xref: /openbmc/qemu/system/physmem.c (revision 7fd0224457aadf94176e4d94008db94cbdc8004a)
1  /*
2   * RAM allocation and memory access
3   *
4   *  Copyright (c) 2003 Fabrice Bellard
5   *
6   * This library is free software; you can redistribute it and/or
7   * modify it under the terms of the GNU Lesser General Public
8   * License as published by the Free Software Foundation; either
9   * version 2.1 of the License, or (at your option) any later version.
10   *
11   * This library is distributed in the hope that it will be useful,
12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14   * Lesser General Public License for more details.
15   *
16   * You should have received a copy of the GNU Lesser General Public
17   * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18   */
19  
20  #include "qemu/osdep.h"
21  #include "exec/page-vary.h"
22  #include "qapi/error.h"
23  
24  #include "qemu/cutils.h"
25  #include "qemu/cacheflush.h"
26  #include "qemu/hbitmap.h"
27  #include "qemu/madvise.h"
28  #include "qemu/lockable.h"
29  
30  #ifdef CONFIG_TCG
31  #include "hw/core/tcg-cpu-ops.h"
32  #endif /* CONFIG_TCG */
33  
34  #include "exec/exec-all.h"
35  #include "exec/page-protection.h"
36  #include "exec/target_page.h"
37  #include "hw/qdev-core.h"
38  #include "hw/qdev-properties.h"
39  #include "hw/boards.h"
40  #include "sysemu/xen.h"
41  #include "sysemu/kvm.h"
42  #include "sysemu/tcg.h"
43  #include "sysemu/qtest.h"
44  #include "qemu/timer.h"
45  #include "qemu/config-file.h"
46  #include "qemu/error-report.h"
47  #include "qemu/qemu-print.h"
48  #include "qemu/log.h"
49  #include "qemu/memalign.h"
50  #include "exec/memory.h"
51  #include "exec/ioport.h"
52  #include "sysemu/dma.h"
53  #include "sysemu/hostmem.h"
54  #include "sysemu/hw_accel.h"
55  #include "sysemu/xen-mapcache.h"
56  #include "trace.h"
57  
58  #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
59  #include <linux/falloc.h>
60  #endif
61  
62  #include "qemu/rcu_queue.h"
63  #include "qemu/main-loop.h"
64  #include "exec/translate-all.h"
65  #include "sysemu/replay.h"
66  
67  #include "exec/memory-internal.h"
68  #include "exec/ram_addr.h"
69  
70  #include "qemu/pmem.h"
71  
72  #include "migration/vmstate.h"
73  
74  #include "qemu/range.h"
75  #ifndef _WIN32
76  #include "qemu/mmap-alloc.h"
77  #endif
78  
79  #include "monitor/monitor.h"
80  
81  #ifdef CONFIG_LIBDAXCTL
82  #include <daxctl/libdaxctl.h>
83  #endif
84  
85  //#define DEBUG_SUBPAGE
86  
87  /* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
88   * are protected by the ramlist lock.
89   */
90  RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
91  
92  static MemoryRegion *system_memory;
93  static MemoryRegion *system_io;
94  
95  AddressSpace address_space_io;
96  AddressSpace address_space_memory;
97  
98  static MemoryRegion io_mem_unassigned;
99  
100  typedef struct PhysPageEntry PhysPageEntry;
101  
102  struct PhysPageEntry {
103      /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
104      uint32_t skip : 6;
105       /* index into phys_sections (!skip) or phys_map_nodes (skip) */
106      uint32_t ptr : 26;
107  };
108  
109  #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
110  
111  /* Size of the L2 (and L3, etc) page tables.  */
112  #define ADDR_SPACE_BITS 64
113  
114  #define P_L2_BITS 9
115  #define P_L2_SIZE (1 << P_L2_BITS)
116  
117  #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
118  
119  typedef PhysPageEntry Node[P_L2_SIZE];
120  
121  typedef struct PhysPageMap {
122      struct rcu_head rcu;
123  
124      unsigned sections_nb;
125      unsigned sections_nb_alloc;
126      unsigned nodes_nb;
127      unsigned nodes_nb_alloc;
128      Node *nodes;
129      MemoryRegionSection *sections;
130  } PhysPageMap;
131  
132  struct AddressSpaceDispatch {
133      MemoryRegionSection *mru_section;
134      /* This is a multi-level map on the physical address space.
135       * The bottom level has pointers to MemoryRegionSections.
136       */
137      PhysPageEntry phys_map;
138      PhysPageMap map;
139  };
140  
141  #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
142  typedef struct subpage_t {
143      MemoryRegion iomem;
144      FlatView *fv;
145      hwaddr base;
146      uint16_t sub_section[];
147  } subpage_t;
148  
149  #define PHYS_SECTION_UNASSIGNED 0
150  
151  static void io_mem_init(void);
152  static void memory_map_init(void);
153  static void tcg_log_global_after_sync(MemoryListener *listener);
154  static void tcg_commit(MemoryListener *listener);
155  
156  /**
157   * CPUAddressSpace: all the information a CPU needs about an AddressSpace
158   * @cpu: the CPU whose AddressSpace this is
159   * @as: the AddressSpace itself
160   * @memory_dispatch: its dispatch pointer (cached, RCU protected)
161   * @tcg_as_listener: listener for tracking changes to the AddressSpace
162   */
163  typedef struct CPUAddressSpace {
164      CPUState *cpu;
165      AddressSpace *as;
166      struct AddressSpaceDispatch *memory_dispatch;
167      MemoryListener tcg_as_listener;
168  } CPUAddressSpace;
169  
170  struct DirtyBitmapSnapshot {
171      ram_addr_t start;
172      ram_addr_t end;
173      unsigned long dirty[];
174  };
175  
phys_map_node_reserve(PhysPageMap * map,unsigned nodes)176  static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
177  {
178      static unsigned alloc_hint = 16;
179      if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
180          map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
181          map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
182          alloc_hint = map->nodes_nb_alloc;
183      }
184  }
185  
phys_map_node_alloc(PhysPageMap * map,bool leaf)186  static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
187  {
188      unsigned i;
189      uint32_t ret;
190      PhysPageEntry e;
191      PhysPageEntry *p;
192  
193      ret = map->nodes_nb++;
194      p = map->nodes[ret];
195      assert(ret != PHYS_MAP_NODE_NIL);
196      assert(ret != map->nodes_nb_alloc);
197  
198      e.skip = leaf ? 0 : 1;
199      e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
200      for (i = 0; i < P_L2_SIZE; ++i) {
201          memcpy(&p[i], &e, sizeof(e));
202      }
203      return ret;
204  }
205  
phys_page_set_level(PhysPageMap * map,PhysPageEntry * lp,hwaddr * index,uint64_t * nb,uint16_t leaf,int level)206  static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
207                                  hwaddr *index, uint64_t *nb, uint16_t leaf,
208                                  int level)
209  {
210      PhysPageEntry *p;
211      hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
212  
213      if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
214          lp->ptr = phys_map_node_alloc(map, level == 0);
215      }
216      p = map->nodes[lp->ptr];
217      lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
218  
219      while (*nb && lp < &p[P_L2_SIZE]) {
220          if ((*index & (step - 1)) == 0 && *nb >= step) {
221              lp->skip = 0;
222              lp->ptr = leaf;
223              *index += step;
224              *nb -= step;
225          } else {
226              phys_page_set_level(map, lp, index, nb, leaf, level - 1);
227          }
228          ++lp;
229      }
230  }
231  
phys_page_set(AddressSpaceDispatch * d,hwaddr index,uint64_t nb,uint16_t leaf)232  static void phys_page_set(AddressSpaceDispatch *d,
233                            hwaddr index, uint64_t nb,
234                            uint16_t leaf)
235  {
236      /* Wildly overreserve - it doesn't matter much. */
237      phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
238  
239      phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
240  }
241  
242  /* Compact a non leaf page entry. Simply detect that the entry has a single child,
243   * and update our entry so we can skip it and go directly to the destination.
244   */
phys_page_compact(PhysPageEntry * lp,Node * nodes)245  static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
246  {
247      unsigned valid_ptr = P_L2_SIZE;
248      int valid = 0;
249      PhysPageEntry *p;
250      int i;
251  
252      if (lp->ptr == PHYS_MAP_NODE_NIL) {
253          return;
254      }
255  
256      p = nodes[lp->ptr];
257      for (i = 0; i < P_L2_SIZE; i++) {
258          if (p[i].ptr == PHYS_MAP_NODE_NIL) {
259              continue;
260          }
261  
262          valid_ptr = i;
263          valid++;
264          if (p[i].skip) {
265              phys_page_compact(&p[i], nodes);
266          }
267      }
268  
269      /* We can only compress if there's only one child. */
270      if (valid != 1) {
271          return;
272      }
273  
274      assert(valid_ptr < P_L2_SIZE);
275  
276      /* Don't compress if it won't fit in the # of bits we have. */
277      if (P_L2_LEVELS >= (1 << 6) &&
278          lp->skip + p[valid_ptr].skip >= (1 << 6)) {
279          return;
280      }
281  
282      lp->ptr = p[valid_ptr].ptr;
283      if (!p[valid_ptr].skip) {
284          /* If our only child is a leaf, make this a leaf. */
285          /* By design, we should have made this node a leaf to begin with so we
286           * should never reach here.
287           * But since it's so simple to handle this, let's do it just in case we
288           * change this rule.
289           */
290          lp->skip = 0;
291      } else {
292          lp->skip += p[valid_ptr].skip;
293      }
294  }
295  
address_space_dispatch_compact(AddressSpaceDispatch * d)296  void address_space_dispatch_compact(AddressSpaceDispatch *d)
297  {
298      if (d->phys_map.skip) {
299          phys_page_compact(&d->phys_map, d->map.nodes);
300      }
301  }
302  
section_covers_addr(const MemoryRegionSection * section,hwaddr addr)303  static inline bool section_covers_addr(const MemoryRegionSection *section,
304                                         hwaddr addr)
305  {
306      /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
307       * the section must cover the entire address space.
308       */
309      return int128_gethi(section->size) ||
310             range_covers_byte(section->offset_within_address_space,
311                               int128_getlo(section->size), addr);
312  }
313  
phys_page_find(AddressSpaceDispatch * d,hwaddr addr)314  static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
315  {
316      PhysPageEntry lp = d->phys_map, *p;
317      Node *nodes = d->map.nodes;
318      MemoryRegionSection *sections = d->map.sections;
319      hwaddr index = addr >> TARGET_PAGE_BITS;
320      int i;
321  
322      for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
323          if (lp.ptr == PHYS_MAP_NODE_NIL) {
324              return &sections[PHYS_SECTION_UNASSIGNED];
325          }
326          p = nodes[lp.ptr];
327          lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
328      }
329  
330      if (section_covers_addr(&sections[lp.ptr], addr)) {
331          return &sections[lp.ptr];
332      } else {
333          return &sections[PHYS_SECTION_UNASSIGNED];
334      }
335  }
336  
337  /* Called from RCU critical section */
address_space_lookup_region(AddressSpaceDispatch * d,hwaddr addr,bool resolve_subpage)338  static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
339                                                          hwaddr addr,
340                                                          bool resolve_subpage)
341  {
342      MemoryRegionSection *section = qatomic_read(&d->mru_section);
343      subpage_t *subpage;
344  
345      if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
346          !section_covers_addr(section, addr)) {
347          section = phys_page_find(d, addr);
348          qatomic_set(&d->mru_section, section);
349      }
350      if (resolve_subpage && section->mr->subpage) {
351          subpage = container_of(section->mr, subpage_t, iomem);
352          section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
353      }
354      return section;
355  }
356  
357  /* Called from RCU critical section */
358  static MemoryRegionSection *
address_space_translate_internal(AddressSpaceDispatch * d,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool resolve_subpage)359  address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
360                                   hwaddr *plen, bool resolve_subpage)
361  {
362      MemoryRegionSection *section;
363      MemoryRegion *mr;
364      Int128 diff;
365  
366      section = address_space_lookup_region(d, addr, resolve_subpage);
367      /* Compute offset within MemoryRegionSection */
368      addr -= section->offset_within_address_space;
369  
370      /* Compute offset within MemoryRegion */
371      *xlat = addr + section->offset_within_region;
372  
373      mr = section->mr;
374  
375      /* MMIO registers can be expected to perform full-width accesses based only
376       * on their address, without considering adjacent registers that could
377       * decode to completely different MemoryRegions.  When such registers
378       * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
379       * regions overlap wildly.  For this reason we cannot clamp the accesses
380       * here.
381       *
382       * If the length is small (as is the case for address_space_ldl/stl),
383       * everything works fine.  If the incoming length is large, however,
384       * the caller really has to do the clamping through memory_access_size.
385       */
386      if (memory_region_is_ram(mr)) {
387          diff = int128_sub(section->size, int128_make64(addr));
388          *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
389      }
390      return section;
391  }
392  
393  /**
394   * address_space_translate_iommu - translate an address through an IOMMU
395   * memory region and then through the target address space.
396   *
397   * @iommu_mr: the IOMMU memory region that we start the translation from
398   * @addr: the address to be translated through the MMU
399   * @xlat: the translated address offset within the destination memory region.
400   *        It cannot be %NULL.
401   * @plen_out: valid read/write length of the translated address. It
402   *            cannot be %NULL.
403   * @page_mask_out: page mask for the translated address. This
404   *            should only be meaningful for IOMMU translated
405   *            addresses, since there may be huge pages that this bit
406   *            would tell. It can be %NULL if we don't care about it.
407   * @is_write: whether the translation operation is for write
408   * @is_mmio: whether this can be MMIO, set true if it can
409   * @target_as: the address space targeted by the IOMMU
410   * @attrs: transaction attributes
411   *
412   * This function is called from RCU critical section.  It is the common
413   * part of flatview_do_translate and address_space_translate_cached.
414   */
address_space_translate_iommu(IOMMUMemoryRegion * iommu_mr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)415  static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
416                                                           hwaddr *xlat,
417                                                           hwaddr *plen_out,
418                                                           hwaddr *page_mask_out,
419                                                           bool is_write,
420                                                           bool is_mmio,
421                                                           AddressSpace **target_as,
422                                                           MemTxAttrs attrs)
423  {
424      MemoryRegionSection *section;
425      hwaddr page_mask = (hwaddr)-1;
426  
427      do {
428          hwaddr addr = *xlat;
429          IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
430          int iommu_idx = 0;
431          IOMMUTLBEntry iotlb;
432  
433          if (imrc->attrs_to_index) {
434              iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
435          }
436  
437          iotlb = imrc->translate(iommu_mr, addr, is_write ?
438                                  IOMMU_WO : IOMMU_RO, iommu_idx);
439  
440          if (!(iotlb.perm & (1 << is_write))) {
441              goto unassigned;
442          }
443  
444          addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
445                  | (addr & iotlb.addr_mask));
446          page_mask &= iotlb.addr_mask;
447          *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
448          *target_as = iotlb.target_as;
449  
450          section = address_space_translate_internal(
451                  address_space_to_dispatch(iotlb.target_as), addr, xlat,
452                  plen_out, is_mmio);
453  
454          iommu_mr = memory_region_get_iommu(section->mr);
455      } while (unlikely(iommu_mr));
456  
457      if (page_mask_out) {
458          *page_mask_out = page_mask;
459      }
460      return *section;
461  
462  unassigned:
463      return (MemoryRegionSection) { .mr = &io_mem_unassigned };
464  }
465  
466  /**
467   * flatview_do_translate - translate an address in FlatView
468   *
469   * @fv: the flat view that we want to translate on
470   * @addr: the address to be translated in above address space
471   * @xlat: the translated address offset within memory region. It
472   *        cannot be @NULL.
473   * @plen_out: valid read/write length of the translated address. It
474   *            can be @NULL when we don't care about it.
475   * @page_mask_out: page mask for the translated address. This
476   *            should only be meaningful for IOMMU translated
477   *            addresses, since there may be huge pages that this bit
478   *            would tell. It can be @NULL if we don't care about it.
479   * @is_write: whether the translation operation is for write
480   * @is_mmio: whether this can be MMIO, set true if it can
481   * @target_as: the address space targeted by the IOMMU
482   * @attrs: memory transaction attributes
483   *
484   * This function is called from RCU critical section
485   */
flatview_do_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)486  static MemoryRegionSection flatview_do_translate(FlatView *fv,
487                                                   hwaddr addr,
488                                                   hwaddr *xlat,
489                                                   hwaddr *plen_out,
490                                                   hwaddr *page_mask_out,
491                                                   bool is_write,
492                                                   bool is_mmio,
493                                                   AddressSpace **target_as,
494                                                   MemTxAttrs attrs)
495  {
496      MemoryRegionSection *section;
497      IOMMUMemoryRegion *iommu_mr;
498      hwaddr plen = (hwaddr)(-1);
499  
500      if (!plen_out) {
501          plen_out = &plen;
502      }
503  
504      section = address_space_translate_internal(
505              flatview_to_dispatch(fv), addr, xlat,
506              plen_out, is_mmio);
507  
508      iommu_mr = memory_region_get_iommu(section->mr);
509      if (unlikely(iommu_mr)) {
510          return address_space_translate_iommu(iommu_mr, xlat,
511                                               plen_out, page_mask_out,
512                                               is_write, is_mmio,
513                                               target_as, attrs);
514      }
515      if (page_mask_out) {
516          /* Not behind an IOMMU, use default page size. */
517          *page_mask_out = ~TARGET_PAGE_MASK;
518      }
519  
520      return *section;
521  }
522  
523  /* Called from RCU critical section */
address_space_get_iotlb_entry(AddressSpace * as,hwaddr addr,bool is_write,MemTxAttrs attrs)524  IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
525                                              bool is_write, MemTxAttrs attrs)
526  {
527      MemoryRegionSection section;
528      hwaddr xlat, page_mask;
529  
530      /*
531       * This can never be MMIO, and we don't really care about plen,
532       * but page mask.
533       */
534      section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
535                                      NULL, &page_mask, is_write, false, &as,
536                                      attrs);
537  
538      /* Illegal translation */
539      if (section.mr == &io_mem_unassigned) {
540          goto iotlb_fail;
541      }
542  
543      /* Convert memory region offset into address space offset */
544      xlat += section.offset_within_address_space -
545          section.offset_within_region;
546  
547      return (IOMMUTLBEntry) {
548          .target_as = as,
549          .iova = addr & ~page_mask,
550          .translated_addr = xlat & ~page_mask,
551          .addr_mask = page_mask,
552          /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
553          .perm = IOMMU_RW,
554      };
555  
556  iotlb_fail:
557      return (IOMMUTLBEntry) {0};
558  }
559  
560  /* Called from RCU critical section */
flatview_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)561  MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
562                                   hwaddr *plen, bool is_write,
563                                   MemTxAttrs attrs)
564  {
565      MemoryRegion *mr;
566      MemoryRegionSection section;
567      AddressSpace *as = NULL;
568  
569      /* This can be MMIO, so setup MMIO bit. */
570      section = flatview_do_translate(fv, addr, xlat, plen, NULL,
571                                      is_write, true, &as, attrs);
572      mr = section.mr;
573  
574      if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
575          hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
576          *plen = MIN(page, *plen);
577      }
578  
579      return mr;
580  }
581  
582  typedef struct TCGIOMMUNotifier {
583      IOMMUNotifier n;
584      MemoryRegion *mr;
585      CPUState *cpu;
586      int iommu_idx;
587      bool active;
588  } TCGIOMMUNotifier;
589  
tcg_iommu_unmap_notify(IOMMUNotifier * n,IOMMUTLBEntry * iotlb)590  static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
591  {
592      TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
593  
594      if (!notifier->active) {
595          return;
596      }
597      tlb_flush(notifier->cpu);
598      notifier->active = false;
599      /* We leave the notifier struct on the list to avoid reallocating it later.
600       * Generally the number of IOMMUs a CPU deals with will be small.
601       * In any case we can't unregister the iommu notifier from a notify
602       * callback.
603       */
604  }
605  
tcg_register_iommu_notifier(CPUState * cpu,IOMMUMemoryRegion * iommu_mr,int iommu_idx)606  static void tcg_register_iommu_notifier(CPUState *cpu,
607                                          IOMMUMemoryRegion *iommu_mr,
608                                          int iommu_idx)
609  {
610      /* Make sure this CPU has an IOMMU notifier registered for this
611       * IOMMU/IOMMU index combination, so that we can flush its TLB
612       * when the IOMMU tells us the mappings we've cached have changed.
613       */
614      MemoryRegion *mr = MEMORY_REGION(iommu_mr);
615      TCGIOMMUNotifier *notifier = NULL;
616      int i;
617  
618      for (i = 0; i < cpu->iommu_notifiers->len; i++) {
619          notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
620          if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
621              break;
622          }
623      }
624      if (i == cpu->iommu_notifiers->len) {
625          /* Not found, add a new entry at the end of the array */
626          cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
627          notifier = g_new0(TCGIOMMUNotifier, 1);
628          g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
629  
630          notifier->mr = mr;
631          notifier->iommu_idx = iommu_idx;
632          notifier->cpu = cpu;
633          /* Rather than trying to register interest in the specific part
634           * of the iommu's address space that we've accessed and then
635           * expand it later as subsequent accesses touch more of it, we
636           * just register interest in the whole thing, on the assumption
637           * that iommu reconfiguration will be rare.
638           */
639          iommu_notifier_init(&notifier->n,
640                              tcg_iommu_unmap_notify,
641                              IOMMU_NOTIFIER_UNMAP,
642                              0,
643                              HWADDR_MAX,
644                              iommu_idx);
645          memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
646                                                &error_fatal);
647      }
648  
649      if (!notifier->active) {
650          notifier->active = true;
651      }
652  }
653  
tcg_iommu_free_notifier_list(CPUState * cpu)654  void tcg_iommu_free_notifier_list(CPUState *cpu)
655  {
656      /* Destroy the CPU's notifier list */
657      int i;
658      TCGIOMMUNotifier *notifier;
659  
660      for (i = 0; i < cpu->iommu_notifiers->len; i++) {
661          notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
662          memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
663          g_free(notifier);
664      }
665      g_array_free(cpu->iommu_notifiers, true);
666  }
667  
tcg_iommu_init_notifier_list(CPUState * cpu)668  void tcg_iommu_init_notifier_list(CPUState *cpu)
669  {
670      cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
671  }
672  
673  /* Called from RCU critical section */
674  MemoryRegionSection *
address_space_translate_for_iotlb(CPUState * cpu,int asidx,hwaddr orig_addr,hwaddr * xlat,hwaddr * plen,MemTxAttrs attrs,int * prot)675  address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
676                                    hwaddr *xlat, hwaddr *plen,
677                                    MemTxAttrs attrs, int *prot)
678  {
679      MemoryRegionSection *section;
680      IOMMUMemoryRegion *iommu_mr;
681      IOMMUMemoryRegionClass *imrc;
682      IOMMUTLBEntry iotlb;
683      int iommu_idx;
684      hwaddr addr = orig_addr;
685      AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
686  
687      for (;;) {
688          section = address_space_translate_internal(d, addr, &addr, plen, false);
689  
690          iommu_mr = memory_region_get_iommu(section->mr);
691          if (!iommu_mr) {
692              break;
693          }
694  
695          imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
696  
697          iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
698          tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
699          /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
700           * doesn't short-cut its translation table walk.
701           */
702          iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
703          addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
704                  | (addr & iotlb.addr_mask));
705          /* Update the caller's prot bits to remove permissions the IOMMU
706           * is giving us a failure response for. If we get down to no
707           * permissions left at all we can give up now.
708           */
709          if (!(iotlb.perm & IOMMU_RO)) {
710              *prot &= ~(PAGE_READ | PAGE_EXEC);
711          }
712          if (!(iotlb.perm & IOMMU_WO)) {
713              *prot &= ~PAGE_WRITE;
714          }
715  
716          if (!*prot) {
717              goto translate_fail;
718          }
719  
720          d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
721      }
722  
723      assert(!memory_region_is_iommu(section->mr));
724      *xlat = addr;
725      return section;
726  
727  translate_fail:
728      /*
729       * We should be given a page-aligned address -- certainly
730       * tlb_set_page_with_attrs() does so.  The page offset of xlat
731       * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
732       * The page portion of xlat will be logged by memory_region_access_valid()
733       * when this memory access is rejected, so use the original untranslated
734       * physical address.
735       */
736      assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
737      *xlat = orig_addr;
738      return &d->map.sections[PHYS_SECTION_UNASSIGNED];
739  }
740  
cpu_address_space_init(CPUState * cpu,int asidx,const char * prefix,MemoryRegion * mr)741  void cpu_address_space_init(CPUState *cpu, int asidx,
742                              const char *prefix, MemoryRegion *mr)
743  {
744      CPUAddressSpace *newas;
745      AddressSpace *as = g_new0(AddressSpace, 1);
746      char *as_name;
747  
748      assert(mr);
749      as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
750      address_space_init(as, mr, as_name);
751      g_free(as_name);
752  
753      /* Target code should have set num_ases before calling us */
754      assert(asidx < cpu->num_ases);
755  
756      if (asidx == 0) {
757          /* address space 0 gets the convenience alias */
758          cpu->as = as;
759      }
760  
761      /* KVM cannot currently support multiple address spaces. */
762      assert(asidx == 0 || !kvm_enabled());
763  
764      if (!cpu->cpu_ases) {
765          cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
766          cpu->cpu_ases_count = cpu->num_ases;
767      }
768  
769      newas = &cpu->cpu_ases[asidx];
770      newas->cpu = cpu;
771      newas->as = as;
772      if (tcg_enabled()) {
773          newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
774          newas->tcg_as_listener.commit = tcg_commit;
775          newas->tcg_as_listener.name = "tcg";
776          memory_listener_register(&newas->tcg_as_listener, as);
777      }
778  }
779  
cpu_address_space_destroy(CPUState * cpu,int asidx)780  void cpu_address_space_destroy(CPUState *cpu, int asidx)
781  {
782      CPUAddressSpace *cpuas;
783  
784      assert(cpu->cpu_ases);
785      assert(asidx >= 0 && asidx < cpu->num_ases);
786      /* KVM cannot currently support multiple address spaces. */
787      assert(asidx == 0 || !kvm_enabled());
788  
789      cpuas = &cpu->cpu_ases[asidx];
790      if (tcg_enabled()) {
791          memory_listener_unregister(&cpuas->tcg_as_listener);
792      }
793  
794      address_space_destroy(cpuas->as);
795      g_free_rcu(cpuas->as, rcu);
796  
797      if (asidx == 0) {
798          /* reset the convenience alias for address space 0 */
799          cpu->as = NULL;
800      }
801  
802      if (--cpu->cpu_ases_count == 0) {
803          g_free(cpu->cpu_ases);
804          cpu->cpu_ases = NULL;
805      }
806  }
807  
cpu_get_address_space(CPUState * cpu,int asidx)808  AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
809  {
810      /* Return the AddressSpace corresponding to the specified index */
811      return cpu->cpu_ases[asidx].as;
812  }
813  
814  /* Called from RCU critical section */
qemu_get_ram_block(ram_addr_t addr)815  static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
816  {
817      RAMBlock *block;
818  
819      block = qatomic_rcu_read(&ram_list.mru_block);
820      if (block && addr - block->offset < block->max_length) {
821          return block;
822      }
823      RAMBLOCK_FOREACH(block) {
824          if (addr - block->offset < block->max_length) {
825              goto found;
826          }
827      }
828  
829      fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
830      abort();
831  
832  found:
833      /* It is safe to write mru_block outside the BQL.  This
834       * is what happens:
835       *
836       *     mru_block = xxx
837       *     rcu_read_unlock()
838       *                                        xxx removed from list
839       *                  rcu_read_lock()
840       *                  read mru_block
841       *                                        mru_block = NULL;
842       *                                        call_rcu(reclaim_ramblock, xxx);
843       *                  rcu_read_unlock()
844       *
845       * qatomic_rcu_set is not needed here.  The block was already published
846       * when it was placed into the list.  Here we're just making an extra
847       * copy of the pointer.
848       */
849      ram_list.mru_block = block;
850      return block;
851  }
852  
tlb_reset_dirty_range_all(ram_addr_t start,ram_addr_t length)853  void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
854  {
855      CPUState *cpu;
856      ram_addr_t start1;
857      RAMBlock *block;
858      ram_addr_t end;
859  
860      assert(tcg_enabled());
861      end = TARGET_PAGE_ALIGN(start + length);
862      start &= TARGET_PAGE_MASK;
863  
864      RCU_READ_LOCK_GUARD();
865      block = qemu_get_ram_block(start);
866      assert(block == qemu_get_ram_block(end - 1));
867      start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
868      CPU_FOREACH(cpu) {
869          tlb_reset_dirty(cpu, start1, length);
870      }
871  }
872  
873  /* Note: start and end must be within the same ram block.  */
cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,ram_addr_t length,unsigned client)874  bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
875                                                ram_addr_t length,
876                                                unsigned client)
877  {
878      DirtyMemoryBlocks *blocks;
879      unsigned long end, page, start_page;
880      bool dirty = false;
881      RAMBlock *ramblock;
882      uint64_t mr_offset, mr_size;
883  
884      if (length == 0) {
885          return false;
886      }
887  
888      end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
889      start_page = start >> TARGET_PAGE_BITS;
890      page = start_page;
891  
892      WITH_RCU_READ_LOCK_GUARD() {
893          blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
894          ramblock = qemu_get_ram_block(start);
895          /* Range sanity check on the ramblock */
896          assert(start >= ramblock->offset &&
897                 start + length <= ramblock->offset + ramblock->used_length);
898  
899          while (page < end) {
900              unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
901              unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
902              unsigned long num = MIN(end - page,
903                                      DIRTY_MEMORY_BLOCK_SIZE - offset);
904  
905              dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
906                                                    offset, num);
907              page += num;
908          }
909  
910          mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
911          mr_size = (end - start_page) << TARGET_PAGE_BITS;
912          memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
913      }
914  
915      if (dirty) {
916          cpu_physical_memory_dirty_bits_cleared(start, length);
917      }
918  
919      return dirty;
920  }
921  
cpu_physical_memory_snapshot_and_clear_dirty(MemoryRegion * mr,hwaddr offset,hwaddr length,unsigned client)922  DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
923      (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
924  {
925      DirtyMemoryBlocks *blocks;
926      ram_addr_t start, first, last;
927      unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
928      DirtyBitmapSnapshot *snap;
929      unsigned long page, end, dest;
930  
931      start = memory_region_get_ram_addr(mr);
932      /* We know we're only called for RAM MemoryRegions */
933      assert(start != RAM_ADDR_INVALID);
934      start += offset;
935  
936      first = QEMU_ALIGN_DOWN(start, align);
937      last  = QEMU_ALIGN_UP(start + length, align);
938  
939      snap = g_malloc0(sizeof(*snap) +
940                       ((last - first) >> (TARGET_PAGE_BITS + 3)));
941      snap->start = first;
942      snap->end   = last;
943  
944      page = first >> TARGET_PAGE_BITS;
945      end  = last  >> TARGET_PAGE_BITS;
946      dest = 0;
947  
948      WITH_RCU_READ_LOCK_GUARD() {
949          blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
950  
951          while (page < end) {
952              unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
953              unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
954              unsigned long num = MIN(end - page,
955                                      DIRTY_MEMORY_BLOCK_SIZE - ofs);
956  
957              assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
958              assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
959              ofs >>= BITS_PER_LEVEL;
960  
961              bitmap_copy_and_clear_atomic(snap->dirty + dest,
962                                           blocks->blocks[idx] + ofs,
963                                           num);
964              page += num;
965              dest += num >> BITS_PER_LEVEL;
966          }
967      }
968  
969      cpu_physical_memory_dirty_bits_cleared(start, length);
970  
971      memory_region_clear_dirty_bitmap(mr, offset, length);
972  
973      return snap;
974  }
975  
cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot * snap,ram_addr_t start,ram_addr_t length)976  bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
977                                              ram_addr_t start,
978                                              ram_addr_t length)
979  {
980      unsigned long page, end;
981  
982      assert(start >= snap->start);
983      assert(start + length <= snap->end);
984  
985      end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
986      page = (start - snap->start) >> TARGET_PAGE_BITS;
987  
988      while (page < end) {
989          if (test_bit(page, snap->dirty)) {
990              return true;
991          }
992          page++;
993      }
994      return false;
995  }
996  
997  /* Called from RCU critical section */
memory_region_section_get_iotlb(CPUState * cpu,MemoryRegionSection * section)998  hwaddr memory_region_section_get_iotlb(CPUState *cpu,
999                                         MemoryRegionSection *section)
1000  {
1001      AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1002      return section - d->map.sections;
1003  }
1004  
1005  static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1006                              uint16_t section);
1007  static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1008  
phys_section_add(PhysPageMap * map,MemoryRegionSection * section)1009  static uint16_t phys_section_add(PhysPageMap *map,
1010                                   MemoryRegionSection *section)
1011  {
1012      /* The physical section number is ORed with a page-aligned
1013       * pointer to produce the iotlb entries.  Thus it should
1014       * never overflow into the page-aligned value.
1015       */
1016      assert(map->sections_nb < TARGET_PAGE_SIZE);
1017  
1018      if (map->sections_nb == map->sections_nb_alloc) {
1019          map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1020          map->sections = g_renew(MemoryRegionSection, map->sections,
1021                                  map->sections_nb_alloc);
1022      }
1023      map->sections[map->sections_nb] = *section;
1024      memory_region_ref(section->mr);
1025      return map->sections_nb++;
1026  }
1027  
phys_section_destroy(MemoryRegion * mr)1028  static void phys_section_destroy(MemoryRegion *mr)
1029  {
1030      bool have_sub_page = mr->subpage;
1031  
1032      memory_region_unref(mr);
1033  
1034      if (have_sub_page) {
1035          subpage_t *subpage = container_of(mr, subpage_t, iomem);
1036          object_unref(OBJECT(&subpage->iomem));
1037          g_free(subpage);
1038      }
1039  }
1040  
phys_sections_free(PhysPageMap * map)1041  static void phys_sections_free(PhysPageMap *map)
1042  {
1043      while (map->sections_nb > 0) {
1044          MemoryRegionSection *section = &map->sections[--map->sections_nb];
1045          phys_section_destroy(section->mr);
1046      }
1047      g_free(map->sections);
1048      g_free(map->nodes);
1049  }
1050  
register_subpage(FlatView * fv,MemoryRegionSection * section)1051  static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1052  {
1053      AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1054      subpage_t *subpage;
1055      hwaddr base = section->offset_within_address_space
1056          & TARGET_PAGE_MASK;
1057      MemoryRegionSection *existing = phys_page_find(d, base);
1058      MemoryRegionSection subsection = {
1059          .offset_within_address_space = base,
1060          .size = int128_make64(TARGET_PAGE_SIZE),
1061      };
1062      hwaddr start, end;
1063  
1064      assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1065  
1066      if (!(existing->mr->subpage)) {
1067          subpage = subpage_init(fv, base);
1068          subsection.fv = fv;
1069          subsection.mr = &subpage->iomem;
1070          phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1071                        phys_section_add(&d->map, &subsection));
1072      } else {
1073          subpage = container_of(existing->mr, subpage_t, iomem);
1074      }
1075      start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1076      end = start + int128_get64(section->size) - 1;
1077      subpage_register(subpage, start, end,
1078                       phys_section_add(&d->map, section));
1079  }
1080  
1081  
register_multipage(FlatView * fv,MemoryRegionSection * section)1082  static void register_multipage(FlatView *fv,
1083                                 MemoryRegionSection *section)
1084  {
1085      AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1086      hwaddr start_addr = section->offset_within_address_space;
1087      uint16_t section_index = phys_section_add(&d->map, section);
1088      uint64_t num_pages = int128_get64(int128_rshift(section->size,
1089                                                      TARGET_PAGE_BITS));
1090  
1091      assert(num_pages);
1092      phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1093  }
1094  
1095  /*
1096   * The range in *section* may look like this:
1097   *
1098   *      |s|PPPPPPP|s|
1099   *
1100   * where s stands for subpage and P for page.
1101   */
flatview_add_to_dispatch(FlatView * fv,MemoryRegionSection * section)1102  void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1103  {
1104      MemoryRegionSection remain = *section;
1105      Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1106  
1107      /* register first subpage */
1108      if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1109          uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1110                          - remain.offset_within_address_space;
1111  
1112          MemoryRegionSection now = remain;
1113          now.size = int128_min(int128_make64(left), now.size);
1114          register_subpage(fv, &now);
1115          if (int128_eq(remain.size, now.size)) {
1116              return;
1117          }
1118          remain.size = int128_sub(remain.size, now.size);
1119          remain.offset_within_address_space += int128_get64(now.size);
1120          remain.offset_within_region += int128_get64(now.size);
1121      }
1122  
1123      /* register whole pages */
1124      if (int128_ge(remain.size, page_size)) {
1125          MemoryRegionSection now = remain;
1126          now.size = int128_and(now.size, int128_neg(page_size));
1127          register_multipage(fv, &now);
1128          if (int128_eq(remain.size, now.size)) {
1129              return;
1130          }
1131          remain.size = int128_sub(remain.size, now.size);
1132          remain.offset_within_address_space += int128_get64(now.size);
1133          remain.offset_within_region += int128_get64(now.size);
1134      }
1135  
1136      /* register last subpage */
1137      register_subpage(fv, &remain);
1138  }
1139  
qemu_flush_coalesced_mmio_buffer(void)1140  void qemu_flush_coalesced_mmio_buffer(void)
1141  {
1142      if (kvm_enabled())
1143          kvm_flush_coalesced_mmio_buffer();
1144  }
1145  
qemu_mutex_lock_ramlist(void)1146  void qemu_mutex_lock_ramlist(void)
1147  {
1148      qemu_mutex_lock(&ram_list.mutex);
1149  }
1150  
qemu_mutex_unlock_ramlist(void)1151  void qemu_mutex_unlock_ramlist(void)
1152  {
1153      qemu_mutex_unlock(&ram_list.mutex);
1154  }
1155  
ram_block_format(void)1156  GString *ram_block_format(void)
1157  {
1158      RAMBlock *block;
1159      char *psize;
1160      GString *buf = g_string_new("");
1161  
1162      RCU_READ_LOCK_GUARD();
1163      g_string_append_printf(buf, "%24s %8s  %18s %18s %18s %18s %3s\n",
1164                             "Block Name", "PSize", "Offset", "Used", "Total",
1165                             "HVA", "RO");
1166  
1167      RAMBLOCK_FOREACH(block) {
1168          psize = size_to_str(block->page_size);
1169          g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1170                                 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1171                                 block->idstr, psize,
1172                                 (uint64_t)block->offset,
1173                                 (uint64_t)block->used_length,
1174                                 (uint64_t)block->max_length,
1175                                 (uint64_t)(uintptr_t)block->host,
1176                                 block->mr->readonly ? "ro" : "rw");
1177  
1178          g_free(psize);
1179      }
1180  
1181      return buf;
1182  }
1183  
find_min_backend_pagesize(Object * obj,void * opaque)1184  static int find_min_backend_pagesize(Object *obj, void *opaque)
1185  {
1186      long *hpsize_min = opaque;
1187  
1188      if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1189          HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1190          long hpsize = host_memory_backend_pagesize(backend);
1191  
1192          if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1193              *hpsize_min = hpsize;
1194          }
1195      }
1196  
1197      return 0;
1198  }
1199  
find_max_backend_pagesize(Object * obj,void * opaque)1200  static int find_max_backend_pagesize(Object *obj, void *opaque)
1201  {
1202      long *hpsize_max = opaque;
1203  
1204      if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1205          HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1206          long hpsize = host_memory_backend_pagesize(backend);
1207  
1208          if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1209              *hpsize_max = hpsize;
1210          }
1211      }
1212  
1213      return 0;
1214  }
1215  
1216  /*
1217   * TODO: We assume right now that all mapped host memory backends are
1218   * used as RAM, however some might be used for different purposes.
1219   */
qemu_minrampagesize(void)1220  long qemu_minrampagesize(void)
1221  {
1222      long hpsize = LONG_MAX;
1223      Object *memdev_root = object_resolve_path("/objects", NULL);
1224  
1225      object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1226      return hpsize;
1227  }
1228  
qemu_maxrampagesize(void)1229  long qemu_maxrampagesize(void)
1230  {
1231      long pagesize = 0;
1232      Object *memdev_root = object_resolve_path("/objects", NULL);
1233  
1234      object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1235      return pagesize;
1236  }
1237  
1238  #ifdef CONFIG_POSIX
get_file_size(int fd)1239  static int64_t get_file_size(int fd)
1240  {
1241      int64_t size;
1242  #if defined(__linux__)
1243      struct stat st;
1244  
1245      if (fstat(fd, &st) < 0) {
1246          return -errno;
1247      }
1248  
1249      /* Special handling for devdax character devices */
1250      if (S_ISCHR(st.st_mode)) {
1251          g_autofree char *subsystem_path = NULL;
1252          g_autofree char *subsystem = NULL;
1253  
1254          subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1255                                           major(st.st_rdev), minor(st.st_rdev));
1256          subsystem = g_file_read_link(subsystem_path, NULL);
1257  
1258          if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1259              g_autofree char *size_path = NULL;
1260              g_autofree char *size_str = NULL;
1261  
1262              size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1263                                      major(st.st_rdev), minor(st.st_rdev));
1264  
1265              if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1266                  return g_ascii_strtoll(size_str, NULL, 0);
1267              }
1268          }
1269      }
1270  #endif /* defined(__linux__) */
1271  
1272      /* st.st_size may be zero for special files yet lseek(2) works */
1273      size = lseek(fd, 0, SEEK_END);
1274      if (size < 0) {
1275          return -errno;
1276      }
1277      return size;
1278  }
1279  
get_file_align(int fd)1280  static int64_t get_file_align(int fd)
1281  {
1282      int64_t align = -1;
1283  #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1284      struct stat st;
1285  
1286      if (fstat(fd, &st) < 0) {
1287          return -errno;
1288      }
1289  
1290      /* Special handling for devdax character devices */
1291      if (S_ISCHR(st.st_mode)) {
1292          g_autofree char *path = NULL;
1293          g_autofree char *rpath = NULL;
1294          struct daxctl_ctx *ctx;
1295          struct daxctl_region *region;
1296          int rc = 0;
1297  
1298          path = g_strdup_printf("/sys/dev/char/%d:%d",
1299                      major(st.st_rdev), minor(st.st_rdev));
1300          rpath = realpath(path, NULL);
1301          if (!rpath) {
1302              return -errno;
1303          }
1304  
1305          rc = daxctl_new(&ctx);
1306          if (rc) {
1307              return -1;
1308          }
1309  
1310          daxctl_region_foreach(ctx, region) {
1311              if (strstr(rpath, daxctl_region_get_path(region))) {
1312                  align = daxctl_region_get_align(region);
1313                  break;
1314              }
1315          }
1316          daxctl_unref(ctx);
1317      }
1318  #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1319  
1320      return align;
1321  }
1322  
file_ram_open(const char * path,const char * region_name,bool readonly,bool * created)1323  static int file_ram_open(const char *path,
1324                           const char *region_name,
1325                           bool readonly,
1326                           bool *created)
1327  {
1328      char *filename;
1329      char *sanitized_name;
1330      char *c;
1331      int fd = -1;
1332  
1333      *created = false;
1334      for (;;) {
1335          fd = open(path, readonly ? O_RDONLY : O_RDWR);
1336          if (fd >= 0) {
1337              /*
1338               * open(O_RDONLY) won't fail with EISDIR. Check manually if we
1339               * opened a directory and fail similarly to how we fail ENOENT
1340               * in readonly mode. Note that mkstemp() would imply O_RDWR.
1341               */
1342              if (readonly) {
1343                  struct stat file_stat;
1344  
1345                  if (fstat(fd, &file_stat)) {
1346                      close(fd);
1347                      if (errno == EINTR) {
1348                          continue;
1349                      }
1350                      return -errno;
1351                  } else if (S_ISDIR(file_stat.st_mode)) {
1352                      close(fd);
1353                      return -EISDIR;
1354                  }
1355              }
1356              /* @path names an existing file, use it */
1357              break;
1358          }
1359          if (errno == ENOENT) {
1360              if (readonly) {
1361                  /* Refuse to create new, readonly files. */
1362                  return -ENOENT;
1363              }
1364              /* @path names a file that doesn't exist, create it */
1365              fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1366              if (fd >= 0) {
1367                  *created = true;
1368                  break;
1369              }
1370          } else if (errno == EISDIR) {
1371              /* @path names a directory, create a file there */
1372              /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1373              sanitized_name = g_strdup(region_name);
1374              for (c = sanitized_name; *c != '\0'; c++) {
1375                  if (*c == '/') {
1376                      *c = '_';
1377                  }
1378              }
1379  
1380              filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1381                                         sanitized_name);
1382              g_free(sanitized_name);
1383  
1384              fd = mkstemp(filename);
1385              if (fd >= 0) {
1386                  unlink(filename);
1387                  g_free(filename);
1388                  break;
1389              }
1390              g_free(filename);
1391          }
1392          if (errno != EEXIST && errno != EINTR) {
1393              return -errno;
1394          }
1395          /*
1396           * Try again on EINTR and EEXIST.  The latter happens when
1397           * something else creates the file between our two open().
1398           */
1399      }
1400  
1401      return fd;
1402  }
1403  
file_ram_alloc(RAMBlock * block,ram_addr_t memory,int fd,bool truncate,off_t offset,Error ** errp)1404  static void *file_ram_alloc(RAMBlock *block,
1405                              ram_addr_t memory,
1406                              int fd,
1407                              bool truncate,
1408                              off_t offset,
1409                              Error **errp)
1410  {
1411      uint32_t qemu_map_flags;
1412      void *area;
1413  
1414      block->page_size = qemu_fd_getpagesize(fd);
1415      if (block->mr->align % block->page_size) {
1416          error_setg(errp, "alignment 0x%" PRIx64
1417                     " must be multiples of page size 0x%zx",
1418                     block->mr->align, block->page_size);
1419          return NULL;
1420      } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1421          error_setg(errp, "alignment 0x%" PRIx64
1422                     " must be a power of two", block->mr->align);
1423          return NULL;
1424      } else if (offset % block->page_size) {
1425          error_setg(errp, "offset 0x%" PRIx64
1426                     " must be multiples of page size 0x%zx",
1427                     offset, block->page_size);
1428          return NULL;
1429      }
1430      block->mr->align = MAX(block->page_size, block->mr->align);
1431  #if defined(__s390x__)
1432      if (kvm_enabled()) {
1433          block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1434      }
1435  #endif
1436  
1437      if (memory < block->page_size) {
1438          error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1439                     "or larger than page size 0x%zx",
1440                     memory, block->page_size);
1441          return NULL;
1442      }
1443  
1444      memory = ROUND_UP(memory, block->page_size);
1445  
1446      /*
1447       * ftruncate is not supported by hugetlbfs in older
1448       * hosts, so don't bother bailing out on errors.
1449       * If anything goes wrong with it under other filesystems,
1450       * mmap will fail.
1451       *
1452       * Do not truncate the non-empty backend file to avoid corrupting
1453       * the existing data in the file. Disabling shrinking is not
1454       * enough. For example, the current vNVDIMM implementation stores
1455       * the guest NVDIMM labels at the end of the backend file. If the
1456       * backend file is later extended, QEMU will not be able to find
1457       * those labels. Therefore, extending the non-empty backend file
1458       * is disabled as well.
1459       */
1460      if (truncate && ftruncate(fd, offset + memory)) {
1461          perror("ftruncate");
1462      }
1463  
1464      qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1465      qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1466      qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1467      qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1468      area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1469      if (area == MAP_FAILED) {
1470          error_setg_errno(errp, errno,
1471                           "unable to map backing store for guest RAM");
1472          return NULL;
1473      }
1474  
1475      block->fd = fd;
1476      block->fd_offset = offset;
1477      return area;
1478  }
1479  #endif
1480  
1481  /* Allocate space within the ram_addr_t space that governs the
1482   * dirty bitmaps.
1483   * Called with the ramlist lock held.
1484   */
find_ram_offset(ram_addr_t size)1485  static ram_addr_t find_ram_offset(ram_addr_t size)
1486  {
1487      RAMBlock *block, *next_block;
1488      ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1489  
1490      assert(size != 0); /* it would hand out same offset multiple times */
1491  
1492      if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1493          return 0;
1494      }
1495  
1496      RAMBLOCK_FOREACH(block) {
1497          ram_addr_t candidate, next = RAM_ADDR_MAX;
1498  
1499          /* Align blocks to start on a 'long' in the bitmap
1500           * which makes the bitmap sync'ing take the fast path.
1501           */
1502          candidate = block->offset + block->max_length;
1503          candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1504  
1505          /* Search for the closest following block
1506           * and find the gap.
1507           */
1508          RAMBLOCK_FOREACH(next_block) {
1509              if (next_block->offset >= candidate) {
1510                  next = MIN(next, next_block->offset);
1511              }
1512          }
1513  
1514          /* If it fits remember our place and remember the size
1515           * of gap, but keep going so that we might find a smaller
1516           * gap to fill so avoiding fragmentation.
1517           */
1518          if (next - candidate >= size && next - candidate < mingap) {
1519              offset = candidate;
1520              mingap = next - candidate;
1521          }
1522  
1523          trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1524      }
1525  
1526      if (offset == RAM_ADDR_MAX) {
1527          fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1528                  (uint64_t)size);
1529          abort();
1530      }
1531  
1532      trace_find_ram_offset(size, offset);
1533  
1534      return offset;
1535  }
1536  
qemu_ram_setup_dump(void * addr,ram_addr_t size)1537  static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1538  {
1539      int ret;
1540  
1541      /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1542      if (!machine_dump_guest_core(current_machine)) {
1543          ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1544          if (ret) {
1545              perror("qemu_madvise");
1546              fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1547                              "but dump-guest-core=off specified\n");
1548          }
1549      }
1550  }
1551  
qemu_ram_get_idstr(RAMBlock * rb)1552  const char *qemu_ram_get_idstr(RAMBlock *rb)
1553  {
1554      return rb->idstr;
1555  }
1556  
qemu_ram_get_host_addr(RAMBlock * rb)1557  void *qemu_ram_get_host_addr(RAMBlock *rb)
1558  {
1559      return rb->host;
1560  }
1561  
qemu_ram_get_offset(RAMBlock * rb)1562  ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1563  {
1564      return rb->offset;
1565  }
1566  
qemu_ram_get_used_length(RAMBlock * rb)1567  ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1568  {
1569      return rb->used_length;
1570  }
1571  
qemu_ram_get_max_length(RAMBlock * rb)1572  ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1573  {
1574      return rb->max_length;
1575  }
1576  
qemu_ram_is_shared(RAMBlock * rb)1577  bool qemu_ram_is_shared(RAMBlock *rb)
1578  {
1579      return rb->flags & RAM_SHARED;
1580  }
1581  
qemu_ram_is_noreserve(RAMBlock * rb)1582  bool qemu_ram_is_noreserve(RAMBlock *rb)
1583  {
1584      return rb->flags & RAM_NORESERVE;
1585  }
1586  
1587  /* Note: Only set at the start of postcopy */
qemu_ram_is_uf_zeroable(RAMBlock * rb)1588  bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1589  {
1590      return rb->flags & RAM_UF_ZEROPAGE;
1591  }
1592  
qemu_ram_set_uf_zeroable(RAMBlock * rb)1593  void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1594  {
1595      rb->flags |= RAM_UF_ZEROPAGE;
1596  }
1597  
qemu_ram_is_migratable(RAMBlock * rb)1598  bool qemu_ram_is_migratable(RAMBlock *rb)
1599  {
1600      return rb->flags & RAM_MIGRATABLE;
1601  }
1602  
qemu_ram_set_migratable(RAMBlock * rb)1603  void qemu_ram_set_migratable(RAMBlock *rb)
1604  {
1605      rb->flags |= RAM_MIGRATABLE;
1606  }
1607  
qemu_ram_unset_migratable(RAMBlock * rb)1608  void qemu_ram_unset_migratable(RAMBlock *rb)
1609  {
1610      rb->flags &= ~RAM_MIGRATABLE;
1611  }
1612  
qemu_ram_is_named_file(RAMBlock * rb)1613  bool qemu_ram_is_named_file(RAMBlock *rb)
1614  {
1615      return rb->flags & RAM_NAMED_FILE;
1616  }
1617  
qemu_ram_get_fd(RAMBlock * rb)1618  int qemu_ram_get_fd(RAMBlock *rb)
1619  {
1620      return rb->fd;
1621  }
1622  
1623  /* Called with the BQL held.  */
qemu_ram_set_idstr(RAMBlock * new_block,const char * name,DeviceState * dev)1624  void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1625  {
1626      RAMBlock *block;
1627  
1628      assert(new_block);
1629      assert(!new_block->idstr[0]);
1630  
1631      if (dev) {
1632          char *id = qdev_get_dev_path(dev);
1633          if (id) {
1634              snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1635              g_free(id);
1636          }
1637      }
1638      pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1639  
1640      RCU_READ_LOCK_GUARD();
1641      RAMBLOCK_FOREACH(block) {
1642          if (block != new_block &&
1643              !strcmp(block->idstr, new_block->idstr)) {
1644              fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1645                      new_block->idstr);
1646              abort();
1647          }
1648      }
1649  }
1650  
1651  /* Called with the BQL held.  */
qemu_ram_unset_idstr(RAMBlock * block)1652  void qemu_ram_unset_idstr(RAMBlock *block)
1653  {
1654      /* FIXME: arch_init.c assumes that this is not called throughout
1655       * migration.  Ignore the problem since hot-unplug during migration
1656       * does not work anyway.
1657       */
1658      if (block) {
1659          memset(block->idstr, 0, sizeof(block->idstr));
1660      }
1661  }
1662  
qemu_ram_pagesize(RAMBlock * rb)1663  size_t qemu_ram_pagesize(RAMBlock *rb)
1664  {
1665      return rb->page_size;
1666  }
1667  
1668  /* Returns the largest size of page in use */
qemu_ram_pagesize_largest(void)1669  size_t qemu_ram_pagesize_largest(void)
1670  {
1671      RAMBlock *block;
1672      size_t largest = 0;
1673  
1674      RAMBLOCK_FOREACH(block) {
1675          largest = MAX(largest, qemu_ram_pagesize(block));
1676      }
1677  
1678      return largest;
1679  }
1680  
memory_try_enable_merging(void * addr,size_t len)1681  static int memory_try_enable_merging(void *addr, size_t len)
1682  {
1683      if (!machine_mem_merge(current_machine)) {
1684          /* disabled by the user */
1685          return 0;
1686      }
1687  
1688      return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1689  }
1690  
1691  /*
1692   * Resizing RAM while migrating can result in the migration being canceled.
1693   * Care has to be taken if the guest might have already detected the memory.
1694   *
1695   * As memory core doesn't know how is memory accessed, it is up to
1696   * resize callback to update device state and/or add assertions to detect
1697   * misuse, if necessary.
1698   */
qemu_ram_resize(RAMBlock * block,ram_addr_t newsize,Error ** errp)1699  int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1700  {
1701      const ram_addr_t oldsize = block->used_length;
1702      const ram_addr_t unaligned_size = newsize;
1703  
1704      assert(block);
1705  
1706      newsize = TARGET_PAGE_ALIGN(newsize);
1707      newsize = REAL_HOST_PAGE_ALIGN(newsize);
1708  
1709      if (block->used_length == newsize) {
1710          /*
1711           * We don't have to resize the ram block (which only knows aligned
1712           * sizes), however, we have to notify if the unaligned size changed.
1713           */
1714          if (unaligned_size != memory_region_size(block->mr)) {
1715              memory_region_set_size(block->mr, unaligned_size);
1716              if (block->resized) {
1717                  block->resized(block->idstr, unaligned_size, block->host);
1718              }
1719          }
1720          return 0;
1721      }
1722  
1723      if (!(block->flags & RAM_RESIZEABLE)) {
1724          error_setg_errno(errp, EINVAL,
1725                           "Size mismatch: %s: 0x" RAM_ADDR_FMT
1726                           " != 0x" RAM_ADDR_FMT, block->idstr,
1727                           newsize, block->used_length);
1728          return -EINVAL;
1729      }
1730  
1731      if (block->max_length < newsize) {
1732          error_setg_errno(errp, EINVAL,
1733                           "Size too large: %s: 0x" RAM_ADDR_FMT
1734                           " > 0x" RAM_ADDR_FMT, block->idstr,
1735                           newsize, block->max_length);
1736          return -EINVAL;
1737      }
1738  
1739      /* Notify before modifying the ram block and touching the bitmaps. */
1740      if (block->host) {
1741          ram_block_notify_resize(block->host, oldsize, newsize);
1742      }
1743  
1744      cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1745      block->used_length = newsize;
1746      cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1747                                          DIRTY_CLIENTS_ALL);
1748      memory_region_set_size(block->mr, unaligned_size);
1749      if (block->resized) {
1750          block->resized(block->idstr, unaligned_size, block->host);
1751      }
1752      return 0;
1753  }
1754  
1755  /*
1756   * Trigger sync on the given ram block for range [start, start + length]
1757   * with the backing store if one is available.
1758   * Otherwise no-op.
1759   * @Note: this is supposed to be a synchronous op.
1760   */
qemu_ram_msync(RAMBlock * block,ram_addr_t start,ram_addr_t length)1761  void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1762  {
1763      /* The requested range should fit in within the block range */
1764      g_assert((start + length) <= block->used_length);
1765  
1766  #ifdef CONFIG_LIBPMEM
1767      /* The lack of support for pmem should not block the sync */
1768      if (ramblock_is_pmem(block)) {
1769          void *addr = ramblock_ptr(block, start);
1770          pmem_persist(addr, length);
1771          return;
1772      }
1773  #endif
1774      if (block->fd >= 0) {
1775          /**
1776           * Case there is no support for PMEM or the memory has not been
1777           * specified as persistent (or is not one) - use the msync.
1778           * Less optimal but still achieves the same goal
1779           */
1780          void *addr = ramblock_ptr(block, start);
1781          if (qemu_msync(addr, length, block->fd)) {
1782              warn_report("%s: failed to sync memory range: start: "
1783                      RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1784                      __func__, start, length);
1785          }
1786      }
1787  }
1788  
1789  /* Called with ram_list.mutex held */
dirty_memory_extend(ram_addr_t new_ram_size)1790  static void dirty_memory_extend(ram_addr_t new_ram_size)
1791  {
1792      unsigned int old_num_blocks = ram_list.num_dirty_blocks;
1793      unsigned int new_num_blocks = DIV_ROUND_UP(new_ram_size,
1794                                                 DIRTY_MEMORY_BLOCK_SIZE);
1795      int i;
1796  
1797      /* Only need to extend if block count increased */
1798      if (new_num_blocks <= old_num_blocks) {
1799          return;
1800      }
1801  
1802      for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1803          DirtyMemoryBlocks *old_blocks;
1804          DirtyMemoryBlocks *new_blocks;
1805          int j;
1806  
1807          old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1808          new_blocks = g_malloc(sizeof(*new_blocks) +
1809                                sizeof(new_blocks->blocks[0]) * new_num_blocks);
1810  
1811          if (old_num_blocks) {
1812              memcpy(new_blocks->blocks, old_blocks->blocks,
1813                     old_num_blocks * sizeof(old_blocks->blocks[0]));
1814          }
1815  
1816          for (j = old_num_blocks; j < new_num_blocks; j++) {
1817              new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1818          }
1819  
1820          qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1821  
1822          if (old_blocks) {
1823              g_free_rcu(old_blocks, rcu);
1824          }
1825      }
1826  
1827      ram_list.num_dirty_blocks = new_num_blocks;
1828  }
1829  
ram_block_add(RAMBlock * new_block,Error ** errp)1830  static void ram_block_add(RAMBlock *new_block, Error **errp)
1831  {
1832      const bool noreserve = qemu_ram_is_noreserve(new_block);
1833      const bool shared = qemu_ram_is_shared(new_block);
1834      RAMBlock *block;
1835      RAMBlock *last_block = NULL;
1836      bool free_on_error = false;
1837      ram_addr_t ram_size;
1838      Error *err = NULL;
1839  
1840      qemu_mutex_lock_ramlist();
1841      new_block->offset = find_ram_offset(new_block->max_length);
1842  
1843      if (!new_block->host) {
1844          if (xen_enabled()) {
1845              xen_ram_alloc(new_block->offset, new_block->max_length,
1846                            new_block->mr, &err);
1847              if (err) {
1848                  error_propagate(errp, err);
1849                  qemu_mutex_unlock_ramlist();
1850                  return;
1851              }
1852          } else {
1853              new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1854                                                    &new_block->mr->align,
1855                                                    shared, noreserve);
1856              if (!new_block->host) {
1857                  error_setg_errno(errp, errno,
1858                                   "cannot set up guest memory '%s'",
1859                                   memory_region_name(new_block->mr));
1860                  qemu_mutex_unlock_ramlist();
1861                  return;
1862              }
1863              memory_try_enable_merging(new_block->host, new_block->max_length);
1864              free_on_error = true;
1865          }
1866      }
1867  
1868      if (new_block->flags & RAM_GUEST_MEMFD) {
1869          int ret;
1870  
1871          assert(kvm_enabled());
1872          assert(new_block->guest_memfd < 0);
1873  
1874          ret = ram_block_discard_require(true);
1875          if (ret < 0) {
1876              error_setg_errno(errp, -ret,
1877                               "cannot set up private guest memory: discard currently blocked");
1878              error_append_hint(errp, "Are you using assigned devices?\n");
1879              goto out_free;
1880          }
1881  
1882          new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length,
1883                                                          0, errp);
1884          if (new_block->guest_memfd < 0) {
1885              qemu_mutex_unlock_ramlist();
1886              goto out_free;
1887          }
1888      }
1889  
1890      ram_size = (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS;
1891      dirty_memory_extend(ram_size);
1892      /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
1893       * QLIST (which has an RCU-friendly variant) does not have insertion at
1894       * tail, so save the last element in last_block.
1895       */
1896      RAMBLOCK_FOREACH(block) {
1897          last_block = block;
1898          if (block->max_length < new_block->max_length) {
1899              break;
1900          }
1901      }
1902      if (block) {
1903          QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1904      } else if (last_block) {
1905          QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1906      } else { /* list is empty */
1907          QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1908      }
1909      ram_list.mru_block = NULL;
1910  
1911      /* Write list before version */
1912      smp_wmb();
1913      ram_list.version++;
1914      qemu_mutex_unlock_ramlist();
1915  
1916      cpu_physical_memory_set_dirty_range(new_block->offset,
1917                                          new_block->used_length,
1918                                          DIRTY_CLIENTS_ALL);
1919  
1920      if (new_block->host) {
1921          qemu_ram_setup_dump(new_block->host, new_block->max_length);
1922          qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1923          /*
1924           * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1925           * Configure it unless the machine is a qtest server, in which case
1926           * KVM is not used and it may be forked (eg for fuzzing purposes).
1927           */
1928          if (!qtest_enabled()) {
1929              qemu_madvise(new_block->host, new_block->max_length,
1930                           QEMU_MADV_DONTFORK);
1931          }
1932          ram_block_notify_add(new_block->host, new_block->used_length,
1933                               new_block->max_length);
1934      }
1935      return;
1936  
1937  out_free:
1938      if (free_on_error) {
1939          qemu_anon_ram_free(new_block->host, new_block->max_length);
1940          new_block->host = NULL;
1941      }
1942  }
1943  
1944  #ifdef CONFIG_POSIX
qemu_ram_alloc_from_fd(ram_addr_t size,MemoryRegion * mr,uint32_t ram_flags,int fd,off_t offset,Error ** errp)1945  RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1946                                   uint32_t ram_flags, int fd, off_t offset,
1947                                   Error **errp)
1948  {
1949      RAMBlock *new_block;
1950      Error *local_err = NULL;
1951      int64_t file_size, file_align;
1952  
1953      /* Just support these ram flags by now. */
1954      assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1955                            RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
1956                            RAM_READONLY_FD | RAM_GUEST_MEMFD)) == 0);
1957  
1958      if (xen_enabled()) {
1959          error_setg(errp, "-mem-path not supported with Xen");
1960          return NULL;
1961      }
1962  
1963      if (kvm_enabled() && !kvm_has_sync_mmu()) {
1964          error_setg(errp,
1965                     "host lacks kvm mmu notifiers, -mem-path unsupported");
1966          return NULL;
1967      }
1968  
1969      size = TARGET_PAGE_ALIGN(size);
1970      size = REAL_HOST_PAGE_ALIGN(size);
1971  
1972      file_size = get_file_size(fd);
1973      if (file_size && file_size < offset + size) {
1974          error_setg(errp, "%s backing store size 0x%" PRIx64
1975                     " is too small for 'size' option 0x" RAM_ADDR_FMT
1976                     " plus 'offset' option 0x%" PRIx64,
1977                     memory_region_name(mr), file_size, size,
1978                     (uint64_t)offset);
1979          return NULL;
1980      }
1981  
1982      file_align = get_file_align(fd);
1983      if (file_align > 0 && file_align > mr->align) {
1984          error_setg(errp, "backing store align 0x%" PRIx64
1985                     " is larger than 'align' option 0x%" PRIx64,
1986                     file_align, mr->align);
1987          return NULL;
1988      }
1989  
1990      new_block = g_malloc0(sizeof(*new_block));
1991      new_block->mr = mr;
1992      new_block->used_length = size;
1993      new_block->max_length = size;
1994      new_block->flags = ram_flags;
1995      new_block->guest_memfd = -1;
1996      new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset,
1997                                       errp);
1998      if (!new_block->host) {
1999          g_free(new_block);
2000          return NULL;
2001      }
2002  
2003      ram_block_add(new_block, &local_err);
2004      if (local_err) {
2005          g_free(new_block);
2006          error_propagate(errp, local_err);
2007          return NULL;
2008      }
2009      return new_block;
2010  
2011  }
2012  
2013  
qemu_ram_alloc_from_file(ram_addr_t size,MemoryRegion * mr,uint32_t ram_flags,const char * mem_path,off_t offset,Error ** errp)2014  RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2015                                     uint32_t ram_flags, const char *mem_path,
2016                                     off_t offset, Error **errp)
2017  {
2018      int fd;
2019      bool created;
2020      RAMBlock *block;
2021  
2022      fd = file_ram_open(mem_path, memory_region_name(mr),
2023                         !!(ram_flags & RAM_READONLY_FD), &created);
2024      if (fd < 0) {
2025          error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
2026                           mem_path);
2027          if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
2028              fd == -EACCES) {
2029              /*
2030               * If we can open the file R/O (note: will never create a new file)
2031               * and we are dealing with a private mapping, there are still ways
2032               * to consume such files and get RAM instead of ROM.
2033               */
2034              fd = file_ram_open(mem_path, memory_region_name(mr), true,
2035                                 &created);
2036              if (fd < 0) {
2037                  return NULL;
2038              }
2039              assert(!created);
2040              close(fd);
2041              error_append_hint(errp, "Consider opening the backing store"
2042                  " read-only but still creating writable RAM using"
2043                  " '-object memory-backend-file,readonly=on,rom=off...'"
2044                  " (see \"VM templating\" documentation)\n");
2045          }
2046          return NULL;
2047      }
2048  
2049      block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp);
2050      if (!block) {
2051          if (created) {
2052              unlink(mem_path);
2053          }
2054          close(fd);
2055          return NULL;
2056      }
2057  
2058      return block;
2059  }
2060  #endif
2061  
2062  static
qemu_ram_alloc_internal(ram_addr_t size,ram_addr_t max_size,void (* resized)(const char *,uint64_t length,void * host),void * host,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2063  RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2064                                    void (*resized)(const char*,
2065                                                    uint64_t length,
2066                                                    void *host),
2067                                    void *host, uint32_t ram_flags,
2068                                    MemoryRegion *mr, Error **errp)
2069  {
2070      RAMBlock *new_block;
2071      Error *local_err = NULL;
2072      int align;
2073  
2074      assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2075                            RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2076      assert(!host ^ (ram_flags & RAM_PREALLOC));
2077  
2078      align = qemu_real_host_page_size();
2079      align = MAX(align, TARGET_PAGE_SIZE);
2080      size = ROUND_UP(size, align);
2081      max_size = ROUND_UP(max_size, align);
2082  
2083      new_block = g_malloc0(sizeof(*new_block));
2084      new_block->mr = mr;
2085      new_block->resized = resized;
2086      new_block->used_length = size;
2087      new_block->max_length = max_size;
2088      assert(max_size >= size);
2089      new_block->fd = -1;
2090      new_block->guest_memfd = -1;
2091      new_block->page_size = qemu_real_host_page_size();
2092      new_block->host = host;
2093      new_block->flags = ram_flags;
2094      ram_block_add(new_block, &local_err);
2095      if (local_err) {
2096          g_free(new_block);
2097          error_propagate(errp, local_err);
2098          return NULL;
2099      }
2100      return new_block;
2101  }
2102  
qemu_ram_alloc_from_ptr(ram_addr_t size,void * host,MemoryRegion * mr,Error ** errp)2103  RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2104                                     MemoryRegion *mr, Error **errp)
2105  {
2106      return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2107                                     errp);
2108  }
2109  
qemu_ram_alloc(ram_addr_t size,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2110  RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2111                           MemoryRegion *mr, Error **errp)
2112  {
2113      assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2114      return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2115  }
2116  
qemu_ram_alloc_resizeable(ram_addr_t size,ram_addr_t maxsz,void (* resized)(const char *,uint64_t length,void * host),MemoryRegion * mr,Error ** errp)2117  RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2118                                       void (*resized)(const char*,
2119                                                       uint64_t length,
2120                                                       void *host),
2121                                       MemoryRegion *mr, Error **errp)
2122  {
2123      return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2124                                     RAM_RESIZEABLE, mr, errp);
2125  }
2126  
reclaim_ramblock(RAMBlock * block)2127  static void reclaim_ramblock(RAMBlock *block)
2128  {
2129      if (block->flags & RAM_PREALLOC) {
2130          ;
2131      } else if (xen_enabled()) {
2132          xen_invalidate_map_cache_entry(block->host);
2133  #ifndef _WIN32
2134      } else if (block->fd >= 0) {
2135          qemu_ram_munmap(block->fd, block->host, block->max_length);
2136          close(block->fd);
2137  #endif
2138      } else {
2139          qemu_anon_ram_free(block->host, block->max_length);
2140      }
2141  
2142      if (block->guest_memfd >= 0) {
2143          close(block->guest_memfd);
2144          ram_block_discard_require(false);
2145      }
2146  
2147      g_free(block);
2148  }
2149  
qemu_ram_free(RAMBlock * block)2150  void qemu_ram_free(RAMBlock *block)
2151  {
2152      if (!block) {
2153          return;
2154      }
2155  
2156      if (block->host) {
2157          ram_block_notify_remove(block->host, block->used_length,
2158                                  block->max_length);
2159      }
2160  
2161      qemu_mutex_lock_ramlist();
2162      QLIST_REMOVE_RCU(block, next);
2163      ram_list.mru_block = NULL;
2164      /* Write list before version */
2165      smp_wmb();
2166      ram_list.version++;
2167      call_rcu(block, reclaim_ramblock, rcu);
2168      qemu_mutex_unlock_ramlist();
2169  }
2170  
2171  #ifndef _WIN32
qemu_ram_remap(ram_addr_t addr,ram_addr_t length)2172  void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2173  {
2174      RAMBlock *block;
2175      ram_addr_t offset;
2176      int flags;
2177      void *area, *vaddr;
2178      int prot;
2179  
2180      RAMBLOCK_FOREACH(block) {
2181          offset = addr - block->offset;
2182          if (offset < block->max_length) {
2183              vaddr = ramblock_ptr(block, offset);
2184              if (block->flags & RAM_PREALLOC) {
2185                  ;
2186              } else if (xen_enabled()) {
2187                  abort();
2188              } else {
2189                  flags = MAP_FIXED;
2190                  flags |= block->flags & RAM_SHARED ?
2191                           MAP_SHARED : MAP_PRIVATE;
2192                  flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2193                  prot = PROT_READ;
2194                  prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2195                  if (block->fd >= 0) {
2196                      area = mmap(vaddr, length, prot, flags, block->fd,
2197                                  offset + block->fd_offset);
2198                  } else {
2199                      flags |= MAP_ANONYMOUS;
2200                      area = mmap(vaddr, length, prot, flags, -1, 0);
2201                  }
2202                  if (area != vaddr) {
2203                      error_report("Could not remap addr: "
2204                                   RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2205                                   length, addr);
2206                      exit(1);
2207                  }
2208                  memory_try_enable_merging(vaddr, length);
2209                  qemu_ram_setup_dump(vaddr, length);
2210              }
2211          }
2212      }
2213  }
2214  #endif /* !_WIN32 */
2215  
2216  /*
2217   * Return a host pointer to guest's ram.
2218   * For Xen, foreign mappings get created if they don't already exist.
2219   *
2220   * @block: block for the RAM to lookup (optional and may be NULL).
2221   * @addr: address within the memory region.
2222   * @size: pointer to requested size (optional and may be NULL).
2223   *        size may get modified and return a value smaller than
2224   *        what was requested.
2225   * @lock: wether to lock the mapping in xen-mapcache until invalidated.
2226   * @is_write: hint wether to map RW or RO in the xen-mapcache.
2227   *            (optional and may always be set to true).
2228   *
2229   * Called within RCU critical section.
2230   */
qemu_ram_ptr_length(RAMBlock * block,ram_addr_t addr,hwaddr * size,bool lock,bool is_write)2231  static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr,
2232                                   hwaddr *size, bool lock,
2233                                   bool is_write)
2234  {
2235      hwaddr len = 0;
2236  
2237      if (size && *size == 0) {
2238          return NULL;
2239      }
2240  
2241      if (block == NULL) {
2242          block = qemu_get_ram_block(addr);
2243          addr -= block->offset;
2244      }
2245      if (size) {
2246          *size = MIN(*size, block->max_length - addr);
2247          len = *size;
2248      }
2249  
2250      if (xen_enabled() && block->host == NULL) {
2251          /* We need to check if the requested address is in the RAM
2252           * because we don't want to map the entire memory in QEMU.
2253           * In that case just map the requested area.
2254           */
2255          if (xen_mr_is_memory(block->mr)) {
2256              return xen_map_cache(block->mr, block->offset + addr,
2257                                   len, block->offset,
2258                                   lock, lock, is_write);
2259          }
2260  
2261          block->host = xen_map_cache(block->mr, block->offset,
2262                                      block->max_length,
2263                                      block->offset,
2264                                      1, lock, is_write);
2265      }
2266  
2267      return ramblock_ptr(block, addr);
2268  }
2269  
2270  /*
2271   * Return a host pointer to ram allocated with qemu_ram_alloc.
2272   * This should not be used for general purpose DMA.  Use address_space_map
2273   * or address_space_rw instead. For local memory (e.g. video ram) that the
2274   * device owns, use memory_region_get_ram_ptr.
2275   *
2276   * Called within RCU critical section.
2277   */
qemu_map_ram_ptr(RAMBlock * ram_block,ram_addr_t addr)2278  void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2279  {
2280      return qemu_ram_ptr_length(ram_block, addr, NULL, false, true);
2281  }
2282  
2283  /* Return the offset of a hostpointer within a ramblock */
qemu_ram_block_host_offset(RAMBlock * rb,void * host)2284  ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2285  {
2286      ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2287      assert((uintptr_t)host >= (uintptr_t)rb->host);
2288      assert(res < rb->max_length);
2289  
2290      return res;
2291  }
2292  
qemu_ram_block_from_host(void * ptr,bool round_offset,ram_addr_t * offset)2293  RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2294                                     ram_addr_t *offset)
2295  {
2296      RAMBlock *block;
2297      uint8_t *host = ptr;
2298  
2299      if (xen_enabled()) {
2300          ram_addr_t ram_addr;
2301          RCU_READ_LOCK_GUARD();
2302          ram_addr = xen_ram_addr_from_mapcache(ptr);
2303          if (ram_addr == RAM_ADDR_INVALID) {
2304              return NULL;
2305          }
2306  
2307          block = qemu_get_ram_block(ram_addr);
2308          if (block) {
2309              *offset = ram_addr - block->offset;
2310          }
2311          return block;
2312      }
2313  
2314      RCU_READ_LOCK_GUARD();
2315      block = qatomic_rcu_read(&ram_list.mru_block);
2316      if (block && block->host && host - block->host < block->max_length) {
2317          goto found;
2318      }
2319  
2320      RAMBLOCK_FOREACH(block) {
2321          /* This case append when the block is not mapped. */
2322          if (block->host == NULL) {
2323              continue;
2324          }
2325          if (host - block->host < block->max_length) {
2326              goto found;
2327          }
2328      }
2329  
2330      return NULL;
2331  
2332  found:
2333      *offset = (host - block->host);
2334      if (round_offset) {
2335          *offset &= TARGET_PAGE_MASK;
2336      }
2337      return block;
2338  }
2339  
2340  /*
2341   * Finds the named RAMBlock
2342   *
2343   * name: The name of RAMBlock to find
2344   *
2345   * Returns: RAMBlock (or NULL if not found)
2346   */
qemu_ram_block_by_name(const char * name)2347  RAMBlock *qemu_ram_block_by_name(const char *name)
2348  {
2349      RAMBlock *block;
2350  
2351      RAMBLOCK_FOREACH(block) {
2352          if (!strcmp(name, block->idstr)) {
2353              return block;
2354          }
2355      }
2356  
2357      return NULL;
2358  }
2359  
2360  /*
2361   * Some of the system routines need to translate from a host pointer
2362   * (typically a TLB entry) back to a ram offset.
2363   */
qemu_ram_addr_from_host(void * ptr)2364  ram_addr_t qemu_ram_addr_from_host(void *ptr)
2365  {
2366      RAMBlock *block;
2367      ram_addr_t offset;
2368  
2369      block = qemu_ram_block_from_host(ptr, false, &offset);
2370      if (!block) {
2371          return RAM_ADDR_INVALID;
2372      }
2373  
2374      return block->offset + offset;
2375  }
2376  
qemu_ram_addr_from_host_nofail(void * ptr)2377  ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2378  {
2379      ram_addr_t ram_addr;
2380  
2381      ram_addr = qemu_ram_addr_from_host(ptr);
2382      if (ram_addr == RAM_ADDR_INVALID) {
2383          error_report("Bad ram pointer %p", ptr);
2384          abort();
2385      }
2386      return ram_addr;
2387  }
2388  
2389  static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2390                                   MemTxAttrs attrs, void *buf, hwaddr len);
2391  static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2392                                    const void *buf, hwaddr len);
2393  static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2394                                    bool is_write, MemTxAttrs attrs);
2395  
subpage_read(void * opaque,hwaddr addr,uint64_t * data,unsigned len,MemTxAttrs attrs)2396  static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2397                                  unsigned len, MemTxAttrs attrs)
2398  {
2399      subpage_t *subpage = opaque;
2400      uint8_t buf[8];
2401      MemTxResult res;
2402  
2403  #if defined(DEBUG_SUBPAGE)
2404      printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2405             subpage, len, addr);
2406  #endif
2407      res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2408      if (res) {
2409          return res;
2410      }
2411      *data = ldn_p(buf, len);
2412      return MEMTX_OK;
2413  }
2414  
subpage_write(void * opaque,hwaddr addr,uint64_t value,unsigned len,MemTxAttrs attrs)2415  static MemTxResult subpage_write(void *opaque, hwaddr addr,
2416                                   uint64_t value, unsigned len, MemTxAttrs attrs)
2417  {
2418      subpage_t *subpage = opaque;
2419      uint8_t buf[8];
2420  
2421  #if defined(DEBUG_SUBPAGE)
2422      printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2423             " value %"PRIx64"\n",
2424             __func__, subpage, len, addr, value);
2425  #endif
2426      stn_p(buf, len, value);
2427      return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2428  }
2429  
subpage_accepts(void * opaque,hwaddr addr,unsigned len,bool is_write,MemTxAttrs attrs)2430  static bool subpage_accepts(void *opaque, hwaddr addr,
2431                              unsigned len, bool is_write,
2432                              MemTxAttrs attrs)
2433  {
2434      subpage_t *subpage = opaque;
2435  #if defined(DEBUG_SUBPAGE)
2436      printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2437             __func__, subpage, is_write ? 'w' : 'r', len, addr);
2438  #endif
2439  
2440      return flatview_access_valid(subpage->fv, addr + subpage->base,
2441                                   len, is_write, attrs);
2442  }
2443  
2444  static const MemoryRegionOps subpage_ops = {
2445      .read_with_attrs = subpage_read,
2446      .write_with_attrs = subpage_write,
2447      .impl.min_access_size = 1,
2448      .impl.max_access_size = 8,
2449      .valid.min_access_size = 1,
2450      .valid.max_access_size = 8,
2451      .valid.accepts = subpage_accepts,
2452      .endianness = DEVICE_NATIVE_ENDIAN,
2453  };
2454  
subpage_register(subpage_t * mmio,uint32_t start,uint32_t end,uint16_t section)2455  static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2456                              uint16_t section)
2457  {
2458      int idx, eidx;
2459  
2460      if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2461          return -1;
2462      idx = SUBPAGE_IDX(start);
2463      eidx = SUBPAGE_IDX(end);
2464  #if defined(DEBUG_SUBPAGE)
2465      printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2466             __func__, mmio, start, end, idx, eidx, section);
2467  #endif
2468      for (; idx <= eidx; idx++) {
2469          mmio->sub_section[idx] = section;
2470      }
2471  
2472      return 0;
2473  }
2474  
subpage_init(FlatView * fv,hwaddr base)2475  static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2476  {
2477      subpage_t *mmio;
2478  
2479      /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2480      mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2481      mmio->fv = fv;
2482      mmio->base = base;
2483      memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2484                            NULL, TARGET_PAGE_SIZE);
2485      mmio->iomem.subpage = true;
2486  #if defined(DEBUG_SUBPAGE)
2487      printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2488             mmio, base, TARGET_PAGE_SIZE);
2489  #endif
2490  
2491      return mmio;
2492  }
2493  
dummy_section(PhysPageMap * map,FlatView * fv,MemoryRegion * mr)2494  static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2495  {
2496      assert(fv);
2497      MemoryRegionSection section = {
2498          .fv = fv,
2499          .mr = mr,
2500          .offset_within_address_space = 0,
2501          .offset_within_region = 0,
2502          .size = int128_2_64(),
2503      };
2504  
2505      return phys_section_add(map, &section);
2506  }
2507  
iotlb_to_section(CPUState * cpu,hwaddr index,MemTxAttrs attrs)2508  MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2509                                        hwaddr index, MemTxAttrs attrs)
2510  {
2511      int asidx = cpu_asidx_from_attrs(cpu, attrs);
2512      CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2513      AddressSpaceDispatch *d = cpuas->memory_dispatch;
2514      int section_index = index & ~TARGET_PAGE_MASK;
2515      MemoryRegionSection *ret;
2516  
2517      assert(section_index < d->map.sections_nb);
2518      ret = d->map.sections + section_index;
2519      assert(ret->mr);
2520      assert(ret->mr->ops);
2521  
2522      return ret;
2523  }
2524  
io_mem_init(void)2525  static void io_mem_init(void)
2526  {
2527      memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2528                            NULL, UINT64_MAX);
2529  }
2530  
address_space_dispatch_new(FlatView * fv)2531  AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2532  {
2533      AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2534      uint16_t n;
2535  
2536      n = dummy_section(&d->map, fv, &io_mem_unassigned);
2537      assert(n == PHYS_SECTION_UNASSIGNED);
2538  
2539      d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2540  
2541      return d;
2542  }
2543  
address_space_dispatch_free(AddressSpaceDispatch * d)2544  void address_space_dispatch_free(AddressSpaceDispatch *d)
2545  {
2546      phys_sections_free(&d->map);
2547      g_free(d);
2548  }
2549  
do_nothing(CPUState * cpu,run_on_cpu_data d)2550  static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2551  {
2552  }
2553  
tcg_log_global_after_sync(MemoryListener * listener)2554  static void tcg_log_global_after_sync(MemoryListener *listener)
2555  {
2556      CPUAddressSpace *cpuas;
2557  
2558      /* Wait for the CPU to end the current TB.  This avoids the following
2559       * incorrect race:
2560       *
2561       *      vCPU                         migration
2562       *      ----------------------       -------------------------
2563       *      TLB check -> slow path
2564       *        notdirty_mem_write
2565       *          write to RAM
2566       *          mark dirty
2567       *                                   clear dirty flag
2568       *      TLB check -> fast path
2569       *                                   read memory
2570       *        write to RAM
2571       *
2572       * by pushing the migration thread's memory read after the vCPU thread has
2573       * written the memory.
2574       */
2575      if (replay_mode == REPLAY_MODE_NONE) {
2576          /*
2577           * VGA can make calls to this function while updating the screen.
2578           * In record/replay mode this causes a deadlock, because
2579           * run_on_cpu waits for rr mutex. Therefore no races are possible
2580           * in this case and no need for making run_on_cpu when
2581           * record/replay is enabled.
2582           */
2583          cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2584          run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2585      }
2586  }
2587  
tcg_commit_cpu(CPUState * cpu,run_on_cpu_data data)2588  static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2589  {
2590      CPUAddressSpace *cpuas = data.host_ptr;
2591  
2592      cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2593      tlb_flush(cpu);
2594  }
2595  
tcg_commit(MemoryListener * listener)2596  static void tcg_commit(MemoryListener *listener)
2597  {
2598      CPUAddressSpace *cpuas;
2599      CPUState *cpu;
2600  
2601      assert(tcg_enabled());
2602      /* since each CPU stores ram addresses in its TLB cache, we must
2603         reset the modified entries */
2604      cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2605      cpu = cpuas->cpu;
2606  
2607      /*
2608       * Defer changes to as->memory_dispatch until the cpu is quiescent.
2609       * Otherwise we race between (1) other cpu threads and (2) ongoing
2610       * i/o for the current cpu thread, with data cached by mmu_lookup().
2611       *
2612       * In addition, queueing the work function will kick the cpu back to
2613       * the main loop, which will end the RCU critical section and reclaim
2614       * the memory data structures.
2615       *
2616       * That said, the listener is also called during realize, before
2617       * all of the tcg machinery for run-on is initialized: thus halt_cond.
2618       */
2619      if (cpu->halt_cond) {
2620          async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2621      } else {
2622          tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2623      }
2624  }
2625  
memory_map_init(void)2626  static void memory_map_init(void)
2627  {
2628      system_memory = g_malloc(sizeof(*system_memory));
2629  
2630      memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2631      address_space_init(&address_space_memory, system_memory, "memory");
2632  
2633      system_io = g_malloc(sizeof(*system_io));
2634      memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2635                            65536);
2636      address_space_init(&address_space_io, system_io, "I/O");
2637  }
2638  
get_system_memory(void)2639  MemoryRegion *get_system_memory(void)
2640  {
2641      return system_memory;
2642  }
2643  
get_system_io(void)2644  MemoryRegion *get_system_io(void)
2645  {
2646      return system_io;
2647  }
2648  
invalidate_and_set_dirty(MemoryRegion * mr,hwaddr addr,hwaddr length)2649  static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2650                                       hwaddr length)
2651  {
2652      uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2653      ram_addr_t ramaddr = memory_region_get_ram_addr(mr);
2654  
2655      /* We know we're only called for RAM MemoryRegions */
2656      assert(ramaddr != RAM_ADDR_INVALID);
2657      addr += ramaddr;
2658  
2659      /* No early return if dirty_log_mask is or becomes 0, because
2660       * cpu_physical_memory_set_dirty_range will still call
2661       * xen_modified_memory.
2662       */
2663      if (dirty_log_mask) {
2664          dirty_log_mask =
2665              cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2666      }
2667      if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2668          assert(tcg_enabled());
2669          tb_invalidate_phys_range(addr, addr + length - 1);
2670          dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2671      }
2672      cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2673  }
2674  
memory_region_flush_rom_device(MemoryRegion * mr,hwaddr addr,hwaddr size)2675  void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2676  {
2677      /*
2678       * In principle this function would work on other memory region types too,
2679       * but the ROM device use case is the only one where this operation is
2680       * necessary.  Other memory regions should use the
2681       * address_space_read/write() APIs.
2682       */
2683      assert(memory_region_is_romd(mr));
2684  
2685      invalidate_and_set_dirty(mr, addr, size);
2686  }
2687  
memory_access_size(MemoryRegion * mr,unsigned l,hwaddr addr)2688  int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2689  {
2690      unsigned access_size_max = mr->ops->valid.max_access_size;
2691  
2692      /* Regions are assumed to support 1-4 byte accesses unless
2693         otherwise specified.  */
2694      if (access_size_max == 0) {
2695          access_size_max = 4;
2696      }
2697  
2698      /* Bound the maximum access by the alignment of the address.  */
2699      if (!mr->ops->impl.unaligned) {
2700          unsigned align_size_max = addr & -addr;
2701          if (align_size_max != 0 && align_size_max < access_size_max) {
2702              access_size_max = align_size_max;
2703          }
2704      }
2705  
2706      /* Don't attempt accesses larger than the maximum.  */
2707      if (l > access_size_max) {
2708          l = access_size_max;
2709      }
2710      l = pow2floor(l);
2711  
2712      return l;
2713  }
2714  
prepare_mmio_access(MemoryRegion * mr)2715  bool prepare_mmio_access(MemoryRegion *mr)
2716  {
2717      bool release_lock = false;
2718  
2719      if (!bql_locked()) {
2720          bql_lock();
2721          release_lock = true;
2722      }
2723      if (mr->flush_coalesced_mmio) {
2724          qemu_flush_coalesced_mmio_buffer();
2725      }
2726  
2727      return release_lock;
2728  }
2729  
2730  /**
2731   * flatview_access_allowed
2732   * @mr: #MemoryRegion to be accessed
2733   * @attrs: memory transaction attributes
2734   * @addr: address within that memory region
2735   * @len: the number of bytes to access
2736   *
2737   * Check if a memory transaction is allowed.
2738   *
2739   * Returns: true if transaction is allowed, false if denied.
2740   */
flatview_access_allowed(MemoryRegion * mr,MemTxAttrs attrs,hwaddr addr,hwaddr len)2741  static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2742                                      hwaddr addr, hwaddr len)
2743  {
2744      if (likely(!attrs.memory)) {
2745          return true;
2746      }
2747      if (memory_region_is_ram(mr)) {
2748          return true;
2749      }
2750      qemu_log_mask(LOG_GUEST_ERROR,
2751                    "Invalid access to non-RAM device at "
2752                    "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2753                    "region '%s'\n", addr, len, memory_region_name(mr));
2754      return false;
2755  }
2756  
flatview_write_continue_step(MemTxAttrs attrs,const uint8_t * buf,hwaddr len,hwaddr mr_addr,hwaddr * l,MemoryRegion * mr)2757  static MemTxResult flatview_write_continue_step(MemTxAttrs attrs,
2758                                                  const uint8_t *buf,
2759                                                  hwaddr len, hwaddr mr_addr,
2760                                                  hwaddr *l, MemoryRegion *mr)
2761  {
2762      if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2763          return MEMTX_ACCESS_ERROR;
2764      }
2765  
2766      if (!memory_access_is_direct(mr, true)) {
2767          uint64_t val;
2768          MemTxResult result;
2769          bool release_lock = prepare_mmio_access(mr);
2770  
2771          *l = memory_access_size(mr, *l, mr_addr);
2772          /*
2773           * XXX: could force current_cpu to NULL to avoid
2774           * potential bugs
2775           */
2776  
2777          /*
2778           * Assure Coverity (and ourselves) that we are not going to OVERRUN
2779           * the buffer by following ldn_he_p().
2780           */
2781  #ifdef QEMU_STATIC_ANALYSIS
2782          assert((*l == 1 && len >= 1) ||
2783                 (*l == 2 && len >= 2) ||
2784                 (*l == 4 && len >= 4) ||
2785                 (*l == 8 && len >= 8));
2786  #endif
2787          val = ldn_he_p(buf, *l);
2788          result = memory_region_dispatch_write(mr, mr_addr, val,
2789                                                size_memop(*l), attrs);
2790          if (release_lock) {
2791              bql_unlock();
2792          }
2793  
2794          return result;
2795      } else {
2796          /* RAM case */
2797          uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2798                                                 false, true);
2799  
2800          memmove(ram_ptr, buf, *l);
2801          invalidate_and_set_dirty(mr, mr_addr, *l);
2802  
2803          return MEMTX_OK;
2804      }
2805  }
2806  
2807  /* Called within RCU critical section.  */
flatview_write_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)2808  static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2809                                             MemTxAttrs attrs,
2810                                             const void *ptr,
2811                                             hwaddr len, hwaddr mr_addr,
2812                                             hwaddr l, MemoryRegion *mr)
2813  {
2814      MemTxResult result = MEMTX_OK;
2815      const uint8_t *buf = ptr;
2816  
2817      for (;;) {
2818          result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
2819                                                 mr);
2820  
2821          len -= l;
2822          buf += l;
2823          addr += l;
2824  
2825          if (!len) {
2826              break;
2827          }
2828  
2829          l = len;
2830          mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2831      }
2832  
2833      return result;
2834  }
2835  
2836  /* Called from RCU critical section.  */
flatview_write(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)2837  static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2838                                    const void *buf, hwaddr len)
2839  {
2840      hwaddr l;
2841      hwaddr mr_addr;
2842      MemoryRegion *mr;
2843  
2844      l = len;
2845      mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2846      if (!flatview_access_allowed(mr, attrs, addr, len)) {
2847          return MEMTX_ACCESS_ERROR;
2848      }
2849      return flatview_write_continue(fv, addr, attrs, buf, len,
2850                                     mr_addr, l, mr);
2851  }
2852  
flatview_read_continue_step(MemTxAttrs attrs,uint8_t * buf,hwaddr len,hwaddr mr_addr,hwaddr * l,MemoryRegion * mr)2853  static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf,
2854                                                 hwaddr len, hwaddr mr_addr,
2855                                                 hwaddr *l,
2856                                                 MemoryRegion *mr)
2857  {
2858      if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2859          return MEMTX_ACCESS_ERROR;
2860      }
2861  
2862      if (!memory_access_is_direct(mr, false)) {
2863          /* I/O case */
2864          uint64_t val;
2865          MemTxResult result;
2866          bool release_lock = prepare_mmio_access(mr);
2867  
2868          *l = memory_access_size(mr, *l, mr_addr);
2869          result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l),
2870                                               attrs);
2871  
2872          /*
2873           * Assure Coverity (and ourselves) that we are not going to OVERRUN
2874           * the buffer by following stn_he_p().
2875           */
2876  #ifdef QEMU_STATIC_ANALYSIS
2877          assert((*l == 1 && len >= 1) ||
2878                 (*l == 2 && len >= 2) ||
2879                 (*l == 4 && len >= 4) ||
2880                 (*l == 8 && len >= 8));
2881  #endif
2882          stn_he_p(buf, *l, val);
2883  
2884          if (release_lock) {
2885              bql_unlock();
2886          }
2887          return result;
2888      } else {
2889          /* RAM case */
2890          uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2891                                                 false, false);
2892  
2893          memcpy(buf, ram_ptr, *l);
2894  
2895          return MEMTX_OK;
2896      }
2897  }
2898  
2899  /* Called within RCU critical section.  */
flatview_read_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)2900  MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2901                                     MemTxAttrs attrs, void *ptr,
2902                                     hwaddr len, hwaddr mr_addr, hwaddr l,
2903                                     MemoryRegion *mr)
2904  {
2905      MemTxResult result = MEMTX_OK;
2906      uint8_t *buf = ptr;
2907  
2908      fuzz_dma_read_cb(addr, len, mr);
2909      for (;;) {
2910          result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
2911  
2912          len -= l;
2913          buf += l;
2914          addr += l;
2915  
2916          if (!len) {
2917              break;
2918          }
2919  
2920          l = len;
2921          mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
2922      }
2923  
2924      return result;
2925  }
2926  
2927  /* Called from RCU critical section.  */
flatview_read(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)2928  static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2929                                   MemTxAttrs attrs, void *buf, hwaddr len)
2930  {
2931      hwaddr l;
2932      hwaddr mr_addr;
2933      MemoryRegion *mr;
2934  
2935      l = len;
2936      mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
2937      if (!flatview_access_allowed(mr, attrs, addr, len)) {
2938          return MEMTX_ACCESS_ERROR;
2939      }
2940      return flatview_read_continue(fv, addr, attrs, buf, len,
2941                                    mr_addr, l, mr);
2942  }
2943  
address_space_read_full(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)2944  MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2945                                      MemTxAttrs attrs, void *buf, hwaddr len)
2946  {
2947      MemTxResult result = MEMTX_OK;
2948      FlatView *fv;
2949  
2950      if (len > 0) {
2951          RCU_READ_LOCK_GUARD();
2952          fv = address_space_to_flatview(as);
2953          result = flatview_read(fv, addr, attrs, buf, len);
2954      }
2955  
2956      return result;
2957  }
2958  
address_space_write(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)2959  MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2960                                  MemTxAttrs attrs,
2961                                  const void *buf, hwaddr len)
2962  {
2963      MemTxResult result = MEMTX_OK;
2964      FlatView *fv;
2965  
2966      if (len > 0) {
2967          RCU_READ_LOCK_GUARD();
2968          fv = address_space_to_flatview(as);
2969          result = flatview_write(fv, addr, attrs, buf, len);
2970      }
2971  
2972      return result;
2973  }
2974  
address_space_rw(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len,bool is_write)2975  MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2976                               void *buf, hwaddr len, bool is_write)
2977  {
2978      if (is_write) {
2979          return address_space_write(as, addr, attrs, buf, len);
2980      } else {
2981          return address_space_read_full(as, addr, attrs, buf, len);
2982      }
2983  }
2984  
address_space_set(AddressSpace * as,hwaddr addr,uint8_t c,hwaddr len,MemTxAttrs attrs)2985  MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2986                                uint8_t c, hwaddr len, MemTxAttrs attrs)
2987  {
2988  #define FILLBUF_SIZE 512
2989      uint8_t fillbuf[FILLBUF_SIZE];
2990      int l;
2991      MemTxResult error = MEMTX_OK;
2992  
2993      memset(fillbuf, c, FILLBUF_SIZE);
2994      while (len > 0) {
2995          l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2996          error |= address_space_write(as, addr, attrs, fillbuf, l);
2997          len -= l;
2998          addr += l;
2999      }
3000  
3001      return error;
3002  }
3003  
cpu_physical_memory_rw(hwaddr addr,void * buf,hwaddr len,bool is_write)3004  void cpu_physical_memory_rw(hwaddr addr, void *buf,
3005                              hwaddr len, bool is_write)
3006  {
3007      address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3008                       buf, len, is_write);
3009  }
3010  
3011  enum write_rom_type {
3012      WRITE_DATA,
3013      FLUSH_CACHE,
3014  };
3015  
address_space_write_rom_internal(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,enum write_rom_type type)3016  static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3017                                                             hwaddr addr,
3018                                                             MemTxAttrs attrs,
3019                                                             const void *ptr,
3020                                                             hwaddr len,
3021                                                             enum write_rom_type type)
3022  {
3023      hwaddr l;
3024      uint8_t *ram_ptr;
3025      hwaddr addr1;
3026      MemoryRegion *mr;
3027      const uint8_t *buf = ptr;
3028  
3029      RCU_READ_LOCK_GUARD();
3030      while (len > 0) {
3031          l = len;
3032          mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3033  
3034          if (!(memory_region_is_ram(mr) ||
3035                memory_region_is_romd(mr))) {
3036              l = memory_access_size(mr, l, addr1);
3037          } else {
3038              /* ROM/RAM case */
3039              ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3040              switch (type) {
3041              case WRITE_DATA:
3042                  memcpy(ram_ptr, buf, l);
3043                  invalidate_and_set_dirty(mr, addr1, l);
3044                  break;
3045              case FLUSH_CACHE:
3046                  flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3047                  break;
3048              }
3049          }
3050          len -= l;
3051          buf += l;
3052          addr += l;
3053      }
3054      return MEMTX_OK;
3055  }
3056  
3057  /* used for ROM loading : can write in RAM and ROM */
address_space_write_rom(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)3058  MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3059                                      MemTxAttrs attrs,
3060                                      const void *buf, hwaddr len)
3061  {
3062      return address_space_write_rom_internal(as, addr, attrs,
3063                                              buf, len, WRITE_DATA);
3064  }
3065  
cpu_flush_icache_range(hwaddr start,hwaddr len)3066  void cpu_flush_icache_range(hwaddr start, hwaddr len)
3067  {
3068      /*
3069       * This function should do the same thing as an icache flush that was
3070       * triggered from within the guest. For TCG we are always cache coherent,
3071       * so there is no need to flush anything. For KVM / Xen we need to flush
3072       * the host's instruction cache at least.
3073       */
3074      if (tcg_enabled()) {
3075          return;
3076      }
3077  
3078      address_space_write_rom_internal(&address_space_memory,
3079                                       start, MEMTXATTRS_UNSPECIFIED,
3080                                       NULL, len, FLUSH_CACHE);
3081  }
3082  
3083  /*
3084   * A magic value stored in the first 8 bytes of the bounce buffer struct. Used
3085   * to detect illegal pointers passed to address_space_unmap.
3086   */
3087  #define BOUNCE_BUFFER_MAGIC 0xb4017ceb4ffe12ed
3088  
3089  typedef struct {
3090      uint64_t magic;
3091      MemoryRegion *mr;
3092      hwaddr addr;
3093      size_t len;
3094      uint8_t buffer[];
3095  } BounceBuffer;
3096  
3097  static void
address_space_unregister_map_client_do(AddressSpaceMapClient * client)3098  address_space_unregister_map_client_do(AddressSpaceMapClient *client)
3099  {
3100      QLIST_REMOVE(client, link);
3101      g_free(client);
3102  }
3103  
address_space_notify_map_clients_locked(AddressSpace * as)3104  static void address_space_notify_map_clients_locked(AddressSpace *as)
3105  {
3106      AddressSpaceMapClient *client;
3107  
3108      while (!QLIST_EMPTY(&as->map_client_list)) {
3109          client = QLIST_FIRST(&as->map_client_list);
3110          qemu_bh_schedule(client->bh);
3111          address_space_unregister_map_client_do(client);
3112      }
3113  }
3114  
address_space_register_map_client(AddressSpace * as,QEMUBH * bh)3115  void address_space_register_map_client(AddressSpace *as, QEMUBH *bh)
3116  {
3117      AddressSpaceMapClient *client = g_malloc(sizeof(*client));
3118  
3119      QEMU_LOCK_GUARD(&as->map_client_list_lock);
3120      client->bh = bh;
3121      QLIST_INSERT_HEAD(&as->map_client_list, client, link);
3122      /* Write map_client_list before reading bounce_buffer_size. */
3123      smp_mb();
3124      if (qatomic_read(&as->bounce_buffer_size) < as->max_bounce_buffer_size) {
3125          address_space_notify_map_clients_locked(as);
3126      }
3127  }
3128  
cpu_exec_init_all(void)3129  void cpu_exec_init_all(void)
3130  {
3131      qemu_mutex_init(&ram_list.mutex);
3132      /* The data structures we set up here depend on knowing the page size,
3133       * so no more changes can be made after this point.
3134       * In an ideal world, nothing we did before we had finished the
3135       * machine setup would care about the target page size, and we could
3136       * do this much later, rather than requiring board models to state
3137       * up front what their requirements are.
3138       */
3139      finalize_target_page_bits();
3140      io_mem_init();
3141      memory_map_init();
3142  }
3143  
address_space_unregister_map_client(AddressSpace * as,QEMUBH * bh)3144  void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh)
3145  {
3146      AddressSpaceMapClient *client;
3147  
3148      QEMU_LOCK_GUARD(&as->map_client_list_lock);
3149      QLIST_FOREACH(client, &as->map_client_list, link) {
3150          if (client->bh == bh) {
3151              address_space_unregister_map_client_do(client);
3152              break;
3153          }
3154      }
3155  }
3156  
address_space_notify_map_clients(AddressSpace * as)3157  static void address_space_notify_map_clients(AddressSpace *as)
3158  {
3159      QEMU_LOCK_GUARD(&as->map_client_list_lock);
3160      address_space_notify_map_clients_locked(as);
3161  }
3162  
flatview_access_valid(FlatView * fv,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3163  static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3164                                    bool is_write, MemTxAttrs attrs)
3165  {
3166      MemoryRegion *mr;
3167      hwaddr l, xlat;
3168  
3169      while (len > 0) {
3170          l = len;
3171          mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3172          if (!memory_access_is_direct(mr, is_write)) {
3173              l = memory_access_size(mr, l, addr);
3174              if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3175                  return false;
3176              }
3177          }
3178  
3179          len -= l;
3180          addr += l;
3181      }
3182      return true;
3183  }
3184  
address_space_access_valid(AddressSpace * as,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3185  bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3186                                  hwaddr len, bool is_write,
3187                                  MemTxAttrs attrs)
3188  {
3189      FlatView *fv;
3190  
3191      RCU_READ_LOCK_GUARD();
3192      fv = address_space_to_flatview(as);
3193      return flatview_access_valid(fv, addr, len, is_write, attrs);
3194  }
3195  
3196  static hwaddr
flatview_extend_translation(FlatView * fv,hwaddr addr,hwaddr target_len,MemoryRegion * mr,hwaddr base,hwaddr len,bool is_write,MemTxAttrs attrs)3197  flatview_extend_translation(FlatView *fv, hwaddr addr,
3198                              hwaddr target_len,
3199                              MemoryRegion *mr, hwaddr base, hwaddr len,
3200                              bool is_write, MemTxAttrs attrs)
3201  {
3202      hwaddr done = 0;
3203      hwaddr xlat;
3204      MemoryRegion *this_mr;
3205  
3206      for (;;) {
3207          target_len -= len;
3208          addr += len;
3209          done += len;
3210          if (target_len == 0) {
3211              return done;
3212          }
3213  
3214          len = target_len;
3215          this_mr = flatview_translate(fv, addr, &xlat,
3216                                       &len, is_write, attrs);
3217          if (this_mr != mr || xlat != base + done) {
3218              return done;
3219          }
3220      }
3221  }
3222  
3223  /* Map a physical memory region into a host virtual address.
3224   * May map a subset of the requested range, given by and returned in *plen.
3225   * May return NULL if resources needed to perform the mapping are exhausted.
3226   * Use only for reads OR writes - not for read-modify-write operations.
3227   * Use address_space_register_map_client() to know when retrying the map
3228   * operation is likely to succeed.
3229   */
address_space_map(AddressSpace * as,hwaddr addr,hwaddr * plen,bool is_write,MemTxAttrs attrs)3230  void *address_space_map(AddressSpace *as,
3231                          hwaddr addr,
3232                          hwaddr *plen,
3233                          bool is_write,
3234                          MemTxAttrs attrs)
3235  {
3236      hwaddr len = *plen;
3237      hwaddr l, xlat;
3238      MemoryRegion *mr;
3239      FlatView *fv;
3240  
3241      trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs);
3242  
3243      if (len == 0) {
3244          return NULL;
3245      }
3246  
3247      l = len;
3248      RCU_READ_LOCK_GUARD();
3249      fv = address_space_to_flatview(as);
3250      mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3251  
3252      if (!memory_access_is_direct(mr, is_write)) {
3253          size_t used = qatomic_read(&as->bounce_buffer_size);
3254          for (;;) {
3255              hwaddr alloc = MIN(as->max_bounce_buffer_size - used, l);
3256              size_t new_size = used + alloc;
3257              size_t actual =
3258                  qatomic_cmpxchg(&as->bounce_buffer_size, used, new_size);
3259              if (actual == used) {
3260                  l = alloc;
3261                  break;
3262              }
3263              used = actual;
3264          }
3265  
3266          if (l == 0) {
3267              *plen = 0;
3268              return NULL;
3269          }
3270  
3271          BounceBuffer *bounce = g_malloc0(l + sizeof(BounceBuffer));
3272          bounce->magic = BOUNCE_BUFFER_MAGIC;
3273          memory_region_ref(mr);
3274          bounce->mr = mr;
3275          bounce->addr = addr;
3276          bounce->len = l;
3277  
3278          if (!is_write) {
3279              flatview_read(fv, addr, attrs,
3280                            bounce->buffer, l);
3281          }
3282  
3283          *plen = l;
3284          return bounce->buffer;
3285      }
3286  
3287      memory_region_ref(mr);
3288      *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3289                                          l, is_write, attrs);
3290      fuzz_dma_read_cb(addr, *plen, mr);
3291      return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write);
3292  }
3293  
3294  /* Unmaps a memory region previously mapped by address_space_map().
3295   * Will also mark the memory as dirty if is_write is true.  access_len gives
3296   * the amount of memory that was actually read or written by the caller.
3297   */
address_space_unmap(AddressSpace * as,void * buffer,hwaddr len,bool is_write,hwaddr access_len)3298  void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3299                           bool is_write, hwaddr access_len)
3300  {
3301      MemoryRegion *mr;
3302      ram_addr_t addr1;
3303  
3304      mr = memory_region_from_host(buffer, &addr1);
3305      if (mr != NULL) {
3306          if (is_write) {
3307              invalidate_and_set_dirty(mr, addr1, access_len);
3308          }
3309          if (xen_enabled()) {
3310              xen_invalidate_map_cache_entry(buffer);
3311          }
3312          memory_region_unref(mr);
3313          return;
3314      }
3315  
3316  
3317      BounceBuffer *bounce = container_of(buffer, BounceBuffer, buffer);
3318      assert(bounce->magic == BOUNCE_BUFFER_MAGIC);
3319  
3320      if (is_write) {
3321          address_space_write(as, bounce->addr, MEMTXATTRS_UNSPECIFIED,
3322                              bounce->buffer, access_len);
3323      }
3324  
3325      qatomic_sub(&as->bounce_buffer_size, bounce->len);
3326      bounce->magic = ~BOUNCE_BUFFER_MAGIC;
3327      memory_region_unref(bounce->mr);
3328      g_free(bounce);
3329      /* Write bounce_buffer_size before reading map_client_list. */
3330      smp_mb();
3331      address_space_notify_map_clients(as);
3332  }
3333  
cpu_physical_memory_map(hwaddr addr,hwaddr * plen,bool is_write)3334  void *cpu_physical_memory_map(hwaddr addr,
3335                                hwaddr *plen,
3336                                bool is_write)
3337  {
3338      return address_space_map(&address_space_memory, addr, plen, is_write,
3339                               MEMTXATTRS_UNSPECIFIED);
3340  }
3341  
cpu_physical_memory_unmap(void * buffer,hwaddr len,bool is_write,hwaddr access_len)3342  void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3343                                 bool is_write, hwaddr access_len)
3344  {
3345      return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3346  }
3347  
3348  #define ARG1_DECL                AddressSpace *as
3349  #define ARG1                     as
3350  #define SUFFIX
3351  #define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3352  #define RCU_READ_LOCK(...)       rcu_read_lock()
3353  #define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3354  #include "memory_ldst.c.inc"
3355  
address_space_cache_init(MemoryRegionCache * cache,AddressSpace * as,hwaddr addr,hwaddr len,bool is_write)3356  int64_t address_space_cache_init(MemoryRegionCache *cache,
3357                                   AddressSpace *as,
3358                                   hwaddr addr,
3359                                   hwaddr len,
3360                                   bool is_write)
3361  {
3362      AddressSpaceDispatch *d;
3363      hwaddr l;
3364      MemoryRegion *mr;
3365      Int128 diff;
3366  
3367      assert(len > 0);
3368  
3369      l = len;
3370      cache->fv = address_space_get_flatview(as);
3371      d = flatview_to_dispatch(cache->fv);
3372      cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3373  
3374      /*
3375       * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3376       * Take that into account to compute how many bytes are there between
3377       * cache->xlat and the end of the section.
3378       */
3379      diff = int128_sub(cache->mrs.size,
3380                        int128_make64(cache->xlat - cache->mrs.offset_within_region));
3381      l = int128_get64(int128_min(diff, int128_make64(l)));
3382  
3383      mr = cache->mrs.mr;
3384      memory_region_ref(mr);
3385      if (memory_access_is_direct(mr, is_write)) {
3386          /* We don't care about the memory attributes here as we're only
3387           * doing this if we found actual RAM, which behaves the same
3388           * regardless of attributes; so UNSPECIFIED is fine.
3389           */
3390          l = flatview_extend_translation(cache->fv, addr, len, mr,
3391                                          cache->xlat, l, is_write,
3392                                          MEMTXATTRS_UNSPECIFIED);
3393          cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true,
3394                                           is_write);
3395      } else {
3396          cache->ptr = NULL;
3397      }
3398  
3399      cache->len = l;
3400      cache->is_write = is_write;
3401      return l;
3402  }
3403  
address_space_cache_invalidate(MemoryRegionCache * cache,hwaddr addr,hwaddr access_len)3404  void address_space_cache_invalidate(MemoryRegionCache *cache,
3405                                      hwaddr addr,
3406                                      hwaddr access_len)
3407  {
3408      assert(cache->is_write);
3409      if (likely(cache->ptr)) {
3410          invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3411      }
3412  }
3413  
address_space_cache_destroy(MemoryRegionCache * cache)3414  void address_space_cache_destroy(MemoryRegionCache *cache)
3415  {
3416      if (!cache->mrs.mr) {
3417          return;
3418      }
3419  
3420      if (xen_enabled()) {
3421          xen_invalidate_map_cache_entry(cache->ptr);
3422      }
3423      memory_region_unref(cache->mrs.mr);
3424      flatview_unref(cache->fv);
3425      cache->mrs.mr = NULL;
3426      cache->fv = NULL;
3427  }
3428  
3429  /* Called from RCU critical section.  This function has the same
3430   * semantics as address_space_translate, but it only works on a
3431   * predefined range of a MemoryRegion that was mapped with
3432   * address_space_cache_init.
3433   */
address_space_translate_cached(MemoryRegionCache * cache,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)3434  static inline MemoryRegion *address_space_translate_cached(
3435      MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3436      hwaddr *plen, bool is_write, MemTxAttrs attrs)
3437  {
3438      MemoryRegionSection section;
3439      MemoryRegion *mr;
3440      IOMMUMemoryRegion *iommu_mr;
3441      AddressSpace *target_as;
3442  
3443      assert(!cache->ptr);
3444      *xlat = addr + cache->xlat;
3445  
3446      mr = cache->mrs.mr;
3447      iommu_mr = memory_region_get_iommu(mr);
3448      if (!iommu_mr) {
3449          /* MMIO region.  */
3450          return mr;
3451      }
3452  
3453      section = address_space_translate_iommu(iommu_mr, xlat, plen,
3454                                              NULL, is_write, true,
3455                                              &target_as, attrs);
3456      return section.mr;
3457  }
3458  
3459  /* Called within RCU critical section.  */
address_space_write_continue_cached(MemTxAttrs attrs,const void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3460  static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs,
3461                                                         const void *ptr,
3462                                                         hwaddr len,
3463                                                         hwaddr mr_addr,
3464                                                         hwaddr l,
3465                                                         MemoryRegion *mr)
3466  {
3467      MemTxResult result = MEMTX_OK;
3468      const uint8_t *buf = ptr;
3469  
3470      for (;;) {
3471          result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
3472                                                 mr);
3473  
3474          len -= l;
3475          buf += l;
3476          mr_addr += l;
3477  
3478          if (!len) {
3479              break;
3480          }
3481  
3482          l = len;
3483      }
3484  
3485      return result;
3486  }
3487  
3488  /* Called within RCU critical section.  */
address_space_read_continue_cached(MemTxAttrs attrs,void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3489  static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs,
3490                                                        void *ptr, hwaddr len,
3491                                                        hwaddr mr_addr, hwaddr l,
3492                                                        MemoryRegion *mr)
3493  {
3494      MemTxResult result = MEMTX_OK;
3495      uint8_t *buf = ptr;
3496  
3497      for (;;) {
3498          result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
3499          len -= l;
3500          buf += l;
3501          mr_addr += l;
3502  
3503          if (!len) {
3504              break;
3505          }
3506          l = len;
3507      }
3508  
3509      return result;
3510  }
3511  
3512  /* Called from RCU critical section. address_space_read_cached uses this
3513   * out of line function when the target is an MMIO or IOMMU region.
3514   */
3515  MemTxResult
address_space_read_cached_slow(MemoryRegionCache * cache,hwaddr addr,void * buf,hwaddr len)3516  address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3517                                     void *buf, hwaddr len)
3518  {
3519      hwaddr mr_addr, l;
3520      MemoryRegion *mr;
3521  
3522      l = len;
3523      mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false,
3524                                          MEMTXATTRS_UNSPECIFIED);
3525      return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED,
3526                                                buf, len, mr_addr, l, mr);
3527  }
3528  
3529  /* Called from RCU critical section. address_space_write_cached uses this
3530   * out of line function when the target is an MMIO or IOMMU region.
3531   */
3532  MemTxResult
address_space_write_cached_slow(MemoryRegionCache * cache,hwaddr addr,const void * buf,hwaddr len)3533  address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3534                                      const void *buf, hwaddr len)
3535  {
3536      hwaddr mr_addr, l;
3537      MemoryRegion *mr;
3538  
3539      l = len;
3540      mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true,
3541                                          MEMTXATTRS_UNSPECIFIED);
3542      return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED,
3543                                                 buf, len, mr_addr, l, mr);
3544  }
3545  
3546  #define ARG1_DECL                MemoryRegionCache *cache
3547  #define ARG1                     cache
3548  #define SUFFIX                   _cached_slow
3549  #define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3550  #define RCU_READ_LOCK()          ((void)0)
3551  #define RCU_READ_UNLOCK()        ((void)0)
3552  #include "memory_ldst.c.inc"
3553  
3554  /* virtual memory access for debug (includes writing to ROM) */
cpu_memory_rw_debug(CPUState * cpu,vaddr addr,void * ptr,size_t len,bool is_write)3555  int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3556                          void *ptr, size_t len, bool is_write)
3557  {
3558      hwaddr phys_addr;
3559      vaddr l, page;
3560      uint8_t *buf = ptr;
3561  
3562      cpu_synchronize_state(cpu);
3563      while (len > 0) {
3564          int asidx;
3565          MemTxAttrs attrs;
3566          MemTxResult res;
3567  
3568          page = addr & TARGET_PAGE_MASK;
3569          phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3570          asidx = cpu_asidx_from_attrs(cpu, attrs);
3571          /* if no physical page mapped, return an error */
3572          if (phys_addr == -1)
3573              return -1;
3574          l = (page + TARGET_PAGE_SIZE) - addr;
3575          if (l > len)
3576              l = len;
3577          phys_addr += (addr & ~TARGET_PAGE_MASK);
3578          if (is_write) {
3579              res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3580                                            attrs, buf, l);
3581          } else {
3582              res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3583                                       attrs, buf, l);
3584          }
3585          if (res != MEMTX_OK) {
3586              return -1;
3587          }
3588          len -= l;
3589          buf += l;
3590          addr += l;
3591      }
3592      return 0;
3593  }
3594  
cpu_physical_memory_is_io(hwaddr phys_addr)3595  bool cpu_physical_memory_is_io(hwaddr phys_addr)
3596  {
3597      MemoryRegion*mr;
3598      hwaddr l = 1;
3599  
3600      RCU_READ_LOCK_GUARD();
3601      mr = address_space_translate(&address_space_memory,
3602                                   phys_addr, &phys_addr, &l, false,
3603                                   MEMTXATTRS_UNSPECIFIED);
3604  
3605      return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3606  }
3607  
qemu_ram_foreach_block(RAMBlockIterFunc func,void * opaque)3608  int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3609  {
3610      RAMBlock *block;
3611      int ret = 0;
3612  
3613      RCU_READ_LOCK_GUARD();
3614      RAMBLOCK_FOREACH(block) {
3615          ret = func(block, opaque);
3616          if (ret) {
3617              break;
3618          }
3619      }
3620      return ret;
3621  }
3622  
3623  /*
3624   * Unmap pages of memory from start to start+length such that
3625   * they a) read as 0, b) Trigger whatever fault mechanism
3626   * the OS provides for postcopy.
3627   * The pages must be unmapped by the end of the function.
3628   * Returns: 0 on success, none-0 on failure
3629   *
3630   */
ram_block_discard_range(RAMBlock * rb,uint64_t start,size_t length)3631  int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3632  {
3633      int ret = -1;
3634  
3635      uint8_t *host_startaddr = rb->host + start;
3636  
3637      if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3638          error_report("%s: Unaligned start address: %p",
3639                       __func__, host_startaddr);
3640          goto err;
3641      }
3642  
3643      if ((start + length) <= rb->max_length) {
3644          bool need_madvise, need_fallocate;
3645          if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3646              error_report("%s: Unaligned length: %zx", __func__, length);
3647              goto err;
3648          }
3649  
3650          errno = ENOTSUP; /* If we are missing MADVISE etc */
3651  
3652          /* The logic here is messy;
3653           *    madvise DONTNEED fails for hugepages
3654           *    fallocate works on hugepages and shmem
3655           *    shared anonymous memory requires madvise REMOVE
3656           */
3657          need_madvise = (rb->page_size == qemu_real_host_page_size());
3658          need_fallocate = rb->fd != -1;
3659          if (need_fallocate) {
3660              /* For a file, this causes the area of the file to be zero'd
3661               * if read, and for hugetlbfs also causes it to be unmapped
3662               * so a userfault will trigger.
3663               */
3664  #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3665              /*
3666               * fallocate() will fail with readonly files. Let's print a
3667               * proper error message.
3668               */
3669              if (rb->flags & RAM_READONLY_FD) {
3670                  error_report("%s: Discarding RAM with readonly files is not"
3671                               " supported", __func__);
3672                  goto err;
3673  
3674              }
3675              /*
3676               * We'll discard data from the actual file, even though we only
3677               * have a MAP_PRIVATE mapping, possibly messing with other
3678               * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3679               * change that behavior whithout violating the promised
3680               * semantics of ram_block_discard_range().
3681               *
3682               * Only warn, because it works as long as nobody else uses that
3683               * file.
3684               */
3685              if (!qemu_ram_is_shared(rb)) {
3686                  warn_report_once("%s: Discarding RAM"
3687                                   " in private file mappings is possibly"
3688                                   " dangerous, because it will modify the"
3689                                   " underlying file and will affect other"
3690                                   " users of the file", __func__);
3691              }
3692  
3693              ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3694                              start, length);
3695              if (ret) {
3696                  ret = -errno;
3697                  error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3698                               __func__, rb->idstr, start, length, ret);
3699                  goto err;
3700              }
3701  #else
3702              ret = -ENOSYS;
3703              error_report("%s: fallocate not available/file"
3704                           "%s:%" PRIx64 " +%zx (%d)",
3705                           __func__, rb->idstr, start, length, ret);
3706              goto err;
3707  #endif
3708          }
3709          if (need_madvise) {
3710              /* For normal RAM this causes it to be unmapped,
3711               * for shared memory it causes the local mapping to disappear
3712               * and to fall back on the file contents (which we just
3713               * fallocate'd away).
3714               */
3715  #if defined(CONFIG_MADVISE)
3716              if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3717                  ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3718              } else {
3719                  ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3720              }
3721              if (ret) {
3722                  ret = -errno;
3723                  error_report("%s: Failed to discard range "
3724                               "%s:%" PRIx64 " +%zx (%d)",
3725                               __func__, rb->idstr, start, length, ret);
3726                  goto err;
3727              }
3728  #else
3729              ret = -ENOSYS;
3730              error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)",
3731                           __func__, rb->idstr, start, length, ret);
3732              goto err;
3733  #endif
3734          }
3735          trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3736                                        need_madvise, need_fallocate, ret);
3737      } else {
3738          error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")",
3739                       __func__, rb->idstr, start, length, rb->max_length);
3740      }
3741  
3742  err:
3743      return ret;
3744  }
3745  
ram_block_discard_guest_memfd_range(RAMBlock * rb,uint64_t start,size_t length)3746  int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start,
3747                                          size_t length)
3748  {
3749      int ret = -1;
3750  
3751  #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3752      ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3753                      start, length);
3754  
3755      if (ret) {
3756          ret = -errno;
3757          error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3758                       __func__, rb->idstr, start, length, ret);
3759      }
3760  #else
3761      ret = -ENOSYS;
3762      error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)",
3763                   __func__, rb->idstr, start, length, ret);
3764  #endif
3765  
3766      return ret;
3767  }
3768  
ramblock_is_pmem(RAMBlock * rb)3769  bool ramblock_is_pmem(RAMBlock *rb)
3770  {
3771      return rb->flags & RAM_PMEM;
3772  }
3773  
mtree_print_phys_entries(int start,int end,int skip,int ptr)3774  static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3775  {
3776      if (start == end - 1) {
3777          qemu_printf("\t%3d      ", start);
3778      } else {
3779          qemu_printf("\t%3d..%-3d ", start, end - 1);
3780      }
3781      qemu_printf(" skip=%d ", skip);
3782      if (ptr == PHYS_MAP_NODE_NIL) {
3783          qemu_printf(" ptr=NIL");
3784      } else if (!skip) {
3785          qemu_printf(" ptr=#%d", ptr);
3786      } else {
3787          qemu_printf(" ptr=[%d]", ptr);
3788      }
3789      qemu_printf("\n");
3790  }
3791  
3792  #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3793                             int128_sub((size), int128_one())) : 0)
3794  
mtree_print_dispatch(AddressSpaceDispatch * d,MemoryRegion * root)3795  void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3796  {
3797      int i;
3798  
3799      qemu_printf("  Dispatch\n");
3800      qemu_printf("    Physical sections\n");
3801  
3802      for (i = 0; i < d->map.sections_nb; ++i) {
3803          MemoryRegionSection *s = d->map.sections + i;
3804          const char *names[] = { " [unassigned]", " [not dirty]",
3805                                  " [ROM]", " [watch]" };
3806  
3807          qemu_printf("      #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3808                      " %s%s%s%s%s",
3809              i,
3810              s->offset_within_address_space,
3811              s->offset_within_address_space + MR_SIZE(s->size),
3812              s->mr->name ? s->mr->name : "(noname)",
3813              i < ARRAY_SIZE(names) ? names[i] : "",
3814              s->mr == root ? " [ROOT]" : "",
3815              s == d->mru_section ? " [MRU]" : "",
3816              s->mr->is_iommu ? " [iommu]" : "");
3817  
3818          if (s->mr->alias) {
3819              qemu_printf(" alias=%s", s->mr->alias->name ?
3820                      s->mr->alias->name : "noname");
3821          }
3822          qemu_printf("\n");
3823      }
3824  
3825      qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3826                 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3827      for (i = 0; i < d->map.nodes_nb; ++i) {
3828          int j, jprev;
3829          PhysPageEntry prev;
3830          Node *n = d->map.nodes + i;
3831  
3832          qemu_printf("      [%d]\n", i);
3833  
3834          for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3835              PhysPageEntry *pe = *n + j;
3836  
3837              if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3838                  continue;
3839              }
3840  
3841              mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3842  
3843              jprev = j;
3844              prev = *pe;
3845          }
3846  
3847          if (jprev != ARRAY_SIZE(*n)) {
3848              mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3849          }
3850      }
3851  }
3852  
3853  /* Require any discards to work. */
3854  static unsigned int ram_block_discard_required_cnt;
3855  /* Require only coordinated discards to work. */
3856  static unsigned int ram_block_coordinated_discard_required_cnt;
3857  /* Disable any discards. */
3858  static unsigned int ram_block_discard_disabled_cnt;
3859  /* Disable only uncoordinated discards. */
3860  static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3861  static QemuMutex ram_block_discard_disable_mutex;
3862  
ram_block_discard_disable_mutex_lock(void)3863  static void ram_block_discard_disable_mutex_lock(void)
3864  {
3865      static gsize initialized;
3866  
3867      if (g_once_init_enter(&initialized)) {
3868          qemu_mutex_init(&ram_block_discard_disable_mutex);
3869          g_once_init_leave(&initialized, 1);
3870      }
3871      qemu_mutex_lock(&ram_block_discard_disable_mutex);
3872  }
3873  
ram_block_discard_disable_mutex_unlock(void)3874  static void ram_block_discard_disable_mutex_unlock(void)
3875  {
3876      qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3877  }
3878  
ram_block_discard_disable(bool state)3879  int ram_block_discard_disable(bool state)
3880  {
3881      int ret = 0;
3882  
3883      ram_block_discard_disable_mutex_lock();
3884      if (!state) {
3885          ram_block_discard_disabled_cnt--;
3886      } else if (ram_block_discard_required_cnt ||
3887                 ram_block_coordinated_discard_required_cnt) {
3888          ret = -EBUSY;
3889      } else {
3890          ram_block_discard_disabled_cnt++;
3891      }
3892      ram_block_discard_disable_mutex_unlock();
3893      return ret;
3894  }
3895  
ram_block_uncoordinated_discard_disable(bool state)3896  int ram_block_uncoordinated_discard_disable(bool state)
3897  {
3898      int ret = 0;
3899  
3900      ram_block_discard_disable_mutex_lock();
3901      if (!state) {
3902          ram_block_uncoordinated_discard_disabled_cnt--;
3903      } else if (ram_block_discard_required_cnt) {
3904          ret = -EBUSY;
3905      } else {
3906          ram_block_uncoordinated_discard_disabled_cnt++;
3907      }
3908      ram_block_discard_disable_mutex_unlock();
3909      return ret;
3910  }
3911  
ram_block_discard_require(bool state)3912  int ram_block_discard_require(bool state)
3913  {
3914      int ret = 0;
3915  
3916      ram_block_discard_disable_mutex_lock();
3917      if (!state) {
3918          ram_block_discard_required_cnt--;
3919      } else if (ram_block_discard_disabled_cnt ||
3920                 ram_block_uncoordinated_discard_disabled_cnt) {
3921          ret = -EBUSY;
3922      } else {
3923          ram_block_discard_required_cnt++;
3924      }
3925      ram_block_discard_disable_mutex_unlock();
3926      return ret;
3927  }
3928  
ram_block_coordinated_discard_require(bool state)3929  int ram_block_coordinated_discard_require(bool state)
3930  {
3931      int ret = 0;
3932  
3933      ram_block_discard_disable_mutex_lock();
3934      if (!state) {
3935          ram_block_coordinated_discard_required_cnt--;
3936      } else if (ram_block_discard_disabled_cnt) {
3937          ret = -EBUSY;
3938      } else {
3939          ram_block_coordinated_discard_required_cnt++;
3940      }
3941      ram_block_discard_disable_mutex_unlock();
3942      return ret;
3943  }
3944  
ram_block_discard_is_disabled(void)3945  bool ram_block_discard_is_disabled(void)
3946  {
3947      return qatomic_read(&ram_block_discard_disabled_cnt) ||
3948             qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3949  }
3950  
ram_block_discard_is_required(void)3951  bool ram_block_discard_is_required(void)
3952  {
3953      return qatomic_read(&ram_block_discard_required_cnt) ||
3954             qatomic_read(&ram_block_coordinated_discard_required_cnt);
3955  }
3956