xref: /openbmc/linux/drivers/mmc/host/mmc_spi.c (revision ecc23d0a422a3118fcf6e4f0a46e17a6c2047b02)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Access SD/MMC cards through SPI master controllers
4  *
5  * (C) Copyright 2005, Intec Automation,
6  *		Mike Lavender (mike@steroidmicros)
7  * (C) Copyright 2006-2007, David Brownell
8  * (C) Copyright 2007, Axis Communications,
9  *		Hans-Peter Nilsson (hp@axis.com)
10  * (C) Copyright 2007, ATRON electronic GmbH,
11  *		Jan Nikitenko <jan.nikitenko@gmail.com>
12  */
13 #include <linux/sched.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/dma-direction.h>
19 #include <linux/crc7.h>
20 #include <linux/crc-itu-t.h>
21 #include <linux/scatterlist.h>
22 
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
25 #include <linux/mmc/slot-gpio.h>
26 
27 #include <linux/spi/spi.h>
28 #include <linux/spi/mmc_spi.h>
29 
30 #include <asm/unaligned.h>
31 
32 
33 /* NOTES:
34  *
35  * - For now, we won't try to interoperate with a real mmc/sd/sdio
36  *   controller, although some of them do have hardware support for
37  *   SPI protocol.  The main reason for such configs would be mmc-ish
38  *   cards like DataFlash, which don't support that "native" protocol.
39  *
40  *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
41  *   switch between driver stacks, and in any case if "native" mode
42  *   is available, it will be faster and hence preferable.
43  *
44  * - MMC depends on a different chipselect management policy than the
45  *   SPI interface currently supports for shared bus segments:  it needs
46  *   to issue multiple spi_message requests with the chipselect active,
47  *   using the results of one message to decide the next one to issue.
48  *
49  *   Pending updates to the programming interface, this driver expects
50  *   that it not share the bus with other drivers (precluding conflicts).
51  *
52  * - We tell the controller to keep the chipselect active from the
53  *   beginning of an mmc_host_ops.request until the end.  So beware
54  *   of SPI controller drivers that mis-handle the cs_change flag!
55  *
56  *   However, many cards seem OK with chipselect flapping up/down
57  *   during that time ... at least on unshared bus segments.
58  */
59 
60 
61 /*
62  * Local protocol constants, internal to data block protocols.
63  */
64 
65 /* Response tokens used to ack each block written: */
66 #define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
67 #define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
68 #define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
69 #define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
70 
71 /* Read and write blocks start with these tokens and end with crc;
72  * on error, read tokens act like a subset of R2_SPI_* values.
73  */
74 #define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
75 #define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
76 #define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
77 
78 #define MMC_SPI_BLOCKSIZE	512
79 
80 #define MMC_SPI_R1B_TIMEOUT_MS	3000
81 #define MMC_SPI_INIT_TIMEOUT_MS	3000
82 
83 /* One of the critical speed parameters is the amount of data which may
84  * be transferred in one command. If this value is too low, the SD card
85  * controller has to do multiple partial block writes (argggh!). With
86  * today (2008) SD cards there is little speed gain if we transfer more
87  * than 64 KBytes at a time. So use this value until there is any indication
88  * that we should do more here.
89  */
90 #define MMC_SPI_BLOCKSATONCE	128
91 
92 /****************************************************************************/
93 
94 /*
95  * Local Data Structures
96  */
97 
98 /* "scratch" is per-{command,block} data exchanged with the card */
99 struct scratch {
100 	u8			status[29];
101 	u8			data_token;
102 	__be16			crc_val;
103 };
104 
105 struct mmc_spi_host {
106 	struct mmc_host		*mmc;
107 	struct spi_device	*spi;
108 
109 	unsigned char		power_mode;
110 	u16			powerup_msecs;
111 
112 	struct mmc_spi_platform_data	*pdata;
113 
114 	/* for bulk data transfers */
115 	struct spi_transfer	token, t, crc, early_status;
116 	struct spi_message	m;
117 
118 	/* for status readback */
119 	struct spi_transfer	status;
120 	struct spi_message	readback;
121 
122 	/* buffer used for commands and for message "overhead" */
123 	struct scratch		*data;
124 
125 	/* Specs say to write ones most of the time, even when the card
126 	 * has no need to read its input data; and many cards won't care.
127 	 * This is our source of those ones.
128 	 */
129 	void			*ones;
130 };
131 
132 
133 /****************************************************************************/
134 
135 /*
136  * MMC-over-SPI protocol glue, used by the MMC stack interface
137  */
138 
mmc_cs_off(struct mmc_spi_host * host)139 static inline int mmc_cs_off(struct mmc_spi_host *host)
140 {
141 	/* chipselect will always be inactive after setup() */
142 	return spi_setup(host->spi);
143 }
144 
mmc_spi_readbytes(struct mmc_spi_host * host,unsigned int len)145 static int mmc_spi_readbytes(struct mmc_spi_host *host, unsigned int len)
146 {
147 	if (len > sizeof(*host->data)) {
148 		WARN_ON(1);
149 		return -EIO;
150 	}
151 
152 	host->status.len = len;
153 
154 	return spi_sync_locked(host->spi, &host->readback);
155 }
156 
mmc_spi_skip(struct mmc_spi_host * host,unsigned long timeout,unsigned n,u8 byte)157 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
158 			unsigned n, u8 byte)
159 {
160 	u8 *cp = host->data->status;
161 	unsigned long start = jiffies;
162 
163 	do {
164 		int		status;
165 		unsigned	i;
166 
167 		status = mmc_spi_readbytes(host, n);
168 		if (status < 0)
169 			return status;
170 
171 		for (i = 0; i < n; i++) {
172 			if (cp[i] != byte)
173 				return cp[i];
174 		}
175 
176 		/* If we need long timeouts, we may release the CPU */
177 		cond_resched();
178 	} while (time_is_after_jiffies(start + timeout));
179 	return -ETIMEDOUT;
180 }
181 
182 static inline int
mmc_spi_wait_unbusy(struct mmc_spi_host * host,unsigned long timeout)183 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
184 {
185 	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
186 }
187 
mmc_spi_readtoken(struct mmc_spi_host * host,unsigned long timeout)188 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
189 {
190 	return mmc_spi_skip(host, timeout, 1, 0xff);
191 }
192 
193 
194 /*
195  * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
196  * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
197  * R2_SPI bits ... for SEND_STATUS, or after data read errors.
198  *
199  * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
200  * newer cards R7 (IF_COND).
201  */
202 
maptype(struct mmc_command * cmd)203 static char *maptype(struct mmc_command *cmd)
204 {
205 	switch (mmc_spi_resp_type(cmd)) {
206 	case MMC_RSP_SPI_R1:	return "R1";
207 	case MMC_RSP_SPI_R1B:	return "R1B";
208 	case MMC_RSP_SPI_R2:	return "R2/R5";
209 	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
210 	default:		return "?";
211 	}
212 }
213 
214 /* return zero, else negative errno after setting cmd->error */
mmc_spi_response_get(struct mmc_spi_host * host,struct mmc_command * cmd,int cs_on)215 static int mmc_spi_response_get(struct mmc_spi_host *host,
216 		struct mmc_command *cmd, int cs_on)
217 {
218 	unsigned long timeout_ms;
219 	u8	*cp = host->data->status;
220 	u8	*end = cp + host->t.len;
221 	int	value = 0;
222 	int	bitshift;
223 	u8 	leftover = 0;
224 	unsigned short rotator;
225 	int 	i;
226 
227 	/* Except for data block reads, the whole response will already
228 	 * be stored in the scratch buffer.  It's somewhere after the
229 	 * command and the first byte we read after it.  We ignore that
230 	 * first byte.  After STOP_TRANSMISSION command it may include
231 	 * two data bits, but otherwise it's all ones.
232 	 */
233 	cp += 8;
234 	while (cp < end && *cp == 0xff)
235 		cp++;
236 
237 	/* Data block reads (R1 response types) may need more data... */
238 	if (cp == end) {
239 		cp = host->data->status;
240 		end = cp+1;
241 
242 		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
243 		 * status byte ... and we already scanned 2 bytes.
244 		 *
245 		 * REVISIT block read paths use nasty byte-at-a-time I/O
246 		 * so it can always DMA directly into the target buffer.
247 		 * It'd probably be better to memcpy() the first chunk and
248 		 * avoid extra i/o calls...
249 		 *
250 		 * Note we check for more than 8 bytes, because in practice,
251 		 * some SD cards are slow...
252 		 */
253 		for (i = 2; i < 16; i++) {
254 			value = mmc_spi_readbytes(host, 1);
255 			if (value < 0)
256 				goto done;
257 			if (*cp != 0xff)
258 				goto checkstatus;
259 		}
260 		value = -ETIMEDOUT;
261 		goto done;
262 	}
263 
264 checkstatus:
265 	bitshift = 0;
266 	if (*cp & 0x80)	{
267 		/* Houston, we have an ugly card with a bit-shifted response */
268 		rotator = *cp++ << 8;
269 		/* read the next byte */
270 		if (cp == end) {
271 			value = mmc_spi_readbytes(host, 1);
272 			if (value < 0)
273 				goto done;
274 			cp = host->data->status;
275 			end = cp+1;
276 		}
277 		rotator |= *cp++;
278 		while (rotator & 0x8000) {
279 			bitshift++;
280 			rotator <<= 1;
281 		}
282 		cmd->resp[0] = rotator >> 8;
283 		leftover = rotator;
284 	} else {
285 		cmd->resp[0] = *cp++;
286 	}
287 	cmd->error = 0;
288 
289 	/* Status byte: the entire seven-bit R1 response.  */
290 	if (cmd->resp[0] != 0) {
291 		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
292 				& cmd->resp[0])
293 			value = -EFAULT; /* Bad address */
294 		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
295 			value = -ENOSYS; /* Function not implemented */
296 		else if (R1_SPI_COM_CRC & cmd->resp[0])
297 			value = -EILSEQ; /* Illegal byte sequence */
298 		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
299 				& cmd->resp[0])
300 			value = -EIO;    /* I/O error */
301 		/* else R1_SPI_IDLE, "it's resetting" */
302 	}
303 
304 	switch (mmc_spi_resp_type(cmd)) {
305 
306 	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
307 	 * and less-common stuff like various erase operations.
308 	 */
309 	case MMC_RSP_SPI_R1B:
310 		/* maybe we read all the busy tokens already */
311 		while (cp < end && *cp == 0)
312 			cp++;
313 		if (cp == end) {
314 			timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
315 				MMC_SPI_R1B_TIMEOUT_MS;
316 			mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
317 		}
318 		break;
319 
320 	/* SPI R2 == R1 + second status byte; SEND_STATUS
321 	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
322 	 */
323 	case MMC_RSP_SPI_R2:
324 		/* read the next byte */
325 		if (cp == end) {
326 			value = mmc_spi_readbytes(host, 1);
327 			if (value < 0)
328 				goto done;
329 			cp = host->data->status;
330 			end = cp+1;
331 		}
332 		if (bitshift) {
333 			rotator = leftover << 8;
334 			rotator |= *cp << bitshift;
335 			cmd->resp[0] |= (rotator & 0xFF00);
336 		} else {
337 			cmd->resp[0] |= *cp << 8;
338 		}
339 		break;
340 
341 	/* SPI R3, R4, or R7 == R1 + 4 bytes */
342 	case MMC_RSP_SPI_R3:
343 		rotator = leftover << 8;
344 		cmd->resp[1] = 0;
345 		for (i = 0; i < 4; i++) {
346 			cmd->resp[1] <<= 8;
347 			/* read the next byte */
348 			if (cp == end) {
349 				value = mmc_spi_readbytes(host, 1);
350 				if (value < 0)
351 					goto done;
352 				cp = host->data->status;
353 				end = cp+1;
354 			}
355 			if (bitshift) {
356 				rotator |= *cp++ << bitshift;
357 				cmd->resp[1] |= (rotator >> 8);
358 				rotator <<= 8;
359 			} else {
360 				cmd->resp[1] |= *cp++;
361 			}
362 		}
363 		break;
364 
365 	/* SPI R1 == just one status byte */
366 	case MMC_RSP_SPI_R1:
367 		break;
368 
369 	default:
370 		dev_dbg(&host->spi->dev, "bad response type %04x\n",
371 			mmc_spi_resp_type(cmd));
372 		if (value >= 0)
373 			value = -EINVAL;
374 		goto done;
375 	}
376 
377 	if (value < 0)
378 		dev_dbg(&host->spi->dev,
379 			"  ... CMD%d response SPI_%s: resp %04x %08x\n",
380 			cmd->opcode, maptype(cmd), cmd->resp[0], cmd->resp[1]);
381 
382 	/* disable chipselect on errors and some success cases */
383 	if (value >= 0 && cs_on)
384 		return value;
385 done:
386 	if (value < 0)
387 		cmd->error = value;
388 	mmc_cs_off(host);
389 	return value;
390 }
391 
392 /* Issue command and read its response.
393  * Returns zero on success, negative for error.
394  *
395  * On error, caller must cope with mmc core retry mechanism.  That
396  * means immediate low-level resubmit, which affects the bus lock...
397  */
398 static int
mmc_spi_command_send(struct mmc_spi_host * host,struct mmc_request * mrq,struct mmc_command * cmd,int cs_on)399 mmc_spi_command_send(struct mmc_spi_host *host,
400 		struct mmc_request *mrq,
401 		struct mmc_command *cmd, int cs_on)
402 {
403 	struct scratch		*data = host->data;
404 	u8			*cp = data->status;
405 	int			status;
406 	struct spi_transfer	*t;
407 
408 	/* We can handle most commands (except block reads) in one full
409 	 * duplex I/O operation before either starting the next transfer
410 	 * (data block or command) or else deselecting the card.
411 	 *
412 	 * First, write 7 bytes:
413 	 *  - an all-ones byte to ensure the card is ready
414 	 *  - opcode byte (plus start and transmission bits)
415 	 *  - four bytes of big-endian argument
416 	 *  - crc7 (plus end bit) ... always computed, it's cheap
417 	 *
418 	 * We init the whole buffer to all-ones, which is what we need
419 	 * to write while we're reading (later) response data.
420 	 */
421 	memset(cp, 0xff, sizeof(data->status));
422 
423 	cp[1] = 0x40 | cmd->opcode;
424 	put_unaligned_be32(cmd->arg, cp + 2);
425 	cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
426 	cp += 7;
427 
428 	/* Then, read up to 13 bytes (while writing all-ones):
429 	 *  - N(CR) (== 1..8) bytes of all-ones
430 	 *  - status byte (for all response types)
431 	 *  - the rest of the response, either:
432 	 *      + nothing, for R1 or R1B responses
433 	 *	+ second status byte, for R2 responses
434 	 *	+ four data bytes, for R3 and R7 responses
435 	 *
436 	 * Finally, read some more bytes ... in the nice cases we know in
437 	 * advance how many, and reading 1 more is always OK:
438 	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
439 	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
440 	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
441 	 *
442 	 * So in those cases one full duplex I/O of at most 21 bytes will
443 	 * handle the whole command, leaving the card ready to receive a
444 	 * data block or new command.  We do that whenever we can, shaving
445 	 * CPU and IRQ costs (especially when using DMA or FIFOs).
446 	 *
447 	 * There are two other cases, where it's not generally practical
448 	 * to rely on a single I/O:
449 	 *
450 	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
451 	 *
452 	 *    In this case we can *try* to fit it into one I/O, then
453 	 *    maybe read more data later.
454 	 *
455 	 *  - Data block reads are more troublesome, since a variable
456 	 *    number of padding bytes precede the token and data.
457 	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
458 	 *      + N(AC) (== 1..many) bytes of all-ones
459 	 *
460 	 *    In this case we currently only have minimal speedups here:
461 	 *    when N(CR) == 1 we can avoid I/O in response_get().
462 	 */
463 	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
464 		cp += 2;	/* min(N(CR)) + status */
465 		/* R1 */
466 	} else {
467 		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
468 		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
469 			cp++;
470 		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
471 			cp += 4;
472 		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
473 			cp = data->status + sizeof(data->status);
474 		/* else:  R1 (most commands) */
475 	}
476 
477 	dev_dbg(&host->spi->dev, "  CMD%d, resp %s\n",
478 		cmd->opcode, maptype(cmd));
479 
480 	/* send command, leaving chipselect active */
481 	spi_message_init(&host->m);
482 
483 	t = &host->t;
484 	memset(t, 0, sizeof(*t));
485 	t->tx_buf = t->rx_buf = data->status;
486 	t->len = cp - data->status;
487 	t->cs_change = 1;
488 	spi_message_add_tail(t, &host->m);
489 
490 	status = spi_sync_locked(host->spi, &host->m);
491 	if (status < 0) {
492 		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
493 		cmd->error = status;
494 		return status;
495 	}
496 
497 	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
498 	return mmc_spi_response_get(host, cmd, cs_on);
499 }
500 
501 /* Build data message with up to four separate transfers.  For TX, we
502  * start by writing the data token.  And in most cases, we finish with
503  * a status transfer.
504  *
505  * We always provide TX data for data and CRC.  The MMC/SD protocol
506  * requires us to write ones; but Linux defaults to writing zeroes;
507  * so we explicitly initialize it to all ones on RX paths.
508  */
509 static void
mmc_spi_setup_data_message(struct mmc_spi_host * host,bool multiple,enum dma_data_direction direction)510 mmc_spi_setup_data_message(
511 	struct mmc_spi_host	*host,
512 	bool			multiple,
513 	enum dma_data_direction	direction)
514 {
515 	struct spi_transfer	*t;
516 	struct scratch		*scratch = host->data;
517 
518 	spi_message_init(&host->m);
519 
520 	/* for reads, readblock() skips 0xff bytes before finding
521 	 * the token; for writes, this transfer issues that token.
522 	 */
523 	if (direction == DMA_TO_DEVICE) {
524 		t = &host->token;
525 		memset(t, 0, sizeof(*t));
526 		t->len = 1;
527 		if (multiple)
528 			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
529 		else
530 			scratch->data_token = SPI_TOKEN_SINGLE;
531 		t->tx_buf = &scratch->data_token;
532 		spi_message_add_tail(t, &host->m);
533 	}
534 
535 	/* Body of transfer is buffer, then CRC ...
536 	 * either TX-only, or RX with TX-ones.
537 	 */
538 	t = &host->t;
539 	memset(t, 0, sizeof(*t));
540 	t->tx_buf = host->ones;
541 	/* length and actual buffer info are written later */
542 	spi_message_add_tail(t, &host->m);
543 
544 	t = &host->crc;
545 	memset(t, 0, sizeof(*t));
546 	t->len = 2;
547 	if (direction == DMA_TO_DEVICE) {
548 		/* the actual CRC may get written later */
549 		t->tx_buf = &scratch->crc_val;
550 	} else {
551 		t->tx_buf = host->ones;
552 		t->rx_buf = &scratch->crc_val;
553 	}
554 	spi_message_add_tail(t, &host->m);
555 
556 	/*
557 	 * A single block read is followed by N(EC) [0+] all-ones bytes
558 	 * before deselect ... don't bother.
559 	 *
560 	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
561 	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
562 	 * collect that single byte, so readblock() doesn't need to.
563 	 *
564 	 * For a write, the one-byte data response follows immediately, then
565 	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
566 	 * Then single block reads may deselect, and multiblock ones issue
567 	 * the next token (next data block, or STOP_TRAN).  We can try to
568 	 * minimize I/O ops by using a single read to collect end-of-busy.
569 	 */
570 	if (multiple || direction == DMA_TO_DEVICE) {
571 		t = &host->early_status;
572 		memset(t, 0, sizeof(*t));
573 		t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
574 		t->tx_buf = host->ones;
575 		t->rx_buf = scratch->status;
576 		t->cs_change = 1;
577 		spi_message_add_tail(t, &host->m);
578 	}
579 }
580 
581 /*
582  * Write one block:
583  *  - caller handled preceding N(WR) [1+] all-ones bytes
584  *  - data block
585  *	+ token
586  *	+ data bytes
587  *	+ crc16
588  *  - an all-ones byte ... card writes a data-response byte
589  *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
590  *
591  * Return negative errno, else success.
592  */
593 static int
mmc_spi_writeblock(struct mmc_spi_host * host,struct spi_transfer * t,unsigned long timeout)594 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
595 	unsigned long timeout)
596 {
597 	struct spi_device	*spi = host->spi;
598 	int			status, i;
599 	struct scratch		*scratch = host->data;
600 	u32			pattern;
601 
602 	if (host->mmc->use_spi_crc)
603 		scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
604 
605 	status = spi_sync_locked(spi, &host->m);
606 	if (status != 0) {
607 		dev_dbg(&spi->dev, "write error (%d)\n", status);
608 		return status;
609 	}
610 
611 	/*
612 	 * Get the transmission data-response reply.  It must follow
613 	 * immediately after the data block we transferred.  This reply
614 	 * doesn't necessarily tell whether the write operation succeeded;
615 	 * it just says if the transmission was ok and whether *earlier*
616 	 * writes succeeded; see the standard.
617 	 *
618 	 * In practice, there are (even modern SDHC-)cards which are late
619 	 * in sending the response, and miss the time frame by a few bits,
620 	 * so we have to cope with this situation and check the response
621 	 * bit-by-bit. Arggh!!!
622 	 */
623 	pattern = get_unaligned_be32(scratch->status);
624 
625 	/* First 3 bit of pattern are undefined */
626 	pattern |= 0xE0000000;
627 
628 	/* left-adjust to leading 0 bit */
629 	while (pattern & 0x80000000)
630 		pattern <<= 1;
631 	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
632 	pattern >>= 27;
633 
634 	switch (pattern) {
635 	case SPI_RESPONSE_ACCEPTED:
636 		status = 0;
637 		break;
638 	case SPI_RESPONSE_CRC_ERR:
639 		/* host shall then issue MMC_STOP_TRANSMISSION */
640 		status = -EILSEQ;
641 		break;
642 	case SPI_RESPONSE_WRITE_ERR:
643 		/* host shall then issue MMC_STOP_TRANSMISSION,
644 		 * and should MMC_SEND_STATUS to sort it out
645 		 */
646 		status = -EIO;
647 		break;
648 	default:
649 		status = -EPROTO;
650 		break;
651 	}
652 	if (status != 0) {
653 		dev_dbg(&spi->dev, "write error %02x (%d)\n",
654 			scratch->status[0], status);
655 		return status;
656 	}
657 
658 	t->tx_buf += t->len;
659 
660 	/* Return when not busy.  If we didn't collect that status yet,
661 	 * we'll need some more I/O.
662 	 */
663 	for (i = 4; i < sizeof(scratch->status); i++) {
664 		/* card is non-busy if the most recent bit is 1 */
665 		if (scratch->status[i] & 0x01)
666 			return 0;
667 	}
668 	return mmc_spi_wait_unbusy(host, timeout);
669 }
670 
671 /*
672  * Read one block:
673  *  - skip leading all-ones bytes ... either
674  *      + N(AC) [1..f(clock,CSD)] usually, else
675  *      + N(CX) [0..8] when reading CSD or CID
676  *  - data block
677  *	+ token ... if error token, no data or crc
678  *	+ data bytes
679  *	+ crc16
680  *
681  * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
682  * before dropping chipselect.
683  *
684  * For multiblock reads, caller either reads the next block or issues a
685  * STOP_TRANSMISSION command.
686  */
687 static int
mmc_spi_readblock(struct mmc_spi_host * host,struct spi_transfer * t,unsigned long timeout)688 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
689 	unsigned long timeout)
690 {
691 	struct spi_device	*spi = host->spi;
692 	int			status;
693 	struct scratch		*scratch = host->data;
694 	unsigned int 		bitshift;
695 	u8			leftover;
696 
697 	/* At least one SD card sends an all-zeroes byte when N(CX)
698 	 * applies, before the all-ones bytes ... just cope with that.
699 	 */
700 	status = mmc_spi_readbytes(host, 1);
701 	if (status < 0)
702 		return status;
703 	status = scratch->status[0];
704 	if (status == 0xff || status == 0)
705 		status = mmc_spi_readtoken(host, timeout);
706 
707 	if (status < 0) {
708 		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
709 		return status;
710 	}
711 
712 	/* The token may be bit-shifted...
713 	 * the first 0-bit precedes the data stream.
714 	 */
715 	bitshift = 7;
716 	while (status & 0x80) {
717 		status <<= 1;
718 		bitshift--;
719 	}
720 	leftover = status << 1;
721 
722 	status = spi_sync_locked(spi, &host->m);
723 	if (status < 0) {
724 		dev_dbg(&spi->dev, "read error %d\n", status);
725 		return status;
726 	}
727 
728 	if (bitshift) {
729 		/* Walk through the data and the crc and do
730 		 * all the magic to get byte-aligned data.
731 		 */
732 		u8 *cp = t->rx_buf;
733 		unsigned int len;
734 		unsigned int bitright = 8 - bitshift;
735 		u8 temp;
736 		for (len = t->len; len; len--) {
737 			temp = *cp;
738 			*cp++ = leftover | (temp >> bitshift);
739 			leftover = temp << bitright;
740 		}
741 		cp = (u8 *) &scratch->crc_val;
742 		temp = *cp;
743 		*cp++ = leftover | (temp >> bitshift);
744 		leftover = temp << bitright;
745 		temp = *cp;
746 		*cp = leftover | (temp >> bitshift);
747 	}
748 
749 	if (host->mmc->use_spi_crc) {
750 		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
751 
752 		be16_to_cpus(&scratch->crc_val);
753 		if (scratch->crc_val != crc) {
754 			dev_dbg(&spi->dev,
755 				"read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
756 				scratch->crc_val, crc, t->len);
757 			return -EILSEQ;
758 		}
759 	}
760 
761 	t->rx_buf += t->len;
762 
763 	return 0;
764 }
765 
766 /*
767  * An MMC/SD data stage includes one or more blocks, optional CRCs,
768  * and inline handshaking.  That handhaking makes it unlike most
769  * other SPI protocol stacks.
770  */
771 static void
mmc_spi_data_do(struct mmc_spi_host * host,struct mmc_command * cmd,struct mmc_data * data,u32 blk_size)772 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
773 		struct mmc_data *data, u32 blk_size)
774 {
775 	struct spi_device	*spi = host->spi;
776 	struct spi_transfer	*t;
777 	enum dma_data_direction	direction = mmc_get_dma_dir(data);
778 	struct scatterlist	*sg;
779 	unsigned		n_sg;
780 	bool			multiple = (data->blocks > 1);
781 	const char		*write_or_read = (direction == DMA_TO_DEVICE) ? "write" : "read";
782 	u32			clock_rate;
783 	unsigned long		timeout;
784 
785 	mmc_spi_setup_data_message(host, multiple, direction);
786 	t = &host->t;
787 
788 	if (t->speed_hz)
789 		clock_rate = t->speed_hz;
790 	else
791 		clock_rate = spi->max_speed_hz;
792 
793 	timeout = data->timeout_ns / 1000 +
794 		  data->timeout_clks * 1000000 / clock_rate;
795 	timeout = usecs_to_jiffies((unsigned int)timeout) + 1;
796 
797 	/* Handle scatterlist segments one at a time, with synch for
798 	 * each 512-byte block
799 	 */
800 	for_each_sg(data->sg, sg, data->sg_len, n_sg) {
801 		int			status = 0;
802 		void			*kmap_addr;
803 		unsigned		length = sg->length;
804 
805 		/* allow pio too; we don't allow highmem */
806 		kmap_addr = kmap(sg_page(sg));
807 		if (direction == DMA_TO_DEVICE)
808 			t->tx_buf = kmap_addr + sg->offset;
809 		else
810 			t->rx_buf = kmap_addr + sg->offset;
811 
812 		/* transfer each block, and update request status */
813 		while (length) {
814 			t->len = min(length, blk_size);
815 
816 			dev_dbg(&spi->dev, "    %s block, %d bytes\n", write_or_read, t->len);
817 
818 			if (direction == DMA_TO_DEVICE)
819 				status = mmc_spi_writeblock(host, t, timeout);
820 			else
821 				status = mmc_spi_readblock(host, t, timeout);
822 			if (status < 0)
823 				break;
824 
825 			data->bytes_xfered += t->len;
826 			length -= t->len;
827 
828 			if (!multiple)
829 				break;
830 		}
831 
832 		/* discard mappings */
833 		if (direction == DMA_FROM_DEVICE)
834 			flush_dcache_page(sg_page(sg));
835 		kunmap(sg_page(sg));
836 
837 		if (status < 0) {
838 			data->error = status;
839 			dev_dbg(&spi->dev, "%s status %d\n", write_or_read, status);
840 			break;
841 		}
842 	}
843 
844 	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
845 	 * can be issued before multiblock writes.  Unlike its more widely
846 	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
847 	 * that can affect the STOP_TRAN logic.   Complete (and current)
848 	 * MMC specs should sort that out before Linux starts using CMD23.
849 	 */
850 	if (direction == DMA_TO_DEVICE && multiple) {
851 		struct scratch	*scratch = host->data;
852 		int		tmp;
853 		const unsigned	statlen = sizeof(scratch->status);
854 
855 		dev_dbg(&spi->dev, "    STOP_TRAN\n");
856 
857 		/* Tweak the per-block message we set up earlier by morphing
858 		 * it to hold single buffer with the token followed by some
859 		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
860 		 * "not busy any longer" status, and leave chip selected.
861 		 */
862 		INIT_LIST_HEAD(&host->m.transfers);
863 		list_add(&host->early_status.transfer_list,
864 				&host->m.transfers);
865 
866 		memset(scratch->status, 0xff, statlen);
867 		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
868 
869 		host->early_status.tx_buf = host->early_status.rx_buf;
870 		host->early_status.len = statlen;
871 
872 		tmp = spi_sync_locked(spi, &host->m);
873 		if (tmp < 0) {
874 			if (!data->error)
875 				data->error = tmp;
876 			return;
877 		}
878 
879 		/* Ideally we collected "not busy" status with one I/O,
880 		 * avoiding wasteful byte-at-a-time scanning... but more
881 		 * I/O is often needed.
882 		 */
883 		for (tmp = 2; tmp < statlen; tmp++) {
884 			if (scratch->status[tmp] != 0)
885 				return;
886 		}
887 		tmp = mmc_spi_wait_unbusy(host, timeout);
888 		if (tmp < 0 && !data->error)
889 			data->error = tmp;
890 	}
891 }
892 
893 /****************************************************************************/
894 
895 /*
896  * MMC driver implementation -- the interface to the MMC stack
897  */
898 
mmc_spi_request(struct mmc_host * mmc,struct mmc_request * mrq)899 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
900 {
901 	struct mmc_spi_host	*host = mmc_priv(mmc);
902 	int			status = -EINVAL;
903 	int			crc_retry = 5;
904 	struct mmc_command	stop;
905 
906 #ifdef DEBUG
907 	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
908 	{
909 		struct mmc_command	*cmd;
910 		int			invalid = 0;
911 
912 		cmd = mrq->cmd;
913 		if (!mmc_spi_resp_type(cmd)) {
914 			dev_dbg(&host->spi->dev, "bogus command\n");
915 			cmd->error = -EINVAL;
916 			invalid = 1;
917 		}
918 
919 		cmd = mrq->stop;
920 		if (cmd && !mmc_spi_resp_type(cmd)) {
921 			dev_dbg(&host->spi->dev, "bogus STOP command\n");
922 			cmd->error = -EINVAL;
923 			invalid = 1;
924 		}
925 
926 		if (invalid) {
927 			dump_stack();
928 			mmc_request_done(host->mmc, mrq);
929 			return;
930 		}
931 	}
932 #endif
933 
934 	/* request exclusive bus access */
935 	spi_bus_lock(host->spi->master);
936 
937 crc_recover:
938 	/* issue command; then optionally data and stop */
939 	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
940 	if (status == 0 && mrq->data) {
941 		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
942 
943 		/*
944 		 * The SPI bus is not always reliable for large data transfers.
945 		 * If an occasional crc error is reported by the SD device with
946 		 * data read/write over SPI, it may be recovered by repeating
947 		 * the last SD command again. The retry count is set to 5 to
948 		 * ensure the driver passes stress tests.
949 		 */
950 		if (mrq->data->error == -EILSEQ && crc_retry) {
951 			stop.opcode = MMC_STOP_TRANSMISSION;
952 			stop.arg = 0;
953 			stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
954 			status = mmc_spi_command_send(host, mrq, &stop, 0);
955 			crc_retry--;
956 			mrq->data->error = 0;
957 			goto crc_recover;
958 		}
959 
960 		if (mrq->stop)
961 			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
962 		else
963 			mmc_cs_off(host);
964 	}
965 
966 	/* release the bus */
967 	spi_bus_unlock(host->spi->master);
968 
969 	mmc_request_done(host->mmc, mrq);
970 }
971 
972 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
973  *
974  * NOTE that here we can't know that the card has just been powered up;
975  * not all MMC/SD sockets support power switching.
976  *
977  * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
978  * this doesn't seem to do the right thing at all...
979  */
mmc_spi_initsequence(struct mmc_spi_host * host)980 static void mmc_spi_initsequence(struct mmc_spi_host *host)
981 {
982 	/* Try to be very sure any previous command has completed;
983 	 * wait till not-busy, skip debris from any old commands.
984 	 */
985 	mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
986 	mmc_spi_readbytes(host, 10);
987 
988 	/*
989 	 * Do a burst with chipselect active-high.  We need to do this to
990 	 * meet the requirement of 74 clock cycles with both chipselect
991 	 * and CMD (MOSI) high before CMD0 ... after the card has been
992 	 * powered up to Vdd(min), and so is ready to take commands.
993 	 *
994 	 * Some cards are particularly needy of this (e.g. Viking "SD256")
995 	 * while most others don't seem to care.
996 	 *
997 	 * Note that this is one of the places MMC/SD plays games with the
998 	 * SPI protocol.  Another is that when chipselect is released while
999 	 * the card returns BUSY status, the clock must issue several cycles
1000 	 * with chipselect high before the card will stop driving its output.
1001 	 *
1002 	 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1003 	 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1004 	 * inverted by gpiolib, so if we want to ascertain to drive it high
1005 	 * we should toggle the default with an XOR as we do here.
1006 	 */
1007 	host->spi->mode ^= SPI_CS_HIGH;
1008 	if (spi_setup(host->spi) != 0) {
1009 		/* Just warn; most cards work without it. */
1010 		dev_warn(&host->spi->dev,
1011 				"can't change chip-select polarity\n");
1012 		host->spi->mode ^= SPI_CS_HIGH;
1013 	} else {
1014 		mmc_spi_readbytes(host, 18);
1015 
1016 		host->spi->mode ^= SPI_CS_HIGH;
1017 		if (spi_setup(host->spi) != 0) {
1018 			/* Wot, we can't get the same setup we had before? */
1019 			dev_err(&host->spi->dev,
1020 					"can't restore chip-select polarity\n");
1021 		}
1022 	}
1023 }
1024 
mmc_powerstring(u8 power_mode)1025 static char *mmc_powerstring(u8 power_mode)
1026 {
1027 	switch (power_mode) {
1028 	case MMC_POWER_OFF: return "off";
1029 	case MMC_POWER_UP:  return "up";
1030 	case MMC_POWER_ON:  return "on";
1031 	}
1032 	return "?";
1033 }
1034 
mmc_spi_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1035 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1036 {
1037 	struct mmc_spi_host *host = mmc_priv(mmc);
1038 
1039 	if (host->power_mode != ios->power_mode) {
1040 		int		canpower;
1041 
1042 		canpower = host->pdata && host->pdata->setpower;
1043 
1044 		dev_dbg(&host->spi->dev, "power %s (%d)%s\n",
1045 				mmc_powerstring(ios->power_mode),
1046 				ios->vdd,
1047 				canpower ? ", can switch" : "");
1048 
1049 		/* switch power on/off if possible, accounting for
1050 		 * max 250msec powerup time if needed.
1051 		 */
1052 		if (canpower) {
1053 			switch (ios->power_mode) {
1054 			case MMC_POWER_OFF:
1055 			case MMC_POWER_UP:
1056 				host->pdata->setpower(&host->spi->dev,
1057 						ios->vdd);
1058 				if (ios->power_mode == MMC_POWER_UP)
1059 					msleep(host->powerup_msecs);
1060 			}
1061 		}
1062 
1063 		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1064 		if (ios->power_mode == MMC_POWER_ON)
1065 			mmc_spi_initsequence(host);
1066 
1067 		/* If powering down, ground all card inputs to avoid power
1068 		 * delivery from data lines!  On a shared SPI bus, this
1069 		 * will probably be temporary; 6.4.2 of the simplified SD
1070 		 * spec says this must last at least 1msec.
1071 		 *
1072 		 *   - Clock low means CPOL 0, e.g. mode 0
1073 		 *   - MOSI low comes from writing zero
1074 		 *   - Chipselect is usually active low...
1075 		 */
1076 		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1077 			int mres;
1078 			u8 nullbyte = 0;
1079 
1080 			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1081 			mres = spi_setup(host->spi);
1082 			if (mres < 0)
1083 				dev_dbg(&host->spi->dev,
1084 					"switch to SPI mode 0 failed\n");
1085 
1086 			if (spi_write(host->spi, &nullbyte, 1) < 0)
1087 				dev_dbg(&host->spi->dev,
1088 					"put spi signals to low failed\n");
1089 
1090 			/*
1091 			 * Now clock should be low due to spi mode 0;
1092 			 * MOSI should be low because of written 0x00;
1093 			 * chipselect should be low (it is active low)
1094 			 * power supply is off, so now MMC is off too!
1095 			 *
1096 			 * FIXME no, chipselect can be high since the
1097 			 * device is inactive and SPI_CS_HIGH is clear...
1098 			 */
1099 			msleep(10);
1100 			if (mres == 0) {
1101 				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1102 				mres = spi_setup(host->spi);
1103 				if (mres < 0)
1104 					dev_dbg(&host->spi->dev,
1105 						"switch back to SPI mode 3 failed\n");
1106 			}
1107 		}
1108 
1109 		host->power_mode = ios->power_mode;
1110 	}
1111 
1112 	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1113 		int		status;
1114 
1115 		host->spi->max_speed_hz = ios->clock;
1116 		status = spi_setup(host->spi);
1117 		dev_dbg(&host->spi->dev, "  clock to %d Hz, %d\n",
1118 			host->spi->max_speed_hz, status);
1119 	}
1120 }
1121 
1122 static const struct mmc_host_ops mmc_spi_ops = {
1123 	.request	= mmc_spi_request,
1124 	.set_ios	= mmc_spi_set_ios,
1125 	.get_ro		= mmc_gpio_get_ro,
1126 	.get_cd		= mmc_gpio_get_cd,
1127 };
1128 
1129 
1130 /****************************************************************************/
1131 
1132 /*
1133  * SPI driver implementation
1134  */
1135 
1136 static irqreturn_t
mmc_spi_detect_irq(int irq,void * mmc)1137 mmc_spi_detect_irq(int irq, void *mmc)
1138 {
1139 	struct mmc_spi_host *host = mmc_priv(mmc);
1140 	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1141 
1142 	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1143 	return IRQ_HANDLED;
1144 }
1145 
mmc_spi_probe(struct spi_device * spi)1146 static int mmc_spi_probe(struct spi_device *spi)
1147 {
1148 	void			*ones;
1149 	struct mmc_host		*mmc;
1150 	struct mmc_spi_host	*host;
1151 	int			status;
1152 	bool			has_ro = false;
1153 
1154 	/* We rely on full duplex transfers, mostly to reduce
1155 	 * per-transfer overheads (by making fewer transfers).
1156 	 */
1157 	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1158 		return -EINVAL;
1159 
1160 	/* MMC and SD specs only seem to care that sampling is on the
1161 	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1162 	 * should be legit.  We'll use mode 0 since the steady state is 0,
1163 	 * which is appropriate for hotplugging, unless the platform data
1164 	 * specify mode 3 (if hardware is not compatible to mode 0).
1165 	 */
1166 	if (spi->mode != SPI_MODE_3)
1167 		spi->mode = SPI_MODE_0;
1168 	spi->bits_per_word = 8;
1169 
1170 	status = spi_setup(spi);
1171 	if (status < 0) {
1172 		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1173 				spi->mode, spi->max_speed_hz / 1000,
1174 				status);
1175 		return status;
1176 	}
1177 
1178 	/* We need a supply of ones to transmit.  This is the only time
1179 	 * the CPU touches these, so cache coherency isn't a concern.
1180 	 *
1181 	 * NOTE if many systems use more than one MMC-over-SPI connector
1182 	 * it'd save some memory to share this.  That's evidently rare.
1183 	 */
1184 	status = -ENOMEM;
1185 	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1186 	if (!ones)
1187 		goto nomem;
1188 	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1189 
1190 	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1191 	if (!mmc)
1192 		goto nomem;
1193 
1194 	mmc->ops = &mmc_spi_ops;
1195 	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1196 	mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1197 	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1198 	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1199 
1200 	mmc->caps = MMC_CAP_SPI;
1201 
1202 	/* SPI doesn't need the lowspeed device identification thing for
1203 	 * MMC or SD cards, since it never comes up in open drain mode.
1204 	 * That's good; some SPI masters can't handle very low speeds!
1205 	 *
1206 	 * However, low speed SDIO cards need not handle over 400 KHz;
1207 	 * that's the only reason not to use a few MHz for f_min (until
1208 	 * the upper layer reads the target frequency from the CSD).
1209 	 */
1210 	mmc->f_min = 400000;
1211 	mmc->f_max = spi->max_speed_hz;
1212 
1213 	host = mmc_priv(mmc);
1214 	host->mmc = mmc;
1215 	host->spi = spi;
1216 
1217 	host->ones = ones;
1218 
1219 	dev_set_drvdata(&spi->dev, mmc);
1220 
1221 	/* Platform data is used to hook up things like card sensing
1222 	 * and power switching gpios.
1223 	 */
1224 	host->pdata = mmc_spi_get_pdata(spi);
1225 	if (host->pdata)
1226 		mmc->ocr_avail = host->pdata->ocr_mask;
1227 	if (!mmc->ocr_avail) {
1228 		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1229 		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1230 	}
1231 	if (host->pdata && host->pdata->setpower) {
1232 		host->powerup_msecs = host->pdata->powerup_msecs;
1233 		if (!host->powerup_msecs || host->powerup_msecs > 250)
1234 			host->powerup_msecs = 250;
1235 	}
1236 
1237 	/* Preallocate buffers */
1238 	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1239 	if (!host->data)
1240 		goto fail_nobuf1;
1241 
1242 	/* setup message for status/busy readback */
1243 	spi_message_init(&host->readback);
1244 
1245 	spi_message_add_tail(&host->status, &host->readback);
1246 	host->status.tx_buf = host->ones;
1247 	host->status.rx_buf = &host->data->status;
1248 	host->status.cs_change = 1;
1249 
1250 	/* register card detect irq */
1251 	if (host->pdata && host->pdata->init) {
1252 		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1253 		if (status != 0)
1254 			goto fail_glue_init;
1255 	}
1256 
1257 	/* pass platform capabilities, if any */
1258 	if (host->pdata) {
1259 		mmc->caps |= host->pdata->caps;
1260 		mmc->caps2 |= host->pdata->caps2;
1261 	}
1262 
1263 	status = mmc_add_host(mmc);
1264 	if (status != 0)
1265 		goto fail_glue_init;
1266 
1267 	/*
1268 	 * Index 0 is card detect
1269 	 * Old boardfiles were specifying 1 ms as debounce
1270 	 */
1271 	status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1272 	if (status == -EPROBE_DEFER)
1273 		goto fail_gpiod_request;
1274 	if (!status) {
1275 		/*
1276 		 * The platform has a CD GPIO signal that may support
1277 		 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1278 		 * if polling is needed or not.
1279 		 */
1280 		mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1281 		mmc_gpiod_request_cd_irq(mmc);
1282 	}
1283 	mmc_detect_change(mmc, 0);
1284 
1285 	/* Index 1 is write protect/read only */
1286 	status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1287 	if (status == -EPROBE_DEFER)
1288 		goto fail_gpiod_request;
1289 	if (!status)
1290 		has_ro = true;
1291 
1292 	dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n",
1293 			dev_name(&mmc->class_dev),
1294 			has_ro ? "" : ", no WP",
1295 			(host->pdata && host->pdata->setpower)
1296 				? "" : ", no poweroff",
1297 			(mmc->caps & MMC_CAP_NEEDS_POLL)
1298 				? ", cd polling" : "");
1299 	return 0;
1300 
1301 fail_gpiod_request:
1302 	mmc_remove_host(mmc);
1303 fail_glue_init:
1304 	kfree(host->data);
1305 fail_nobuf1:
1306 	mmc_spi_put_pdata(spi);
1307 	mmc_free_host(mmc);
1308 nomem:
1309 	kfree(ones);
1310 	return status;
1311 }
1312 
1313 
mmc_spi_remove(struct spi_device * spi)1314 static void mmc_spi_remove(struct spi_device *spi)
1315 {
1316 	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1317 	struct mmc_spi_host	*host = mmc_priv(mmc);
1318 
1319 	/* prevent new mmc_detect_change() calls */
1320 	if (host->pdata && host->pdata->exit)
1321 		host->pdata->exit(&spi->dev, mmc);
1322 
1323 	mmc_remove_host(mmc);
1324 
1325 	kfree(host->data);
1326 	kfree(host->ones);
1327 
1328 	spi->max_speed_hz = mmc->f_max;
1329 	mmc_spi_put_pdata(spi);
1330 	mmc_free_host(mmc);
1331 }
1332 
1333 static const struct spi_device_id mmc_spi_dev_ids[] = {
1334 	{ "mmc-spi-slot"},
1335 	{ },
1336 };
1337 MODULE_DEVICE_TABLE(spi, mmc_spi_dev_ids);
1338 
1339 static const struct of_device_id mmc_spi_of_match_table[] = {
1340 	{ .compatible = "mmc-spi-slot", },
1341 	{},
1342 };
1343 MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1344 
1345 static struct spi_driver mmc_spi_driver = {
1346 	.driver = {
1347 		.name =		"mmc_spi",
1348 		.of_match_table = mmc_spi_of_match_table,
1349 	},
1350 	.id_table =	mmc_spi_dev_ids,
1351 	.probe =	mmc_spi_probe,
1352 	.remove =	mmc_spi_remove,
1353 };
1354 
1355 module_spi_driver(mmc_spi_driver);
1356 
1357 MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1358 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1359 MODULE_LICENSE("GPL");
1360 MODULE_ALIAS("spi:mmc_spi");
1361