xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/basics/fixpt31_32.c (revision cdd38c5f1ce4398ec58fec95904b75824daab7b5)
1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 #include "include/fixed31_32.h"
28 
29 static const struct fixed31_32 dc_fixpt_two_pi = { 26986075409LL };
30 static const struct fixed31_32 dc_fixpt_ln2 = { 2977044471LL };
31 static const struct fixed31_32 dc_fixpt_ln2_div_2 = { 1488522236LL };
32 
abs_i64(long long arg)33 static inline unsigned long long abs_i64(
34 	long long arg)
35 {
36 	if (arg > 0)
37 		return (unsigned long long)arg;
38 	else
39 		return (unsigned long long)(-arg);
40 }
41 
42 /*
43  * @brief
44  * result = dividend / divisor
45  * *remainder = dividend % divisor
46  */
complete_integer_division_u64(unsigned long long dividend,unsigned long long divisor,unsigned long long * remainder)47 static inline unsigned long long complete_integer_division_u64(
48 	unsigned long long dividend,
49 	unsigned long long divisor,
50 	unsigned long long *remainder)
51 {
52 	unsigned long long result;
53 
54 	ASSERT(divisor);
55 
56 	result = div64_u64_rem(dividend, divisor, remainder);
57 
58 	return result;
59 }
60 
61 
62 #define FRACTIONAL_PART_MASK \
63 	((1ULL << FIXED31_32_BITS_PER_FRACTIONAL_PART) - 1)
64 
65 #define GET_INTEGER_PART(x) \
66 	((x) >> FIXED31_32_BITS_PER_FRACTIONAL_PART)
67 
68 #define GET_FRACTIONAL_PART(x) \
69 	(FRACTIONAL_PART_MASK & (x))
70 
dc_fixpt_from_fraction(long long numerator,long long denominator)71 struct fixed31_32 dc_fixpt_from_fraction(long long numerator, long long denominator)
72 {
73 	struct fixed31_32 res;
74 
75 	bool arg1_negative = numerator < 0;
76 	bool arg2_negative = denominator < 0;
77 
78 	unsigned long long arg1_value = arg1_negative ? -numerator : numerator;
79 	unsigned long long arg2_value = arg2_negative ? -denominator : denominator;
80 
81 	unsigned long long remainder;
82 
83 	/* determine integer part */
84 
85 	unsigned long long res_value = complete_integer_division_u64(
86 		arg1_value, arg2_value, &remainder);
87 
88 	ASSERT(res_value <= LONG_MAX);
89 
90 	/* determine fractional part */
91 	{
92 		unsigned int i = FIXED31_32_BITS_PER_FRACTIONAL_PART;
93 
94 		do {
95 			remainder <<= 1;
96 
97 			res_value <<= 1;
98 
99 			if (remainder >= arg2_value) {
100 				res_value |= 1;
101 				remainder -= arg2_value;
102 			}
103 		} while (--i != 0);
104 	}
105 
106 	/* round up LSB */
107 	{
108 		unsigned long long summand = (remainder << 1) >= arg2_value;
109 
110 		ASSERT(res_value <= LLONG_MAX - summand);
111 
112 		res_value += summand;
113 	}
114 
115 	res.value = (long long)res_value;
116 
117 	if (arg1_negative ^ arg2_negative)
118 		res.value = -res.value;
119 
120 	return res;
121 }
122 
dc_fixpt_mul(struct fixed31_32 arg1,struct fixed31_32 arg2)123 struct fixed31_32 dc_fixpt_mul(struct fixed31_32 arg1, struct fixed31_32 arg2)
124 {
125 	struct fixed31_32 res;
126 
127 	bool arg1_negative = arg1.value < 0;
128 	bool arg2_negative = arg2.value < 0;
129 
130 	unsigned long long arg1_value = arg1_negative ? -arg1.value : arg1.value;
131 	unsigned long long arg2_value = arg2_negative ? -arg2.value : arg2.value;
132 
133 	unsigned long long arg1_int = GET_INTEGER_PART(arg1_value);
134 	unsigned long long arg2_int = GET_INTEGER_PART(arg2_value);
135 
136 	unsigned long long arg1_fra = GET_FRACTIONAL_PART(arg1_value);
137 	unsigned long long arg2_fra = GET_FRACTIONAL_PART(arg2_value);
138 
139 	unsigned long long tmp;
140 
141 	res.value = arg1_int * arg2_int;
142 
143 	ASSERT(res.value <= LONG_MAX);
144 
145 	res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
146 
147 	tmp = arg1_int * arg2_fra;
148 
149 	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
150 
151 	res.value += tmp;
152 
153 	tmp = arg2_int * arg1_fra;
154 
155 	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
156 
157 	res.value += tmp;
158 
159 	tmp = arg1_fra * arg2_fra;
160 
161 	tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
162 		(tmp >= (unsigned long long)dc_fixpt_half.value);
163 
164 	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
165 
166 	res.value += tmp;
167 
168 	if (arg1_negative ^ arg2_negative)
169 		res.value = -res.value;
170 
171 	return res;
172 }
173 
dc_fixpt_sqr(struct fixed31_32 arg)174 struct fixed31_32 dc_fixpt_sqr(struct fixed31_32 arg)
175 {
176 	struct fixed31_32 res;
177 
178 	unsigned long long arg_value = abs_i64(arg.value);
179 
180 	unsigned long long arg_int = GET_INTEGER_PART(arg_value);
181 
182 	unsigned long long arg_fra = GET_FRACTIONAL_PART(arg_value);
183 
184 	unsigned long long tmp;
185 
186 	res.value = arg_int * arg_int;
187 
188 	ASSERT(res.value <= LONG_MAX);
189 
190 	res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
191 
192 	tmp = arg_int * arg_fra;
193 
194 	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
195 
196 	res.value += tmp;
197 
198 	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
199 
200 	res.value += tmp;
201 
202 	tmp = arg_fra * arg_fra;
203 
204 	tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
205 		(tmp >= (unsigned long long)dc_fixpt_half.value);
206 
207 	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
208 
209 	res.value += tmp;
210 
211 	return res;
212 }
213 
dc_fixpt_recip(struct fixed31_32 arg)214 struct fixed31_32 dc_fixpt_recip(struct fixed31_32 arg)
215 {
216 	/*
217 	 * @note
218 	 * Good idea to use Newton's method
219 	 */
220 
221 	ASSERT(arg.value);
222 
223 	return dc_fixpt_from_fraction(
224 		dc_fixpt_one.value,
225 		arg.value);
226 }
227 
dc_fixpt_sinc(struct fixed31_32 arg)228 struct fixed31_32 dc_fixpt_sinc(struct fixed31_32 arg)
229 {
230 	struct fixed31_32 square;
231 
232 	struct fixed31_32 res = dc_fixpt_one;
233 
234 	int n = 27;
235 
236 	struct fixed31_32 arg_norm = arg;
237 
238 	if (dc_fixpt_le(
239 		dc_fixpt_two_pi,
240 		dc_fixpt_abs(arg))) {
241 		arg_norm = dc_fixpt_sub(
242 			arg_norm,
243 			dc_fixpt_mul_int(
244 				dc_fixpt_two_pi,
245 				(int)div64_s64(
246 					arg_norm.value,
247 					dc_fixpt_two_pi.value)));
248 	}
249 
250 	square = dc_fixpt_sqr(arg_norm);
251 
252 	do {
253 		res = dc_fixpt_sub(
254 			dc_fixpt_one,
255 			dc_fixpt_div_int(
256 				dc_fixpt_mul(
257 					square,
258 					res),
259 				n * (n - 1)));
260 
261 		n -= 2;
262 	} while (n > 2);
263 
264 	if (arg.value != arg_norm.value)
265 		res = dc_fixpt_div(
266 			dc_fixpt_mul(res, arg_norm),
267 			arg);
268 
269 	return res;
270 }
271 
dc_fixpt_sin(struct fixed31_32 arg)272 struct fixed31_32 dc_fixpt_sin(struct fixed31_32 arg)
273 {
274 	return dc_fixpt_mul(
275 		arg,
276 		dc_fixpt_sinc(arg));
277 }
278 
dc_fixpt_cos(struct fixed31_32 arg)279 struct fixed31_32 dc_fixpt_cos(struct fixed31_32 arg)
280 {
281 	/* TODO implement argument normalization */
282 
283 	const struct fixed31_32 square = dc_fixpt_sqr(arg);
284 
285 	struct fixed31_32 res = dc_fixpt_one;
286 
287 	int n = 26;
288 
289 	do {
290 		res = dc_fixpt_sub(
291 			dc_fixpt_one,
292 			dc_fixpt_div_int(
293 				dc_fixpt_mul(
294 					square,
295 					res),
296 				n * (n - 1)));
297 
298 		n -= 2;
299 	} while (n != 0);
300 
301 	return res;
302 }
303 
304 /*
305  * @brief
306  * result = exp(arg),
307  * where abs(arg) < 1
308  *
309  * Calculated as Taylor series.
310  */
fixed31_32_exp_from_taylor_series(struct fixed31_32 arg)311 static struct fixed31_32 fixed31_32_exp_from_taylor_series(struct fixed31_32 arg)
312 {
313 	unsigned int n = 9;
314 
315 	struct fixed31_32 res = dc_fixpt_from_fraction(
316 		n + 2,
317 		n + 1);
318 	/* TODO find correct res */
319 
320 	ASSERT(dc_fixpt_lt(arg, dc_fixpt_one));
321 
322 	do
323 		res = dc_fixpt_add(
324 			dc_fixpt_one,
325 			dc_fixpt_div_int(
326 				dc_fixpt_mul(
327 					arg,
328 					res),
329 				n));
330 	while (--n != 1);
331 
332 	return dc_fixpt_add(
333 		dc_fixpt_one,
334 		dc_fixpt_mul(
335 			arg,
336 			res));
337 }
338 
dc_fixpt_exp(struct fixed31_32 arg)339 struct fixed31_32 dc_fixpt_exp(struct fixed31_32 arg)
340 {
341 	/*
342 	 * @brief
343 	 * Main equation is:
344 	 * exp(x) = exp(r + m * ln(2)) = (1 << m) * exp(r),
345 	 * where m = round(x / ln(2)), r = x - m * ln(2)
346 	 */
347 
348 	if (dc_fixpt_le(
349 		dc_fixpt_ln2_div_2,
350 		dc_fixpt_abs(arg))) {
351 		int m = dc_fixpt_round(
352 			dc_fixpt_div(
353 				arg,
354 				dc_fixpt_ln2));
355 
356 		struct fixed31_32 r = dc_fixpt_sub(
357 			arg,
358 			dc_fixpt_mul_int(
359 				dc_fixpt_ln2,
360 				m));
361 
362 		ASSERT(m != 0);
363 
364 		ASSERT(dc_fixpt_lt(
365 			dc_fixpt_abs(r),
366 			dc_fixpt_one));
367 
368 		if (m > 0)
369 			return dc_fixpt_shl(
370 				fixed31_32_exp_from_taylor_series(r),
371 				(unsigned char)m);
372 		else
373 			return dc_fixpt_div_int(
374 				fixed31_32_exp_from_taylor_series(r),
375 				1LL << -m);
376 	} else if (arg.value != 0)
377 		return fixed31_32_exp_from_taylor_series(arg);
378 	else
379 		return dc_fixpt_one;
380 }
381 
dc_fixpt_log(struct fixed31_32 arg)382 struct fixed31_32 dc_fixpt_log(struct fixed31_32 arg)
383 {
384 	struct fixed31_32 res = dc_fixpt_neg(dc_fixpt_one);
385 	/* TODO improve 1st estimation */
386 
387 	struct fixed31_32 error;
388 
389 	ASSERT(arg.value > 0);
390 	/* TODO if arg is negative, return NaN */
391 	/* TODO if arg is zero, return -INF */
392 
393 	do {
394 		struct fixed31_32 res1 = dc_fixpt_add(
395 			dc_fixpt_sub(
396 				res,
397 				dc_fixpt_one),
398 			dc_fixpt_div(
399 				arg,
400 				dc_fixpt_exp(res)));
401 
402 		error = dc_fixpt_sub(
403 			res,
404 			res1);
405 
406 		res = res1;
407 		/* TODO determine max_allowed_error based on quality of exp() */
408 	} while (abs_i64(error.value) > 100ULL);
409 
410 	return res;
411 }
412 
413 
414 /* this function is a generic helper to translate fixed point value to
415  * specified integer format that will consist of integer_bits integer part and
416  * fractional_bits fractional part. For example it is used in
417  * dc_fixpt_u2d19 to receive 2 bits integer part and 19 bits fractional
418  * part in 32 bits. It is used in hw programming (scaler)
419  */
420 
ux_dy(long long value,unsigned int integer_bits,unsigned int fractional_bits)421 static inline unsigned int ux_dy(
422 	long long value,
423 	unsigned int integer_bits,
424 	unsigned int fractional_bits)
425 {
426 	/* 1. create mask of integer part */
427 	unsigned int result = (1 << integer_bits) - 1;
428 	/* 2. mask out fractional part */
429 	unsigned int fractional_part = FRACTIONAL_PART_MASK & value;
430 	/* 3. shrink fixed point integer part to be of integer_bits width*/
431 	result &= GET_INTEGER_PART(value);
432 	/* 4. make space for fractional part to be filled in after integer */
433 	result <<= fractional_bits;
434 	/* 5. shrink fixed point fractional part to of fractional_bits width*/
435 	fractional_part >>= FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits;
436 	/* 6. merge the result */
437 	return result | fractional_part;
438 }
439 
clamp_ux_dy(long long value,unsigned int integer_bits,unsigned int fractional_bits,unsigned int min_clamp)440 static inline unsigned int clamp_ux_dy(
441 	long long value,
442 	unsigned int integer_bits,
443 	unsigned int fractional_bits,
444 	unsigned int min_clamp)
445 {
446 	unsigned int truncated_val = ux_dy(value, integer_bits, fractional_bits);
447 
448 	if (value >= (1LL << (integer_bits + FIXED31_32_BITS_PER_FRACTIONAL_PART)))
449 		return (1 << (integer_bits + fractional_bits)) - 1;
450 	else if (truncated_val > min_clamp)
451 		return truncated_val;
452 	else
453 		return min_clamp;
454 }
455 
dc_fixpt_u4d19(struct fixed31_32 arg)456 unsigned int dc_fixpt_u4d19(struct fixed31_32 arg)
457 {
458 	return ux_dy(arg.value, 4, 19);
459 }
460 
dc_fixpt_u3d19(struct fixed31_32 arg)461 unsigned int dc_fixpt_u3d19(struct fixed31_32 arg)
462 {
463 	return ux_dy(arg.value, 3, 19);
464 }
465 
dc_fixpt_u2d19(struct fixed31_32 arg)466 unsigned int dc_fixpt_u2d19(struct fixed31_32 arg)
467 {
468 	return ux_dy(arg.value, 2, 19);
469 }
470 
dc_fixpt_u0d19(struct fixed31_32 arg)471 unsigned int dc_fixpt_u0d19(struct fixed31_32 arg)
472 {
473 	return ux_dy(arg.value, 0, 19);
474 }
475 
dc_fixpt_clamp_u0d14(struct fixed31_32 arg)476 unsigned int dc_fixpt_clamp_u0d14(struct fixed31_32 arg)
477 {
478 	return clamp_ux_dy(arg.value, 0, 14, 1);
479 }
480 
dc_fixpt_clamp_u0d10(struct fixed31_32 arg)481 unsigned int dc_fixpt_clamp_u0d10(struct fixed31_32 arg)
482 {
483 	return clamp_ux_dy(arg.value, 0, 10, 1);
484 }
485 
dc_fixpt_s4d19(struct fixed31_32 arg)486 int dc_fixpt_s4d19(struct fixed31_32 arg)
487 {
488 	if (arg.value < 0)
489 		return -(int)ux_dy(dc_fixpt_abs(arg).value, 4, 19);
490 	else
491 		return ux_dy(arg.value, 4, 19);
492 }
493