xref: /openbmc/linux/drivers/net/wireless/ath/hw.c (revision 4f2c0a4acffbec01079c28f839422e64ddeff004)
1  /*
2   * Copyright (c) 2009 Atheros Communications Inc.
3   *
4   * Permission to use, copy, modify, and/or distribute this software for any
5   * purpose with or without fee is hereby granted, provided that the above
6   * copyright notice and this permission notice appear in all copies.
7   *
8   * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9   * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10   * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11   * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12   * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13   * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14   * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15   */
16  
17  #include <linux/export.h>
18  #include <asm/unaligned.h>
19  
20  #include "ath.h"
21  #include "reg.h"
22  
23  #define REG_READ			(common->ops->read)
24  #define REG_WRITE(_ah, _reg, _val)	(common->ops->write)(_ah, _val, _reg)
25  
26  /**
27   * ath_hw_setbssidmask - filter out bssids we listen
28   *
29   * @common: the ath_common struct for the device.
30   *
31   * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
32   * which bits of the interface's MAC address should be looked at when trying
33   * to decide which packets to ACK. In station mode and AP mode with a single
34   * BSS every bit matters since we lock to only one BSS. In AP mode with
35   * multiple BSSes (virtual interfaces) not every bit matters because hw must
36   * accept frames for all BSSes and so we tweak some bits of our mac address
37   * in order to have multiple BSSes.
38   *
39   * NOTE: This is a simple filter and does *not* filter out all
40   * relevant frames. Some frames that are not for us might get ACKed from us
41   * by PCU because they just match the mask.
42   *
43   * When handling multiple BSSes you can get the BSSID mask by computing the
44   * set of  ~ ( MAC XOR BSSID ) for all bssids we handle.
45   *
46   * When you do this you are essentially computing the common bits of all your
47   * BSSes. Later it is assumed the hardware will "and" (&) the BSSID mask with
48   * the MAC address to obtain the relevant bits and compare the result with
49   * (frame's BSSID & mask) to see if they match.
50   *
51   * Simple example: on your card you have two BSSes you have created with
52   * BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address.
53   * There is another BSSID-03 but you are not part of it. For simplicity's sake,
54   * assuming only 4 bits for a mac address and for BSSIDs you can then have:
55   *
56   *                  \
57   * MAC:        0001 |
58   * BSSID-01:   0100 | --> Belongs to us
59   * BSSID-02:   1001 |
60   *                  /
61   * -------------------
62   * BSSID-03:   0110  | --> External
63   * -------------------
64   *
65   * Our bssid_mask would then be:
66   *
67   *             On loop iteration for BSSID-01:
68   *             ~(0001 ^ 0100)  -> ~(0101)
69   *                             ->   1010
70   *             bssid_mask      =    1010
71   *
72   *             On loop iteration for BSSID-02:
73   *             bssid_mask &= ~(0001   ^   1001)
74   *             bssid_mask =   (1010)  & ~(0001 ^ 1001)
75   *             bssid_mask =   (1010)  & ~(1000)
76   *             bssid_mask =   (1010)  &  (0111)
77   *             bssid_mask =   0010
78   *
79   * A bssid_mask of 0010 means "only pay attention to the second least
80   * significant bit". This is because its the only bit common
81   * amongst the MAC and all BSSIDs we support. To findout what the real
82   * common bit is we can simply "&" the bssid_mask now with any BSSID we have
83   * or our MAC address (we assume the hardware uses the MAC address).
84   *
85   * Now, suppose there's an incoming frame for BSSID-03:
86   *
87   * IFRAME-01:  0110
88   *
89   * An easy eye-inspeciton of this already should tell you that this frame
90   * will not pass our check. This is because the bssid_mask tells the
91   * hardware to only look at the second least significant bit and the
92   * common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB
93   * as 1, which does not match 0.
94   *
95   * So with IFRAME-01 we *assume* the hardware will do:
96   *
97   *     allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
98   *  --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0;
99   *  --> allow = (0010) == 0000 ? 1 : 0;
100   *  --> allow = 0
101   *
102   *  Lets now test a frame that should work:
103   *
104   * IFRAME-02:  0001 (we should allow)
105   *
106   *     allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
107   *  --> allow = (0001 & 0010) ==  (0010 & 0001) ? 1 :0;
108   *  --> allow = (0000) == (0000)
109   *  --> allow = 1
110   *
111   * Other examples:
112   *
113   * IFRAME-03:  0100 --> allowed
114   * IFRAME-04:  1001 --> allowed
115   * IFRAME-05:  1101 --> allowed but its not for us!!!
116   *
117   */
ath_hw_setbssidmask(struct ath_common * common)118  void ath_hw_setbssidmask(struct ath_common *common)
119  {
120  	void *ah = common->ah;
121  	u32 id1;
122  
123  	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
124  	id1 = REG_READ(ah, AR_STA_ID1) & ~AR_STA_ID1_SADH_MASK;
125  	id1 |= get_unaligned_le16(common->macaddr + 4);
126  	REG_WRITE(ah, AR_STA_ID1, id1);
127  
128  	REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(common->bssidmask));
129  	REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(common->bssidmask + 4));
130  }
131  EXPORT_SYMBOL(ath_hw_setbssidmask);
132  
133  
134  /**
135   * ath_hw_cycle_counters_update - common function to update cycle counters
136   *
137   * @common: the ath_common struct for the device.
138   *
139   * This function is used to update all cycle counters in one place.
140   * It has to be called while holding common->cc_lock!
141   */
ath_hw_cycle_counters_update(struct ath_common * common)142  void ath_hw_cycle_counters_update(struct ath_common *common)
143  {
144  	u32 cycles, busy, rx, tx;
145  	void *ah = common->ah;
146  
147  	/* freeze */
148  	REG_WRITE(ah, AR_MIBC, AR_MIBC_FMC);
149  
150  	/* read */
151  	cycles = REG_READ(ah, AR_CCCNT);
152  	busy = REG_READ(ah, AR_RCCNT);
153  	rx = REG_READ(ah, AR_RFCNT);
154  	tx = REG_READ(ah, AR_TFCNT);
155  
156  	/* clear */
157  	REG_WRITE(ah, AR_CCCNT, 0);
158  	REG_WRITE(ah, AR_RFCNT, 0);
159  	REG_WRITE(ah, AR_RCCNT, 0);
160  	REG_WRITE(ah, AR_TFCNT, 0);
161  
162  	/* unfreeze */
163  	REG_WRITE(ah, AR_MIBC, 0);
164  
165  	/* update all cycle counters here */
166  	common->cc_ani.cycles += cycles;
167  	common->cc_ani.rx_busy += busy;
168  	common->cc_ani.rx_frame += rx;
169  	common->cc_ani.tx_frame += tx;
170  
171  	common->cc_survey.cycles += cycles;
172  	common->cc_survey.rx_busy += busy;
173  	common->cc_survey.rx_frame += rx;
174  	common->cc_survey.tx_frame += tx;
175  }
176  EXPORT_SYMBOL(ath_hw_cycle_counters_update);
177  
ath_hw_get_listen_time(struct ath_common * common)178  int32_t ath_hw_get_listen_time(struct ath_common *common)
179  {
180  	struct ath_cycle_counters *cc = &common->cc_ani;
181  	int32_t listen_time;
182  
183  	listen_time = (cc->cycles - cc->rx_frame - cc->tx_frame) /
184  		      (common->clockrate * 1000);
185  
186  	memset(cc, 0, sizeof(*cc));
187  
188  	return listen_time;
189  }
190  EXPORT_SYMBOL(ath_hw_get_listen_time);
191