size;
2651  	struct btf_ext_info *ext_info;
2652  	const char *desc;
2653  };
2654  
btf_ext_setup_info(struct btf_ext * btf_ext,struct btf_ext_sec_setup_param * ext_sec)2655  static int btf_ext_setup_info(struct btf_ext *btf_ext,
2656  			      struct btf_ext_sec_setup_param *ext_sec)
2657  {
2658  	const struct btf_ext_info_sec *sinfo;
2659  	struct btf_ext_info *ext_info;
2660  	__u32 info_left, record_size;
2661  	size_t sec_cnt = 0;
2662  	/* The start of the info sec (including the __u32 record_size). */
2663  	void *info;
2664  
2665  	if (ext_sec->len == 0)
2666  		return 0;
2667  
2668  	if (ext_sec->off & 0x03) {
2669  		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2670  		     ext_sec->desc);
2671  		return -EINVAL;
2672  	}
2673  
2674  	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2675  	info_left = ext_sec->len;
2676  
2677  	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2678  		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2679  			 ext_sec->desc, ext_sec->off, ext_sec->len);
2680  		return -EINVAL;
2681  	}
2682  
2683  	/* At least a record size */
2684  	if (info_left < sizeof(__u32)) {
2685  		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2686  		return -EINVAL;
2687  	}
2688  
2689  	/* The record size needs to meet the minimum standard */
2690  	record_size = *(__u32 *)info;
2691  	if (record_size < ext_sec->min_rec_size ||
2692  	    record_size & 0x03) {
2693  		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2694  			 ext_sec->desc, record_size);
2695  		return -EINVAL;
2696  	}
2697  
2698  	sinfo = info + sizeof(__u32);
2699  	info_left -= sizeof(__u32);
2700  
2701  	/* If no records, return failure now so .BTF.ext won't be used. */
2702  	if (!info_left) {
2703  		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2704  		return -EINVAL;
2705  	}
2706  
2707  	while (info_left) {
2708  		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2709  		__u64 total_record_size;
2710  		__u32 num_records;
2711  
2712  		if (info_left < sec_hdrlen) {
2713  			pr_debug("%s section header is not found in .BTF.ext\n",
2714  			     ext_sec->desc);
2715  			return -EINVAL;
2716  		}
2717  
2718  		num_records = sinfo->num_info;
2719  		if (num_records == 0) {
2720  			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2721  			     ext_sec->desc);
2722  			return -EINVAL;
2723  		}
2724  
2725  		total_record_size = sec_hdrlen + (__u64)num_records * record_size;
2726  		if (info_left < total_record_size) {
2727  			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2728  			     ext_sec->desc);
2729  			return -EINVAL;
2730  		}
2731  
2732  		info_left -= total_record_size;
2733  		sinfo = (void *)sinfo + total_record_size;
2734  		sec_cnt++;
2735  	}
2736  
2737  	ext_info = ext_sec->ext_info;
2738  	ext_info->len = ext_sec->len - sizeof(__u32);
2739  	ext_info->rec_size = record_size;
2740  	ext_info->info = info + sizeof(__u32);
2741  	ext_info->sec_cnt = sec_cnt;
2742  
2743  	return 0;
2744  }
2745  
btf_ext_setup_func_info(struct btf_ext * btf_ext)2746  static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2747  {
2748  	struct btf_ext_sec_setup_param param = {
2749  		.off = btf_ext->hdr->func_info_off,
2750  		.len = btf_ext->hdr->func_info_len,
2751  		.min_rec_size = sizeof(struct bpf_func_info_min),
2752  		.ext_info = &btf_ext->func_info,
2753  		.desc = "func_info"
2754  	};
2755  
2756  	return btf_ext_setup_info(btf_ext, &param);
2757  }
2758  
btf_ext_setup_line_info(struct btf_ext * btf_ext)2759  static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2760  {
2761  	struct btf_ext_sec_setup_param param = {
2762  		.off = btf_ext->hdr->line_info_off,
2763  		.len = btf_ext->hdr->line_info_len,
2764  		.min_rec_size = sizeof(struct bpf_line_info_min),
2765  		.ext_info = &btf_ext->line_info,
2766  		.desc = "line_info",
2767  	};
2768  
2769  	return btf_ext_setup_info(btf_ext, &param);
2770  }
2771  
btf_ext_setup_core_relos(struct btf_ext * btf_ext)2772  static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2773  {
2774  	struct btf_ext_sec_setup_param param = {
2775  		.off = btf_ext->hdr->core_relo_off,
2776  		.len = btf_ext->hdr->core_relo_len,
2777  		.min_rec_size = sizeof(struct bpf_core_relo),
2778  		.ext_info = &btf_ext->core_relo_info,
2779  		.desc = "core_relo",
2780  	};
2781  
2782  	return btf_ext_setup_info(btf_ext, &param);
2783  }
2784  
btf_ext_parse_hdr(__u8 * data,__u32 data_size)2785  static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2786  {
2787  	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2788  
2789  	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2790  	    data_size < hdr->hdr_len) {
2791  		pr_debug("BTF.ext header not found");
2792  		return -EINVAL;
2793  	}
2794  
2795  	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2796  		pr_warn("BTF.ext in non-native endianness is not supported\n");
2797  		return -ENOTSUP;
2798  	} else if (hdr->magic != BTF_MAGIC) {
2799  		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2800  		return -EINVAL;
2801  	}
2802  
2803  	if (hdr->version != BTF_VERSION) {
2804  		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2805  		return -ENOTSUP;
2806  	}
2807  
2808  	if (hdr->flags) {
2809  		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2810  		return -ENOTSUP;
2811  	}
2812  
2813  	if (data_size == hdr->hdr_len) {
2814  		pr_debug("BTF.ext has no data\n");
2815  		return -EINVAL;
2816  	}
2817  
2818  	return 0;
2819  }
2820  
btf_ext__free(struct btf_ext * btf_ext)2821  void btf_ext__free(struct btf_ext *btf_ext)
2822  {
2823  	if (IS_ERR_OR_NULL(btf_ext))
2824  		return;
2825  	free(btf_ext->func_info.sec_idxs);
2826  	free(btf_ext->line_info.sec_idxs);
2827  	free(btf_ext->core_relo_info.sec_idxs);
2828  	free(btf_ext->data);
2829  	free(btf_ext);
2830  }
2831  
btf_ext__new(const __u8 * data,__u32 size)2832  struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
2833  {
2834  	struct btf_ext *btf_ext;
2835  	int err;
2836  
2837  	btf_ext = calloc(1, sizeof(struct btf_ext));
2838  	if (!btf_ext)
2839  		return libbpf_err_ptr(-ENOMEM);
2840  
2841  	btf_ext->data_size = size;
2842  	btf_ext->data = malloc(size);
2843  	if (!btf_ext->data) {
2844  		err = -ENOMEM;
2845  		goto done;
2846  	}
2847  	memcpy(btf_ext->data, data, size);
2848  
2849  	err = btf_ext_parse_hdr(btf_ext->data, size);
2850  	if (err)
2851  		goto done;
2852  
2853  	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2854  		err = -EINVAL;
2855  		goto done;
2856  	}
2857  
2858  	err = btf_ext_setup_func_info(btf_ext);
2859  	if (err)
2860  		goto done;
2861  
2862  	err = btf_ext_setup_line_info(btf_ext);
2863  	if (err)
2864  		goto done;
2865  
2866  	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2867  		goto done; /* skip core relos parsing */
2868  
2869  	err = btf_ext_setup_core_relos(btf_ext);
2870  	if (err)
2871  		goto done;
2872  
2873  done:
2874  	if (err) {
2875  		btf_ext__free(btf_ext);
2876  		return libbpf_err_ptr(err);
2877  	}
2878  
2879  	return btf_ext;
2880  }
2881  
btf_ext__get_raw_data(const struct btf_ext * btf_ext,__u32 * size)2882  const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2883  {
2884  	*size = btf_ext->data_size;
2885  	return btf_ext->data;
2886  }
2887  
2888  struct btf_dedup;
2889  
2890  static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
2891  static void btf_dedup_free(struct btf_dedup *d);
2892  static int btf_dedup_prep(struct btf_dedup *d);
2893  static int btf_dedup_strings(struct btf_dedup *d);
2894  static int btf_dedup_prim_types(struct btf_dedup *d);
2895  static int btf_dedup_struct_types(struct btf_dedup *d);
2896  static int btf_dedup_ref_types(struct btf_dedup *d);
2897  static int btf_dedup_resolve_fwds(struct btf_dedup *d);
2898  static int btf_dedup_compact_types(struct btf_dedup *d);
2899  static int btf_dedup_remap_types(struct btf_dedup *d);
2900  
2901  /*
2902   * Deduplicate BTF types and strings.
2903   *
2904   * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2905   * section with all BTF type descriptors and string data. It overwrites that
2906   * memory in-place with deduplicated types and strings without any loss of
2907   * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2908   * is provided, all the strings referenced from .BTF.ext section are honored
2909   * and updated to point to the right offsets after deduplication.
2910   *
2911   * If function returns with error, type/string data might be garbled and should
2912   * be discarded.
2913   *
2914   * More verbose and detailed description of both problem btf_dedup is solving,
2915   * as well as solution could be found at:
2916   * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2917   *
2918   * Problem description and justification
2919   * =====================================
2920   *
2921   * BTF type information is typically emitted either as a result of conversion
2922   * from DWARF to BTF or directly by compiler. In both cases, each compilation
2923   * unit contains information about a subset of all the types that are used
2924   * in an application. These subsets are frequently overlapping and contain a lot
2925   * of duplicated information when later concatenated together into a single
2926   * binary. This algorithm ensures that each unique type is represented by single
2927   * BTF type descriptor, greatly reducing resulting size of BTF data.
2928   *
2929   * Compilation unit isolation and subsequent duplication of data is not the only
2930   * problem. The same type hierarchy (e.g., struct and all the type that struct
2931   * references) in different compilation units can be represented in BTF to
2932   * various degrees of completeness (or, rather, incompleteness) due to
2933   * struct/union forward declarations.
2934   *
2935   * Let's take a look at an example, that we'll use to better understand the
2936   * problem (and solution). Suppose we have two compilation units, each using
2937   * same `struct S`, but each of them having incomplete type information about
2938   * struct's fields:
2939   *
2940   * // CU #1:
2941   * struct S;
2942   * struct A {
2943   *	int a;
2944   *	struct A* self;
2945   *	struct S* parent;
2946   * };
2947   * struct B;
2948   * struct S {
2949   *	struct A* a_ptr;
2950   *	struct B* b_ptr;
2951   * };
2952   *
2953   * // CU #2:
2954   * struct S;
2955   * struct A;
2956   * struct B {
2957   *	int b;
2958   *	struct B* self;
2959   *	struct S* parent;
2960   * };
2961   * struct S {
2962   *	struct A* a_ptr;
2963   *	struct B* b_ptr;
2964   * };
2965   *
2966   * In case of CU #1, BTF data will know only that `struct B` exist (but no
2967   * more), but will know the complete type information about `struct A`. While
2968   * for CU #2, it will know full type information about `struct B`, but will
2969   * only know about forward declaration of `struct A` (in BTF terms, it will
2970   * have `BTF_KIND_FWD` type descriptor with name `B`).
2971   *
2972   * This compilation unit isolation means that it's possible that there is no
2973   * single CU with complete type information describing structs `S`, `A`, and
2974   * `B`. Also, we might get tons of duplicated and redundant type information.
2975   *
2976   * Additional complication we need to keep in mind comes from the fact that
2977   * types, in general, can form graphs containing cycles, not just DAGs.
2978   *
2979   * While algorithm does deduplication, it also merges and resolves type
2980   * information (unless disabled throught `struct btf_opts`), whenever possible.
2981   * E.g., in the example above with two compilation units having partial type
2982   * information for structs `A` and `B`, the output of algorithm will emit
2983   * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2984   * (as well as type information for `int` and pointers), as if they were defined
2985   * in a single compilation unit as:
2986   *
2987   * struct A {
2988   *	int a;
2989   *	struct A* self;
2990   *	struct S* parent;
2991   * };
2992   * struct B {
2993   *	int b;
2994   *	struct B* self;
2995   *	struct S* parent;
2996   * };
2997   * struct S {
2998   *	struct A* a_ptr;
2999   *	struct B* b_ptr;
3000   * };
3001   *
3002   * Algorithm summary
3003   * =================
3004   *
3005   * Algorithm completes its work in 7 separate passes:
3006   *
3007   * 1. Strings deduplication.
3008   * 2. Primitive types deduplication (int, enum, fwd).
3009   * 3. Struct/union types deduplication.
3010   * 4. Resolve unambiguous forward declarations.
3011   * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3012   *    protos, and const/volatile/restrict modifiers).
3013   * 6. Types compaction.
3014   * 7. Types remapping.
3015   *
3016   * Algorithm determines canonical type descriptor, which is a single
3017   * representative type for each truly unique type. This canonical type is the
3018   * one that will go into final deduplicated BTF type information. For
3019   * struct/unions, it is also the type that algorithm will merge additional type
3020   * information into (while resolving FWDs), as it discovers it from data in
3021   * other CUs. Each input BTF type eventually gets either mapped to itself, if
3022   * that type is canonical, or to some other type, if that type is equivalent
3023   * and was chosen as canonical representative. This mapping is stored in
3024   * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3025   * FWD type got resolved to.
3026   *
3027   * To facilitate fast discovery of canonical types, we also maintain canonical
3028   * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3029   * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3030   * that match that signature. With sufficiently good choice of type signature
3031   * hashing function, we can limit number of canonical types for each unique type
3032   * signature to a very small number, allowing to find canonical type for any
3033   * duplicated type very quickly.
3034   *
3035   * Struct/union deduplication is the most critical part and algorithm for
3036   * deduplicating structs/unions is described in greater details in comments for
3037   * `btf_dedup_is_equiv` function.
3038   */
btf__dedup(struct btf * btf,const struct btf_dedup_opts * opts)3039  int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts)
3040  {
3041  	struct btf_dedup *d;
3042  	int err;
3043  
3044  	if (!OPTS_VALID(opts, btf_dedup_opts))
3045  		return libbpf_err(-EINVAL);
3046  
3047  	d = btf_dedup_new(btf, opts);
3048  	if (IS_ERR(d)) {
3049  		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
3050  		return libbpf_err(-EINVAL);
3051  	}
3052  
3053  	if (btf_ensure_modifiable(btf)) {
3054  		err = -ENOMEM;
3055  		goto done;
3056  	}
3057  
3058  	err = btf_dedup_prep(d);
3059  	if (err) {
3060  		pr_debug("btf_dedup_prep failed:%d\n", err);
3061  		goto done;
3062  	}
3063  	err = btf_dedup_strings(d);
3064  	if (err < 0) {
3065  		pr_debug("btf_dedup_strings failed:%d\n", err);
3066  		goto done;
3067  	}
3068  	err = btf_dedup_prim_types(d);
3069  	if (err < 0) {
3070  		pr_debug("btf_dedup_prim_types failed:%d\n", err);
3071  		goto done;
3072  	}
3073  	err = btf_dedup_struct_types(d);
3074  	if (err < 0) {
3075  		pr_debug("btf_dedup_struct_types failed:%d\n", err);
3076  		goto done;
3077  	}
3078  	err = btf_dedup_resolve_fwds(d);
3079  	if (err < 0) {
3080  		pr_debug("btf_dedup_resolve_fwds failed:%d\n", err);
3081  		goto done;
3082  	}
3083  	err = btf_dedup_ref_types(d);
3084  	if (err < 0) {
3085  		pr_debug("btf_dedup_ref_types failed:%d\n", err);
3086  		goto done;
3087  	}
3088  	err = btf_dedup_compact_types(d);
3089  	if (err < 0) {
3090  		pr_debug("btf_dedup_compact_types failed:%d\n", err);
3091  		goto done;
3092  	}
3093  	err = btf_dedup_remap_types(d);
3094  	if (err < 0) {
3095  		pr_debug("btf_dedup_remap_types failed:%d\n", err);
3096  		goto done;
3097  	}
3098  
3099  done:
3100  	btf_dedup_free(d);
3101  	return libbpf_err(err);
3102  }
3103  
3104  #define BTF_UNPROCESSED_ID ((__u32)-1)
3105  #define BTF_IN_PROGRESS_ID ((__u32)-2)
3106  
3107  struct btf_dedup {
3108  	/* .BTF section to be deduped in-place */
3109  	struct btf *btf;
3110  	/*
3111  	 * Optional .BTF.ext section. When provided, any strings referenced
3112  	 * from it will be taken into account when deduping strings
3113  	 */
3114  	struct btf_ext *btf_ext;
3115  	/*
3116  	 * This is a map from any type's signature hash to a list of possible
3117  	 * canonical representative type candidates. Hash collisions are
3118  	 * ignored, so even types of various kinds can share same list of
3119  	 * candidates, which is fine because we rely on subsequent
3120  	 * btf_xxx_equal() checks to authoritatively verify type equality.
3121  	 */
3122  	struct hashmap *dedup_table;
3123  	/* Canonical types map */
3124  	__u32 *map;
3125  	/* Hypothetical mapping, used during type graph equivalence checks */
3126  	__u32 *hypot_map;
3127  	__u32 *hypot_list;
3128  	size_t hypot_cnt;
3129  	size_t hypot_cap;
3130  	/* Whether hypothetical mapping, if successful, would need to adjust
3131  	 * already canonicalized types (due to a new forward declaration to
3132  	 * concrete type resolution). In such case, during split BTF dedup
3133  	 * candidate type would still be considered as different, because base
3134  	 * BTF is considered to be immutable.
3135  	 */
3136  	bool hypot_adjust_canon;
3137  	/* Various option modifying behavior of algorithm */
3138  	struct btf_dedup_opts opts;
3139  	/* temporary strings deduplication state */
3140  	struct strset *strs_set;
3141  };
3142  
hash_combine(long h,long value)3143  static long hash_combine(long h, long value)
3144  {
3145  	return h * 31 + value;
3146  }
3147  
3148  #define for_each_dedup_cand(d, node, hash) \
3149  	hashmap__for_each_key_entry(d->dedup_table, node, hash)
3150  
btf_dedup_table_add(struct btf_dedup * d,long hash,__u32 type_id)3151  static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3152  {
3153  	return hashmap__append(d->dedup_table, hash, type_id);
3154  }
3155  
btf_dedup_hypot_map_add(struct btf_dedup * d,__u32 from_id,__u32 to_id)3156  static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3157  				   __u32 from_id, __u32 to_id)
3158  {
3159  	if (d->hypot_cnt == d->hypot_cap) {
3160  		__u32 *new_list;
3161  
3162  		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3163  		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3164  		if (!new_list)
3165  			return -ENOMEM;
3166  		d->hypot_list = new_list;
3167  	}
3168  	d->hypot_list[d->hypot_cnt++] = from_id;
3169  	d->hypot_map[from_id] = to_id;
3170  	return 0;
3171  }
3172  
btf_dedup_clear_hypot_map(struct btf_dedup * d)3173  static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3174  {
3175  	int i;
3176  
3177  	for (i = 0; i < d->hypot_cnt; i++)
3178  		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3179  	d->hypot_cnt = 0;
3180  	d->hypot_adjust_canon = false;
3181  }
3182  
btf_dedup_free(struct btf_dedup * d)3183  static void btf_dedup_free(struct btf_dedup *d)
3184  {
3185  	hashmap__free(d->dedup_table);
3186  	d->dedup_table = NULL;
3187  
3188  	free(d->map);
3189  	d->map = NULL;
3190  
3191  	free(d->hypot_map);
3192  	d->hypot_map = NULL;
3193  
3194  	free(d->hypot_list);
3195  	d->hypot_list = NULL;
3196  
3197  	free(d);
3198  }
3199  
btf_dedup_identity_hash_fn(long key,void * ctx)3200  static size_t btf_dedup_identity_hash_fn(long key, void *ctx)
3201  {
3202  	return key;
3203  }
3204  
btf_dedup_collision_hash_fn(long key,void * ctx)3205  static size_t btf_dedup_collision_hash_fn(long key, void *ctx)
3206  {
3207  	return 0;
3208  }
3209  
btf_dedup_equal_fn(long k1,long k2,void * ctx)3210  static bool btf_dedup_equal_fn(long k1, long k2, void *ctx)
3211  {
3212  	return k1 == k2;
3213  }
3214  
btf_dedup_new(struct btf * btf,const struct btf_dedup_opts * opts)3215  static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
3216  {
3217  	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3218  	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3219  	int i, err = 0, type_cnt;
3220  
3221  	if (!d)
3222  		return ERR_PTR(-ENOMEM);
3223  
3224  	if (OPTS_GET(opts, force_collisions, false))
3225  		hash_fn = btf_dedup_collision_hash_fn;
3226  
3227  	d->btf = btf;
3228  	d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3229  
3230  	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3231  	if (IS_ERR(d->dedup_table)) {
3232  		err = PTR_ERR(d->dedup_table);
3233  		d->dedup_table = NULL;
3234  		goto done;
3235  	}
3236  
3237  	type_cnt = btf__type_cnt(btf);
3238  	d->map = malloc(sizeof(__u32) * type_cnt);
3239  	if (!d->map) {
3240  		err = -ENOMEM;
3241  		goto done;
3242  	}
3243  	/* special BTF "void" type is made canonical immediately */
3244  	d->map[0] = 0;
3245  	for (i = 1; i < type_cnt; i++) {
3246  		struct btf_type *t = btf_type_by_id(d->btf, i);
3247  
3248  		/* VAR and DATASEC are never deduped and are self-canonical */
3249  		if (btf_is_var(t) || btf_is_datasec(t))
3250  			d->map[i] = i;
3251  		else
3252  			d->map[i] = BTF_UNPROCESSED_ID;
3253  	}
3254  
3255  	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3256  	if (!d->hypot_map) {
3257  		err = -ENOMEM;
3258  		goto done;
3259  	}
3260  	for (i = 0; i < type_cnt; i++)
3261  		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3262  
3263  done:
3264  	if (err) {
3265  		btf_dedup_free(d);
3266  		return ERR_PTR(err);
3267  	}
3268  
3269  	return d;
3270  }
3271  
3272  /*
3273   * Iterate over all possible places in .BTF and .BTF.ext that can reference
3274   * string and pass pointer to it to a provided callback `fn`.
3275   */
btf_for_each_str_off(struct btf_dedup * d,str_off_visit_fn fn,void * ctx)3276  static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3277  {
3278  	int i, r;
3279  
3280  	for (i = 0; i < d->btf->nr_types; i++) {
3281  		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3282  
3283  		r = btf_type_visit_str_offs(t, fn, ctx);
3284  		if (r)
3285  			return r;
3286  	}
3287  
3288  	if (!d->btf_ext)
3289  		return 0;
3290  
3291  	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3292  	if (r)
3293  		return r;
3294  
3295  	return 0;
3296  }
3297  
strs_dedup_remap_str_off(__u32 * str_off_ptr,void * ctx)3298  static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3299  {
3300  	struct btf_dedup *d = ctx;
3301  	__u32 str_off = *str_off_ptr;
3302  	const char *s;
3303  	int off, err;
3304  
3305  	/* don't touch empty string or string in main BTF */
3306  	if (str_off == 0 || str_off < d->btf->start_str_off)
3307  		return 0;
3308  
3309  	s = btf__str_by_offset(d->btf, str_off);
3310  	if (d->btf->base_btf) {
3311  		err = btf__find_str(d->btf->base_btf, s);
3312  		if (err >= 0) {
3313  			*str_off_ptr = err;
3314  			return 0;
3315  		}
3316  		if (err != -ENOENT)
3317  			return err;
3318  	}
3319  
3320  	off = strset__add_str(d->strs_set, s);
3321  	if (off < 0)
3322  		return off;
3323  
3324  	*str_off_ptr = d->btf->start_str_off + off;
3325  	return 0;
3326  }
3327  
3328  /*
3329   * Dedup string and filter out those that are not referenced from either .BTF
3330   * or .BTF.ext (if provided) sections.
3331   *
3332   * This is done by building index of all strings in BTF's string section,
3333   * then iterating over all entities that can reference strings (e.g., type
3334   * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3335   * strings as used. After that all used strings are deduped and compacted into
3336   * sequential blob of memory and new offsets are calculated. Then all the string
3337   * references are iterated again and rewritten using new offsets.
3338   */
btf_dedup_strings(struct btf_dedup * d)3339  static int btf_dedup_strings(struct btf_dedup *d)
3340  {
3341  	int err;
3342  
3343  	if (d->btf->strs_deduped)
3344  		return 0;
3345  
3346  	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3347  	if (IS_ERR(d->strs_set)) {
3348  		err = PTR_ERR(d->strs_set);
3349  		goto err_out;
3350  	}
3351  
3352  	if (!d->btf->base_btf) {
3353  		/* insert empty string; we won't be looking it up during strings
3354  		 * dedup, but it's good to have it for generic BTF string lookups
3355  		 */
3356  		err = strset__add_str(d->strs_set, "");
3357  		if (err < 0)
3358  			goto err_out;
3359  	}
3360  
3361  	/* remap string offsets */
3362  	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3363  	if (err)
3364  		goto err_out;
3365  
3366  	/* replace BTF string data and hash with deduped ones */
3367  	strset__free(d->btf->strs_set);
3368  	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3369  	d->btf->strs_set = d->strs_set;
3370  	d->strs_set = NULL;
3371  	d->btf->strs_deduped = true;
3372  	return 0;
3373  
3374  err_out:
3375  	strset__free(d->strs_set);
3376  	d->strs_set = NULL;
3377  
3378  	return err;
3379  }
3380  
btf_hash_common(struct btf_type * t)3381  static long btf_hash_common(struct btf_type *t)
3382  {
3383  	long h;
3384  
3385  	h = hash_combine(0, t->name_off);
3386  	h = hash_combine(h, t->info);
3387  	h = hash_combine(h, t->size);
3388  	return h;
3389  }
3390  
btf_equal_common(struct btf_type * t1,struct btf_type * t2)3391  static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3392  {
3393  	return t1->name_off == t2->name_off &&
3394  	       t1->info == t2->info &&
3395  	       t1->size == t2->size;
3396  }
3397  
3398  /* Calculate type signature hash of INT or TAG. */
btf_hash_int_decl_tag(struct btf_type * t)3399  static long btf_hash_int_decl_tag(struct btf_type *t)
3400  {
3401  	__u32 info = *(__u32 *)(t + 1);
3402  	long h;
3403  
3404  	h = btf_hash_common(t);
3405  	h = hash_combine(h, info);
3406  	return h;
3407  }
3408  
3409  /* Check structural equality of two INTs or TAGs. */
btf_equal_int_tag(struct btf_type * t1,struct btf_type * t2)3410  static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3411  {
3412  	__u32 info1, info2;
3413  
3414  	if (!btf_equal_common(t1, t2))
3415  		return false;
3416  	info1 = *(__u32 *)(t1 + 1);
3417  	info2 = *(__u32 *)(t2 + 1);
3418  	return info1 == info2;
3419  }
3420  
3421  /* Calculate type signature hash of ENUM/ENUM64. */
btf_hash_enum(struct btf_type * t)3422  static long btf_hash_enum(struct btf_type *t)
3423  {
3424  	long h;
3425  
3426  	/* don't hash vlen, enum members and size to support enum fwd resolving */
3427  	h = hash_combine(0, t->name_off);
3428  	return h;
3429  }
3430  
btf_equal_enum_members(struct btf_type * t1,struct btf_type * t2)3431  static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2)
3432  {
3433  	const struct btf_enum *m1, *m2;
3434  	__u16 vlen;
3435  	int i;
3436  
3437  	vlen = btf_vlen(t1);
3438  	m1 = btf_enum(t1);
3439  	m2 = btf_enum(t2);
3440  	for (i = 0; i < vlen; i++) {
3441  		if (m1->name_off != m2->name_off || m1->val != m2->val)
3442  			return false;
3443  		m1++;
3444  		m2++;
3445  	}
3446  	return true;
3447  }
3448  
btf_equal_enum64_members(struct btf_type * t1,struct btf_type * t2)3449  static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2)
3450  {
3451  	const struct btf_enum64 *m1, *m2;
3452  	__u16 vlen;
3453  	int i;
3454  
3455  	vlen = btf_vlen(t1);
3456  	m1 = btf_enum64(t1);
3457  	m2 = btf_enum64(t2);
3458  	for (i = 0; i < vlen; i++) {
3459  		if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 ||
3460  		    m1->val_hi32 != m2->val_hi32)
3461  			return false;
3462  		m1++;
3463  		m2++;
3464  	}
3465  	return true;
3466  }
3467  
3468  /* Check structural equality of two ENUMs or ENUM64s. */
btf_equal_enum(struct btf_type * t1,struct btf_type * t2)3469  static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3470  {
3471  	if (!btf_equal_common(t1, t2))
3472  		return false;
3473  
3474  	/* t1 & t2 kinds are identical because of btf_equal_common */
3475  	if (btf_kind(t1) == BTF_KIND_ENUM)
3476  		return btf_equal_enum_members(t1, t2);
3477  	else
3478  		return btf_equal_enum64_members(t1, t2);
3479  }
3480  
btf_is_enum_fwd(struct btf_type * t)3481  static inline bool btf_is_enum_fwd(struct btf_type *t)
3482  {
3483  	return btf_is_any_enum(t) && btf_vlen(t) == 0;
3484  }
3485  
btf_compat_enum(struct btf_type * t1,struct btf_type * t2)3486  static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3487  {
3488  	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3489  		return btf_equal_enum(t1, t2);
3490  	/* At this point either t1 or t2 or both are forward declarations, thus:
3491  	 * - skip comparing vlen because it is zero for forward declarations;
3492  	 * - skip comparing size to allow enum forward declarations
3493  	 *   to be compatible with enum64 full declarations;
3494  	 * - skip comparing kind for the same reason.
3495  	 */
3496  	return t1->name_off == t2->name_off &&
3497  	       btf_is_any_enum(t1) && btf_is_any_enum(t2);
3498  }
3499  
3500  /*
3501   * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3502   * as referenced type IDs equivalence is established separately during type
3503   * graph equivalence check algorithm.
3504   */
btf_hash_struct(struct btf_type * t)3505  static long btf_hash_struct(struct btf_type *t)
3506  {
3507  	const struct btf_member *member = btf_members(t);
3508  	__u32 vlen = btf_vlen(t);
3509  	long h = btf_hash_common(t);
3510  	int i;
3511  
3512  	for (i = 0; i < vlen; i++) {
3513  		h = hash_combine(h, member->name_off);
3514  		h = hash_combine(h, member->offset);
3515  		/* no hashing of referenced type ID, it can be unresolved yet */
3516  		member++;
3517  	}
3518  	return h;
3519  }
3520  
3521  /*
3522   * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3523   * type IDs. This check is performed during type graph equivalence check and
3524   * referenced types equivalence is checked separately.
3525   */
btf_shallow_equal_struct(struct btf_type * t1,struct btf_type * t2)3526  static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3527  {
3528  	const struct btf_member *m1, *m2;
3529  	__u16 vlen;
3530  	int i;
3531  
3532  	if (!btf_equal_common(t1, t2))
3533  		return false;
3534  
3535  	vlen = btf_vlen(t1);
3536  	m1 = btf_members(t1);
3537  	m2 = btf_members(t2);
3538  	for (i = 0; i < vlen; i++) {
3539  		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3540  			return false;
3541  		m1++;
3542  		m2++;
3543  	}
3544  	return true;
3545  }
3546  
3547  /*
3548   * Calculate type signature hash of ARRAY, including referenced type IDs,
3549   * under assumption that they were already resolved to canonical type IDs and
3550   * are not going to change.
3551   */
btf_hash_array(struct btf_type * t)3552  static long btf_hash_array(struct btf_type *t)
3553  {
3554  	const struct btf_array *info = btf_array(t);
3555  	long h = btf_hash_common(t);
3556  
3557  	h = hash_combine(h, info->type);
3558  	h = hash_combine(h, info->index_type);
3559  	h = hash_combine(h, info->nelems);
3560  	return h;
3561  }
3562  
3563  /*
3564   * Check exact equality of two ARRAYs, taking into account referenced
3565   * type IDs, under assumption that they were already resolved to canonical
3566   * type IDs and are not going to change.
3567   * This function is called during reference types deduplication to compare
3568   * ARRAY to potential canonical representative.
3569   */
btf_equal_array(struct btf_type * t1,struct btf_type * t2)3570  static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3571  {
3572  	const struct btf_array *info1, *info2;
3573  
3574  	if (!btf_equal_common(t1, t2))
3575  		return false;
3576  
3577  	info1 = btf_array(t1);
3578  	info2 = btf_array(t2);
3579  	return info1->type == info2->type &&
3580  	       info1->index_type == info2->index_type &&
3581  	       info1->nelems == info2->nelems;
3582  }
3583  
3584  /*
3585   * Check structural compatibility of two ARRAYs, ignoring referenced type
3586   * IDs. This check is performed during type graph equivalence check and
3587   * referenced types equivalence is checked separately.
3588   */
btf_compat_array(struct btf_type * t1,struct btf_type * t2)3589  static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3590  {
3591  	if (!btf_equal_common(t1, t2))
3592  		return false;
3593  
3594  	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3595  }
3596  
3597  /*
3598   * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3599   * under assumption that they were already resolved to canonical type IDs and
3600   * are not going to change.
3601   */
btf_hash_fnproto(struct btf_type * t)3602  static long btf_hash_fnproto(struct btf_type *t)
3603  {
3604  	const struct btf_param *member = btf_params(t);
3605  	__u16 vlen = btf_vlen(t);
3606  	long h = btf_hash_common(t);
3607  	int i;
3608  
3609  	for (i = 0; i < vlen; i++) {
3610  		h = hash_combine(h, member->name_off);
3611  		h = hash_combine(h, member->type);
3612  		member++;
3613  	}
3614  	return h;
3615  }
3616  
3617  /*
3618   * Check exact equality of two FUNC_PROTOs, taking into account referenced
3619   * type IDs, under assumption that they were already resolved to canonical
3620   * type IDs and are not going to change.
3621   * This function is called during reference types deduplication to compare
3622   * FUNC_PROTO to potential canonical representative.
3623   */
btf_equal_fnproto(struct btf_type * t1,struct btf_type * t2)3624  static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3625  {
3626  	const struct btf_param *m1, *m2;
3627  	__u16 vlen;
3628  	int i;
3629  
3630  	if (!btf_equal_common(t1, t2))
3631  		return false;
3632  
3633  	vlen = btf_vlen(t1);
3634  	m1 = btf_params(t1);
3635  	m2 = btf_params(t2);
3636  	for (i = 0; i < vlen; i++) {
3637  		if (m1->name_off != m2->name_off || m1->type != m2->type)
3638  			return false;
3639  		m1++;
3640  		m2++;
3641  	}
3642  	return true;
3643  }
3644  
3645  /*
3646   * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3647   * IDs. This check is performed during type graph equivalence check and
3648   * referenced types equivalence is checked separately.
3649   */
btf_compat_fnproto(struct btf_type * t1,struct btf_type * t2)3650  static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3651  {
3652  	const struct btf_param *m1, *m2;
3653  	__u16 vlen;
3654  	int i;
3655  
3656  	/* skip return type ID */
3657  	if (t1->name_off != t2->name_off || t1->info != t2->info)
3658  		return false;
3659  
3660  	vlen = btf_vlen(t1);
3661  	m1 = btf_params(t1);
3662  	m2 = btf_params(t2);
3663  	for (i = 0; i < vlen; i++) {
3664  		if (m1->name_off != m2->name_off)
3665  			return false;
3666  		m1++;
3667  		m2++;
3668  	}
3669  	return true;
3670  }
3671  
3672  /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3673   * types and initializing the rest of the state (canonical type mapping) for
3674   * the fixed base BTF part.
3675   */
btf_dedup_prep(struct btf_dedup * d)3676  static int btf_dedup_prep(struct btf_dedup *d)
3677  {
3678  	struct btf_type *t;
3679  	int type_id;
3680  	long h;
3681  
3682  	if (!d->btf->base_btf)
3683  		return 0;
3684  
3685  	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3686  		t = btf_type_by_id(d->btf, type_id);
3687  
3688  		/* all base BTF types are self-canonical by definition */
3689  		d->map[type_id] = type_id;
3690  
3691  		switch (btf_kind(t)) {
3692  		case BTF_KIND_VAR:
3693  		case BTF_KIND_DATASEC:
3694  			/* VAR and DATASEC are never hash/deduplicated */
3695  			continue;
3696  		case BTF_KIND_CONST:
3697  		case BTF_KIND_VOLATILE:
3698  		case BTF_KIND_RESTRICT:
3699  		case BTF_KIND_PTR:
3700  		case BTF_KIND_FWD:
3701  		case BTF_KIND_TYPEDEF:
3702  		case BTF_KIND_FUNC:
3703  		case BTF_KIND_FLOAT:
3704  		case BTF_KIND_TYPE_TAG:
3705  			h = btf_hash_common(t);
3706  			break;
3707  		case BTF_KIND_INT:
3708  		case BTF_KIND_DECL_TAG:
3709  			h = btf_hash_int_decl_tag(t);
3710  			break;
3711  		case BTF_KIND_ENUM:
3712  		case BTF_KIND_ENUM64:
3713  			h = btf_hash_enum(t);
3714  			break;
3715  		case BTF_KIND_STRUCT:
3716  		case BTF_KIND_UNION:
3717  			h = btf_hash_struct(t);
3718  			break;
3719  		case BTF_KIND_ARRAY:
3720  			h = btf_hash_array(t);
3721  			break;
3722  		case BTF_KIND_FUNC_PROTO:
3723  			h = btf_hash_fnproto(t);
3724  			break;
3725  		default:
3726  			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3727  			return -EINVAL;
3728  		}
3729  		if (btf_dedup_table_add(d, h, type_id))
3730  			return -ENOMEM;
3731  	}
3732  
3733  	return 0;
3734  }
3735  
3736  /*
3737   * Deduplicate primitive types, that can't reference other types, by calculating
3738   * their type signature hash and comparing them with any possible canonical
3739   * candidate. If no canonical candidate matches, type itself is marked as
3740   * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3741   */
btf_dedup_prim_type(struct btf_dedup * d,__u32 type_id)3742  static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3743  {
3744  	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3745  	struct hashmap_entry *hash_entry;
3746  	struct btf_type *cand;
3747  	/* if we don't find equivalent type, then we are canonical */
3748  	__u32 new_id = type_id;
3749  	__u32 cand_id;
3750  	long h;
3751  
3752  	switch (btf_kind(t)) {
3753  	case BTF_KIND_CONST:
3754  	case BTF_KIND_VOLATILE:
3755  	case BTF_KIND_RESTRICT:
3756  	case BTF_KIND_PTR:
3757  	case BTF_KIND_TYPEDEF:
3758  	case BTF_KIND_ARRAY:
3759  	case BTF_KIND_STRUCT:
3760  	case BTF_KIND_UNION:
3761  	case BTF_KIND_FUNC:
3762  	case BTF_KIND_FUNC_PROTO:
3763  	case BTF_KIND_VAR:
3764  	case BTF_KIND_DATASEC:
3765  	case BTF_KIND_DECL_TAG:
3766  	case BTF_KIND_TYPE_TAG:
3767  		return 0;
3768  
3769  	case BTF_KIND_INT:
3770  		h = btf_hash_int_decl_tag(t);
3771  		for_each_dedup_cand(d, hash_entry, h) {
3772  			cand_id = hash_entry->value;
3773  			cand = btf_type_by_id(d->btf, cand_id);
3774  			if (btf_equal_int_tag(t, cand)) {
3775  				new_id = cand_id;
3776  				break;
3777  			}
3778  		}
3779  		break;
3780  
3781  	case BTF_KIND_ENUM:
3782  	case BTF_KIND_ENUM64:
3783  		h = btf_hash_enum(t);
3784  		for_each_dedup_cand(d, hash_entry, h) {
3785  			cand_id = hash_entry->value;
3786  			cand = btf_type_by_id(d->btf, cand_id);
3787  			if (btf_equal_enum(t, cand)) {
3788  				new_id = cand_id;
3789  				break;
3790  			}
3791  			if (btf_compat_enum(t, cand)) {
3792  				if (btf_is_enum_fwd(t)) {
3793  					/* resolve fwd to full enum */
3794  					new_id = cand_id;
3795  					break;
3796  				}
3797  				/* resolve canonical enum fwd to full enum */
3798  				d->map[cand_id] = type_id;
3799  			}
3800  		}
3801  		break;
3802  
3803  	case BTF_KIND_FWD:
3804  	case BTF_KIND_FLOAT:
3805  		h = btf_hash_common(t);
3806  		for_each_dedup_cand(d, hash_entry, h) {
3807  			cand_id = hash_entry->value;
3808  			cand = btf_type_by_id(d->btf, cand_id);
3809  			if (btf_equal_common(t, cand)) {
3810  				new_id = cand_id;
3811  				break;
3812  			}
3813  		}
3814  		break;
3815  
3816  	default:
3817  		return -EINVAL;
3818  	}
3819  
3820  	d->map[type_id] = new_id;
3821  	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3822  		return -ENOMEM;
3823  
3824  	return 0;
3825  }
3826  
btf_dedup_prim_types(struct btf_dedup * d)3827  static int btf_dedup_prim_types(struct btf_dedup *d)
3828  {
3829  	int i, err;
3830  
3831  	for (i = 0; i < d->btf->nr_types; i++) {
3832  		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3833  		if (err)
3834  			return err;
3835  	}
3836  	return 0;
3837  }
3838  
3839  /*
3840   * Check whether type is already mapped into canonical one (could be to itself).
3841   */
is_type_mapped(struct btf_dedup * d,uint32_t type_id)3842  static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3843  {
3844  	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3845  }
3846  
3847  /*
3848   * Resolve type ID into its canonical type ID, if any; otherwise return original
3849   * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3850   * STRUCT/UNION link and resolve it into canonical type ID as well.
3851   */
resolve_type_id(struct btf_dedup * d,__u32 type_id)3852  static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3853  {
3854  	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3855  		type_id = d->map[type_id];
3856  	return type_id;
3857  }
3858  
3859  /*
3860   * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3861   * type ID.
3862   */
resolve_fwd_id(struct btf_dedup * d,uint32_t type_id)3863  static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3864  {
3865  	__u32 orig_type_id = type_id;
3866  
3867  	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3868  		return type_id;
3869  
3870  	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3871  		type_id = d->map[type_id];
3872  
3873  	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3874  		return type_id;
3875  
3876  	return orig_type_id;
3877  }
3878  
3879  
btf_fwd_kind(struct btf_type * t)3880  static inline __u16 btf_fwd_kind(struct btf_type *t)
3881  {
3882  	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3883  }
3884  
3885  /* Check if given two types are identical ARRAY definitions */
btf_dedup_identical_arrays(struct btf_dedup * d,__u32 id1,__u32 id2)3886  static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3887  {
3888  	struct btf_type *t1, *t2;
3889  
3890  	t1 = btf_type_by_id(d->btf, id1);
3891  	t2 = btf_type_by_id(d->btf, id2);
3892  	if (!btf_is_array(t1) || !btf_is_array(t2))
3893  		return false;
3894  
3895  	return btf_equal_array(t1, t2);
3896  }
3897  
3898  /* Check if given two types are identical STRUCT/UNION definitions */
btf_dedup_identical_structs(struct btf_dedup * d,__u32 id1,__u32 id2)3899  static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
3900  {
3901  	const struct btf_member *m1, *m2;
3902  	struct btf_type *t1, *t2;
3903  	int n, i;
3904  
3905  	t1 = btf_type_by_id(d->btf, id1);
3906  	t2 = btf_type_by_id(d->btf, id2);
3907  
3908  	if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
3909  		return false;
3910  
3911  	if (!btf_shallow_equal_struct(t1, t2))
3912  		return false;
3913  
3914  	m1 = btf_members(t1);
3915  	m2 = btf_members(t2);
3916  	for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
3917  		if (m1->type != m2->type &&
3918  		    !btf_dedup_identical_arrays(d, m1->type, m2->type) &&
3919  		    !btf_dedup_identical_structs(d, m1->type, m2->type))
3920  			return false;
3921  	}
3922  	return true;
3923  }
3924  
3925  /*
3926   * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3927   * call it "candidate graph" in this description for brevity) to a type graph
3928   * formed by (potential) canonical struct/union ("canonical graph" for brevity
3929   * here, though keep in mind that not all types in canonical graph are
3930   * necessarily canonical representatives themselves, some of them might be
3931   * duplicates or its uniqueness might not have been established yet).
3932   * Returns:
3933   *  - >0, if type graphs are equivalent;
3934   *  -  0, if not equivalent;
3935   *  - <0, on error.
3936   *
3937   * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3938   * equivalence of BTF types at each step. If at any point BTF types in candidate
3939   * and canonical graphs are not compatible structurally, whole graphs are
3940   * incompatible. If types are structurally equivalent (i.e., all information
3941   * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3942   * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3943   * If a type references other types, then those referenced types are checked
3944   * for equivalence recursively.
3945   *
3946   * During DFS traversal, if we find that for current `canon_id` type we
3947   * already have some mapping in hypothetical map, we check for two possible
3948   * situations:
3949   *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3950   *     happen when type graphs have cycles. In this case we assume those two
3951   *     types are equivalent.
3952   *   - `canon_id` is mapped to different type. This is contradiction in our
3953   *     hypothetical mapping, because same graph in canonical graph corresponds
3954   *     to two different types in candidate graph, which for equivalent type
3955   *     graphs shouldn't happen. This condition terminates equivalence check
3956   *     with negative result.
3957   *
3958   * If type graphs traversal exhausts types to check and find no contradiction,
3959   * then type graphs are equivalent.
3960   *
3961   * When checking types for equivalence, there is one special case: FWD types.
3962   * If FWD type resolution is allowed and one of the types (either from canonical
3963   * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3964   * flag) and their names match, hypothetical mapping is updated to point from
3965   * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3966   * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3967   *
3968   * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3969   * if there are two exactly named (or anonymous) structs/unions that are
3970   * compatible structurally, one of which has FWD field, while other is concrete
3971   * STRUCT/UNION, but according to C sources they are different structs/unions
3972   * that are referencing different types with the same name. This is extremely
3973   * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3974   * this logic is causing problems.
3975   *
3976   * Doing FWD resolution means that both candidate and/or canonical graphs can
3977   * consists of portions of the graph that come from multiple compilation units.
3978   * This is due to the fact that types within single compilation unit are always
3979   * deduplicated and FWDs are already resolved, if referenced struct/union
3980   * definiton is available. So, if we had unresolved FWD and found corresponding
3981   * STRUCT/UNION, they will be from different compilation units. This
3982   * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3983   * type graph will likely have at least two different BTF types that describe
3984   * same type (e.g., most probably there will be two different BTF types for the
3985   * same 'int' primitive type) and could even have "overlapping" parts of type
3986   * graph that describe same subset of types.
3987   *
3988   * This in turn means that our assumption that each type in canonical graph
3989   * must correspond to exactly one type in candidate graph might not hold
3990   * anymore and will make it harder to detect contradictions using hypothetical
3991   * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3992   * resolution only in canonical graph. FWDs in candidate graphs are never
3993   * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3994   * that can occur:
3995   *   - Both types in canonical and candidate graphs are FWDs. If they are
3996   *     structurally equivalent, then they can either be both resolved to the
3997   *     same STRUCT/UNION or not resolved at all. In both cases they are
3998   *     equivalent and there is no need to resolve FWD on candidate side.
3999   *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
4000   *     so nothing to resolve as well, algorithm will check equivalence anyway.
4001   *   - Type in canonical graph is FWD, while type in candidate is concrete
4002   *     STRUCT/UNION. In this case candidate graph comes from single compilation
4003   *     unit, so there is exactly one BTF type for each unique C type. After
4004   *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
4005   *     in canonical graph mapping to single BTF type in candidate graph, but
4006   *     because hypothetical mapping maps from canonical to candidate types, it's
4007   *     alright, and we still maintain the property of having single `canon_id`
4008   *     mapping to single `cand_id` (there could be two different `canon_id`
4009   *     mapped to the same `cand_id`, but it's not contradictory).
4010   *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
4011   *     graph is FWD. In this case we are just going to check compatibility of
4012   *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4013   *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4014   *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4015   *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4016   *     canonical graph.
4017   */
btf_dedup_is_equiv(struct btf_dedup * d,__u32 cand_id,__u32 canon_id)4018  static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4019  			      __u32 canon_id)
4020  {
4021  	struct btf_type *cand_type;
4022  	struct btf_type *canon_type;
4023  	__u32 hypot_type_id;
4024  	__u16 cand_kind;
4025  	__u16 canon_kind;
4026  	int i, eq;
4027  
4028  	/* if both resolve to the same canonical, they must be equivalent */
4029  	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4030  		return 1;
4031  
4032  	canon_id = resolve_fwd_id(d, canon_id);
4033  
4034  	hypot_type_id = d->hypot_map[canon_id];
4035  	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4036  		if (hypot_type_id == cand_id)
4037  			return 1;
4038  		/* In some cases compiler will generate different DWARF types
4039  		 * for *identical* array type definitions and use them for
4040  		 * different fields within the *same* struct. This breaks type
4041  		 * equivalence check, which makes an assumption that candidate
4042  		 * types sub-graph has a consistent and deduped-by-compiler
4043  		 * types within a single CU. So work around that by explicitly
4044  		 * allowing identical array types here.
4045  		 */
4046  		if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4047  			return 1;
4048  		/* It turns out that similar situation can happen with
4049  		 * struct/union sometimes, sigh... Handle the case where
4050  		 * structs/unions are exactly the same, down to the referenced
4051  		 * type IDs. Anything more complicated (e.g., if referenced
4052  		 * types are different, but equivalent) is *way more*
4053  		 * complicated and requires a many-to-many equivalence mapping.
4054  		 */
4055  		if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4056  			return 1;
4057  		return 0;
4058  	}
4059  
4060  	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4061  		return -ENOMEM;
4062  
4063  	cand_type = btf_type_by_id(d->btf, cand_id);
4064  	canon_type = btf_type_by_id(d->btf, canon_id);
4065  	cand_kind = btf_kind(cand_type);
4066  	canon_kind = btf_kind(canon_type);
4067  
4068  	if (cand_type->name_off != canon_type->name_off)
4069  		return 0;
4070  
4071  	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
4072  	if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
4073  	    && cand_kind != canon_kind) {
4074  		__u16 real_kind;
4075  		__u16 fwd_kind;
4076  
4077  		if (cand_kind == BTF_KIND_FWD) {
4078  			real_kind = canon_kind;
4079  			fwd_kind = btf_fwd_kind(cand_type);
4080  		} else {
4081  			real_kind = cand_kind;
4082  			fwd_kind = btf_fwd_kind(canon_type);
4083  			/* we'd need to resolve base FWD to STRUCT/UNION */
4084  			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4085  				d->hypot_adjust_canon = true;
4086  		}
4087  		return fwd_kind == real_kind;
4088  	}
4089  
4090  	if (cand_kind != canon_kind)
4091  		return 0;
4092  
4093  	switch (cand_kind) {
4094  	case BTF_KIND_INT:
4095  		return btf_equal_int_tag(cand_type, canon_type);
4096  
4097  	case BTF_KIND_ENUM:
4098  	case BTF_KIND_ENUM64:
4099  		return btf_compat_enum(cand_type, canon_type);
4100  
4101  	case BTF_KIND_FWD:
4102  	case BTF_KIND_FLOAT:
4103  		return btf_equal_common(cand_type, canon_type);
4104  
4105  	case BTF_KIND_CONST:
4106  	case BTF_KIND_VOLATILE:
4107  	case BTF_KIND_RESTRICT:
4108  	case BTF_KIND_PTR:
4109  	case BTF_KIND_TYPEDEF:
4110  	case BTF_KIND_FUNC:
4111  	case BTF_KIND_TYPE_TAG:
4112  		if (cand_type->info != canon_type->info)
4113  			return 0;
4114  		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4115  
4116  	case BTF_KIND_ARRAY: {
4117  		const struct btf_array *cand_arr, *canon_arr;
4118  
4119  		if (!btf_compat_array(cand_type, canon_type))
4120  			return 0;
4121  		cand_arr = btf_array(cand_type);
4122  		canon_arr = btf_array(canon_type);
4123  		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4124  		if (eq <= 0)
4125  			return eq;
4126  		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4127  	}
4128  
4129  	case BTF_KIND_STRUCT:
4130  	case BTF_KIND_UNION: {
4131  		const struct btf_member *cand_m, *canon_m;
4132  		__u16 vlen;
4133  
4134  		if (!btf_shallow_equal_struct(cand_type, canon_type))
4135  			return 0;
4136  		vlen = btf_vlen(cand_type);
4137  		cand_m = btf_members(cand_type);
4138  		canon_m = btf_members(canon_type);
4139  		for (i = 0; i < vlen; i++) {
4140  			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4141  			if (eq <= 0)
4142  				return eq;
4143  			cand_m++;
4144  			canon_m++;
4145  		}
4146  
4147  		return 1;
4148  	}
4149  
4150  	case BTF_KIND_FUNC_PROTO: {
4151  		const struct btf_param *cand_p, *canon_p;
4152  		__u16 vlen;
4153  
4154  		if (!btf_compat_fnproto(cand_type, canon_type))
4155  			return 0;
4156  		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4157  		if (eq <= 0)
4158  			return eq;
4159  		vlen = btf_vlen(cand_type);
4160  		cand_p = btf_params(cand_type);
4161  		canon_p = btf_params(canon_type);
4162  		for (i = 0; i < vlen; i++) {
4163  			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4164  			if (eq <= 0)
4165  				return eq;
4166  			cand_p++;
4167  			canon_p++;
4168  		}
4169  		return 1;
4170  	}
4171  
4172  	default:
4173  		return -EINVAL;
4174  	}
4175  	return 0;
4176  }
4177  
4178  /*
4179   * Use hypothetical mapping, produced by successful type graph equivalence
4180   * check, to augment existing struct/union canonical mapping, where possible.
4181   *
4182   * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4183   * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4184   * it doesn't matter if FWD type was part of canonical graph or candidate one,
4185   * we are recording the mapping anyway. As opposed to carefulness required
4186   * for struct/union correspondence mapping (described below), for FWD resolution
4187   * it's not important, as by the time that FWD type (reference type) will be
4188   * deduplicated all structs/unions will be deduped already anyway.
4189   *
4190   * Recording STRUCT/UNION mapping is purely a performance optimization and is
4191   * not required for correctness. It needs to be done carefully to ensure that
4192   * struct/union from candidate's type graph is not mapped into corresponding
4193   * struct/union from canonical type graph that itself hasn't been resolved into
4194   * canonical representative. The only guarantee we have is that canonical
4195   * struct/union was determined as canonical and that won't change. But any
4196   * types referenced through that struct/union fields could have been not yet
4197   * resolved, so in case like that it's too early to establish any kind of
4198   * correspondence between structs/unions.
4199   *
4200   * No canonical correspondence is derived for primitive types (they are already
4201   * deduplicated completely already anyway) or reference types (they rely on
4202   * stability of struct/union canonical relationship for equivalence checks).
4203   */
btf_dedup_merge_hypot_map(struct btf_dedup * d)4204  static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4205  {
4206  	__u32 canon_type_id, targ_type_id;
4207  	__u16 t_kind, c_kind;
4208  	__u32 t_id, c_id;
4209  	int i;
4210  
4211  	for (i = 0; i < d->hypot_cnt; i++) {
4212  		canon_type_id = d->hypot_list[i];
4213  		targ_type_id = d->hypot_map[canon_type_id];
4214  		t_id = resolve_type_id(d, targ_type_id);
4215  		c_id = resolve_type_id(d, canon_type_id);
4216  		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4217  		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4218  		/*
4219  		 * Resolve FWD into STRUCT/UNION.
4220  		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4221  		 * mapped to canonical representative (as opposed to
4222  		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4223  		 * eventually that struct is going to be mapped and all resolved
4224  		 * FWDs will automatically resolve to correct canonical
4225  		 * representative. This will happen before ref type deduping,
4226  		 * which critically depends on stability of these mapping. This
4227  		 * stability is not a requirement for STRUCT/UNION equivalence
4228  		 * checks, though.
4229  		 */
4230  
4231  		/* if it's the split BTF case, we still need to point base FWD
4232  		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4233  		 * will be resolved against base FWD. If we don't point base
4234  		 * canonical FWD to the resolved STRUCT/UNION, then all the
4235  		 * FWDs in split BTF won't be correctly resolved to a proper
4236  		 * STRUCT/UNION.
4237  		 */
4238  		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4239  			d->map[c_id] = t_id;
4240  
4241  		/* if graph equivalence determined that we'd need to adjust
4242  		 * base canonical types, then we need to only point base FWDs
4243  		 * to STRUCTs/UNIONs and do no more modifications. For all
4244  		 * other purposes the type graphs were not equivalent.
4245  		 */
4246  		if (d->hypot_adjust_canon)
4247  			continue;
4248  
4249  		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4250  			d->map[t_id] = c_id;
4251  
4252  		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4253  		    c_kind != BTF_KIND_FWD &&
4254  		    is_type_mapped(d, c_id) &&
4255  		    !is_type_mapped(d, t_id)) {
4256  			/*
4257  			 * as a perf optimization, we can map struct/union
4258  			 * that's part of type graph we just verified for
4259  			 * equivalence. We can do that for struct/union that has
4260  			 * canonical representative only, though.
4261  			 */
4262  			d->map[t_id] = c_id;
4263  		}
4264  	}
4265  }
4266  
4267  /*
4268   * Deduplicate struct/union types.
4269   *
4270   * For each struct/union type its type signature hash is calculated, taking
4271   * into account type's name, size, number, order and names of fields, but
4272   * ignoring type ID's referenced from fields, because they might not be deduped
4273   * completely until after reference types deduplication phase. This type hash
4274   * is used to iterate over all potential canonical types, sharing same hash.
4275   * For each canonical candidate we check whether type graphs that they form
4276   * (through referenced types in fields and so on) are equivalent using algorithm
4277   * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4278   * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4279   * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4280   * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4281   * potentially map other structs/unions to their canonical representatives,
4282   * if such relationship hasn't yet been established. This speeds up algorithm
4283   * by eliminating some of the duplicate work.
4284   *
4285   * If no matching canonical representative was found, struct/union is marked
4286   * as canonical for itself and is added into btf_dedup->dedup_table hash map
4287   * for further look ups.
4288   */
btf_dedup_struct_type(struct btf_dedup * d,__u32 type_id)4289  static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4290  {
4291  	struct btf_type *cand_type, *t;
4292  	struct hashmap_entry *hash_entry;
4293  	/* if we don't find equivalent type, then we are canonical */
4294  	__u32 new_id = type_id;
4295  	__u16 kind;
4296  	long h;
4297  
4298  	/* already deduped or is in process of deduping (loop detected) */
4299  	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4300  		return 0;
4301  
4302  	t = btf_type_by_id(d->btf, type_id);
4303  	kind = btf_kind(t);
4304  
4305  	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4306  		return 0;
4307  
4308  	h = btf_hash_struct(t);
4309  	for_each_dedup_cand(d, hash_entry, h) {
4310  		__u32 cand_id = hash_entry->value;
4311  		int eq;
4312  
4313  		/*
4314  		 * Even though btf_dedup_is_equiv() checks for
4315  		 * btf_shallow_equal_struct() internally when checking two
4316  		 * structs (unions) for equivalence, we need to guard here
4317  		 * from picking matching FWD type as a dedup candidate.
4318  		 * This can happen due to hash collision. In such case just
4319  		 * relying on btf_dedup_is_equiv() would lead to potentially
4320  		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4321  		 * FWD and compatible STRUCT/UNION are considered equivalent.
4322  		 */
4323  		cand_type = btf_type_by_id(d->btf, cand_id);
4324  		if (!btf_shallow_equal_struct(t, cand_type))
4325  			continue;
4326  
4327  		btf_dedup_clear_hypot_map(d);
4328  		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4329  		if (eq < 0)
4330  			return eq;
4331  		if (!eq)
4332  			continue;
4333  		btf_dedup_merge_hypot_map(d);
4334  		if (d->hypot_adjust_canon) /* not really equivalent */
4335  			continue;
4336  		new_id = cand_id;
4337  		break;
4338  	}
4339  
4340  	d->map[type_id] = new_id;
4341  	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4342  		return -ENOMEM;
4343  
4344  	return 0;
4345  }
4346  
btf_dedup_struct_types(struct btf_dedup * d)4347  static int btf_dedup_struct_types(struct btf_dedup *d)
4348  {
4349  	int i, err;
4350  
4351  	for (i = 0; i < d->btf->nr_types; i++) {
4352  		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4353  		if (err)
4354  			return err;
4355  	}
4356  	return 0;
4357  }
4358  
4359  /*
4360   * Deduplicate reference type.
4361   *
4362   * Once all primitive and struct/union types got deduplicated, we can easily
4363   * deduplicate all other (reference) BTF types. This is done in two steps:
4364   *
4365   * 1. Resolve all referenced type IDs into their canonical type IDs. This
4366   * resolution can be done either immediately for primitive or struct/union types
4367   * (because they were deduped in previous two phases) or recursively for
4368   * reference types. Recursion will always terminate at either primitive or
4369   * struct/union type, at which point we can "unwind" chain of reference types
4370   * one by one. There is no danger of encountering cycles because in C type
4371   * system the only way to form type cycle is through struct/union, so any chain
4372   * of reference types, even those taking part in a type cycle, will inevitably
4373   * reach struct/union at some point.
4374   *
4375   * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4376   * becomes "stable", in the sense that no further deduplication will cause
4377   * any changes to it. With that, it's now possible to calculate type's signature
4378   * hash (this time taking into account referenced type IDs) and loop over all
4379   * potential canonical representatives. If no match was found, current type
4380   * will become canonical representative of itself and will be added into
4381   * btf_dedup->dedup_table as another possible canonical representative.
4382   */
btf_dedup_ref_type(struct btf_dedup * d,__u32 type_id)4383  static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4384  {
4385  	struct hashmap_entry *hash_entry;
4386  	__u32 new_id = type_id, cand_id;
4387  	struct btf_type *t, *cand;
4388  	/* if we don't find equivalent type, then we are representative type */
4389  	int ref_type_id;
4390  	long h;
4391  
4392  	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4393  		return -ELOOP;
4394  	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4395  		return resolve_type_id(d, type_id);
4396  
4397  	t = btf_type_by_id(d->btf, type_id);
4398  	d->map[type_id] = BTF_IN_PROGRESS_ID;
4399  
4400  	switch (btf_kind(t)) {
4401  	case BTF_KIND_CONST:
4402  	case BTF_KIND_VOLATILE:
4403  	case BTF_KIND_RESTRICT:
4404  	case BTF_KIND_PTR:
4405  	case BTF_KIND_TYPEDEF:
4406  	case BTF_KIND_FUNC:
4407  	case BTF_KIND_TYPE_TAG:
4408  		ref_type_id = btf_dedup_ref_type(d, t->type);
4409  		if (ref_type_id < 0)
4410  			return ref_type_id;
4411  		t->type = ref_type_id;
4412  
4413  		h = btf_hash_common(t);
4414  		for_each_dedup_cand(d, hash_entry, h) {
4415  			cand_id = hash_entry->value;
4416  			cand = btf_type_by_id(d->btf, cand_id);
4417  			if (btf_equal_common(t, cand)) {
4418  				new_id = cand_id;
4419  				break;
4420  			}
4421  		}
4422  		break;
4423  
4424  	case BTF_KIND_DECL_TAG:
4425  		ref_type_id = btf_dedup_ref_type(d, t->type);
4426  		if (ref_type_id < 0)
4427  			return ref_type_id;
4428  		t->type = ref_type_id;
4429  
4430  		h = btf_hash_int_decl_tag(t);
4431  		for_each_dedup_cand(d, hash_entry, h) {
4432  			cand_id = hash_entry->value;
4433  			cand = btf_type_by_id(d->btf, cand_id);
4434  			if (btf_equal_int_tag(t, cand)) {
4435  				new_id = cand_id;
4436  				break;
4437  			}
4438  		}
4439  		break;
4440  
4441  	case BTF_KIND_ARRAY: {
4442  		struct btf_array *info = btf_array(t);
4443  
4444  		ref_type_id = btf_dedup_ref_type(d, info->type);
4445  		if (ref_type_id < 0)
4446  			return ref_type_id;
4447  		info->type = ref_type_id;
4448  
4449  		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4450  		if (ref_type_id < 0)
4451  			return ref_type_id;
4452  		info->index_type = ref_type_id;
4453  
4454  		h = btf_hash_array(t);
4455  		for_each_dedup_cand(d, hash_entry, h) {
4456  			cand_id = hash_entry->value;
4457  			cand = btf_type_by_id(d->btf, cand_id);
4458  			if (btf_equal_array(t, cand)) {
4459  				new_id = cand_id;
4460  				break;
4461  			}
4462  		}
4463  		break;
4464  	}
4465  
4466  	case BTF_KIND_FUNC_PROTO: {
4467  		struct btf_param *param;
4468  		__u16 vlen;
4469  		int i;
4470  
4471  		ref_type_id = btf_dedup_ref_type(d, t->type);
4472  		if (ref_type_id < 0)
4473  			return ref_type_id;
4474  		t->type = ref_type_id;
4475  
4476  		vlen = btf_vlen(t);
4477  		param = btf_params(t);
4478  		for (i = 0; i < vlen; i++) {
4479  			ref_type_id = btf_dedup_ref_type(d, param->type);
4480  			if (ref_type_id < 0)
4481  				return ref_type_id;
4482  			param->type = ref_type_id;
4483  			param++;
4484  		}
4485  
4486  		h = btf_hash_fnproto(t);
4487  		for_each_dedup_cand(d, hash_entry, h) {
4488  			cand_id = hash_entry->value;
4489  			cand = btf_type_by_id(d->btf, cand_id);
4490  			if (btf_equal_fnproto(t, cand)) {
4491  				new_id = cand_id;
4492  				break;
4493  			}
4494  		}
4495  		break;
4496  	}
4497  
4498  	default:
4499  		return -EINVAL;
4500  	}
4501  
4502  	d->map[type_id] = new_id;
4503  	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4504  		return -ENOMEM;
4505  
4506  	return new_id;
4507  }
4508  
btf_dedup_ref_types(struct btf_dedup * d)4509  static int btf_dedup_ref_types(struct btf_dedup *d)
4510  {
4511  	int i, err;
4512  
4513  	for (i = 0; i < d->btf->nr_types; i++) {
4514  		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4515  		if (err < 0)
4516  			return err;
4517  	}
4518  	/* we won't need d->dedup_table anymore */
4519  	hashmap__free(d->dedup_table);
4520  	d->dedup_table = NULL;
4521  	return 0;
4522  }
4523  
4524  /*
4525   * Collect a map from type names to type ids for all canonical structs
4526   * and unions. If the same name is shared by several canonical types
4527   * use a special value 0 to indicate this fact.
4528   */
btf_dedup_fill_unique_names_map(struct btf_dedup * d,struct hashmap * names_map)4529  static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map)
4530  {
4531  	__u32 nr_types = btf__type_cnt(d->btf);
4532  	struct btf_type *t;
4533  	__u32 type_id;
4534  	__u16 kind;
4535  	int err;
4536  
4537  	/*
4538  	 * Iterate over base and split module ids in order to get all
4539  	 * available structs in the map.
4540  	 */
4541  	for (type_id = 1; type_id < nr_types; ++type_id) {
4542  		t = btf_type_by_id(d->btf, type_id);
4543  		kind = btf_kind(t);
4544  
4545  		if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4546  			continue;
4547  
4548  		/* Skip non-canonical types */
4549  		if (type_id != d->map[type_id])
4550  			continue;
4551  
4552  		err = hashmap__add(names_map, t->name_off, type_id);
4553  		if (err == -EEXIST)
4554  			err = hashmap__set(names_map, t->name_off, 0, NULL, NULL);
4555  
4556  		if (err)
4557  			return err;
4558  	}
4559  
4560  	return 0;
4561  }
4562  
btf_dedup_resolve_fwd(struct btf_dedup * d,struct hashmap * names_map,__u32 type_id)4563  static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id)
4564  {
4565  	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4566  	enum btf_fwd_kind fwd_kind = btf_kflag(t);
4567  	__u16 cand_kind, kind = btf_kind(t);
4568  	struct btf_type *cand_t;
4569  	uintptr_t cand_id;
4570  
4571  	if (kind != BTF_KIND_FWD)
4572  		return 0;
4573  
4574  	/* Skip if this FWD already has a mapping */
4575  	if (type_id != d->map[type_id])
4576  		return 0;
4577  
4578  	if (!hashmap__find(names_map, t->name_off, &cand_id))
4579  		return 0;
4580  
4581  	/* Zero is a special value indicating that name is not unique */
4582  	if (!cand_id)
4583  		return 0;
4584  
4585  	cand_t = btf_type_by_id(d->btf, cand_id);
4586  	cand_kind = btf_kind(cand_t);
4587  	if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) ||
4588  	    (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION))
4589  		return 0;
4590  
4591  	d->map[type_id] = cand_id;
4592  
4593  	return 0;
4594  }
4595  
4596  /*
4597   * Resolve unambiguous forward declarations.
4598   *
4599   * The lion's share of all FWD declarations is resolved during
4600   * `btf_dedup_struct_types` phase when different type graphs are
4601   * compared against each other. However, if in some compilation unit a
4602   * FWD declaration is not a part of a type graph compared against
4603   * another type graph that declaration's canonical type would not be
4604   * changed. Example:
4605   *
4606   * CU #1:
4607   *
4608   * struct foo;
4609   * struct foo *some_global;
4610   *
4611   * CU #2:
4612   *
4613   * struct foo { int u; };
4614   * struct foo *another_global;
4615   *
4616   * After `btf_dedup_struct_types` the BTF looks as follows:
4617   *
4618   * [1] STRUCT 'foo' size=4 vlen=1 ...
4619   * [2] INT 'int' size=4 ...
4620   * [3] PTR '(anon)' type_id=1
4621   * [4] FWD 'foo' fwd_kind=struct
4622   * [5] PTR '(anon)' type_id=4
4623   *
4624   * This pass assumes that such FWD declarations should be mapped to
4625   * structs or unions with identical name in case if the name is not
4626   * ambiguous.
4627   */
btf_dedup_resolve_fwds(struct btf_dedup * d)4628  static int btf_dedup_resolve_fwds(struct btf_dedup *d)
4629  {
4630  	int i, err;
4631  	struct hashmap *names_map;
4632  
4633  	names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
4634  	if (IS_ERR(names_map))
4635  		return PTR_ERR(names_map);
4636  
4637  	err = btf_dedup_fill_unique_names_map(d, names_map);
4638  	if (err < 0)
4639  		goto exit;
4640  
4641  	for (i = 0; i < d->btf->nr_types; i++) {
4642  		err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i);
4643  		if (err < 0)
4644  			break;
4645  	}
4646  
4647  exit:
4648  	hashmap__free(names_map);
4649  	return err;
4650  }
4651  
4652  /*
4653   * Compact types.
4654   *
4655   * After we established for each type its corresponding canonical representative
4656   * type, we now can eliminate types that are not canonical and leave only
4657   * canonical ones layed out sequentially in memory by copying them over
4658   * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4659   * a map from original type ID to a new compacted type ID, which will be used
4660   * during next phase to "fix up" type IDs, referenced from struct/union and
4661   * reference types.
4662   */
btf_dedup_compact_types(struct btf_dedup * d)4663  static int btf_dedup_compact_types(struct btf_dedup *d)
4664  {
4665  	__u32 *new_offs;
4666  	__u32 next_type_id = d->btf->start_id;
4667  	const struct btf_type *t;
4668  	void *p;
4669  	int i, id, len;
4670  
4671  	/* we are going to reuse hypot_map to store compaction remapping */
4672  	d->hypot_map[0] = 0;
4673  	/* base BTF types are not renumbered */
4674  	for (id = 1; id < d->btf->start_id; id++)
4675  		d->hypot_map[id] = id;
4676  	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4677  		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4678  
4679  	p = d->btf->types_data;
4680  
4681  	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4682  		if (d->map[id] != id)
4683  			continue;
4684  
4685  		t = btf__type_by_id(d->btf, id);
4686  		len = btf_type_size(t);
4687  		if (len < 0)
4688  			return len;
4689  
4690  		memmove(p, t, len);
4691  		d->hypot_map[id] = next_type_id;
4692  		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4693  		p += len;
4694  		next_type_id++;
4695  	}
4696  
4697  	/* shrink struct btf's internal types index and update btf_header */
4698  	d->btf->nr_types = next_type_id - d->btf->start_id;
4699  	d->btf->type_offs_cap = d->btf->nr_types;
4700  	d->btf->hdr->type_len = p - d->btf->types_data;
4701  	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4702  				       sizeof(*new_offs));
4703  	if (d->btf->type_offs_cap && !new_offs)
4704  		return -ENOMEM;
4705  	d->btf->type_offs = new_offs;
4706  	d->btf->hdr->str_off = d->btf->hdr->type_len;
4707  	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4708  	return 0;
4709  }
4710  
4711  /*
4712   * Figure out final (deduplicated and compacted) type ID for provided original
4713   * `type_id` by first resolving it into corresponding canonical type ID and
4714   * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4715   * which is populated during compaction phase.
4716   */
btf_dedup_remap_type_id(__u32 * type_id,void * ctx)4717  static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4718  {
4719  	struct btf_dedup *d = ctx;
4720  	__u32 resolved_type_id, new_type_id;
4721  
4722  	resolved_type_id = resolve_type_id(d, *type_id);
4723  	new_type_id = d->hypot_map[resolved_type_id];
4724  	if (new_type_id > BTF_MAX_NR_TYPES)
4725  		return -EINVAL;
4726  
4727  	*type_id = new_type_id;
4728  	return 0;
4729  }
4730  
4731  /*
4732   * Remap referenced type IDs into deduped type IDs.
4733   *
4734   * After BTF types are deduplicated and compacted, their final type IDs may
4735   * differ from original ones. The map from original to a corresponding
4736   * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4737   * compaction phase. During remapping phase we are rewriting all type IDs
4738   * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4739   * their final deduped type IDs.
4740   */
btf_dedup_remap_types(struct btf_dedup * d)4741  static int btf_dedup_remap_types(struct btf_dedup *d)
4742  {
4743  	int i, r;
4744  
4745  	for (i = 0; i < d->btf->nr_types; i++) {
4746  		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4747  
4748  		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4749  		if (r)
4750  			return r;
4751  	}
4752  
4753  	if (!d->btf_ext)
4754  		return 0;
4755  
4756  	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4757  	if (r)
4758  		return r;
4759  
4760  	return 0;
4761  }
4762  
4763  /*
4764   * Probe few well-known locations for vmlinux kernel image and try to load BTF
4765   * data out of it to use for target BTF.
4766   */
btf__load_vmlinux_btf(void)4767  struct btf *btf__load_vmlinux_btf(void)
4768  {
4769  	const char *locations[] = {
4770  		/* try canonical vmlinux BTF through sysfs first */
4771  		"/sys/kernel/btf/vmlinux",
4772  		/* fall back to trying to find vmlinux on disk otherwise */
4773  		"/boot/vmlinux-%1$s",
4774  		"/lib/modules/%1$s/vmlinux-%1$s",
4775  		"/lib/modules/%1$s/build/vmlinux",
4776  		"/usr/lib/modules/%1$s/kernel/vmlinux",
4777  		"/usr/lib/debug/boot/vmlinux-%1$s",
4778  		"/usr/lib/debug/boot/vmlinux-%1$s.debug",
4779  		"/usr/lib/debug/lib/modules/%1$s/vmlinux",
4780  	};
4781  	char path[PATH_MAX + 1];
4782  	struct utsname buf;
4783  	struct btf *btf;
4784  	int i, err;
4785  
4786  	uname(&buf);
4787  
4788  	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4789  		snprintf(path, PATH_MAX, locations[i], buf.release);
4790  
4791  		if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS))
4792  			continue;
4793  
4794  		btf = btf__parse(path, NULL);
4795  		err = libbpf_get_error(btf);
4796  		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4797  		if (err)
4798  			continue;
4799  
4800  		return btf;
4801  	}
4802  
4803  	pr_warn("failed to find valid kernel BTF\n");
4804  	return libbpf_err_ptr(-ESRCH);
4805  }
4806  
4807  struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4808  
btf__load_module_btf(const char * module_name,struct btf * vmlinux_btf)4809  struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4810  {
4811  	char path[80];
4812  
4813  	snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
4814  	return btf__parse_split(path, vmlinux_btf);
4815  }
4816  
btf_type_visit_type_ids(struct btf_type * t,type_id_visit_fn visit,void * ctx)4817  int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4818  {
4819  	int i, n, err;
4820  
4821  	switch (btf_kind(t)) {
4822  	case BTF_KIND_INT:
4823  	case BTF_KIND_FLOAT:
4824  	case BTF_KIND_ENUM:
4825  	case BTF_KIND_ENUM64:
4826  		return 0;
4827  
4828  	case BTF_KIND_FWD:
4829  	case BTF_KIND_CONST:
4830  	case BTF_KIND_VOLATILE:
4831  	case BTF_KIND_RESTRICT:
4832  	case BTF_KIND_PTR:
4833  	case BTF_KIND_TYPEDEF:
4834  	case BTF_KIND_FUNC:
4835  	case BTF_KIND_VAR:
4836  	case BTF_KIND_DECL_TAG:
4837  	case BTF_KIND_TYPE_TAG:
4838  		return visit(&t->type, ctx);
4839  
4840  	case BTF_KIND_ARRAY: {
4841  		struct btf_array *a = btf_array(t);
4842  
4843  		err = visit(&a->type, ctx);
4844  		err = err ?: visit(&a->index_type, ctx);
4845  		return err;
4846  	}
4847  
4848  	case BTF_KIND_STRUCT:
4849  	case BTF_KIND_UNION: {
4850  		struct btf_member *m = btf_members(t);
4851  
4852  		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4853  			err = visit(&m->type, ctx);
4854  			if (err)
4855  				return err;
4856  		}
4857  		return 0;
4858  	}
4859  
4860  	case BTF_KIND_FUNC_PROTO: {
4861  		struct btf_param *m = btf_params(t);
4862  
4863  		err = visit(&t->type, ctx);
4864  		if (err)
4865  			return err;
4866  		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4867  			err = visit(&m->type, ctx);
4868  			if (err)
4869  				return err;
4870  		}
4871  		return 0;
4872  	}
4873  
4874  	case BTF_KIND_DATASEC: {
4875  		struct btf_var_secinfo *m = btf_var_secinfos(t);
4876  
4877  		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4878  			err = visit(&m->type, ctx);
4879  			if (err)
4880  				return err;
4881  		}
4882  		return 0;
4883  	}
4884  
4885  	default:
4886  		return -EINVAL;
4887  	}
4888  }
4889  
btf_type_visit_str_offs(struct btf_type * t,str_off_visit_fn visit,void * ctx)4890  int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4891  {
4892  	int i, n, err;
4893  
4894  	err = visit(&t->name_off, ctx);
4895  	if (err)
4896  		return err;
4897  
4898  	switch (btf_kind(t)) {
4899  	case BTF_KIND_STRUCT:
4900  	case BTF_KIND_UNION: {
4901  		struct btf_member *m = btf_members(t);
4902  
4903  		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4904  			err = visit(&m->name_off, ctx);
4905  			if (err)
4906  				return err;
4907  		}
4908  		break;
4909  	}
4910  	case BTF_KIND_ENUM: {
4911  		struct btf_enum *m = btf_enum(t);
4912  
4913  		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4914  			err = visit(&m->name_off, ctx);
4915  			if (err)
4916  				return err;
4917  		}
4918  		break;
4919  	}
4920  	case BTF_KIND_ENUM64: {
4921  		struct btf_enum64 *m = btf_enum64(t);
4922  
4923  		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4924  			err = visit(&m->name_off, ctx);
4925  			if (err)
4926  				return err;
4927  		}
4928  		break;
4929  	}
4930  	case BTF_KIND_FUNC_PROTO: {
4931  		struct btf_param *m = btf_params(t);
4932  
4933  		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4934  			err = visit(&m->name_off, ctx);
4935  			if (err)
4936  				return err;
4937  		}
4938  		break;
4939  	}
4940  	default:
4941  		break;
4942  	}
4943  
4944  	return 0;
4945  }
4946  
btf_ext_visit_type_ids(struct btf_ext * btf_ext,type_id_visit_fn visit,void * ctx)4947  int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4948  {
4949  	const struct btf_ext_info *seg;
4950  	struct btf_ext_info_sec *sec;
4951  	int i, err;
4952  
4953  	seg = &btf_ext->func_info;
4954  	for_each_btf_ext_sec(seg, sec) {
4955  		struct bpf_func_info_min *rec;
4956  
4957  		for_each_btf_ext_rec(seg, sec, i, rec) {
4958  			err = visit(&rec->type_id, ctx);
4959  			if (err < 0)
4960  				return err;
4961  		}
4962  	}
4963  
4964  	seg = &btf_ext->core_relo_info;
4965  	for_each_btf_ext_sec(seg, sec) {
4966  		struct bpf_core_relo *rec;
4967  
4968  		for_each_btf_ext_rec(seg, sec, i, rec) {
4969  			err = visit(&rec->type_id, ctx);
4970  			if (err < 0)
4971  				return err;
4972  		}
4973  	}
4974  
4975  	return 0;
4976  }
4977  
btf_ext_visit_str_offs(struct btf_ext * btf_ext,str_off_visit_fn visit,void * ctx)4978  int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4979  {
4980  	const struct btf_ext_info *seg;
4981  	struct btf_ext_info_sec *sec;
4982  	int i, err;
4983  
4984  	seg = &btf_ext->func_info;
4985  	for_each_btf_ext_sec(seg, sec) {
4986  		err = visit(&sec->sec_name_off, ctx);
4987  		if (err)
4988  			return err;
4989  	}
4990  
4991  	seg = &btf_ext->line_info;
4992  	for_each_btf_ext_sec(seg, sec) {
4993  		struct bpf_line_info_min *rec;
4994  
4995  		err = visit(&sec->sec_name_off, ctx);
4996  		if (err)
4997  			return err;
4998  
4999  		for_each_btf_ext_rec(seg, sec, i, rec) {
5000  			err = visit(&rec->file_name_off, ctx);
5001  			if (err)
5002  				return err;
5003  			err = visit(&rec->line_off, ctx);
5004  			if (err)
5005  				return err;
5006  		}
5007  	}
5008  
5009  	seg = &btf_ext->core_relo_info;
5010  	for_each_btf_ext_sec(seg, sec) {
5011  		struct bpf_core_relo *rec;
5012  
5013  		err = visit(&sec->sec_name_off, ctx);
5014  		if (err)
5015  			return err;
5016  
5017  		for_each_btf_ext_rec(seg, sec, i, rec) {
5018  			err = visit(&rec->access_str_off, ctx);
5019  			if (err)
5020  				return err;
5021  		}
5022  	}
5023  
5024  	return 0;
5025  }
5026