xref: /openbmc/linux/drivers/opp/core.c (revision 060f35a317ef09101b128f399dce7ed13d019461)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Generic OPP Interface
4   *
5   * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6   *	Nishanth Menon
7   *	Romit Dasgupta
8   *	Kevin Hilman
9   */
10  
11  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12  
13  #include <linux/clk.h>
14  #include <linux/errno.h>
15  #include <linux/err.h>
16  #include <linux/device.h>
17  #include <linux/export.h>
18  #include <linux/pm_domain.h>
19  #include <linux/regulator/consumer.h>
20  #include <linux/slab.h>
21  #include <linux/xarray.h>
22  
23  #include "opp.h"
24  
25  /*
26   * The root of the list of all opp-tables. All opp_table structures branch off
27   * from here, with each opp_table containing the list of opps it supports in
28   * various states of availability.
29   */
30  LIST_HEAD(opp_tables);
31  
32  /* Lock to allow exclusive modification to the device and opp lists */
33  DEFINE_MUTEX(opp_table_lock);
34  /* Flag indicating that opp_tables list is being updated at the moment */
35  static bool opp_tables_busy;
36  
37  /* OPP ID allocator */
38  static DEFINE_XARRAY_ALLOC1(opp_configs);
39  
_find_opp_dev(const struct device * dev,struct opp_table * opp_table)40  static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41  {
42  	struct opp_device *opp_dev;
43  	bool found = false;
44  
45  	mutex_lock(&opp_table->lock);
46  	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47  		if (opp_dev->dev == dev) {
48  			found = true;
49  			break;
50  		}
51  
52  	mutex_unlock(&opp_table->lock);
53  	return found;
54  }
55  
_find_opp_table_unlocked(struct device * dev)56  static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57  {
58  	struct opp_table *opp_table;
59  
60  	list_for_each_entry(opp_table, &opp_tables, node) {
61  		if (_find_opp_dev(dev, opp_table)) {
62  			_get_opp_table_kref(opp_table);
63  			return opp_table;
64  		}
65  	}
66  
67  	return ERR_PTR(-ENODEV);
68  }
69  
70  /**
71   * _find_opp_table() - find opp_table struct using device pointer
72   * @dev:	device pointer used to lookup OPP table
73   *
74   * Search OPP table for one containing matching device.
75   *
76   * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77   * -EINVAL based on type of error.
78   *
79   * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80   */
_find_opp_table(struct device * dev)81  struct opp_table *_find_opp_table(struct device *dev)
82  {
83  	struct opp_table *opp_table;
84  
85  	if (IS_ERR_OR_NULL(dev)) {
86  		pr_err("%s: Invalid parameters\n", __func__);
87  		return ERR_PTR(-EINVAL);
88  	}
89  
90  	mutex_lock(&opp_table_lock);
91  	opp_table = _find_opp_table_unlocked(dev);
92  	mutex_unlock(&opp_table_lock);
93  
94  	return opp_table;
95  }
96  
97  /*
98   * Returns true if multiple clocks aren't there, else returns false with WARN.
99   *
100   * We don't force clk_count == 1 here as there are users who don't have a clock
101   * representation in the OPP table and manage the clock configuration themselves
102   * in an platform specific way.
103   */
assert_single_clk(struct opp_table * opp_table,unsigned int __always_unused index)104  static bool assert_single_clk(struct opp_table *opp_table,
105  			      unsigned int __always_unused index)
106  {
107  	return !WARN_ON(opp_table->clk_count > 1);
108  }
109  
110  /*
111   * Returns true if clock table is large enough to contain the clock index.
112   */
assert_clk_index(struct opp_table * opp_table,unsigned int index)113  static bool assert_clk_index(struct opp_table *opp_table,
114  			     unsigned int index)
115  {
116  	return opp_table->clk_count > index;
117  }
118  
119  /*
120   * Returns true if bandwidth table is large enough to contain the bandwidth index.
121   */
assert_bandwidth_index(struct opp_table * opp_table,unsigned int index)122  static bool assert_bandwidth_index(struct opp_table *opp_table,
123  				   unsigned int index)
124  {
125  	return opp_table->path_count > index;
126  }
127  
128  /**
129   * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
130   * @opp:	opp for which voltage has to be returned for
131   *
132   * Return: voltage in micro volt corresponding to the opp, else
133   * return 0
134   *
135   * This is useful only for devices with single power supply.
136   */
dev_pm_opp_get_voltage(struct dev_pm_opp * opp)137  unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
138  {
139  	if (IS_ERR_OR_NULL(opp)) {
140  		pr_err("%s: Invalid parameters\n", __func__);
141  		return 0;
142  	}
143  
144  	return opp->supplies[0].u_volt;
145  }
146  EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
147  
148  /**
149   * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
150   * @opp:	opp for which voltage has to be returned for
151   * @supplies:	Placeholder for copying the supply information.
152   *
153   * Return: negative error number on failure, 0 otherwise on success after
154   * setting @supplies.
155   *
156   * This can be used for devices with any number of power supplies. The caller
157   * must ensure the @supplies array must contain space for each regulator.
158   */
dev_pm_opp_get_supplies(struct dev_pm_opp * opp,struct dev_pm_opp_supply * supplies)159  int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
160  			    struct dev_pm_opp_supply *supplies)
161  {
162  	if (IS_ERR_OR_NULL(opp) || !supplies) {
163  		pr_err("%s: Invalid parameters\n", __func__);
164  		return -EINVAL;
165  	}
166  
167  	memcpy(supplies, opp->supplies,
168  	       sizeof(*supplies) * opp->opp_table->regulator_count);
169  	return 0;
170  }
171  EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
172  
173  /**
174   * dev_pm_opp_get_power() - Gets the power corresponding to an opp
175   * @opp:	opp for which power has to be returned for
176   *
177   * Return: power in micro watt corresponding to the opp, else
178   * return 0
179   *
180   * This is useful only for devices with single power supply.
181   */
dev_pm_opp_get_power(struct dev_pm_opp * opp)182  unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
183  {
184  	unsigned long opp_power = 0;
185  	int i;
186  
187  	if (IS_ERR_OR_NULL(opp)) {
188  		pr_err("%s: Invalid parameters\n", __func__);
189  		return 0;
190  	}
191  	for (i = 0; i < opp->opp_table->regulator_count; i++)
192  		opp_power += opp->supplies[i].u_watt;
193  
194  	return opp_power;
195  }
196  EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
197  
198  /**
199   * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
200   *				   available opp with specified index
201   * @opp: opp for which frequency has to be returned for
202   * @index: index of the frequency within the required opp
203   *
204   * Return: frequency in hertz corresponding to the opp with specified index,
205   * else return 0
206   */
dev_pm_opp_get_freq_indexed(struct dev_pm_opp * opp,u32 index)207  unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
208  {
209  	if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
210  		pr_err("%s: Invalid parameters\n", __func__);
211  		return 0;
212  	}
213  
214  	return opp->rates[index];
215  }
216  EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
217  
218  /**
219   * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
220   * @opp:	opp for which level value has to be returned for
221   *
222   * Return: level read from device tree corresponding to the opp, else
223   * return 0.
224   */
dev_pm_opp_get_level(struct dev_pm_opp * opp)225  unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
226  {
227  	if (IS_ERR_OR_NULL(opp) || !opp->available) {
228  		pr_err("%s: Invalid parameters\n", __func__);
229  		return 0;
230  	}
231  
232  	return opp->level;
233  }
234  EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
235  
236  /**
237   * dev_pm_opp_get_required_pstate() - Gets the required performance state
238   *                                    corresponding to an available opp
239   * @opp:	opp for which performance state has to be returned for
240   * @index:	index of the required opp
241   *
242   * Return: performance state read from device tree corresponding to the
243   * required opp, else return 0.
244   */
dev_pm_opp_get_required_pstate(struct dev_pm_opp * opp,unsigned int index)245  unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
246  					    unsigned int index)
247  {
248  	if (IS_ERR_OR_NULL(opp) || !opp->available ||
249  	    index >= opp->opp_table->required_opp_count) {
250  		pr_err("%s: Invalid parameters\n", __func__);
251  		return 0;
252  	}
253  
254  	/* required-opps not fully initialized yet */
255  	if (lazy_linking_pending(opp->opp_table))
256  		return 0;
257  
258  	/* The required OPP table must belong to a genpd */
259  	if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
260  		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
261  		return 0;
262  	}
263  
264  	return opp->required_opps[index]->level;
265  }
266  EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
267  
268  /**
269   * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
270   * @opp: opp for which turbo mode is being verified
271   *
272   * Turbo OPPs are not for normal use, and can be enabled (under certain
273   * conditions) for short duration of times to finish high throughput work
274   * quickly. Running on them for longer times may overheat the chip.
275   *
276   * Return: true if opp is turbo opp, else false.
277   */
dev_pm_opp_is_turbo(struct dev_pm_opp * opp)278  bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
279  {
280  	if (IS_ERR_OR_NULL(opp) || !opp->available) {
281  		pr_err("%s: Invalid parameters\n", __func__);
282  		return false;
283  	}
284  
285  	return opp->turbo;
286  }
287  EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
288  
289  /**
290   * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
291   * @dev:	device for which we do this operation
292   *
293   * Return: This function returns the max clock latency in nanoseconds.
294   */
dev_pm_opp_get_max_clock_latency(struct device * dev)295  unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
296  {
297  	struct opp_table *opp_table;
298  	unsigned long clock_latency_ns;
299  
300  	opp_table = _find_opp_table(dev);
301  	if (IS_ERR(opp_table))
302  		return 0;
303  
304  	clock_latency_ns = opp_table->clock_latency_ns_max;
305  
306  	dev_pm_opp_put_opp_table(opp_table);
307  
308  	return clock_latency_ns;
309  }
310  EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
311  
312  /**
313   * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
314   * @dev: device for which we do this operation
315   *
316   * Return: This function returns the max voltage latency in nanoseconds.
317   */
dev_pm_opp_get_max_volt_latency(struct device * dev)318  unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
319  {
320  	struct opp_table *opp_table;
321  	struct dev_pm_opp *opp;
322  	struct regulator *reg;
323  	unsigned long latency_ns = 0;
324  	int ret, i, count;
325  	struct {
326  		unsigned long min;
327  		unsigned long max;
328  	} *uV;
329  
330  	opp_table = _find_opp_table(dev);
331  	if (IS_ERR(opp_table))
332  		return 0;
333  
334  	/* Regulator may not be required for the device */
335  	if (!opp_table->regulators)
336  		goto put_opp_table;
337  
338  	count = opp_table->regulator_count;
339  
340  	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
341  	if (!uV)
342  		goto put_opp_table;
343  
344  	mutex_lock(&opp_table->lock);
345  
346  	for (i = 0; i < count; i++) {
347  		uV[i].min = ~0;
348  		uV[i].max = 0;
349  
350  		list_for_each_entry(opp, &opp_table->opp_list, node) {
351  			if (!opp->available)
352  				continue;
353  
354  			if (opp->supplies[i].u_volt_min < uV[i].min)
355  				uV[i].min = opp->supplies[i].u_volt_min;
356  			if (opp->supplies[i].u_volt_max > uV[i].max)
357  				uV[i].max = opp->supplies[i].u_volt_max;
358  		}
359  	}
360  
361  	mutex_unlock(&opp_table->lock);
362  
363  	/*
364  	 * The caller needs to ensure that opp_table (and hence the regulator)
365  	 * isn't freed, while we are executing this routine.
366  	 */
367  	for (i = 0; i < count; i++) {
368  		reg = opp_table->regulators[i];
369  		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
370  		if (ret > 0)
371  			latency_ns += ret * 1000;
372  	}
373  
374  	kfree(uV);
375  put_opp_table:
376  	dev_pm_opp_put_opp_table(opp_table);
377  
378  	return latency_ns;
379  }
380  EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
381  
382  /**
383   * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
384   *					     nanoseconds
385   * @dev: device for which we do this operation
386   *
387   * Return: This function returns the max transition latency, in nanoseconds, to
388   * switch from one OPP to other.
389   */
dev_pm_opp_get_max_transition_latency(struct device * dev)390  unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
391  {
392  	return dev_pm_opp_get_max_volt_latency(dev) +
393  		dev_pm_opp_get_max_clock_latency(dev);
394  }
395  EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
396  
397  /**
398   * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
399   * @dev:	device for which we do this operation
400   *
401   * Return: This function returns the frequency of the OPP marked as suspend_opp
402   * if one is available, else returns 0;
403   */
dev_pm_opp_get_suspend_opp_freq(struct device * dev)404  unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
405  {
406  	struct opp_table *opp_table;
407  	unsigned long freq = 0;
408  
409  	opp_table = _find_opp_table(dev);
410  	if (IS_ERR(opp_table))
411  		return 0;
412  
413  	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
414  		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
415  
416  	dev_pm_opp_put_opp_table(opp_table);
417  
418  	return freq;
419  }
420  EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
421  
_get_opp_count(struct opp_table * opp_table)422  int _get_opp_count(struct opp_table *opp_table)
423  {
424  	struct dev_pm_opp *opp;
425  	int count = 0;
426  
427  	mutex_lock(&opp_table->lock);
428  
429  	list_for_each_entry(opp, &opp_table->opp_list, node) {
430  		if (opp->available)
431  			count++;
432  	}
433  
434  	mutex_unlock(&opp_table->lock);
435  
436  	return count;
437  }
438  
439  /**
440   * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
441   * @dev:	device for which we do this operation
442   *
443   * Return: This function returns the number of available opps if there are any,
444   * else returns 0 if none or the corresponding error value.
445   */
dev_pm_opp_get_opp_count(struct device * dev)446  int dev_pm_opp_get_opp_count(struct device *dev)
447  {
448  	struct opp_table *opp_table;
449  	int count;
450  
451  	opp_table = _find_opp_table(dev);
452  	if (IS_ERR(opp_table)) {
453  		count = PTR_ERR(opp_table);
454  		dev_dbg(dev, "%s: OPP table not found (%d)\n",
455  			__func__, count);
456  		return count;
457  	}
458  
459  	count = _get_opp_count(opp_table);
460  	dev_pm_opp_put_opp_table(opp_table);
461  
462  	return count;
463  }
464  EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
465  
466  /* Helpers to read keys */
_read_freq(struct dev_pm_opp * opp,int index)467  static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
468  {
469  	return opp->rates[index];
470  }
471  
_read_level(struct dev_pm_opp * opp,int index)472  static unsigned long _read_level(struct dev_pm_opp *opp, int index)
473  {
474  	return opp->level;
475  }
476  
_read_bw(struct dev_pm_opp * opp,int index)477  static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
478  {
479  	return opp->bandwidth[index].peak;
480  }
481  
482  /* Generic comparison helpers */
_compare_exact(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)483  static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
484  			   unsigned long opp_key, unsigned long key)
485  {
486  	if (opp_key == key) {
487  		*opp = temp_opp;
488  		return true;
489  	}
490  
491  	return false;
492  }
493  
_compare_ceil(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)494  static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
495  			  unsigned long opp_key, unsigned long key)
496  {
497  	if (opp_key >= key) {
498  		*opp = temp_opp;
499  		return true;
500  	}
501  
502  	return false;
503  }
504  
_compare_floor(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)505  static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
506  			   unsigned long opp_key, unsigned long key)
507  {
508  	if (opp_key > key)
509  		return true;
510  
511  	*opp = temp_opp;
512  	return false;
513  }
514  
515  /* Generic key finding helpers */
_opp_table_find_key(struct opp_table * opp_table,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* compare)(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key),bool (* assert)(struct opp_table * opp_table,unsigned int index))516  static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
517  		unsigned long *key, int index, bool available,
518  		unsigned long (*read)(struct dev_pm_opp *opp, int index),
519  		bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
520  				unsigned long opp_key, unsigned long key),
521  		bool (*assert)(struct opp_table *opp_table, unsigned int index))
522  {
523  	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
524  
525  	/* Assert that the requirement is met */
526  	if (assert && !assert(opp_table, index))
527  		return ERR_PTR(-EINVAL);
528  
529  	mutex_lock(&opp_table->lock);
530  
531  	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
532  		if (temp_opp->available == available) {
533  			if (compare(&opp, temp_opp, read(temp_opp, index), *key))
534  				break;
535  		}
536  	}
537  
538  	/* Increment the reference count of OPP */
539  	if (!IS_ERR(opp)) {
540  		*key = read(opp, index);
541  		dev_pm_opp_get(opp);
542  	}
543  
544  	mutex_unlock(&opp_table->lock);
545  
546  	return opp;
547  }
548  
549  static struct dev_pm_opp *
_find_key(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* compare)(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key),bool (* assert)(struct opp_table * opp_table,unsigned int index))550  _find_key(struct device *dev, unsigned long *key, int index, bool available,
551  	  unsigned long (*read)(struct dev_pm_opp *opp, int index),
552  	  bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
553  			  unsigned long opp_key, unsigned long key),
554  	  bool (*assert)(struct opp_table *opp_table, unsigned int index))
555  {
556  	struct opp_table *opp_table;
557  	struct dev_pm_opp *opp;
558  
559  	opp_table = _find_opp_table(dev);
560  	if (IS_ERR(opp_table)) {
561  		dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
562  			PTR_ERR(opp_table));
563  		return ERR_CAST(opp_table);
564  	}
565  
566  	opp = _opp_table_find_key(opp_table, key, index, available, read,
567  				  compare, assert);
568  
569  	dev_pm_opp_put_opp_table(opp_table);
570  
571  	return opp;
572  }
573  
_find_key_exact(struct device * dev,unsigned long key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))574  static struct dev_pm_opp *_find_key_exact(struct device *dev,
575  		unsigned long key, int index, bool available,
576  		unsigned long (*read)(struct dev_pm_opp *opp, int index),
577  		bool (*assert)(struct opp_table *opp_table, unsigned int index))
578  {
579  	/*
580  	 * The value of key will be updated here, but will be ignored as the
581  	 * caller doesn't need it.
582  	 */
583  	return _find_key(dev, &key, index, available, read, _compare_exact,
584  			 assert);
585  }
586  
_opp_table_find_key_ceil(struct opp_table * opp_table,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))587  static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
588  		unsigned long *key, int index, bool available,
589  		unsigned long (*read)(struct dev_pm_opp *opp, int index),
590  		bool (*assert)(struct opp_table *opp_table, unsigned int index))
591  {
592  	return _opp_table_find_key(opp_table, key, index, available, read,
593  				   _compare_ceil, assert);
594  }
595  
_find_key_ceil(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))596  static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
597  		int index, bool available,
598  		unsigned long (*read)(struct dev_pm_opp *opp, int index),
599  		bool (*assert)(struct opp_table *opp_table, unsigned int index))
600  {
601  	return _find_key(dev, key, index, available, read, _compare_ceil,
602  			 assert);
603  }
604  
_find_key_floor(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))605  static struct dev_pm_opp *_find_key_floor(struct device *dev,
606  		unsigned long *key, int index, bool available,
607  		unsigned long (*read)(struct dev_pm_opp *opp, int index),
608  		bool (*assert)(struct opp_table *opp_table, unsigned int index))
609  {
610  	return _find_key(dev, key, index, available, read, _compare_floor,
611  			 assert);
612  }
613  
614  /**
615   * dev_pm_opp_find_freq_exact() - search for an exact frequency
616   * @dev:		device for which we do this operation
617   * @freq:		frequency to search for
618   * @available:		true/false - match for available opp
619   *
620   * Return: Searches for exact match in the opp table and returns pointer to the
621   * matching opp if found, else returns ERR_PTR in case of error and should
622   * be handled using IS_ERR. Error return values can be:
623   * EINVAL:	for bad pointer
624   * ERANGE:	no match found for search
625   * ENODEV:	if device not found in list of registered devices
626   *
627   * Note: available is a modifier for the search. if available=true, then the
628   * match is for exact matching frequency and is available in the stored OPP
629   * table. if false, the match is for exact frequency which is not available.
630   *
631   * This provides a mechanism to enable an opp which is not available currently
632   * or the opposite as well.
633   *
634   * The callers are required to call dev_pm_opp_put() for the returned OPP after
635   * use.
636   */
dev_pm_opp_find_freq_exact(struct device * dev,unsigned long freq,bool available)637  struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
638  		unsigned long freq, bool available)
639  {
640  	return _find_key_exact(dev, freq, 0, available, _read_freq,
641  			       assert_single_clk);
642  }
643  EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
644  
645  /**
646   * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
647   *					 clock corresponding to the index
648   * @dev:	Device for which we do this operation
649   * @freq:	frequency to search for
650   * @index:	Clock index
651   * @available:	true/false - match for available opp
652   *
653   * Search for the matching exact OPP for the clock corresponding to the
654   * specified index from a starting freq for a device.
655   *
656   * Return: matching *opp , else returns ERR_PTR in case of error and should be
657   * handled using IS_ERR. Error return values can be:
658   * EINVAL:	for bad pointer
659   * ERANGE:	no match found for search
660   * ENODEV:	if device not found in list of registered devices
661   *
662   * The callers are required to call dev_pm_opp_put() for the returned OPP after
663   * use.
664   */
665  struct dev_pm_opp *
dev_pm_opp_find_freq_exact_indexed(struct device * dev,unsigned long freq,u32 index,bool available)666  dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
667  				   u32 index, bool available)
668  {
669  	return _find_key_exact(dev, freq, index, available, _read_freq,
670  			       assert_clk_index);
671  }
672  EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
673  
_find_freq_ceil(struct opp_table * opp_table,unsigned long * freq)674  static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
675  						   unsigned long *freq)
676  {
677  	return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
678  					assert_single_clk);
679  }
680  
681  /**
682   * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
683   * @dev:	device for which we do this operation
684   * @freq:	Start frequency
685   *
686   * Search for the matching ceil *available* OPP from a starting freq
687   * for a device.
688   *
689   * Return: matching *opp and refreshes *freq accordingly, else returns
690   * ERR_PTR in case of error and should be handled using IS_ERR. Error return
691   * values can be:
692   * EINVAL:	for bad pointer
693   * ERANGE:	no match found for search
694   * ENODEV:	if device not found in list of registered devices
695   *
696   * The callers are required to call dev_pm_opp_put() for the returned OPP after
697   * use.
698   */
dev_pm_opp_find_freq_ceil(struct device * dev,unsigned long * freq)699  struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
700  					     unsigned long *freq)
701  {
702  	return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
703  }
704  EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
705  
706  /**
707   * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
708   *					 clock corresponding to the index
709   * @dev:	Device for which we do this operation
710   * @freq:	Start frequency
711   * @index:	Clock index
712   *
713   * Search for the matching ceil *available* OPP for the clock corresponding to
714   * the specified index from a starting freq for a device.
715   *
716   * Return: matching *opp and refreshes *freq accordingly, else returns
717   * ERR_PTR in case of error and should be handled using IS_ERR. Error return
718   * values can be:
719   * EINVAL:	for bad pointer
720   * ERANGE:	no match found for search
721   * ENODEV:	if device not found in list of registered devices
722   *
723   * The callers are required to call dev_pm_opp_put() for the returned OPP after
724   * use.
725   */
726  struct dev_pm_opp *
dev_pm_opp_find_freq_ceil_indexed(struct device * dev,unsigned long * freq,u32 index)727  dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
728  				  u32 index)
729  {
730  	return _find_key_ceil(dev, freq, index, true, _read_freq,
731  			      assert_clk_index);
732  }
733  EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
734  
735  /**
736   * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
737   * @dev:	device for which we do this operation
738   * @freq:	Start frequency
739   *
740   * Search for the matching floor *available* OPP from a starting freq
741   * for a device.
742   *
743   * Return: matching *opp and refreshes *freq accordingly, else returns
744   * ERR_PTR in case of error and should be handled using IS_ERR. Error return
745   * values can be:
746   * EINVAL:	for bad pointer
747   * ERANGE:	no match found for search
748   * ENODEV:	if device not found in list of registered devices
749   *
750   * The callers are required to call dev_pm_opp_put() for the returned OPP after
751   * use.
752   */
dev_pm_opp_find_freq_floor(struct device * dev,unsigned long * freq)753  struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
754  					      unsigned long *freq)
755  {
756  	return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
757  }
758  EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
759  
760  /**
761   * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
762   *					  clock corresponding to the index
763   * @dev:	Device for which we do this operation
764   * @freq:	Start frequency
765   * @index:	Clock index
766   *
767   * Search for the matching floor *available* OPP for the clock corresponding to
768   * the specified index from a starting freq for a device.
769   *
770   * Return: matching *opp and refreshes *freq accordingly, else returns
771   * ERR_PTR in case of error and should be handled using IS_ERR. Error return
772   * values can be:
773   * EINVAL:	for bad pointer
774   * ERANGE:	no match found for search
775   * ENODEV:	if device not found in list of registered devices
776   *
777   * The callers are required to call dev_pm_opp_put() for the returned OPP after
778   * use.
779   */
780  struct dev_pm_opp *
dev_pm_opp_find_freq_floor_indexed(struct device * dev,unsigned long * freq,u32 index)781  dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
782  				   u32 index)
783  {
784  	return _find_key_floor(dev, freq, index, true, _read_freq, assert_clk_index);
785  }
786  EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
787  
788  /**
789   * dev_pm_opp_find_level_exact() - search for an exact level
790   * @dev:		device for which we do this operation
791   * @level:		level to search for
792   *
793   * Return: Searches for exact match in the opp table and returns pointer to the
794   * matching opp if found, else returns ERR_PTR in case of error and should
795   * be handled using IS_ERR. Error return values can be:
796   * EINVAL:	for bad pointer
797   * ERANGE:	no match found for search
798   * ENODEV:	if device not found in list of registered devices
799   *
800   * The callers are required to call dev_pm_opp_put() for the returned OPP after
801   * use.
802   */
dev_pm_opp_find_level_exact(struct device * dev,unsigned int level)803  struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
804  					       unsigned int level)
805  {
806  	return _find_key_exact(dev, level, 0, true, _read_level, NULL);
807  }
808  EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
809  
810  /**
811   * dev_pm_opp_find_level_ceil() - search for an rounded up level
812   * @dev:		device for which we do this operation
813   * @level:		level to search for
814   *
815   * Return: Searches for rounded up match in the opp table and returns pointer
816   * to the  matching opp if found, else returns ERR_PTR in case of error and
817   * should be handled using IS_ERR. Error return values can be:
818   * EINVAL:	for bad pointer
819   * ERANGE:	no match found for search
820   * ENODEV:	if device not found in list of registered devices
821   *
822   * The callers are required to call dev_pm_opp_put() for the returned OPP after
823   * use.
824   */
dev_pm_opp_find_level_ceil(struct device * dev,unsigned int * level)825  struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
826  					      unsigned int *level)
827  {
828  	unsigned long temp = *level;
829  	struct dev_pm_opp *opp;
830  
831  	opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
832  	*level = temp;
833  	return opp;
834  }
835  EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
836  
837  /**
838   * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
839   * @dev:	device for which we do this operation
840   * @bw:	start bandwidth
841   * @index:	which bandwidth to compare, in case of OPPs with several values
842   *
843   * Search for the matching floor *available* OPP from a starting bandwidth
844   * for a device.
845   *
846   * Return: matching *opp and refreshes *bw accordingly, else returns
847   * ERR_PTR in case of error and should be handled using IS_ERR. Error return
848   * values can be:
849   * EINVAL:	for bad pointer
850   * ERANGE:	no match found for search
851   * ENODEV:	if device not found in list of registered devices
852   *
853   * The callers are required to call dev_pm_opp_put() for the returned OPP after
854   * use.
855   */
dev_pm_opp_find_bw_ceil(struct device * dev,unsigned int * bw,int index)856  struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
857  					   int index)
858  {
859  	unsigned long temp = *bw;
860  	struct dev_pm_opp *opp;
861  
862  	opp = _find_key_ceil(dev, &temp, index, true, _read_bw,
863  			     assert_bandwidth_index);
864  	*bw = temp;
865  	return opp;
866  }
867  EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
868  
869  /**
870   * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
871   * @dev:	device for which we do this operation
872   * @bw:	start bandwidth
873   * @index:	which bandwidth to compare, in case of OPPs with several values
874   *
875   * Search for the matching floor *available* OPP from a starting bandwidth
876   * for a device.
877   *
878   * Return: matching *opp and refreshes *bw accordingly, else returns
879   * ERR_PTR in case of error and should be handled using IS_ERR. Error return
880   * values can be:
881   * EINVAL:	for bad pointer
882   * ERANGE:	no match found for search
883   * ENODEV:	if device not found in list of registered devices
884   *
885   * The callers are required to call dev_pm_opp_put() for the returned OPP after
886   * use.
887   */
dev_pm_opp_find_bw_floor(struct device * dev,unsigned int * bw,int index)888  struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
889  					    unsigned int *bw, int index)
890  {
891  	unsigned long temp = *bw;
892  	struct dev_pm_opp *opp;
893  
894  	opp = _find_key_floor(dev, &temp, index, true, _read_bw,
895  			      assert_bandwidth_index);
896  	*bw = temp;
897  	return opp;
898  }
899  EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
900  
_set_opp_voltage(struct device * dev,struct regulator * reg,struct dev_pm_opp_supply * supply)901  static int _set_opp_voltage(struct device *dev, struct regulator *reg,
902  			    struct dev_pm_opp_supply *supply)
903  {
904  	int ret;
905  
906  	/* Regulator not available for device */
907  	if (IS_ERR(reg)) {
908  		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
909  			PTR_ERR(reg));
910  		return 0;
911  	}
912  
913  	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
914  		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
915  
916  	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
917  					    supply->u_volt, supply->u_volt_max);
918  	if (ret)
919  		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
920  			__func__, supply->u_volt_min, supply->u_volt,
921  			supply->u_volt_max, ret);
922  
923  	return ret;
924  }
925  
926  static int
_opp_config_clk_single(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)927  _opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
928  		       struct dev_pm_opp *opp, void *data, bool scaling_down)
929  {
930  	unsigned long *target = data;
931  	unsigned long freq;
932  	int ret;
933  
934  	/* One of target and opp must be available */
935  	if (target) {
936  		freq = *target;
937  	} else if (opp) {
938  		freq = opp->rates[0];
939  	} else {
940  		WARN_ON(1);
941  		return -EINVAL;
942  	}
943  
944  	ret = clk_set_rate(opp_table->clk, freq);
945  	if (ret) {
946  		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
947  			ret);
948  	} else {
949  		opp_table->rate_clk_single = freq;
950  	}
951  
952  	return ret;
953  }
954  
955  /*
956   * Simple implementation for configuring multiple clocks. Configure clocks in
957   * the order in which they are present in the array while scaling up.
958   */
dev_pm_opp_config_clks_simple(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)959  int dev_pm_opp_config_clks_simple(struct device *dev,
960  		struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
961  		bool scaling_down)
962  {
963  	int ret, i;
964  
965  	if (scaling_down) {
966  		for (i = opp_table->clk_count - 1; i >= 0; i--) {
967  			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
968  			if (ret) {
969  				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
970  					ret);
971  				return ret;
972  			}
973  		}
974  	} else {
975  		for (i = 0; i < opp_table->clk_count; i++) {
976  			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
977  			if (ret) {
978  				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
979  					ret);
980  				return ret;
981  			}
982  		}
983  	}
984  
985  	return 0;
986  }
987  EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
988  
_opp_config_regulator_single(struct device * dev,struct dev_pm_opp * old_opp,struct dev_pm_opp * new_opp,struct regulator ** regulators,unsigned int count)989  static int _opp_config_regulator_single(struct device *dev,
990  			struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
991  			struct regulator **regulators, unsigned int count)
992  {
993  	struct regulator *reg = regulators[0];
994  	int ret;
995  
996  	/* This function only supports single regulator per device */
997  	if (WARN_ON(count > 1)) {
998  		dev_err(dev, "multiple regulators are not supported\n");
999  		return -EINVAL;
1000  	}
1001  
1002  	ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1003  	if (ret)
1004  		return ret;
1005  
1006  	/*
1007  	 * Enable the regulator after setting its voltages, otherwise it breaks
1008  	 * some boot-enabled regulators.
1009  	 */
1010  	if (unlikely(!new_opp->opp_table->enabled)) {
1011  		ret = regulator_enable(reg);
1012  		if (ret < 0)
1013  			dev_warn(dev, "Failed to enable regulator: %d", ret);
1014  	}
1015  
1016  	return 0;
1017  }
1018  
_set_opp_bw(const struct opp_table * opp_table,struct dev_pm_opp * opp,struct device * dev)1019  static int _set_opp_bw(const struct opp_table *opp_table,
1020  		       struct dev_pm_opp *opp, struct device *dev)
1021  {
1022  	u32 avg, peak;
1023  	int i, ret;
1024  
1025  	if (!opp_table->paths)
1026  		return 0;
1027  
1028  	for (i = 0; i < opp_table->path_count; i++) {
1029  		if (!opp) {
1030  			avg = 0;
1031  			peak = 0;
1032  		} else {
1033  			avg = opp->bandwidth[i].avg;
1034  			peak = opp->bandwidth[i].peak;
1035  		}
1036  		ret = icc_set_bw(opp_table->paths[i], avg, peak);
1037  		if (ret) {
1038  			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1039  				opp ? "set" : "remove", i, ret);
1040  			return ret;
1041  		}
1042  	}
1043  
1044  	return 0;
1045  }
1046  
_set_performance_state(struct device * dev,struct device * pd_dev,struct dev_pm_opp * opp,int i)1047  static int _set_performance_state(struct device *dev, struct device *pd_dev,
1048  				  struct dev_pm_opp *opp, int i)
1049  {
1050  	unsigned int pstate = likely(opp) ? opp->required_opps[i]->level: 0;
1051  	int ret;
1052  
1053  	if (!pd_dev)
1054  		return 0;
1055  
1056  	ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
1057  	if (ret) {
1058  		dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
1059  			dev_name(pd_dev), pstate, ret);
1060  	}
1061  
1062  	return ret;
1063  }
1064  
_opp_set_required_opps_generic(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool scaling_down)1065  static int _opp_set_required_opps_generic(struct device *dev,
1066  	struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
1067  {
1068  	dev_err(dev, "setting required-opps isn't supported for non-genpd devices\n");
1069  	return -ENOENT;
1070  }
1071  
_opp_set_required_opps_genpd(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool scaling_down)1072  static int _opp_set_required_opps_genpd(struct device *dev,
1073  	struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
1074  {
1075  	struct device **genpd_virt_devs =
1076  		opp_table->genpd_virt_devs ? opp_table->genpd_virt_devs : &dev;
1077  	int i, ret = 0;
1078  
1079  	/*
1080  	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
1081  	 * after it is freed from another thread.
1082  	 */
1083  	mutex_lock(&opp_table->genpd_virt_dev_lock);
1084  
1085  	/* Scaling up? Set required OPPs in normal order, else reverse */
1086  	if (!scaling_down) {
1087  		for (i = 0; i < opp_table->required_opp_count; i++) {
1088  			ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i);
1089  			if (ret)
1090  				break;
1091  		}
1092  	} else {
1093  		for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
1094  			ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i);
1095  			if (ret)
1096  				break;
1097  		}
1098  	}
1099  
1100  	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1101  
1102  	return ret;
1103  }
1104  
1105  /* This is only called for PM domain for now */
_set_required_opps(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool up)1106  static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1107  			      struct dev_pm_opp *opp, bool up)
1108  {
1109  	/* required-opps not fully initialized yet */
1110  	if (lazy_linking_pending(opp_table))
1111  		return -EBUSY;
1112  
1113  	if (opp_table->set_required_opps)
1114  		return opp_table->set_required_opps(dev, opp_table, opp, up);
1115  
1116  	return 0;
1117  }
1118  
1119  /* Update set_required_opps handler */
_update_set_required_opps(struct opp_table * opp_table)1120  void _update_set_required_opps(struct opp_table *opp_table)
1121  {
1122  	/* Already set */
1123  	if (opp_table->set_required_opps)
1124  		return;
1125  
1126  	/* All required OPPs will belong to genpd or none */
1127  	if (opp_table->required_opp_tables[0]->is_genpd)
1128  		opp_table->set_required_opps = _opp_set_required_opps_genpd;
1129  	else
1130  		opp_table->set_required_opps = _opp_set_required_opps_generic;
1131  }
1132  
_find_current_opp(struct device * dev,struct opp_table * opp_table)1133  static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1134  {
1135  	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1136  	unsigned long freq;
1137  
1138  	if (!IS_ERR(opp_table->clk)) {
1139  		freq = clk_get_rate(opp_table->clk);
1140  		opp = _find_freq_ceil(opp_table, &freq);
1141  	}
1142  
1143  	/*
1144  	 * Unable to find the current OPP ? Pick the first from the list since
1145  	 * it is in ascending order, otherwise rest of the code will need to
1146  	 * make special checks to validate current_opp.
1147  	 */
1148  	if (IS_ERR(opp)) {
1149  		mutex_lock(&opp_table->lock);
1150  		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1151  		dev_pm_opp_get(opp);
1152  		mutex_unlock(&opp_table->lock);
1153  	}
1154  
1155  	opp_table->current_opp = opp;
1156  }
1157  
_disable_opp_table(struct device * dev,struct opp_table * opp_table)1158  static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1159  {
1160  	int ret;
1161  
1162  	if (!opp_table->enabled)
1163  		return 0;
1164  
1165  	/*
1166  	 * Some drivers need to support cases where some platforms may
1167  	 * have OPP table for the device, while others don't and
1168  	 * opp_set_rate() just needs to behave like clk_set_rate().
1169  	 */
1170  	if (!_get_opp_count(opp_table))
1171  		return 0;
1172  
1173  	ret = _set_opp_bw(opp_table, NULL, dev);
1174  	if (ret)
1175  		return ret;
1176  
1177  	if (opp_table->regulators)
1178  		regulator_disable(opp_table->regulators[0]);
1179  
1180  	ret = _set_required_opps(dev, opp_table, NULL, false);
1181  
1182  	opp_table->enabled = false;
1183  	return ret;
1184  }
1185  
_set_opp(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * clk_data,bool forced)1186  static int _set_opp(struct device *dev, struct opp_table *opp_table,
1187  		    struct dev_pm_opp *opp, void *clk_data, bool forced)
1188  {
1189  	struct dev_pm_opp *old_opp;
1190  	int scaling_down, ret;
1191  
1192  	if (unlikely(!opp))
1193  		return _disable_opp_table(dev, opp_table);
1194  
1195  	/* Find the currently set OPP if we don't know already */
1196  	if (unlikely(!opp_table->current_opp))
1197  		_find_current_opp(dev, opp_table);
1198  
1199  	old_opp = opp_table->current_opp;
1200  
1201  	/* Return early if nothing to do */
1202  	if (!forced && old_opp == opp && opp_table->enabled) {
1203  		dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1204  		return 0;
1205  	}
1206  
1207  	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1208  		__func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1209  		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1210  		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1211  
1212  	scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1213  	if (scaling_down == -1)
1214  		scaling_down = 0;
1215  
1216  	/* Scaling up? Configure required OPPs before frequency */
1217  	if (!scaling_down) {
1218  		ret = _set_required_opps(dev, opp_table, opp, true);
1219  		if (ret) {
1220  			dev_err(dev, "Failed to set required opps: %d\n", ret);
1221  			return ret;
1222  		}
1223  
1224  		ret = _set_opp_bw(opp_table, opp, dev);
1225  		if (ret) {
1226  			dev_err(dev, "Failed to set bw: %d\n", ret);
1227  			return ret;
1228  		}
1229  
1230  		if (opp_table->config_regulators) {
1231  			ret = opp_table->config_regulators(dev, old_opp, opp,
1232  							   opp_table->regulators,
1233  							   opp_table->regulator_count);
1234  			if (ret) {
1235  				dev_err(dev, "Failed to set regulator voltages: %d\n",
1236  					ret);
1237  				return ret;
1238  			}
1239  		}
1240  	}
1241  
1242  	if (opp_table->config_clks) {
1243  		ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1244  		if (ret)
1245  			return ret;
1246  	}
1247  
1248  	/* Scaling down? Configure required OPPs after frequency */
1249  	if (scaling_down) {
1250  		if (opp_table->config_regulators) {
1251  			ret = opp_table->config_regulators(dev, old_opp, opp,
1252  							   opp_table->regulators,
1253  							   opp_table->regulator_count);
1254  			if (ret) {
1255  				dev_err(dev, "Failed to set regulator voltages: %d\n",
1256  					ret);
1257  				return ret;
1258  			}
1259  		}
1260  
1261  		ret = _set_opp_bw(opp_table, opp, dev);
1262  		if (ret) {
1263  			dev_err(dev, "Failed to set bw: %d\n", ret);
1264  			return ret;
1265  		}
1266  
1267  		ret = _set_required_opps(dev, opp_table, opp, false);
1268  		if (ret) {
1269  			dev_err(dev, "Failed to set required opps: %d\n", ret);
1270  			return ret;
1271  		}
1272  	}
1273  
1274  	opp_table->enabled = true;
1275  	dev_pm_opp_put(old_opp);
1276  
1277  	/* Make sure current_opp doesn't get freed */
1278  	dev_pm_opp_get(opp);
1279  	opp_table->current_opp = opp;
1280  
1281  	return ret;
1282  }
1283  
1284  /**
1285   * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1286   * @dev:	 device for which we do this operation
1287   * @target_freq: frequency to achieve
1288   *
1289   * This configures the power-supplies to the levels specified by the OPP
1290   * corresponding to the target_freq, and programs the clock to a value <=
1291   * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1292   * provided by the opp, should have already rounded to the target OPP's
1293   * frequency.
1294   */
dev_pm_opp_set_rate(struct device * dev,unsigned long target_freq)1295  int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1296  {
1297  	struct opp_table *opp_table;
1298  	unsigned long freq = 0, temp_freq;
1299  	struct dev_pm_opp *opp = NULL;
1300  	bool forced = false;
1301  	int ret;
1302  
1303  	opp_table = _find_opp_table(dev);
1304  	if (IS_ERR(opp_table)) {
1305  		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1306  		return PTR_ERR(opp_table);
1307  	}
1308  
1309  	if (target_freq) {
1310  		/*
1311  		 * For IO devices which require an OPP on some platforms/SoCs
1312  		 * while just needing to scale the clock on some others
1313  		 * we look for empty OPP tables with just a clock handle and
1314  		 * scale only the clk. This makes dev_pm_opp_set_rate()
1315  		 * equivalent to a clk_set_rate()
1316  		 */
1317  		if (!_get_opp_count(opp_table)) {
1318  			ret = opp_table->config_clks(dev, opp_table, NULL,
1319  						     &target_freq, false);
1320  			goto put_opp_table;
1321  		}
1322  
1323  		freq = clk_round_rate(opp_table->clk, target_freq);
1324  		if ((long)freq <= 0)
1325  			freq = target_freq;
1326  
1327  		/*
1328  		 * The clock driver may support finer resolution of the
1329  		 * frequencies than the OPP table, don't update the frequency we
1330  		 * pass to clk_set_rate() here.
1331  		 */
1332  		temp_freq = freq;
1333  		opp = _find_freq_ceil(opp_table, &temp_freq);
1334  		if (IS_ERR(opp)) {
1335  			ret = PTR_ERR(opp);
1336  			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1337  				__func__, freq, ret);
1338  			goto put_opp_table;
1339  		}
1340  
1341  		/*
1342  		 * An OPP entry specifies the highest frequency at which other
1343  		 * properties of the OPP entry apply. Even if the new OPP is
1344  		 * same as the old one, we may still reach here for a different
1345  		 * value of the frequency. In such a case, do not abort but
1346  		 * configure the hardware to the desired frequency forcefully.
1347  		 */
1348  		forced = opp_table->rate_clk_single != freq;
1349  	}
1350  
1351  	ret = _set_opp(dev, opp_table, opp, &freq, forced);
1352  
1353  	if (freq)
1354  		dev_pm_opp_put(opp);
1355  
1356  put_opp_table:
1357  	dev_pm_opp_put_opp_table(opp_table);
1358  	return ret;
1359  }
1360  EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1361  
1362  /**
1363   * dev_pm_opp_set_opp() - Configure device for OPP
1364   * @dev: device for which we do this operation
1365   * @opp: OPP to set to
1366   *
1367   * This configures the device based on the properties of the OPP passed to this
1368   * routine.
1369   *
1370   * Return: 0 on success, a negative error number otherwise.
1371   */
dev_pm_opp_set_opp(struct device * dev,struct dev_pm_opp * opp)1372  int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1373  {
1374  	struct opp_table *opp_table;
1375  	int ret;
1376  
1377  	opp_table = _find_opp_table(dev);
1378  	if (IS_ERR(opp_table)) {
1379  		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1380  		return PTR_ERR(opp_table);
1381  	}
1382  
1383  	ret = _set_opp(dev, opp_table, opp, NULL, false);
1384  	dev_pm_opp_put_opp_table(opp_table);
1385  
1386  	return ret;
1387  }
1388  EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1389  
1390  /* OPP-dev Helpers */
_remove_opp_dev(struct opp_device * opp_dev,struct opp_table * opp_table)1391  static void _remove_opp_dev(struct opp_device *opp_dev,
1392  			    struct opp_table *opp_table)
1393  {
1394  	opp_debug_unregister(opp_dev, opp_table);
1395  	list_del(&opp_dev->node);
1396  	kfree(opp_dev);
1397  }
1398  
_add_opp_dev(const struct device * dev,struct opp_table * opp_table)1399  struct opp_device *_add_opp_dev(const struct device *dev,
1400  				struct opp_table *opp_table)
1401  {
1402  	struct opp_device *opp_dev;
1403  
1404  	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1405  	if (!opp_dev)
1406  		return NULL;
1407  
1408  	/* Initialize opp-dev */
1409  	opp_dev->dev = dev;
1410  
1411  	mutex_lock(&opp_table->lock);
1412  	list_add(&opp_dev->node, &opp_table->dev_list);
1413  	mutex_unlock(&opp_table->lock);
1414  
1415  	/* Create debugfs entries for the opp_table */
1416  	opp_debug_register(opp_dev, opp_table);
1417  
1418  	return opp_dev;
1419  }
1420  
_allocate_opp_table(struct device * dev,int index)1421  static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1422  {
1423  	struct opp_table *opp_table;
1424  	struct opp_device *opp_dev;
1425  	int ret;
1426  
1427  	/*
1428  	 * Allocate a new OPP table. In the infrequent case where a new
1429  	 * device is needed to be added, we pay this penalty.
1430  	 */
1431  	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1432  	if (!opp_table)
1433  		return ERR_PTR(-ENOMEM);
1434  
1435  	mutex_init(&opp_table->lock);
1436  	mutex_init(&opp_table->genpd_virt_dev_lock);
1437  	INIT_LIST_HEAD(&opp_table->dev_list);
1438  	INIT_LIST_HEAD(&opp_table->lazy);
1439  
1440  	opp_table->clk = ERR_PTR(-ENODEV);
1441  
1442  	/* Mark regulator count uninitialized */
1443  	opp_table->regulator_count = -1;
1444  
1445  	opp_dev = _add_opp_dev(dev, opp_table);
1446  	if (!opp_dev) {
1447  		ret = -ENOMEM;
1448  		goto err;
1449  	}
1450  
1451  	_of_init_opp_table(opp_table, dev, index);
1452  
1453  	/* Find interconnect path(s) for the device */
1454  	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1455  	if (ret) {
1456  		if (ret == -EPROBE_DEFER)
1457  			goto remove_opp_dev;
1458  
1459  		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1460  			 __func__, ret);
1461  	}
1462  
1463  	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1464  	INIT_LIST_HEAD(&opp_table->opp_list);
1465  	kref_init(&opp_table->kref);
1466  
1467  	return opp_table;
1468  
1469  remove_opp_dev:
1470  	_of_clear_opp_table(opp_table);
1471  	_remove_opp_dev(opp_dev, opp_table);
1472  	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1473  	mutex_destroy(&opp_table->lock);
1474  err:
1475  	kfree(opp_table);
1476  	return ERR_PTR(ret);
1477  }
1478  
_get_opp_table_kref(struct opp_table * opp_table)1479  void _get_opp_table_kref(struct opp_table *opp_table)
1480  {
1481  	kref_get(&opp_table->kref);
1482  }
1483  
_update_opp_table_clk(struct device * dev,struct opp_table * opp_table,bool getclk)1484  static struct opp_table *_update_opp_table_clk(struct device *dev,
1485  					       struct opp_table *opp_table,
1486  					       bool getclk)
1487  {
1488  	int ret;
1489  
1490  	/*
1491  	 * Return early if we don't need to get clk or we have already done it
1492  	 * earlier.
1493  	 */
1494  	if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1495  	    opp_table->clks)
1496  		return opp_table;
1497  
1498  	/* Find clk for the device */
1499  	opp_table->clk = clk_get(dev, NULL);
1500  
1501  	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1502  	if (!ret) {
1503  		opp_table->config_clks = _opp_config_clk_single;
1504  		opp_table->clk_count = 1;
1505  		return opp_table;
1506  	}
1507  
1508  	if (ret == -ENOENT) {
1509  		/*
1510  		 * There are few platforms which don't want the OPP core to
1511  		 * manage device's clock settings. In such cases neither the
1512  		 * platform provides the clks explicitly to us, nor the DT
1513  		 * contains a valid clk entry. The OPP nodes in DT may still
1514  		 * contain "opp-hz" property though, which we need to parse and
1515  		 * allow the platform to find an OPP based on freq later on.
1516  		 *
1517  		 * This is a simple solution to take care of such corner cases,
1518  		 * i.e. make the clk_count 1, which lets us allocate space for
1519  		 * frequency in opp->rates and also parse the entries in DT.
1520  		 */
1521  		opp_table->clk_count = 1;
1522  
1523  		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1524  		return opp_table;
1525  	}
1526  
1527  	dev_pm_opp_put_opp_table(opp_table);
1528  	dev_err_probe(dev, ret, "Couldn't find clock\n");
1529  
1530  	return ERR_PTR(ret);
1531  }
1532  
1533  /*
1534   * We need to make sure that the OPP table for a device doesn't get added twice,
1535   * if this routine gets called in parallel with the same device pointer.
1536   *
1537   * The simplest way to enforce that is to perform everything (find existing
1538   * table and if not found, create a new one) under the opp_table_lock, so only
1539   * one creator gets access to the same. But that expands the critical section
1540   * under the lock and may end up causing circular dependencies with frameworks
1541   * like debugfs, interconnect or clock framework as they may be direct or
1542   * indirect users of OPP core.
1543   *
1544   * And for that reason we have to go for a bit tricky implementation here, which
1545   * uses the opp_tables_busy flag to indicate if another creator is in the middle
1546   * of adding an OPP table and others should wait for it to finish.
1547   */
_add_opp_table_indexed(struct device * dev,int index,bool getclk)1548  struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1549  					 bool getclk)
1550  {
1551  	struct opp_table *opp_table;
1552  
1553  again:
1554  	mutex_lock(&opp_table_lock);
1555  
1556  	opp_table = _find_opp_table_unlocked(dev);
1557  	if (!IS_ERR(opp_table))
1558  		goto unlock;
1559  
1560  	/*
1561  	 * The opp_tables list or an OPP table's dev_list is getting updated by
1562  	 * another user, wait for it to finish.
1563  	 */
1564  	if (unlikely(opp_tables_busy)) {
1565  		mutex_unlock(&opp_table_lock);
1566  		cpu_relax();
1567  		goto again;
1568  	}
1569  
1570  	opp_tables_busy = true;
1571  	opp_table = _managed_opp(dev, index);
1572  
1573  	/* Drop the lock to reduce the size of critical section */
1574  	mutex_unlock(&opp_table_lock);
1575  
1576  	if (opp_table) {
1577  		if (!_add_opp_dev(dev, opp_table)) {
1578  			dev_pm_opp_put_opp_table(opp_table);
1579  			opp_table = ERR_PTR(-ENOMEM);
1580  		}
1581  
1582  		mutex_lock(&opp_table_lock);
1583  	} else {
1584  		opp_table = _allocate_opp_table(dev, index);
1585  
1586  		mutex_lock(&opp_table_lock);
1587  		if (!IS_ERR(opp_table))
1588  			list_add(&opp_table->node, &opp_tables);
1589  	}
1590  
1591  	opp_tables_busy = false;
1592  
1593  unlock:
1594  	mutex_unlock(&opp_table_lock);
1595  
1596  	return _update_opp_table_clk(dev, opp_table, getclk);
1597  }
1598  
_add_opp_table(struct device * dev,bool getclk)1599  static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1600  {
1601  	return _add_opp_table_indexed(dev, 0, getclk);
1602  }
1603  
dev_pm_opp_get_opp_table(struct device * dev)1604  struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1605  {
1606  	return _find_opp_table(dev);
1607  }
1608  EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1609  
_opp_table_kref_release(struct kref * kref)1610  static void _opp_table_kref_release(struct kref *kref)
1611  {
1612  	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1613  	struct opp_device *opp_dev, *temp;
1614  	int i;
1615  
1616  	/* Drop the lock as soon as we can */
1617  	list_del(&opp_table->node);
1618  	mutex_unlock(&opp_table_lock);
1619  
1620  	if (opp_table->current_opp)
1621  		dev_pm_opp_put(opp_table->current_opp);
1622  
1623  	_of_clear_opp_table(opp_table);
1624  
1625  	/* Release automatically acquired single clk */
1626  	if (!IS_ERR(opp_table->clk))
1627  		clk_put(opp_table->clk);
1628  
1629  	if (opp_table->paths) {
1630  		for (i = 0; i < opp_table->path_count; i++)
1631  			icc_put(opp_table->paths[i]);
1632  		kfree(opp_table->paths);
1633  	}
1634  
1635  	WARN_ON(!list_empty(&opp_table->opp_list));
1636  
1637  	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1638  		_remove_opp_dev(opp_dev, opp_table);
1639  
1640  	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1641  	mutex_destroy(&opp_table->lock);
1642  	kfree(opp_table);
1643  }
1644  
dev_pm_opp_put_opp_table(struct opp_table * opp_table)1645  void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1646  {
1647  	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1648  		       &opp_table_lock);
1649  }
1650  EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1651  
_opp_free(struct dev_pm_opp * opp)1652  void _opp_free(struct dev_pm_opp *opp)
1653  {
1654  	kfree(opp);
1655  }
1656  
_opp_kref_release(struct kref * kref)1657  static void _opp_kref_release(struct kref *kref)
1658  {
1659  	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1660  	struct opp_table *opp_table = opp->opp_table;
1661  
1662  	list_del(&opp->node);
1663  	mutex_unlock(&opp_table->lock);
1664  
1665  	/*
1666  	 * Notify the changes in the availability of the operable
1667  	 * frequency/voltage list.
1668  	 */
1669  	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1670  	_of_clear_opp(opp_table, opp);
1671  	opp_debug_remove_one(opp);
1672  	kfree(opp);
1673  }
1674  
dev_pm_opp_get(struct dev_pm_opp * opp)1675  void dev_pm_opp_get(struct dev_pm_opp *opp)
1676  {
1677  	kref_get(&opp->kref);
1678  }
1679  
dev_pm_opp_put(struct dev_pm_opp * opp)1680  void dev_pm_opp_put(struct dev_pm_opp *opp)
1681  {
1682  	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1683  }
1684  EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1685  
1686  /**
1687   * dev_pm_opp_remove()  - Remove an OPP from OPP table
1688   * @dev:	device for which we do this operation
1689   * @freq:	OPP to remove with matching 'freq'
1690   *
1691   * This function removes an opp from the opp table.
1692   */
dev_pm_opp_remove(struct device * dev,unsigned long freq)1693  void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1694  {
1695  	struct dev_pm_opp *opp = NULL, *iter;
1696  	struct opp_table *opp_table;
1697  
1698  	opp_table = _find_opp_table(dev);
1699  	if (IS_ERR(opp_table))
1700  		return;
1701  
1702  	if (!assert_single_clk(opp_table, 0))
1703  		goto put_table;
1704  
1705  	mutex_lock(&opp_table->lock);
1706  
1707  	list_for_each_entry(iter, &opp_table->opp_list, node) {
1708  		if (iter->rates[0] == freq) {
1709  			opp = iter;
1710  			break;
1711  		}
1712  	}
1713  
1714  	mutex_unlock(&opp_table->lock);
1715  
1716  	if (opp) {
1717  		dev_pm_opp_put(opp);
1718  
1719  		/* Drop the reference taken by dev_pm_opp_add() */
1720  		dev_pm_opp_put_opp_table(opp_table);
1721  	} else {
1722  		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1723  			 __func__, freq);
1724  	}
1725  
1726  put_table:
1727  	/* Drop the reference taken by _find_opp_table() */
1728  	dev_pm_opp_put_opp_table(opp_table);
1729  }
1730  EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1731  
_opp_get_next(struct opp_table * opp_table,bool dynamic)1732  static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1733  					bool dynamic)
1734  {
1735  	struct dev_pm_opp *opp = NULL, *temp;
1736  
1737  	mutex_lock(&opp_table->lock);
1738  	list_for_each_entry(temp, &opp_table->opp_list, node) {
1739  		/*
1740  		 * Refcount must be dropped only once for each OPP by OPP core,
1741  		 * do that with help of "removed" flag.
1742  		 */
1743  		if (!temp->removed && dynamic == temp->dynamic) {
1744  			opp = temp;
1745  			break;
1746  		}
1747  	}
1748  
1749  	mutex_unlock(&opp_table->lock);
1750  	return opp;
1751  }
1752  
1753  /*
1754   * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1755   * happen lock less to avoid circular dependency issues. This routine must be
1756   * called without the opp_table->lock held.
1757   */
_opp_remove_all(struct opp_table * opp_table,bool dynamic)1758  static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1759  {
1760  	struct dev_pm_opp *opp;
1761  
1762  	while ((opp = _opp_get_next(opp_table, dynamic))) {
1763  		opp->removed = true;
1764  		dev_pm_opp_put(opp);
1765  
1766  		/* Drop the references taken by dev_pm_opp_add() */
1767  		if (dynamic)
1768  			dev_pm_opp_put_opp_table(opp_table);
1769  	}
1770  }
1771  
_opp_remove_all_static(struct opp_table * opp_table)1772  bool _opp_remove_all_static(struct opp_table *opp_table)
1773  {
1774  	mutex_lock(&opp_table->lock);
1775  
1776  	if (!opp_table->parsed_static_opps) {
1777  		mutex_unlock(&opp_table->lock);
1778  		return false;
1779  	}
1780  
1781  	if (--opp_table->parsed_static_opps) {
1782  		mutex_unlock(&opp_table->lock);
1783  		return true;
1784  	}
1785  
1786  	mutex_unlock(&opp_table->lock);
1787  
1788  	_opp_remove_all(opp_table, false);
1789  	return true;
1790  }
1791  
1792  /**
1793   * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1794   * @dev:	device for which we do this operation
1795   *
1796   * This function removes all dynamically created OPPs from the opp table.
1797   */
dev_pm_opp_remove_all_dynamic(struct device * dev)1798  void dev_pm_opp_remove_all_dynamic(struct device *dev)
1799  {
1800  	struct opp_table *opp_table;
1801  
1802  	opp_table = _find_opp_table(dev);
1803  	if (IS_ERR(opp_table))
1804  		return;
1805  
1806  	_opp_remove_all(opp_table, true);
1807  
1808  	/* Drop the reference taken by _find_opp_table() */
1809  	dev_pm_opp_put_opp_table(opp_table);
1810  }
1811  EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1812  
_opp_allocate(struct opp_table * opp_table)1813  struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1814  {
1815  	struct dev_pm_opp *opp;
1816  	int supply_count, supply_size, icc_size, clk_size;
1817  
1818  	/* Allocate space for at least one supply */
1819  	supply_count = opp_table->regulator_count > 0 ?
1820  			opp_table->regulator_count : 1;
1821  	supply_size = sizeof(*opp->supplies) * supply_count;
1822  	clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1823  	icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1824  
1825  	/* allocate new OPP node and supplies structures */
1826  	opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1827  	if (!opp)
1828  		return NULL;
1829  
1830  	/* Put the supplies, bw and clock at the end of the OPP structure */
1831  	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1832  
1833  	opp->rates = (unsigned long *)(opp->supplies + supply_count);
1834  
1835  	if (icc_size)
1836  		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1837  
1838  	INIT_LIST_HEAD(&opp->node);
1839  
1840  	return opp;
1841  }
1842  
_opp_supported_by_regulators(struct dev_pm_opp * opp,struct opp_table * opp_table)1843  static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1844  					 struct opp_table *opp_table)
1845  {
1846  	struct regulator *reg;
1847  	int i;
1848  
1849  	if (!opp_table->regulators)
1850  		return true;
1851  
1852  	for (i = 0; i < opp_table->regulator_count; i++) {
1853  		reg = opp_table->regulators[i];
1854  
1855  		if (!regulator_is_supported_voltage(reg,
1856  					opp->supplies[i].u_volt_min,
1857  					opp->supplies[i].u_volt_max)) {
1858  			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1859  				__func__, opp->supplies[i].u_volt_min,
1860  				opp->supplies[i].u_volt_max);
1861  			return false;
1862  		}
1863  	}
1864  
1865  	return true;
1866  }
1867  
_opp_compare_rate(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1868  static int _opp_compare_rate(struct opp_table *opp_table,
1869  			     struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1870  {
1871  	int i;
1872  
1873  	for (i = 0; i < opp_table->clk_count; i++) {
1874  		if (opp1->rates[i] != opp2->rates[i])
1875  			return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1876  	}
1877  
1878  	/* Same rates for both OPPs */
1879  	return 0;
1880  }
1881  
_opp_compare_bw(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1882  static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1883  			   struct dev_pm_opp *opp2)
1884  {
1885  	int i;
1886  
1887  	for (i = 0; i < opp_table->path_count; i++) {
1888  		if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1889  			return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1890  	}
1891  
1892  	/* Same bw for both OPPs */
1893  	return 0;
1894  }
1895  
1896  /*
1897   * Returns
1898   * 0: opp1 == opp2
1899   * 1: opp1 > opp2
1900   * -1: opp1 < opp2
1901   */
_opp_compare_key(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1902  int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1903  		     struct dev_pm_opp *opp2)
1904  {
1905  	int ret;
1906  
1907  	ret = _opp_compare_rate(opp_table, opp1, opp2);
1908  	if (ret)
1909  		return ret;
1910  
1911  	ret = _opp_compare_bw(opp_table, opp1, opp2);
1912  	if (ret)
1913  		return ret;
1914  
1915  	if (opp1->level != opp2->level)
1916  		return opp1->level < opp2->level ? -1 : 1;
1917  
1918  	/* Duplicate OPPs */
1919  	return 0;
1920  }
1921  
_opp_is_duplicate(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct list_head ** head)1922  static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1923  			     struct opp_table *opp_table,
1924  			     struct list_head **head)
1925  {
1926  	struct dev_pm_opp *opp;
1927  	int opp_cmp;
1928  
1929  	/*
1930  	 * Insert new OPP in order of increasing frequency and discard if
1931  	 * already present.
1932  	 *
1933  	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1934  	 * loop, don't replace it with head otherwise it will become an infinite
1935  	 * loop.
1936  	 */
1937  	list_for_each_entry(opp, &opp_table->opp_list, node) {
1938  		opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1939  		if (opp_cmp > 0) {
1940  			*head = &opp->node;
1941  			continue;
1942  		}
1943  
1944  		if (opp_cmp < 0)
1945  			return 0;
1946  
1947  		/* Duplicate OPPs */
1948  		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1949  			 __func__, opp->rates[0], opp->supplies[0].u_volt,
1950  			 opp->available, new_opp->rates[0],
1951  			 new_opp->supplies[0].u_volt, new_opp->available);
1952  
1953  		/* Should we compare voltages for all regulators here ? */
1954  		return opp->available &&
1955  		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1956  	}
1957  
1958  	return 0;
1959  }
1960  
_required_opps_available(struct dev_pm_opp * opp,int count)1961  void _required_opps_available(struct dev_pm_opp *opp, int count)
1962  {
1963  	int i;
1964  
1965  	for (i = 0; i < count; i++) {
1966  		if (opp->required_opps[i]->available)
1967  			continue;
1968  
1969  		opp->available = false;
1970  		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1971  			 __func__, opp->required_opps[i]->np, opp->rates[0]);
1972  		return;
1973  	}
1974  }
1975  
1976  /*
1977   * Returns:
1978   * 0: On success. And appropriate error message for duplicate OPPs.
1979   * -EBUSY: For OPP with same freq/volt and is available. The callers of
1980   *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1981   *  sure we don't print error messages unnecessarily if different parts of
1982   *  kernel try to initialize the OPP table.
1983   * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1984   *  should be considered an error by the callers of _opp_add().
1985   */
_opp_add(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table)1986  int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1987  	     struct opp_table *opp_table)
1988  {
1989  	struct list_head *head;
1990  	int ret;
1991  
1992  	mutex_lock(&opp_table->lock);
1993  	head = &opp_table->opp_list;
1994  
1995  	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1996  	if (ret) {
1997  		mutex_unlock(&opp_table->lock);
1998  		return ret;
1999  	}
2000  
2001  	list_add(&new_opp->node, head);
2002  	mutex_unlock(&opp_table->lock);
2003  
2004  	new_opp->opp_table = opp_table;
2005  	kref_init(&new_opp->kref);
2006  
2007  	opp_debug_create_one(new_opp, opp_table);
2008  
2009  	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2010  		new_opp->available = false;
2011  		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2012  			 __func__, new_opp->rates[0]);
2013  	}
2014  
2015  	/* required-opps not fully initialized yet */
2016  	if (lazy_linking_pending(opp_table))
2017  		return 0;
2018  
2019  	_required_opps_available(new_opp, opp_table->required_opp_count);
2020  
2021  	return 0;
2022  }
2023  
2024  /**
2025   * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2026   * @opp_table:	OPP table
2027   * @dev:	device for which we do this operation
2028   * @freq:	Frequency in Hz for this OPP
2029   * @u_volt:	Voltage in uVolts for this OPP
2030   * @dynamic:	Dynamically added OPPs.
2031   *
2032   * This function adds an opp definition to the opp table and returns status.
2033   * The opp is made available by default and it can be controlled using
2034   * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2035   *
2036   * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2037   * and freed by dev_pm_opp_of_remove_table.
2038   *
2039   * Return:
2040   * 0		On success OR
2041   *		Duplicate OPPs (both freq and volt are same) and opp->available
2042   * -EEXIST	Freq are same and volt are different OR
2043   *		Duplicate OPPs (both freq and volt are same) and !opp->available
2044   * -ENOMEM	Memory allocation failure
2045   */
_opp_add_v1(struct opp_table * opp_table,struct device * dev,unsigned long freq,long u_volt,bool dynamic)2046  int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2047  		unsigned long freq, long u_volt, bool dynamic)
2048  {
2049  	struct dev_pm_opp *new_opp;
2050  	unsigned long tol;
2051  	int ret;
2052  
2053  	if (!assert_single_clk(opp_table, 0))
2054  		return -EINVAL;
2055  
2056  	new_opp = _opp_allocate(opp_table);
2057  	if (!new_opp)
2058  		return -ENOMEM;
2059  
2060  	/* populate the opp table */
2061  	new_opp->rates[0] = freq;
2062  	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2063  	new_opp->supplies[0].u_volt = u_volt;
2064  	new_opp->supplies[0].u_volt_min = u_volt - tol;
2065  	new_opp->supplies[0].u_volt_max = u_volt + tol;
2066  	new_opp->available = true;
2067  	new_opp->dynamic = dynamic;
2068  
2069  	ret = _opp_add(dev, new_opp, opp_table);
2070  	if (ret) {
2071  		/* Don't return error for duplicate OPPs */
2072  		if (ret == -EBUSY)
2073  			ret = 0;
2074  		goto free_opp;
2075  	}
2076  
2077  	/*
2078  	 * Notify the changes in the availability of the operable
2079  	 * frequency/voltage list.
2080  	 */
2081  	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2082  	return 0;
2083  
2084  free_opp:
2085  	_opp_free(new_opp);
2086  
2087  	return ret;
2088  }
2089  
2090  /**
2091   * _opp_set_supported_hw() - Set supported platforms
2092   * @dev: Device for which supported-hw has to be set.
2093   * @versions: Array of hierarchy of versions to match.
2094   * @count: Number of elements in the array.
2095   *
2096   * This is required only for the V2 bindings, and it enables a platform to
2097   * specify the hierarchy of versions it supports. OPP layer will then enable
2098   * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2099   * property.
2100   */
_opp_set_supported_hw(struct opp_table * opp_table,const u32 * versions,unsigned int count)2101  static int _opp_set_supported_hw(struct opp_table *opp_table,
2102  				 const u32 *versions, unsigned int count)
2103  {
2104  	/* Another CPU that shares the OPP table has set the property ? */
2105  	if (opp_table->supported_hw)
2106  		return 0;
2107  
2108  	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2109  					GFP_KERNEL);
2110  	if (!opp_table->supported_hw)
2111  		return -ENOMEM;
2112  
2113  	opp_table->supported_hw_count = count;
2114  
2115  	return 0;
2116  }
2117  
2118  /**
2119   * _opp_put_supported_hw() - Releases resources blocked for supported hw
2120   * @opp_table: OPP table returned by _opp_set_supported_hw().
2121   *
2122   * This is required only for the V2 bindings, and is called for a matching
2123   * _opp_set_supported_hw(). Until this is called, the opp_table structure
2124   * will not be freed.
2125   */
_opp_put_supported_hw(struct opp_table * opp_table)2126  static void _opp_put_supported_hw(struct opp_table *opp_table)
2127  {
2128  	if (opp_table->supported_hw) {
2129  		kfree(opp_table->supported_hw);
2130  		opp_table->supported_hw = NULL;
2131  		opp_table->supported_hw_count = 0;
2132  	}
2133  }
2134  
2135  /**
2136   * _opp_set_prop_name() - Set prop-extn name
2137   * @dev: Device for which the prop-name has to be set.
2138   * @name: name to postfix to properties.
2139   *
2140   * This is required only for the V2 bindings, and it enables a platform to
2141   * specify the extn to be used for certain property names. The properties to
2142   * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2143   * should postfix the property name with -<name> while looking for them.
2144   */
_opp_set_prop_name(struct opp_table * opp_table,const char * name)2145  static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2146  {
2147  	/* Another CPU that shares the OPP table has set the property ? */
2148  	if (!opp_table->prop_name) {
2149  		opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2150  		if (!opp_table->prop_name)
2151  			return -ENOMEM;
2152  	}
2153  
2154  	return 0;
2155  }
2156  
2157  /**
2158   * _opp_put_prop_name() - Releases resources blocked for prop-name
2159   * @opp_table: OPP table returned by _opp_set_prop_name().
2160   *
2161   * This is required only for the V2 bindings, and is called for a matching
2162   * _opp_set_prop_name(). Until this is called, the opp_table structure
2163   * will not be freed.
2164   */
_opp_put_prop_name(struct opp_table * opp_table)2165  static void _opp_put_prop_name(struct opp_table *opp_table)
2166  {
2167  	if (opp_table->prop_name) {
2168  		kfree(opp_table->prop_name);
2169  		opp_table->prop_name = NULL;
2170  	}
2171  }
2172  
2173  /**
2174   * _opp_set_regulators() - Set regulator names for the device
2175   * @dev: Device for which regulator name is being set.
2176   * @names: Array of pointers to the names of the regulator.
2177   * @count: Number of regulators.
2178   *
2179   * In order to support OPP switching, OPP layer needs to know the name of the
2180   * device's regulators, as the core would be required to switch voltages as
2181   * well.
2182   *
2183   * This must be called before any OPPs are initialized for the device.
2184   */
_opp_set_regulators(struct opp_table * opp_table,struct device * dev,const char * const names[])2185  static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2186  			       const char * const names[])
2187  {
2188  	const char * const *temp = names;
2189  	struct regulator *reg;
2190  	int count = 0, ret, i;
2191  
2192  	/* Count number of regulators */
2193  	while (*temp++)
2194  		count++;
2195  
2196  	if (!count)
2197  		return -EINVAL;
2198  
2199  	/* Another CPU that shares the OPP table has set the regulators ? */
2200  	if (opp_table->regulators)
2201  		return 0;
2202  
2203  	opp_table->regulators = kmalloc_array(count,
2204  					      sizeof(*opp_table->regulators),
2205  					      GFP_KERNEL);
2206  	if (!opp_table->regulators)
2207  		return -ENOMEM;
2208  
2209  	for (i = 0; i < count; i++) {
2210  		reg = regulator_get_optional(dev, names[i]);
2211  		if (IS_ERR(reg)) {
2212  			ret = dev_err_probe(dev, PTR_ERR(reg),
2213  					    "%s: no regulator (%s) found\n",
2214  					    __func__, names[i]);
2215  			goto free_regulators;
2216  		}
2217  
2218  		opp_table->regulators[i] = reg;
2219  	}
2220  
2221  	opp_table->regulator_count = count;
2222  
2223  	/* Set generic config_regulators() for single regulators here */
2224  	if (count == 1)
2225  		opp_table->config_regulators = _opp_config_regulator_single;
2226  
2227  	return 0;
2228  
2229  free_regulators:
2230  	while (i != 0)
2231  		regulator_put(opp_table->regulators[--i]);
2232  
2233  	kfree(opp_table->regulators);
2234  	opp_table->regulators = NULL;
2235  	opp_table->regulator_count = -1;
2236  
2237  	return ret;
2238  }
2239  
2240  /**
2241   * _opp_put_regulators() - Releases resources blocked for regulator
2242   * @opp_table: OPP table returned from _opp_set_regulators().
2243   */
_opp_put_regulators(struct opp_table * opp_table)2244  static void _opp_put_regulators(struct opp_table *opp_table)
2245  {
2246  	int i;
2247  
2248  	if (!opp_table->regulators)
2249  		return;
2250  
2251  	if (opp_table->enabled) {
2252  		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2253  			regulator_disable(opp_table->regulators[i]);
2254  	}
2255  
2256  	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2257  		regulator_put(opp_table->regulators[i]);
2258  
2259  	kfree(opp_table->regulators);
2260  	opp_table->regulators = NULL;
2261  	opp_table->regulator_count = -1;
2262  }
2263  
_put_clks(struct opp_table * opp_table,int count)2264  static void _put_clks(struct opp_table *opp_table, int count)
2265  {
2266  	int i;
2267  
2268  	for (i = count - 1; i >= 0; i--)
2269  		clk_put(opp_table->clks[i]);
2270  
2271  	kfree(opp_table->clks);
2272  	opp_table->clks = NULL;
2273  }
2274  
2275  /**
2276   * _opp_set_clknames() - Set clk names for the device
2277   * @dev: Device for which clk names is being set.
2278   * @names: Clk names.
2279   *
2280   * In order to support OPP switching, OPP layer needs to get pointers to the
2281   * clocks for the device. Simple cases work fine without using this routine
2282   * (i.e. by passing connection-id as NULL), but for a device with multiple
2283   * clocks available, the OPP core needs to know the exact names of the clks to
2284   * use.
2285   *
2286   * This must be called before any OPPs are initialized for the device.
2287   */
_opp_set_clknames(struct opp_table * opp_table,struct device * dev,const char * const names[],config_clks_t config_clks)2288  static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2289  			     const char * const names[],
2290  			     config_clks_t config_clks)
2291  {
2292  	const char * const *temp = names;
2293  	int count = 0, ret, i;
2294  	struct clk *clk;
2295  
2296  	/* Count number of clks */
2297  	while (*temp++)
2298  		count++;
2299  
2300  	/*
2301  	 * This is a special case where we have a single clock, whose connection
2302  	 * id name is NULL, i.e. first two entries are NULL in the array.
2303  	 */
2304  	if (!count && !names[1])
2305  		count = 1;
2306  
2307  	/* Fail early for invalid configurations */
2308  	if (!count || (!config_clks && count > 1))
2309  		return -EINVAL;
2310  
2311  	/* Another CPU that shares the OPP table has set the clkname ? */
2312  	if (opp_table->clks)
2313  		return 0;
2314  
2315  	opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2316  					GFP_KERNEL);
2317  	if (!opp_table->clks)
2318  		return -ENOMEM;
2319  
2320  	/* Find clks for the device */
2321  	for (i = 0; i < count; i++) {
2322  		clk = clk_get(dev, names[i]);
2323  		if (IS_ERR(clk)) {
2324  			ret = dev_err_probe(dev, PTR_ERR(clk),
2325  					    "%s: Couldn't find clock with name: %s\n",
2326  					    __func__, names[i]);
2327  			goto free_clks;
2328  		}
2329  
2330  		opp_table->clks[i] = clk;
2331  	}
2332  
2333  	opp_table->clk_count = count;
2334  	opp_table->config_clks = config_clks;
2335  
2336  	/* Set generic single clk set here */
2337  	if (count == 1) {
2338  		if (!opp_table->config_clks)
2339  			opp_table->config_clks = _opp_config_clk_single;
2340  
2341  		/*
2342  		 * We could have just dropped the "clk" field and used "clks"
2343  		 * everywhere. Instead we kept the "clk" field around for
2344  		 * following reasons:
2345  		 *
2346  		 * - avoiding clks[0] everywhere else.
2347  		 * - not running single clk helpers for multiple clk usecase by
2348  		 *   mistake.
2349  		 *
2350  		 * Since this is single-clk case, just update the clk pointer
2351  		 * too.
2352  		 */
2353  		opp_table->clk = opp_table->clks[0];
2354  	}
2355  
2356  	return 0;
2357  
2358  free_clks:
2359  	_put_clks(opp_table, i);
2360  	return ret;
2361  }
2362  
2363  /**
2364   * _opp_put_clknames() - Releases resources blocked for clks.
2365   * @opp_table: OPP table returned from _opp_set_clknames().
2366   */
_opp_put_clknames(struct opp_table * opp_table)2367  static void _opp_put_clknames(struct opp_table *opp_table)
2368  {
2369  	if (!opp_table->clks)
2370  		return;
2371  
2372  	opp_table->config_clks = NULL;
2373  	opp_table->clk = ERR_PTR(-ENODEV);
2374  
2375  	_put_clks(opp_table, opp_table->clk_count);
2376  }
2377  
2378  /**
2379   * _opp_set_config_regulators_helper() - Register custom set regulator helper.
2380   * @dev: Device for which the helper is getting registered.
2381   * @config_regulators: Custom set regulator helper.
2382   *
2383   * This is useful to support platforms with multiple regulators per device.
2384   *
2385   * This must be called before any OPPs are initialized for the device.
2386   */
_opp_set_config_regulators_helper(struct opp_table * opp_table,struct device * dev,config_regulators_t config_regulators)2387  static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2388  		struct device *dev, config_regulators_t config_regulators)
2389  {
2390  	/* Another CPU that shares the OPP table has set the helper ? */
2391  	if (!opp_table->config_regulators)
2392  		opp_table->config_regulators = config_regulators;
2393  
2394  	return 0;
2395  }
2396  
2397  /**
2398   * _opp_put_config_regulators_helper() - Releases resources blocked for
2399   *					 config_regulators helper.
2400   * @opp_table: OPP table returned from _opp_set_config_regulators_helper().
2401   *
2402   * Release resources blocked for platform specific config_regulators helper.
2403   */
_opp_put_config_regulators_helper(struct opp_table * opp_table)2404  static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2405  {
2406  	if (opp_table->config_regulators)
2407  		opp_table->config_regulators = NULL;
2408  }
2409  
_detach_genpd(struct opp_table * opp_table)2410  static void _detach_genpd(struct opp_table *opp_table)
2411  {
2412  	int index;
2413  
2414  	if (!opp_table->genpd_virt_devs)
2415  		return;
2416  
2417  	for (index = 0; index < opp_table->required_opp_count; index++) {
2418  		if (!opp_table->genpd_virt_devs[index])
2419  			continue;
2420  
2421  		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2422  		opp_table->genpd_virt_devs[index] = NULL;
2423  	}
2424  
2425  	kfree(opp_table->genpd_virt_devs);
2426  	opp_table->genpd_virt_devs = NULL;
2427  }
2428  
2429  /**
2430   * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2431   * @dev: Consumer device for which the genpd is getting attached.
2432   * @names: Null terminated array of pointers containing names of genpd to attach.
2433   * @virt_devs: Pointer to return the array of virtual devices.
2434   *
2435   * Multiple generic power domains for a device are supported with the help of
2436   * virtual genpd devices, which are created for each consumer device - genpd
2437   * pair. These are the device structures which are attached to the power domain
2438   * and are required by the OPP core to set the performance state of the genpd.
2439   * The same API also works for the case where single genpd is available and so
2440   * we don't need to support that separately.
2441   *
2442   * This helper will normally be called by the consumer driver of the device
2443   * "dev", as only that has details of the genpd names.
2444   *
2445   * This helper needs to be called once with a list of all genpd to attach.
2446   * Otherwise the original device structure will be used instead by the OPP core.
2447   *
2448   * The order of entries in the names array must match the order in which
2449   * "required-opps" are added in DT.
2450   */
_opp_attach_genpd(struct opp_table * opp_table,struct device * dev,const char * const * names,struct device *** virt_devs)2451  static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2452  			const char * const *names, struct device ***virt_devs)
2453  {
2454  	struct device *virt_dev;
2455  	int index = 0, ret = -EINVAL;
2456  	const char * const *name = names;
2457  
2458  	if (opp_table->genpd_virt_devs)
2459  		return 0;
2460  
2461  	/*
2462  	 * If the genpd's OPP table isn't already initialized, parsing of the
2463  	 * required-opps fail for dev. We should retry this after genpd's OPP
2464  	 * table is added.
2465  	 */
2466  	if (!opp_table->required_opp_count)
2467  		return -EPROBE_DEFER;
2468  
2469  	mutex_lock(&opp_table->genpd_virt_dev_lock);
2470  
2471  	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2472  					     sizeof(*opp_table->genpd_virt_devs),
2473  					     GFP_KERNEL);
2474  	if (!opp_table->genpd_virt_devs)
2475  		goto unlock;
2476  
2477  	while (*name) {
2478  		if (index >= opp_table->required_opp_count) {
2479  			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2480  				*name, opp_table->required_opp_count, index);
2481  			goto err;
2482  		}
2483  
2484  		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2485  		if (IS_ERR_OR_NULL(virt_dev)) {
2486  			ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2487  			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2488  			goto err;
2489  		}
2490  
2491  		opp_table->genpd_virt_devs[index] = virt_dev;
2492  		index++;
2493  		name++;
2494  	}
2495  
2496  	if (virt_devs)
2497  		*virt_devs = opp_table->genpd_virt_devs;
2498  	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2499  
2500  	return 0;
2501  
2502  err:
2503  	_detach_genpd(opp_table);
2504  unlock:
2505  	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2506  	return ret;
2507  
2508  }
2509  
2510  /**
2511   * _opp_detach_genpd() - Detach genpd(s) from the device.
2512   * @opp_table: OPP table returned by _opp_attach_genpd().
2513   *
2514   * This detaches the genpd(s), resets the virtual device pointers, and puts the
2515   * OPP table.
2516   */
_opp_detach_genpd(struct opp_table * opp_table)2517  static void _opp_detach_genpd(struct opp_table *opp_table)
2518  {
2519  	/*
2520  	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2521  	 * used in parallel.
2522  	 */
2523  	mutex_lock(&opp_table->genpd_virt_dev_lock);
2524  	_detach_genpd(opp_table);
2525  	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2526  }
2527  
_opp_clear_config(struct opp_config_data * data)2528  static void _opp_clear_config(struct opp_config_data *data)
2529  {
2530  	if (data->flags & OPP_CONFIG_GENPD)
2531  		_opp_detach_genpd(data->opp_table);
2532  	if (data->flags & OPP_CONFIG_REGULATOR)
2533  		_opp_put_regulators(data->opp_table);
2534  	if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2535  		_opp_put_supported_hw(data->opp_table);
2536  	if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2537  		_opp_put_config_regulators_helper(data->opp_table);
2538  	if (data->flags & OPP_CONFIG_PROP_NAME)
2539  		_opp_put_prop_name(data->opp_table);
2540  	if (data->flags & OPP_CONFIG_CLK)
2541  		_opp_put_clknames(data->opp_table);
2542  
2543  	dev_pm_opp_put_opp_table(data->opp_table);
2544  	kfree(data);
2545  }
2546  
2547  /**
2548   * dev_pm_opp_set_config() - Set OPP configuration for the device.
2549   * @dev: Device for which configuration is being set.
2550   * @config: OPP configuration.
2551   *
2552   * This allows all device OPP configurations to be performed at once.
2553   *
2554   * This must be called before any OPPs are initialized for the device. This may
2555   * be called multiple times for the same OPP table, for example once for each
2556   * CPU that share the same table. This must be balanced by the same number of
2557   * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2558   *
2559   * This returns a token to the caller, which must be passed to
2560   * dev_pm_opp_clear_config() to free the resources later. The value of the
2561   * returned token will be >= 1 for success and negative for errors. The minimum
2562   * value of 1 is chosen here to make it easy for callers to manage the resource.
2563   */
dev_pm_opp_set_config(struct device * dev,struct dev_pm_opp_config * config)2564  int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2565  {
2566  	struct opp_table *opp_table;
2567  	struct opp_config_data *data;
2568  	unsigned int id;
2569  	int ret;
2570  
2571  	data = kmalloc(sizeof(*data), GFP_KERNEL);
2572  	if (!data)
2573  		return -ENOMEM;
2574  
2575  	opp_table = _add_opp_table(dev, false);
2576  	if (IS_ERR(opp_table)) {
2577  		kfree(data);
2578  		return PTR_ERR(opp_table);
2579  	}
2580  
2581  	data->opp_table = opp_table;
2582  	data->flags = 0;
2583  
2584  	/* This should be called before OPPs are initialized */
2585  	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2586  		ret = -EBUSY;
2587  		goto err;
2588  	}
2589  
2590  	/* Configure clocks */
2591  	if (config->clk_names) {
2592  		ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2593  					config->config_clks);
2594  		if (ret)
2595  			goto err;
2596  
2597  		data->flags |= OPP_CONFIG_CLK;
2598  	} else if (config->config_clks) {
2599  		/* Don't allow config callback without clocks */
2600  		ret = -EINVAL;
2601  		goto err;
2602  	}
2603  
2604  	/* Configure property names */
2605  	if (config->prop_name) {
2606  		ret = _opp_set_prop_name(opp_table, config->prop_name);
2607  		if (ret)
2608  			goto err;
2609  
2610  		data->flags |= OPP_CONFIG_PROP_NAME;
2611  	}
2612  
2613  	/* Configure config_regulators helper */
2614  	if (config->config_regulators) {
2615  		ret = _opp_set_config_regulators_helper(opp_table, dev,
2616  						config->config_regulators);
2617  		if (ret)
2618  			goto err;
2619  
2620  		data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2621  	}
2622  
2623  	/* Configure supported hardware */
2624  	if (config->supported_hw) {
2625  		ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2626  					    config->supported_hw_count);
2627  		if (ret)
2628  			goto err;
2629  
2630  		data->flags |= OPP_CONFIG_SUPPORTED_HW;
2631  	}
2632  
2633  	/* Configure supplies */
2634  	if (config->regulator_names) {
2635  		ret = _opp_set_regulators(opp_table, dev,
2636  					  config->regulator_names);
2637  		if (ret)
2638  			goto err;
2639  
2640  		data->flags |= OPP_CONFIG_REGULATOR;
2641  	}
2642  
2643  	/* Attach genpds */
2644  	if (config->genpd_names) {
2645  		ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2646  					config->virt_devs);
2647  		if (ret)
2648  			goto err;
2649  
2650  		data->flags |= OPP_CONFIG_GENPD;
2651  	}
2652  
2653  	ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2654  		       GFP_KERNEL);
2655  	if (ret)
2656  		goto err;
2657  
2658  	return id;
2659  
2660  err:
2661  	_opp_clear_config(data);
2662  	return ret;
2663  }
2664  EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2665  
2666  /**
2667   * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2668   * @opp_table: OPP table returned from dev_pm_opp_set_config().
2669   *
2670   * This allows all device OPP configurations to be cleared at once. This must be
2671   * called once for each call made to dev_pm_opp_set_config(), in order to free
2672   * the OPPs properly.
2673   *
2674   * Currently the first call itself ends up freeing all the OPP configurations,
2675   * while the later ones only drop the OPP table reference. This works well for
2676   * now as we would never want to use an half initialized OPP table and want to
2677   * remove the configurations together.
2678   */
dev_pm_opp_clear_config(int token)2679  void dev_pm_opp_clear_config(int token)
2680  {
2681  	struct opp_config_data *data;
2682  
2683  	/*
2684  	 * This lets the callers call this unconditionally and keep their code
2685  	 * simple.
2686  	 */
2687  	if (unlikely(token <= 0))
2688  		return;
2689  
2690  	data = xa_erase(&opp_configs, token);
2691  	if (WARN_ON(!data))
2692  		return;
2693  
2694  	_opp_clear_config(data);
2695  }
2696  EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2697  
devm_pm_opp_config_release(void * token)2698  static void devm_pm_opp_config_release(void *token)
2699  {
2700  	dev_pm_opp_clear_config((unsigned long)token);
2701  }
2702  
2703  /**
2704   * devm_pm_opp_set_config() - Set OPP configuration for the device.
2705   * @dev: Device for which configuration is being set.
2706   * @config: OPP configuration.
2707   *
2708   * This allows all device OPP configurations to be performed at once.
2709   * This is a resource-managed variant of dev_pm_opp_set_config().
2710   *
2711   * Return: 0 on success and errorno otherwise.
2712   */
devm_pm_opp_set_config(struct device * dev,struct dev_pm_opp_config * config)2713  int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2714  {
2715  	int token = dev_pm_opp_set_config(dev, config);
2716  
2717  	if (token < 0)
2718  		return token;
2719  
2720  	return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2721  					(void *) ((unsigned long) token));
2722  }
2723  EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2724  
2725  /**
2726   * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2727   * @src_table: OPP table which has @dst_table as one of its required OPP table.
2728   * @dst_table: Required OPP table of the @src_table.
2729   * @src_opp: OPP from the @src_table.
2730   *
2731   * This function returns the OPP (present in @dst_table) pointed out by the
2732   * "required-opps" property of the @src_opp (present in @src_table).
2733   *
2734   * The callers are required to call dev_pm_opp_put() for the returned OPP after
2735   * use.
2736   *
2737   * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2738   */
dev_pm_opp_xlate_required_opp(struct opp_table * src_table,struct opp_table * dst_table,struct dev_pm_opp * src_opp)2739  struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2740  						 struct opp_table *dst_table,
2741  						 struct dev_pm_opp *src_opp)
2742  {
2743  	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2744  	int i;
2745  
2746  	if (!src_table || !dst_table || !src_opp ||
2747  	    !src_table->required_opp_tables)
2748  		return ERR_PTR(-EINVAL);
2749  
2750  	/* required-opps not fully initialized yet */
2751  	if (lazy_linking_pending(src_table))
2752  		return ERR_PTR(-EBUSY);
2753  
2754  	for (i = 0; i < src_table->required_opp_count; i++) {
2755  		if (src_table->required_opp_tables[i] == dst_table) {
2756  			mutex_lock(&src_table->lock);
2757  
2758  			list_for_each_entry(opp, &src_table->opp_list, node) {
2759  				if (opp == src_opp) {
2760  					dest_opp = opp->required_opps[i];
2761  					dev_pm_opp_get(dest_opp);
2762  					break;
2763  				}
2764  			}
2765  
2766  			mutex_unlock(&src_table->lock);
2767  			break;
2768  		}
2769  	}
2770  
2771  	if (IS_ERR(dest_opp)) {
2772  		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2773  		       src_table, dst_table);
2774  	}
2775  
2776  	return dest_opp;
2777  }
2778  EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2779  
2780  /**
2781   * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2782   * @src_table: OPP table which has dst_table as one of its required OPP table.
2783   * @dst_table: Required OPP table of the src_table.
2784   * @pstate: Current performance state of the src_table.
2785   *
2786   * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2787   * "required-opps" property of the OPP (present in @src_table) which has
2788   * performance state set to @pstate.
2789   *
2790   * Return: Zero or positive performance state on success, otherwise negative
2791   * value on errors.
2792   */
dev_pm_opp_xlate_performance_state(struct opp_table * src_table,struct opp_table * dst_table,unsigned int pstate)2793  int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2794  				       struct opp_table *dst_table,
2795  				       unsigned int pstate)
2796  {
2797  	struct dev_pm_opp *opp;
2798  	int dest_pstate = -EINVAL;
2799  	int i;
2800  
2801  	/*
2802  	 * Normally the src_table will have the "required_opps" property set to
2803  	 * point to one of the OPPs in the dst_table, but in some cases the
2804  	 * genpd and its master have one to one mapping of performance states
2805  	 * and so none of them have the "required-opps" property set. Return the
2806  	 * pstate of the src_table as it is in such cases.
2807  	 */
2808  	if (!src_table || !src_table->required_opp_count)
2809  		return pstate;
2810  
2811  	/* Both OPP tables must belong to genpds */
2812  	if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2813  		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2814  		return -EINVAL;
2815  	}
2816  
2817  	/* required-opps not fully initialized yet */
2818  	if (lazy_linking_pending(src_table))
2819  		return -EBUSY;
2820  
2821  	for (i = 0; i < src_table->required_opp_count; i++) {
2822  		if (src_table->required_opp_tables[i]->np == dst_table->np)
2823  			break;
2824  	}
2825  
2826  	if (unlikely(i == src_table->required_opp_count)) {
2827  		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2828  		       __func__, src_table, dst_table);
2829  		return -EINVAL;
2830  	}
2831  
2832  	mutex_lock(&src_table->lock);
2833  
2834  	list_for_each_entry(opp, &src_table->opp_list, node) {
2835  		if (opp->level == pstate) {
2836  			dest_pstate = opp->required_opps[i]->level;
2837  			goto unlock;
2838  		}
2839  	}
2840  
2841  	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2842  	       dst_table);
2843  
2844  unlock:
2845  	mutex_unlock(&src_table->lock);
2846  
2847  	return dest_pstate;
2848  }
2849  
2850  /**
2851   * dev_pm_opp_add()  - Add an OPP table from a table definitions
2852   * @dev:	device for which we do this operation
2853   * @freq:	Frequency in Hz for this OPP
2854   * @u_volt:	Voltage in uVolts for this OPP
2855   *
2856   * This function adds an opp definition to the opp table and returns status.
2857   * The opp is made available by default and it can be controlled using
2858   * dev_pm_opp_enable/disable functions.
2859   *
2860   * Return:
2861   * 0		On success OR
2862   *		Duplicate OPPs (both freq and volt are same) and opp->available
2863   * -EEXIST	Freq are same and volt are different OR
2864   *		Duplicate OPPs (both freq and volt are same) and !opp->available
2865   * -ENOMEM	Memory allocation failure
2866   */
dev_pm_opp_add(struct device * dev,unsigned long freq,unsigned long u_volt)2867  int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2868  {
2869  	struct opp_table *opp_table;
2870  	int ret;
2871  
2872  	opp_table = _add_opp_table(dev, true);
2873  	if (IS_ERR(opp_table))
2874  		return PTR_ERR(opp_table);
2875  
2876  	/* Fix regulator count for dynamic OPPs */
2877  	opp_table->regulator_count = 1;
2878  
2879  	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2880  	if (ret)
2881  		dev_pm_opp_put_opp_table(opp_table);
2882  
2883  	return ret;
2884  }
2885  EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2886  
2887  /**
2888   * _opp_set_availability() - helper to set the availability of an opp
2889   * @dev:		device for which we do this operation
2890   * @freq:		OPP frequency to modify availability
2891   * @availability_req:	availability status requested for this opp
2892   *
2893   * Set the availability of an OPP, opp_{enable,disable} share a common logic
2894   * which is isolated here.
2895   *
2896   * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2897   * copy operation, returns 0 if no modification was done OR modification was
2898   * successful.
2899   */
_opp_set_availability(struct device * dev,unsigned long freq,bool availability_req)2900  static int _opp_set_availability(struct device *dev, unsigned long freq,
2901  				 bool availability_req)
2902  {
2903  	struct opp_table *opp_table;
2904  	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2905  	int r = 0;
2906  
2907  	/* Find the opp_table */
2908  	opp_table = _find_opp_table(dev);
2909  	if (IS_ERR(opp_table)) {
2910  		r = PTR_ERR(opp_table);
2911  		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2912  		return r;
2913  	}
2914  
2915  	if (!assert_single_clk(opp_table, 0)) {
2916  		r = -EINVAL;
2917  		goto put_table;
2918  	}
2919  
2920  	mutex_lock(&opp_table->lock);
2921  
2922  	/* Do we have the frequency? */
2923  	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2924  		if (tmp_opp->rates[0] == freq) {
2925  			opp = tmp_opp;
2926  			break;
2927  		}
2928  	}
2929  
2930  	if (IS_ERR(opp)) {
2931  		r = PTR_ERR(opp);
2932  		goto unlock;
2933  	}
2934  
2935  	/* Is update really needed? */
2936  	if (opp->available == availability_req)
2937  		goto unlock;
2938  
2939  	opp->available = availability_req;
2940  
2941  	dev_pm_opp_get(opp);
2942  	mutex_unlock(&opp_table->lock);
2943  
2944  	/* Notify the change of the OPP availability */
2945  	if (availability_req)
2946  		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2947  					     opp);
2948  	else
2949  		blocking_notifier_call_chain(&opp_table->head,
2950  					     OPP_EVENT_DISABLE, opp);
2951  
2952  	dev_pm_opp_put(opp);
2953  	goto put_table;
2954  
2955  unlock:
2956  	mutex_unlock(&opp_table->lock);
2957  put_table:
2958  	dev_pm_opp_put_opp_table(opp_table);
2959  	return r;
2960  }
2961  
2962  /**
2963   * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2964   * @dev:		device for which we do this operation
2965   * @freq:		OPP frequency to adjust voltage of
2966   * @u_volt:		new OPP target voltage
2967   * @u_volt_min:		new OPP min voltage
2968   * @u_volt_max:		new OPP max voltage
2969   *
2970   * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2971   * copy operation, returns 0 if no modifcation was done OR modification was
2972   * successful.
2973   */
dev_pm_opp_adjust_voltage(struct device * dev,unsigned long freq,unsigned long u_volt,unsigned long u_volt_min,unsigned long u_volt_max)2974  int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2975  			      unsigned long u_volt, unsigned long u_volt_min,
2976  			      unsigned long u_volt_max)
2977  
2978  {
2979  	struct opp_table *opp_table;
2980  	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2981  	int r = 0;
2982  
2983  	/* Find the opp_table */
2984  	opp_table = _find_opp_table(dev);
2985  	if (IS_ERR(opp_table)) {
2986  		r = PTR_ERR(opp_table);
2987  		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2988  		return r;
2989  	}
2990  
2991  	if (!assert_single_clk(opp_table, 0)) {
2992  		r = -EINVAL;
2993  		goto put_table;
2994  	}
2995  
2996  	mutex_lock(&opp_table->lock);
2997  
2998  	/* Do we have the frequency? */
2999  	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
3000  		if (tmp_opp->rates[0] == freq) {
3001  			opp = tmp_opp;
3002  			break;
3003  		}
3004  	}
3005  
3006  	if (IS_ERR(opp)) {
3007  		r = PTR_ERR(opp);
3008  		goto adjust_unlock;
3009  	}
3010  
3011  	/* Is update really needed? */
3012  	if (opp->supplies->u_volt == u_volt)
3013  		goto adjust_unlock;
3014  
3015  	opp->supplies->u_volt = u_volt;
3016  	opp->supplies->u_volt_min = u_volt_min;
3017  	opp->supplies->u_volt_max = u_volt_max;
3018  
3019  	dev_pm_opp_get(opp);
3020  	mutex_unlock(&opp_table->lock);
3021  
3022  	/* Notify the voltage change of the OPP */
3023  	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
3024  				     opp);
3025  
3026  	dev_pm_opp_put(opp);
3027  	goto put_table;
3028  
3029  adjust_unlock:
3030  	mutex_unlock(&opp_table->lock);
3031  put_table:
3032  	dev_pm_opp_put_opp_table(opp_table);
3033  	return r;
3034  }
3035  EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
3036  
3037  /**
3038   * dev_pm_opp_enable() - Enable a specific OPP
3039   * @dev:	device for which we do this operation
3040   * @freq:	OPP frequency to enable
3041   *
3042   * Enables a provided opp. If the operation is valid, this returns 0, else the
3043   * corresponding error value. It is meant to be used for users an OPP available
3044   * after being temporarily made unavailable with dev_pm_opp_disable.
3045   *
3046   * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3047   * copy operation, returns 0 if no modification was done OR modification was
3048   * successful.
3049   */
dev_pm_opp_enable(struct device * dev,unsigned long freq)3050  int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3051  {
3052  	return _opp_set_availability(dev, freq, true);
3053  }
3054  EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3055  
3056  /**
3057   * dev_pm_opp_disable() - Disable a specific OPP
3058   * @dev:	device for which we do this operation
3059   * @freq:	OPP frequency to disable
3060   *
3061   * Disables a provided opp. If the operation is valid, this returns
3062   * 0, else the corresponding error value. It is meant to be a temporary
3063   * control by users to make this OPP not available until the circumstances are
3064   * right to make it available again (with a call to dev_pm_opp_enable).
3065   *
3066   * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3067   * copy operation, returns 0 if no modification was done OR modification was
3068   * successful.
3069   */
dev_pm_opp_disable(struct device * dev,unsigned long freq)3070  int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3071  {
3072  	return _opp_set_availability(dev, freq, false);
3073  }
3074  EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3075  
3076  /**
3077   * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3078   * @dev:	Device for which notifier needs to be registered
3079   * @nb:		Notifier block to be registered
3080   *
3081   * Return: 0 on success or a negative error value.
3082   */
dev_pm_opp_register_notifier(struct device * dev,struct notifier_block * nb)3083  int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3084  {
3085  	struct opp_table *opp_table;
3086  	int ret;
3087  
3088  	opp_table = _find_opp_table(dev);
3089  	if (IS_ERR(opp_table))
3090  		return PTR_ERR(opp_table);
3091  
3092  	ret = blocking_notifier_chain_register(&opp_table->head, nb);
3093  
3094  	dev_pm_opp_put_opp_table(opp_table);
3095  
3096  	return ret;
3097  }
3098  EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3099  
3100  /**
3101   * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3102   * @dev:	Device for which notifier needs to be unregistered
3103   * @nb:		Notifier block to be unregistered
3104   *
3105   * Return: 0 on success or a negative error value.
3106   */
dev_pm_opp_unregister_notifier(struct device * dev,struct notifier_block * nb)3107  int dev_pm_opp_unregister_notifier(struct device *dev,
3108  				   struct notifier_block *nb)
3109  {
3110  	struct opp_table *opp_table;
3111  	int ret;
3112  
3113  	opp_table = _find_opp_table(dev);
3114  	if (IS_ERR(opp_table))
3115  		return PTR_ERR(opp_table);
3116  
3117  	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3118  
3119  	dev_pm_opp_put_opp_table(opp_table);
3120  
3121  	return ret;
3122  }
3123  EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3124  
3125  /**
3126   * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3127   * @dev:	device pointer used to lookup OPP table.
3128   *
3129   * Free both OPPs created using static entries present in DT and the
3130   * dynamically added entries.
3131   */
dev_pm_opp_remove_table(struct device * dev)3132  void dev_pm_opp_remove_table(struct device *dev)
3133  {
3134  	struct opp_table *opp_table;
3135  
3136  	/* Check for existing table for 'dev' */
3137  	opp_table = _find_opp_table(dev);
3138  	if (IS_ERR(opp_table)) {
3139  		int error = PTR_ERR(opp_table);
3140  
3141  		if (error != -ENODEV)
3142  			WARN(1, "%s: opp_table: %d\n",
3143  			     IS_ERR_OR_NULL(dev) ?
3144  					"Invalid device" : dev_name(dev),
3145  			     error);
3146  		return;
3147  	}
3148  
3149  	/*
3150  	 * Drop the extra reference only if the OPP table was successfully added
3151  	 * with dev_pm_opp_of_add_table() earlier.
3152  	 **/
3153  	if (_opp_remove_all_static(opp_table))
3154  		dev_pm_opp_put_opp_table(opp_table);
3155  
3156  	/* Drop reference taken by _find_opp_table() */
3157  	dev_pm_opp_put_opp_table(opp_table);
3158  }
3159  EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3160  
3161  /**
3162   * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3163   * @dev:	device for which we do this operation
3164   *
3165   * Sync voltage state of the OPP table regulators.
3166   *
3167   * Return: 0 on success or a negative error value.
3168   */
dev_pm_opp_sync_regulators(struct device * dev)3169  int dev_pm_opp_sync_regulators(struct device *dev)
3170  {
3171  	struct opp_table *opp_table;
3172  	struct regulator *reg;
3173  	int i, ret = 0;
3174  
3175  	/* Device may not have OPP table */
3176  	opp_table = _find_opp_table(dev);
3177  	if (IS_ERR(opp_table))
3178  		return 0;
3179  
3180  	/* Regulator may not be required for the device */
3181  	if (unlikely(!opp_table->regulators))
3182  		goto put_table;
3183  
3184  	/* Nothing to sync if voltage wasn't changed */
3185  	if (!opp_table->enabled)
3186  		goto put_table;
3187  
3188  	for (i = 0; i < opp_table->regulator_count; i++) {
3189  		reg = opp_table->regulators[i];
3190  		ret = regulator_sync_voltage(reg);
3191  		if (ret)
3192  			break;
3193  	}
3194  put_table:
3195  	/* Drop reference taken by _find_opp_table() */
3196  	dev_pm_opp_put_opp_table(opp_table);
3197  
3198  	return ret;
3199  }
3200  EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3201