xref: /openbmc/linux/drivers/edac/i5400_edac.c (revision 7ae9fb1b7ecbb5d85d07857943f677fd1a559b18)
1  /*
2   * Intel 5400 class Memory Controllers kernel module (Seaburg)
3   *
4   * This file may be distributed under the terms of the
5   * GNU General Public License.
6   *
7   * Copyright (c) 2008 by:
8   *	 Ben Woodard <woodard@redhat.com>
9   *	 Mauro Carvalho Chehab
10   *
11   * Red Hat Inc. https://www.redhat.com
12   *
13   * Forked and adapted from the i5000_edac driver which was
14   * written by Douglas Thompson Linux Networx <norsk5@xmission.com>
15   *
16   * This module is based on the following document:
17   *
18   * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
19   * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
20   *
21   * This Memory Controller manages DDR2 FB-DIMMs. It has 2 branches, each with
22   * 2 channels operating in lockstep no-mirror mode. Each channel can have up to
23   * 4 dimm's, each with up to 8GB.
24   *
25   */
26  
27  #include <linux/module.h>
28  #include <linux/init.h>
29  #include <linux/pci.h>
30  #include <linux/pci_ids.h>
31  #include <linux/slab.h>
32  #include <linux/edac.h>
33  #include <linux/mmzone.h>
34  
35  #include "edac_module.h"
36  
37  /*
38   * Alter this version for the I5400 module when modifications are made
39   */
40  #define I5400_REVISION    " Ver: 1.0.0"
41  
42  #define EDAC_MOD_STR      "i5400_edac"
43  
44  #define i5400_printk(level, fmt, arg...) \
45  	edac_printk(level, "i5400", fmt, ##arg)
46  
47  #define i5400_mc_printk(mci, level, fmt, arg...) \
48  	edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
49  
50  /* Limits for i5400 */
51  #define MAX_BRANCHES		2
52  #define CHANNELS_PER_BRANCH	2
53  #define DIMMS_PER_CHANNEL	4
54  #define	MAX_CHANNELS		(MAX_BRANCHES * CHANNELS_PER_BRANCH)
55  
56  /* Device 16,
57   * Function 0: System Address
58   * Function 1: Memory Branch Map, Control, Errors Register
59   * Function 2: FSB Error Registers
60   *
61   * All 3 functions of Device 16 (0,1,2) share the SAME DID and
62   * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
63   * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
64   * for device 21 (0,1).
65   */
66  
67  	/* OFFSETS for Function 0 */
68  #define		AMBASE			0x48 /* AMB Mem Mapped Reg Region Base */
69  #define		MAXCH			0x56 /* Max Channel Number */
70  #define		MAXDIMMPERCH		0x57 /* Max DIMM PER Channel Number */
71  
72  	/* OFFSETS for Function 1 */
73  #define		TOLM			0x6C
74  #define		REDMEMB			0x7C
75  #define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0]  indicate EVEN */
76  #define		MIR0			0x80
77  #define		MIR1			0x84
78  #define		AMIR0			0x8c
79  #define		AMIR1			0x90
80  
81  	/* Fatal error registers */
82  #define		FERR_FAT_FBD		0x98	/* also called as FERR_FAT_FB_DIMM at datasheet */
83  #define			FERR_FAT_FBDCHAN (3<<28)	/* channel index where the highest-order error occurred */
84  
85  #define		NERR_FAT_FBD		0x9c
86  #define		FERR_NF_FBD		0xa0	/* also called as FERR_NFAT_FB_DIMM at datasheet */
87  
88  	/* Non-fatal error register */
89  #define		NERR_NF_FBD		0xa4
90  
91  	/* Enable error mask */
92  #define		EMASK_FBD		0xa8
93  
94  #define		ERR0_FBD		0xac
95  #define		ERR1_FBD		0xb0
96  #define		ERR2_FBD		0xb4
97  #define		MCERR_FBD		0xb8
98  
99  	/* No OFFSETS for Device 16 Function 2 */
100  
101  /*
102   * Device 21,
103   * Function 0: Memory Map Branch 0
104   *
105   * Device 22,
106   * Function 0: Memory Map Branch 1
107   */
108  
109  	/* OFFSETS for Function 0 */
110  #define AMBPRESENT_0	0x64
111  #define AMBPRESENT_1	0x66
112  #define MTR0		0x80
113  #define MTR1		0x82
114  #define MTR2		0x84
115  #define MTR3		0x86
116  
117  	/* OFFSETS for Function 1 */
118  #define NRECFGLOG		0x74
119  #define RECFGLOG		0x78
120  #define NRECMEMA		0xbe
121  #define NRECMEMB		0xc0
122  #define NRECFB_DIMMA		0xc4
123  #define NRECFB_DIMMB		0xc8
124  #define NRECFB_DIMMC		0xcc
125  #define NRECFB_DIMMD		0xd0
126  #define NRECFB_DIMME		0xd4
127  #define NRECFB_DIMMF		0xd8
128  #define REDMEMA			0xdC
129  #define RECMEMA			0xf0
130  #define RECMEMB			0xf4
131  #define RECFB_DIMMA		0xf8
132  #define RECFB_DIMMB		0xec
133  #define RECFB_DIMMC		0xf0
134  #define RECFB_DIMMD		0xf4
135  #define RECFB_DIMME		0xf8
136  #define RECFB_DIMMF		0xfC
137  
138  /*
139   * Error indicator bits and masks
140   * Error masks are according with Table 5-17 of i5400 datasheet
141   */
142  
143  enum error_mask {
144  	EMASK_M1  = 1<<0,  /* Memory Write error on non-redundant retry */
145  	EMASK_M2  = 1<<1,  /* Memory or FB-DIMM configuration CRC read error */
146  	EMASK_M3  = 1<<2,  /* Reserved */
147  	EMASK_M4  = 1<<3,  /* Uncorrectable Data ECC on Replay */
148  	EMASK_M5  = 1<<4,  /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
149  	EMASK_M6  = 1<<5,  /* Unsupported on i5400 */
150  	EMASK_M7  = 1<<6,  /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
151  	EMASK_M8  = 1<<7,  /* Aliased Uncorrectable Patrol Data ECC */
152  	EMASK_M9  = 1<<8,  /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
153  	EMASK_M10 = 1<<9,  /* Unsupported on i5400 */
154  	EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC  */
155  	EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
156  	EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
157  	EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
158  	EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
159  	EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
160  	EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
161  	EMASK_M18 = 1<<17, /* Unsupported on i5400 */
162  	EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
163  	EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
164  	EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
165  	EMASK_M22 = 1<<21, /* SPD protocol Error */
166  	EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
167  	EMASK_M24 = 1<<23, /* Refresh error */
168  	EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
169  	EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
170  	EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
171  	EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
172  	EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
173  };
174  
175  /*
176   * Names to translate bit error into something useful
177   */
178  static const char *error_name[] = {
179  	[0]  = "Memory Write error on non-redundant retry",
180  	[1]  = "Memory or FB-DIMM configuration CRC read error",
181  	/* Reserved */
182  	[3]  = "Uncorrectable Data ECC on Replay",
183  	[4]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
184  	/* M6 Unsupported on i5400 */
185  	[6]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
186  	[7]  = "Aliased Uncorrectable Patrol Data ECC",
187  	[8]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
188  	/* M10 Unsupported on i5400 */
189  	[10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
190  	[11] = "Non-Aliased Uncorrectable Patrol Data ECC",
191  	[12] = "Memory Write error on first attempt",
192  	[13] = "FB-DIMM Configuration Write error on first attempt",
193  	[14] = "Memory or FB-DIMM configuration CRC read error",
194  	[15] = "Channel Failed-Over Occurred",
195  	[16] = "Correctable Non-Mirrored Demand Data ECC",
196  	/* M18 Unsupported on i5400 */
197  	[18] = "Correctable Resilver- or Spare-Copy Data ECC",
198  	[19] = "Correctable Patrol Data ECC",
199  	[20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
200  	[21] = "SPD protocol Error",
201  	[22] = "Non-Redundant Fast Reset Timeout",
202  	[23] = "Refresh error",
203  	[24] = "Memory Write error on redundant retry",
204  	[25] = "Redundant Fast Reset Timeout",
205  	[26] = "Correctable Counter Threshold Exceeded",
206  	[27] = "DIMM-Spare Copy Completed",
207  	[28] = "DIMM-Isolation Completed",
208  };
209  
210  /* Fatal errors */
211  #define ERROR_FAT_MASK		(EMASK_M1 | \
212  				 EMASK_M2 | \
213  				 EMASK_M23)
214  
215  /* Correctable errors */
216  #define ERROR_NF_CORRECTABLE	(EMASK_M27 | \
217  				 EMASK_M20 | \
218  				 EMASK_M19 | \
219  				 EMASK_M18 | \
220  				 EMASK_M17 | \
221  				 EMASK_M16)
222  #define ERROR_NF_DIMM_SPARE	(EMASK_M29 | \
223  				 EMASK_M28)
224  #define ERROR_NF_SPD_PROTOCOL	(EMASK_M22)
225  #define ERROR_NF_NORTH_CRC	(EMASK_M21)
226  
227  /* Recoverable errors */
228  #define ERROR_NF_RECOVERABLE	(EMASK_M26 | \
229  				 EMASK_M25 | \
230  				 EMASK_M24 | \
231  				 EMASK_M15 | \
232  				 EMASK_M14 | \
233  				 EMASK_M13 | \
234  				 EMASK_M12 | \
235  				 EMASK_M11 | \
236  				 EMASK_M9  | \
237  				 EMASK_M8  | \
238  				 EMASK_M7  | \
239  				 EMASK_M5)
240  
241  /* uncorrectable errors */
242  #define ERROR_NF_UNCORRECTABLE	(EMASK_M4)
243  
244  /* mask to all non-fatal errors */
245  #define ERROR_NF_MASK		(ERROR_NF_CORRECTABLE   | \
246  				 ERROR_NF_UNCORRECTABLE | \
247  				 ERROR_NF_RECOVERABLE   | \
248  				 ERROR_NF_DIMM_SPARE    | \
249  				 ERROR_NF_SPD_PROTOCOL  | \
250  				 ERROR_NF_NORTH_CRC)
251  
252  /*
253   * Define error masks for the several registers
254   */
255  
256  /* Enable all fatal and non fatal errors */
257  #define ENABLE_EMASK_ALL	(ERROR_FAT_MASK | ERROR_NF_MASK)
258  
259  /* mask for fatal error registers */
260  #define FERR_FAT_MASK ERROR_FAT_MASK
261  
262  /* masks for non-fatal error register */
to_nf_mask(unsigned int mask)263  static inline int to_nf_mask(unsigned int mask)
264  {
265  	return (mask & EMASK_M29) | (mask >> 3);
266  };
267  
from_nf_ferr(unsigned int mask)268  static inline int from_nf_ferr(unsigned int mask)
269  {
270  	return (mask & EMASK_M29) |		/* Bit 28 */
271  	       (mask & ((1 << 28) - 1) << 3);	/* Bits 0 to 27 */
272  };
273  
274  #define FERR_NF_MASK		to_nf_mask(ERROR_NF_MASK)
275  #define FERR_NF_CORRECTABLE	to_nf_mask(ERROR_NF_CORRECTABLE)
276  #define FERR_NF_DIMM_SPARE	to_nf_mask(ERROR_NF_DIMM_SPARE)
277  #define FERR_NF_SPD_PROTOCOL	to_nf_mask(ERROR_NF_SPD_PROTOCOL)
278  #define FERR_NF_NORTH_CRC	to_nf_mask(ERROR_NF_NORTH_CRC)
279  #define FERR_NF_RECOVERABLE	to_nf_mask(ERROR_NF_RECOVERABLE)
280  #define FERR_NF_UNCORRECTABLE	to_nf_mask(ERROR_NF_UNCORRECTABLE)
281  
282  /*
283   * Defines to extract the various fields from the
284   *	MTRx - Memory Technology Registers
285   */
286  #define MTR_DIMMS_PRESENT(mtr)		((mtr) & (1 << 10))
287  #define MTR_DIMMS_ETHROTTLE(mtr)	((mtr) & (1 << 9))
288  #define MTR_DRAM_WIDTH(mtr)		(((mtr) & (1 << 8)) ? 8 : 4)
289  #define MTR_DRAM_BANKS(mtr)		(((mtr) & (1 << 6)) ? 8 : 4)
290  #define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
291  #define MTR_DIMM_RANK(mtr)		(((mtr) >> 5) & 0x1)
292  #define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
293  #define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
294  #define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
295  #define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
296  #define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
297  
298  /* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
extract_fbdchan_indx(u32 x)299  static inline int extract_fbdchan_indx(u32 x)
300  {
301  	return (x>>28) & 0x3;
302  }
303  
304  /* Device name and register DID (Device ID) */
305  struct i5400_dev_info {
306  	const char *ctl_name;	/* name for this device */
307  	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
308  };
309  
310  /* Table of devices attributes supported by this driver */
311  static const struct i5400_dev_info i5400_devs[] = {
312  	{
313  		.ctl_name = "I5400",
314  		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR,
315  	},
316  };
317  
318  struct i5400_dimm_info {
319  	int megabytes;		/* size, 0 means not present  */
320  };
321  
322  /* driver private data structure */
323  struct i5400_pvt {
324  	struct pci_dev *system_address;		/* 16.0 */
325  	struct pci_dev *branchmap_werrors;	/* 16.1 */
326  	struct pci_dev *fsb_error_regs;		/* 16.2 */
327  	struct pci_dev *branch_0;		/* 21.0 */
328  	struct pci_dev *branch_1;		/* 22.0 */
329  
330  	u16 tolm;				/* top of low memory */
331  	union {
332  		u64 ambase;				/* AMB BAR */
333  		struct {
334  			u32 ambase_bottom;
335  			u32 ambase_top;
336  		} u __packed;
337  	};
338  
339  	u16 mir0, mir1;
340  
341  	u16 b0_mtr[DIMMS_PER_CHANNEL];	/* Memory Technlogy Reg */
342  	u16 b0_ambpresent0;			/* Branch 0, Channel 0 */
343  	u16 b0_ambpresent1;			/* Brnach 0, Channel 1 */
344  
345  	u16 b1_mtr[DIMMS_PER_CHANNEL];	/* Memory Technlogy Reg */
346  	u16 b1_ambpresent0;			/* Branch 1, Channel 8 */
347  	u16 b1_ambpresent1;			/* Branch 1, Channel 1 */
348  
349  	/* DIMM information matrix, allocating architecture maximums */
350  	struct i5400_dimm_info dimm_info[DIMMS_PER_CHANNEL][MAX_CHANNELS];
351  
352  	/* Actual values for this controller */
353  	int maxch;				/* Max channels */
354  	int maxdimmperch;			/* Max DIMMs per channel */
355  };
356  
357  /* I5400 MCH error information retrieved from Hardware */
358  struct i5400_error_info {
359  	/* These registers are always read from the MC */
360  	u32 ferr_fat_fbd;	/* First Errors Fatal */
361  	u32 nerr_fat_fbd;	/* Next Errors Fatal */
362  	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
363  	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */
364  
365  	/* These registers are input ONLY if there was a Recoverable Error */
366  	u32 redmemb;		/* Recoverable Mem Data Error log B */
367  	u16 recmema;		/* Recoverable Mem Error log A */
368  	u32 recmemb;		/* Recoverable Mem Error log B */
369  
370  	/* These registers are input ONLY if there was a Non-Rec Error */
371  	u16 nrecmema;		/* Non-Recoverable Mem log A */
372  	u32 nrecmemb;		/* Non-Recoverable Mem log B */
373  
374  };
375  
376  /* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
377     5400 better to use an inline function than a macro in this case */
nrec_bank(struct i5400_error_info * info)378  static inline int nrec_bank(struct i5400_error_info *info)
379  {
380  	return ((info->nrecmema) >> 12) & 0x7;
381  }
nrec_rank(struct i5400_error_info * info)382  static inline int nrec_rank(struct i5400_error_info *info)
383  {
384  	return ((info->nrecmema) >> 8) & 0xf;
385  }
nrec_buf_id(struct i5400_error_info * info)386  static inline int nrec_buf_id(struct i5400_error_info *info)
387  {
388  	return ((info->nrecmema)) & 0xff;
389  }
nrec_rdwr(struct i5400_error_info * info)390  static inline int nrec_rdwr(struct i5400_error_info *info)
391  {
392  	return (info->nrecmemb) >> 31;
393  }
394  /* This applies to both NREC and REC string so it can be used with nrec_rdwr
395     and rec_rdwr */
rdwr_str(int rdwr)396  static inline const char *rdwr_str(int rdwr)
397  {
398  	return rdwr ? "Write" : "Read";
399  }
nrec_cas(struct i5400_error_info * info)400  static inline int nrec_cas(struct i5400_error_info *info)
401  {
402  	return ((info->nrecmemb) >> 16) & 0x1fff;
403  }
nrec_ras(struct i5400_error_info * info)404  static inline int nrec_ras(struct i5400_error_info *info)
405  {
406  	return (info->nrecmemb) & 0xffff;
407  }
rec_bank(struct i5400_error_info * info)408  static inline int rec_bank(struct i5400_error_info *info)
409  {
410  	return ((info->recmema) >> 12) & 0x7;
411  }
rec_rank(struct i5400_error_info * info)412  static inline int rec_rank(struct i5400_error_info *info)
413  {
414  	return ((info->recmema) >> 8) & 0xf;
415  }
rec_rdwr(struct i5400_error_info * info)416  static inline int rec_rdwr(struct i5400_error_info *info)
417  {
418  	return (info->recmemb) >> 31;
419  }
rec_cas(struct i5400_error_info * info)420  static inline int rec_cas(struct i5400_error_info *info)
421  {
422  	return ((info->recmemb) >> 16) & 0x1fff;
423  }
rec_ras(struct i5400_error_info * info)424  static inline int rec_ras(struct i5400_error_info *info)
425  {
426  	return (info->recmemb) & 0xffff;
427  }
428  
429  static struct edac_pci_ctl_info *i5400_pci;
430  
431  /*
432   *	i5400_get_error_info	Retrieve the hardware error information from
433   *				the hardware and cache it in the 'info'
434   *				structure
435   */
i5400_get_error_info(struct mem_ctl_info * mci,struct i5400_error_info * info)436  static void i5400_get_error_info(struct mem_ctl_info *mci,
437  				 struct i5400_error_info *info)
438  {
439  	struct i5400_pvt *pvt;
440  	u32 value;
441  
442  	pvt = mci->pvt_info;
443  
444  	/* read in the 1st FATAL error register */
445  	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
446  
447  	/* Mask only the bits that the doc says are valid
448  	 */
449  	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
450  
451  	/* If there is an error, then read in the
452  	   NEXT FATAL error register and the Memory Error Log Register A
453  	 */
454  	if (value & FERR_FAT_MASK) {
455  		info->ferr_fat_fbd = value;
456  
457  		/* harvest the various error data we need */
458  		pci_read_config_dword(pvt->branchmap_werrors,
459  				NERR_FAT_FBD, &info->nerr_fat_fbd);
460  		pci_read_config_word(pvt->branchmap_werrors,
461  				NRECMEMA, &info->nrecmema);
462  		pci_read_config_dword(pvt->branchmap_werrors,
463  				NRECMEMB, &info->nrecmemb);
464  
465  		/* Clear the error bits, by writing them back */
466  		pci_write_config_dword(pvt->branchmap_werrors,
467  				FERR_FAT_FBD, value);
468  	} else {
469  		info->ferr_fat_fbd = 0;
470  		info->nerr_fat_fbd = 0;
471  		info->nrecmema = 0;
472  		info->nrecmemb = 0;
473  	}
474  
475  	/* read in the 1st NON-FATAL error register */
476  	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
477  
478  	/* If there is an error, then read in the 1st NON-FATAL error
479  	 * register as well */
480  	if (value & FERR_NF_MASK) {
481  		info->ferr_nf_fbd = value;
482  
483  		/* harvest the various error data we need */
484  		pci_read_config_dword(pvt->branchmap_werrors,
485  				NERR_NF_FBD, &info->nerr_nf_fbd);
486  		pci_read_config_word(pvt->branchmap_werrors,
487  				RECMEMA, &info->recmema);
488  		pci_read_config_dword(pvt->branchmap_werrors,
489  				RECMEMB, &info->recmemb);
490  		pci_read_config_dword(pvt->branchmap_werrors,
491  				REDMEMB, &info->redmemb);
492  
493  		/* Clear the error bits, by writing them back */
494  		pci_write_config_dword(pvt->branchmap_werrors,
495  				FERR_NF_FBD, value);
496  	} else {
497  		info->ferr_nf_fbd = 0;
498  		info->nerr_nf_fbd = 0;
499  		info->recmema = 0;
500  		info->recmemb = 0;
501  		info->redmemb = 0;
502  	}
503  }
504  
505  /*
506   * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
507   * 					struct i5400_error_info *info,
508   * 					int handle_errors);
509   *
510   *	handle the Intel FATAL and unrecoverable errors, if any
511   */
i5400_proccess_non_recoverable_info(struct mem_ctl_info * mci,struct i5400_error_info * info,unsigned long allErrors)512  static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
513  				    struct i5400_error_info *info,
514  				    unsigned long allErrors)
515  {
516  	char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
517  	int branch;
518  	int channel;
519  	int bank;
520  	int buf_id;
521  	int rank;
522  	int rdwr;
523  	int ras, cas;
524  	int errnum;
525  	char *type = NULL;
526  	enum hw_event_mc_err_type tp_event = HW_EVENT_ERR_UNCORRECTED;
527  
528  	if (!allErrors)
529  		return;		/* if no error, return now */
530  
531  	if (allErrors &  ERROR_FAT_MASK) {
532  		type = "FATAL";
533  		tp_event = HW_EVENT_ERR_FATAL;
534  	} else if (allErrors & FERR_NF_UNCORRECTABLE)
535  		type = "NON-FATAL uncorrected";
536  	else
537  		type = "NON-FATAL recoverable";
538  
539  	/* ONLY ONE of the possible error bits will be set, as per the docs */
540  
541  	branch = extract_fbdchan_indx(info->ferr_fat_fbd);
542  	channel = branch;
543  
544  	/* Use the NON-Recoverable macros to extract data */
545  	bank = nrec_bank(info);
546  	rank = nrec_rank(info);
547  	buf_id = nrec_buf_id(info);
548  	rdwr = nrec_rdwr(info);
549  	ras = nrec_ras(info);
550  	cas = nrec_cas(info);
551  
552  	edac_dbg(0, "\t\t%s DIMM= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
553  		 type, rank, channel, channel + 1, branch >> 1, bank,
554  		 buf_id, rdwr_str(rdwr), ras, cas);
555  
556  	/* Only 1 bit will be on */
557  	errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
558  
559  	/* Form out message */
560  	snprintf(msg, sizeof(msg),
561  		 "Bank=%d Buffer ID = %d RAS=%d CAS=%d Err=0x%lx (%s)",
562  		 bank, buf_id, ras, cas, allErrors, error_name[errnum]);
563  
564  	edac_mc_handle_error(tp_event, mci, 1, 0, 0, 0,
565  			     branch >> 1, -1, rank,
566  			     rdwr ? "Write error" : "Read error",
567  			     msg);
568  }
569  
570  /*
571   * i5400_process_fatal_error_info(struct mem_ctl_info *mci,
572   * 				struct i5400_error_info *info,
573   * 				int handle_errors);
574   *
575   *	handle the Intel NON-FATAL errors, if any
576   */
i5400_process_nonfatal_error_info(struct mem_ctl_info * mci,struct i5400_error_info * info)577  static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci,
578  					struct i5400_error_info *info)
579  {
580  	char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
581  	unsigned long allErrors;
582  	int branch;
583  	int channel;
584  	int bank;
585  	int rank;
586  	int rdwr;
587  	int ras, cas;
588  	int errnum;
589  
590  	/* mask off the Error bits that are possible */
591  	allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK);
592  	if (!allErrors)
593  		return;		/* if no error, return now */
594  
595  	/* ONLY ONE of the possible error bits will be set, as per the docs */
596  
597  	if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
598  		i5400_proccess_non_recoverable_info(mci, info, allErrors);
599  		return;
600  	}
601  
602  	/* Correctable errors */
603  	if (allErrors & ERROR_NF_CORRECTABLE) {
604  		edac_dbg(0, "\tCorrected bits= 0x%lx\n", allErrors);
605  
606  		branch = extract_fbdchan_indx(info->ferr_nf_fbd);
607  
608  		channel = 0;
609  		if (REC_ECC_LOCATOR_ODD(info->redmemb))
610  			channel = 1;
611  
612  		/* Convert channel to be based from zero, instead of
613  		 * from branch base of 0 */
614  		channel += branch;
615  
616  		bank = rec_bank(info);
617  		rank = rec_rank(info);
618  		rdwr = rec_rdwr(info);
619  		ras = rec_ras(info);
620  		cas = rec_cas(info);
621  
622  		/* Only 1 bit will be on */
623  		errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
624  
625  		edac_dbg(0, "\t\tDIMM= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
626  			 rank, channel, branch >> 1, bank,
627  			 rdwr_str(rdwr), ras, cas);
628  
629  		/* Form out message */
630  		snprintf(msg, sizeof(msg),
631  			 "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
632  			 "RAS=%d CAS=%d, CE Err=0x%lx (%s))",
633  			 branch >> 1, bank, rdwr_str(rdwr), ras, cas,
634  			 allErrors, error_name[errnum]);
635  
636  		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
637  				     branch >> 1, channel % 2, rank,
638  				     rdwr ? "Write error" : "Read error",
639  				     msg);
640  
641  		return;
642  	}
643  
644  	/* Miscellaneous errors */
645  	errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
646  
647  	branch = extract_fbdchan_indx(info->ferr_nf_fbd);
648  
649  	i5400_mc_printk(mci, KERN_EMERG,
650  			"Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
651  			branch >> 1, allErrors, error_name[errnum]);
652  }
653  
654  /*
655   *	i5400_process_error_info	Process the error info that is
656   *	in the 'info' structure, previously retrieved from hardware
657   */
i5400_process_error_info(struct mem_ctl_info * mci,struct i5400_error_info * info)658  static void i5400_process_error_info(struct mem_ctl_info *mci,
659  				struct i5400_error_info *info)
660  {	u32 allErrors;
661  
662  	/* First handle any fatal errors that occurred */
663  	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
664  	i5400_proccess_non_recoverable_info(mci, info, allErrors);
665  
666  	/* now handle any non-fatal errors that occurred */
667  	i5400_process_nonfatal_error_info(mci, info);
668  }
669  
670  /*
671   *	i5400_clear_error	Retrieve any error from the hardware
672   *				but do NOT process that error.
673   *				Used for 'clearing' out of previous errors
674   *				Called by the Core module.
675   */
i5400_clear_error(struct mem_ctl_info * mci)676  static void i5400_clear_error(struct mem_ctl_info *mci)
677  {
678  	struct i5400_error_info info;
679  
680  	i5400_get_error_info(mci, &info);
681  }
682  
683  /*
684   *	i5400_check_error	Retrieve and process errors reported by the
685   *				hardware. Called by the Core module.
686   */
i5400_check_error(struct mem_ctl_info * mci)687  static void i5400_check_error(struct mem_ctl_info *mci)
688  {
689  	struct i5400_error_info info;
690  
691  	i5400_get_error_info(mci, &info);
692  	i5400_process_error_info(mci, &info);
693  }
694  
695  /*
696   *	i5400_put_devices	'put' all the devices that we have
697   *				reserved via 'get'
698   */
i5400_put_devices(struct mem_ctl_info * mci)699  static void i5400_put_devices(struct mem_ctl_info *mci)
700  {
701  	struct i5400_pvt *pvt;
702  
703  	pvt = mci->pvt_info;
704  
705  	/* Decrement usage count for devices */
706  	pci_dev_put(pvt->branch_1);
707  	pci_dev_put(pvt->branch_0);
708  	pci_dev_put(pvt->fsb_error_regs);
709  	pci_dev_put(pvt->branchmap_werrors);
710  }
711  
712  /*
713   *	i5400_get_devices	Find and perform 'get' operation on the MCH's
714   *			device/functions we want to reference for this driver
715   *
716   *			Need to 'get' device 16 func 1 and func 2
717   */
i5400_get_devices(struct mem_ctl_info * mci,int dev_idx)718  static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx)
719  {
720  	struct i5400_pvt *pvt;
721  	struct pci_dev *pdev;
722  
723  	pvt = mci->pvt_info;
724  	pvt->branchmap_werrors = NULL;
725  	pvt->fsb_error_regs = NULL;
726  	pvt->branch_0 = NULL;
727  	pvt->branch_1 = NULL;
728  
729  	/* Attempt to 'get' the MCH register we want */
730  	pdev = NULL;
731  	while (1) {
732  		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
733  				      PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
734  		if (!pdev) {
735  			/* End of list, leave */
736  			i5400_printk(KERN_ERR,
737  				"'system address,Process Bus' "
738  				"device not found:"
739  				"vendor 0x%x device 0x%x ERR func 1 "
740  				"(broken BIOS?)\n",
741  				PCI_VENDOR_ID_INTEL,
742  				PCI_DEVICE_ID_INTEL_5400_ERR);
743  			return -ENODEV;
744  		}
745  
746  		/* Store device 16 func 1 */
747  		if (PCI_FUNC(pdev->devfn) == 1)
748  			break;
749  	}
750  	pvt->branchmap_werrors = pdev;
751  
752  	pdev = NULL;
753  	while (1) {
754  		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
755  				      PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
756  		if (!pdev) {
757  			/* End of list, leave */
758  			i5400_printk(KERN_ERR,
759  				"'system address,Process Bus' "
760  				"device not found:"
761  				"vendor 0x%x device 0x%x ERR func 2 "
762  				"(broken BIOS?)\n",
763  				PCI_VENDOR_ID_INTEL,
764  				PCI_DEVICE_ID_INTEL_5400_ERR);
765  
766  			pci_dev_put(pvt->branchmap_werrors);
767  			return -ENODEV;
768  		}
769  
770  		/* Store device 16 func 2 */
771  		if (PCI_FUNC(pdev->devfn) == 2)
772  			break;
773  	}
774  	pvt->fsb_error_regs = pdev;
775  
776  	edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
777  		 pci_name(pvt->system_address),
778  		 pvt->system_address->vendor, pvt->system_address->device);
779  	edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
780  		 pci_name(pvt->branchmap_werrors),
781  		 pvt->branchmap_werrors->vendor,
782  		 pvt->branchmap_werrors->device);
783  	edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
784  		 pci_name(pvt->fsb_error_regs),
785  		 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
786  
787  	pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL,
788  				       PCI_DEVICE_ID_INTEL_5400_FBD0, NULL);
789  	if (!pvt->branch_0) {
790  		i5400_printk(KERN_ERR,
791  			"MC: 'BRANCH 0' device not found:"
792  			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
793  			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0);
794  
795  		pci_dev_put(pvt->fsb_error_regs);
796  		pci_dev_put(pvt->branchmap_werrors);
797  		return -ENODEV;
798  	}
799  
800  	/* If this device claims to have more than 2 channels then
801  	 * fetch Branch 1's information
802  	 */
803  	if (pvt->maxch < CHANNELS_PER_BRANCH)
804  		return 0;
805  
806  	pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL,
807  				       PCI_DEVICE_ID_INTEL_5400_FBD1, NULL);
808  	if (!pvt->branch_1) {
809  		i5400_printk(KERN_ERR,
810  			"MC: 'BRANCH 1' device not found:"
811  			"vendor 0x%x device 0x%x Func 0 "
812  			"(broken BIOS?)\n",
813  			PCI_VENDOR_ID_INTEL,
814  			PCI_DEVICE_ID_INTEL_5400_FBD1);
815  
816  		pci_dev_put(pvt->branch_0);
817  		pci_dev_put(pvt->fsb_error_regs);
818  		pci_dev_put(pvt->branchmap_werrors);
819  		return -ENODEV;
820  	}
821  
822  	return 0;
823  }
824  
825  /*
826   *	determine_amb_present
827   *
828   *		the information is contained in DIMMS_PER_CHANNEL different
829   *		registers determining which of the DIMMS_PER_CHANNEL requires
830   *              knowing which channel is in question
831   *
832   *	2 branches, each with 2 channels
833   *		b0_ambpresent0 for channel '0'
834   *		b0_ambpresent1 for channel '1'
835   *		b1_ambpresent0 for channel '2'
836   *		b1_ambpresent1 for channel '3'
837   */
determine_amb_present_reg(struct i5400_pvt * pvt,int channel)838  static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel)
839  {
840  	int amb_present;
841  
842  	if (channel < CHANNELS_PER_BRANCH) {
843  		if (channel & 0x1)
844  			amb_present = pvt->b0_ambpresent1;
845  		else
846  			amb_present = pvt->b0_ambpresent0;
847  	} else {
848  		if (channel & 0x1)
849  			amb_present = pvt->b1_ambpresent1;
850  		else
851  			amb_present = pvt->b1_ambpresent0;
852  	}
853  
854  	return amb_present;
855  }
856  
857  /*
858   * determine_mtr(pvt, dimm, channel)
859   *
860   * return the proper MTR register as determine by the dimm and desired channel
861   */
determine_mtr(struct i5400_pvt * pvt,int dimm,int channel)862  static int determine_mtr(struct i5400_pvt *pvt, int dimm, int channel)
863  {
864  	int mtr;
865  	int n;
866  
867  	/* There is one MTR for each slot pair of FB-DIMMs,
868  	   Each slot pair may be at branch 0 or branch 1.
869  	 */
870  	n = dimm;
871  
872  	if (n >= DIMMS_PER_CHANNEL) {
873  		edac_dbg(0, "ERROR: trying to access an invalid dimm: %d\n",
874  			 dimm);
875  		return 0;
876  	}
877  
878  	if (channel < CHANNELS_PER_BRANCH)
879  		mtr = pvt->b0_mtr[n];
880  	else
881  		mtr = pvt->b1_mtr[n];
882  
883  	return mtr;
884  }
885  
886  /*
887   */
decode_mtr(int slot_row,u16 mtr)888  static void decode_mtr(int slot_row, u16 mtr)
889  {
890  	int ans;
891  
892  	ans = MTR_DIMMS_PRESENT(mtr);
893  
894  	edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
895  		 slot_row, mtr, ans ? "" : "NOT ");
896  	if (!ans)
897  		return;
898  
899  	edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
900  
901  	edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
902  		 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
903  
904  	edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
905  	edac_dbg(2, "\t\tNUMRANK: %s\n",
906  		 MTR_DIMM_RANK(mtr) ? "double" : "single");
907  	edac_dbg(2, "\t\tNUMROW: %s\n",
908  		 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
909  		 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
910  		 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
911  		 "65,536 - 16 rows");
912  	edac_dbg(2, "\t\tNUMCOL: %s\n",
913  		 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
914  		 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
915  		 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
916  		 "reserved");
917  }
918  
handle_channel(struct i5400_pvt * pvt,int dimm,int channel,struct i5400_dimm_info * dinfo)919  static void handle_channel(struct i5400_pvt *pvt, int dimm, int channel,
920  			struct i5400_dimm_info *dinfo)
921  {
922  	int mtr;
923  	int amb_present_reg;
924  	int addrBits;
925  
926  	mtr = determine_mtr(pvt, dimm, channel);
927  	if (MTR_DIMMS_PRESENT(mtr)) {
928  		amb_present_reg = determine_amb_present_reg(pvt, channel);
929  
930  		/* Determine if there is a DIMM present in this DIMM slot */
931  		if (amb_present_reg & (1 << dimm)) {
932  			/* Start with the number of bits for a Bank
933  			 * on the DRAM */
934  			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
935  			/* Add thenumber of ROW bits */
936  			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
937  			/* add the number of COLUMN bits */
938  			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
939  			/* add the number of RANK bits */
940  			addrBits += MTR_DIMM_RANK(mtr);
941  
942  			addrBits += 6;	/* add 64 bits per DIMM */
943  			addrBits -= 20;	/* divide by 2^^20 */
944  			addrBits -= 3;	/* 8 bits per bytes */
945  
946  			dinfo->megabytes = 1 << addrBits;
947  		}
948  	}
949  }
950  
951  /*
952   *	calculate_dimm_size
953   *
954   *	also will output a DIMM matrix map, if debug is enabled, for viewing
955   *	how the DIMMs are populated
956   */
calculate_dimm_size(struct i5400_pvt * pvt)957  static void calculate_dimm_size(struct i5400_pvt *pvt)
958  {
959  	struct i5400_dimm_info *dinfo;
960  	int dimm, max_dimms;
961  	char *p, *mem_buffer;
962  	int space, n;
963  	int channel, branch;
964  
965  	/* ================= Generate some debug output ================= */
966  	space = PAGE_SIZE;
967  	mem_buffer = p = kmalloc(space, GFP_KERNEL);
968  	if (p == NULL) {
969  		i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
970  			__FILE__, __func__);
971  		return;
972  	}
973  
974  	/* Scan all the actual DIMMS
975  	 * and calculate the information for each DIMM
976  	 * Start with the highest dimm first, to display it first
977  	 * and work toward the 0th dimm
978  	 */
979  	max_dimms = pvt->maxdimmperch;
980  	for (dimm = max_dimms - 1; dimm >= 0; dimm--) {
981  
982  		/* on an odd dimm, first output a 'boundary' marker,
983  		 * then reset the message buffer  */
984  		if (dimm & 0x1) {
985  			n = snprintf(p, space, "---------------------------"
986  					"-------------------------------");
987  			p += n;
988  			space -= n;
989  			edac_dbg(2, "%s\n", mem_buffer);
990  			p = mem_buffer;
991  			space = PAGE_SIZE;
992  		}
993  		n = snprintf(p, space, "dimm %2d    ", dimm);
994  		p += n;
995  		space -= n;
996  
997  		for (channel = 0; channel < pvt->maxch; channel++) {
998  			dinfo = &pvt->dimm_info[dimm][channel];
999  			handle_channel(pvt, dimm, channel, dinfo);
1000  			n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
1001  			p += n;
1002  			space -= n;
1003  		}
1004  		edac_dbg(2, "%s\n", mem_buffer);
1005  		p = mem_buffer;
1006  		space = PAGE_SIZE;
1007  	}
1008  
1009  	/* Output the last bottom 'boundary' marker */
1010  	n = snprintf(p, space, "---------------------------"
1011  			"-------------------------------");
1012  	p += n;
1013  	space -= n;
1014  	edac_dbg(2, "%s\n", mem_buffer);
1015  	p = mem_buffer;
1016  	space = PAGE_SIZE;
1017  
1018  	/* now output the 'channel' labels */
1019  	n = snprintf(p, space, "           ");
1020  	p += n;
1021  	space -= n;
1022  	for (channel = 0; channel < pvt->maxch; channel++) {
1023  		n = snprintf(p, space, "channel %d | ", channel);
1024  		p += n;
1025  		space -= n;
1026  	}
1027  
1028  	space -= n;
1029  	edac_dbg(2, "%s\n", mem_buffer);
1030  	p = mem_buffer;
1031  	space = PAGE_SIZE;
1032  
1033  	n = snprintf(p, space, "           ");
1034  	p += n;
1035  	for (branch = 0; branch < MAX_BRANCHES; branch++) {
1036  		n = snprintf(p, space, "       branch %d       | ", branch);
1037  		p += n;
1038  		space -= n;
1039  	}
1040  
1041  	/* output the last message and free buffer */
1042  	edac_dbg(2, "%s\n", mem_buffer);
1043  	kfree(mem_buffer);
1044  }
1045  
1046  /*
1047   *	i5400_get_mc_regs	read in the necessary registers and
1048   *				cache locally
1049   *
1050   *			Fills in the private data members
1051   */
i5400_get_mc_regs(struct mem_ctl_info * mci)1052  static void i5400_get_mc_regs(struct mem_ctl_info *mci)
1053  {
1054  	struct i5400_pvt *pvt;
1055  	u32 actual_tolm;
1056  	u16 limit;
1057  	int slot_row;
1058  	int way0, way1;
1059  
1060  	pvt = mci->pvt_info;
1061  
1062  	pci_read_config_dword(pvt->system_address, AMBASE,
1063  			&pvt->u.ambase_bottom);
1064  	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1065  			&pvt->u.ambase_top);
1066  
1067  	edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1068  		 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1069  
1070  	/* Get the Branch Map regs */
1071  	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1072  	pvt->tolm >>= 12;
1073  	edac_dbg(2, "\nTOLM (number of 256M regions) =%u (0x%x)\n",
1074  		 pvt->tolm, pvt->tolm);
1075  
1076  	actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
1077  	edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
1078  		 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
1079  
1080  	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1081  	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1082  
1083  	/* Get the MIR[0-1] regs */
1084  	limit = (pvt->mir0 >> 4) & 0x0fff;
1085  	way0 = pvt->mir0 & 0x1;
1086  	way1 = pvt->mir0 & 0x2;
1087  	edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1088  		 limit, way1, way0);
1089  	limit = (pvt->mir1 >> 4) & 0xfff;
1090  	way0 = pvt->mir1 & 0x1;
1091  	way1 = pvt->mir1 & 0x2;
1092  	edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1093  		 limit, way1, way0);
1094  
1095  	/* Get the set of MTR[0-3] regs by each branch */
1096  	for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) {
1097  		int where = MTR0 + (slot_row * sizeof(u16));
1098  
1099  		/* Branch 0 set of MTR registers */
1100  		pci_read_config_word(pvt->branch_0, where,
1101  				&pvt->b0_mtr[slot_row]);
1102  
1103  		edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
1104  			 slot_row, where, pvt->b0_mtr[slot_row]);
1105  
1106  		if (pvt->maxch < CHANNELS_PER_BRANCH) {
1107  			pvt->b1_mtr[slot_row] = 0;
1108  			continue;
1109  		}
1110  
1111  		/* Branch 1 set of MTR registers */
1112  		pci_read_config_word(pvt->branch_1, where,
1113  				&pvt->b1_mtr[slot_row]);
1114  		edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
1115  			 slot_row, where, pvt->b1_mtr[slot_row]);
1116  	}
1117  
1118  	/* Read and dump branch 0's MTRs */
1119  	edac_dbg(2, "Memory Technology Registers:\n");
1120  	edac_dbg(2, "   Branch 0:\n");
1121  	for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1122  		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1123  
1124  	pci_read_config_word(pvt->branch_0, AMBPRESENT_0,
1125  			&pvt->b0_ambpresent0);
1126  	edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1127  	pci_read_config_word(pvt->branch_0, AMBPRESENT_1,
1128  			&pvt->b0_ambpresent1);
1129  	edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1130  
1131  	/* Only if we have 2 branchs (4 channels) */
1132  	if (pvt->maxch < CHANNELS_PER_BRANCH) {
1133  		pvt->b1_ambpresent0 = 0;
1134  		pvt->b1_ambpresent1 = 0;
1135  	} else {
1136  		/* Read and dump  branch 1's MTRs */
1137  		edac_dbg(2, "   Branch 1:\n");
1138  		for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1139  			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1140  
1141  		pci_read_config_word(pvt->branch_1, AMBPRESENT_0,
1142  				&pvt->b1_ambpresent0);
1143  		edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
1144  			 pvt->b1_ambpresent0);
1145  		pci_read_config_word(pvt->branch_1, AMBPRESENT_1,
1146  				&pvt->b1_ambpresent1);
1147  		edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
1148  			 pvt->b1_ambpresent1);
1149  	}
1150  
1151  	/* Go and determine the size of each DIMM and place in an
1152  	 * orderly matrix */
1153  	calculate_dimm_size(pvt);
1154  }
1155  
1156  /*
1157   *	i5400_init_dimms	Initialize the 'dimms' table within
1158   *				the mci control	structure with the
1159   *				addressing of memory.
1160   *
1161   *	return:
1162   *		0	success
1163   *		1	no actual memory found on this MC
1164   */
i5400_init_dimms(struct mem_ctl_info * mci)1165  static int i5400_init_dimms(struct mem_ctl_info *mci)
1166  {
1167  	struct i5400_pvt *pvt;
1168  	struct dimm_info *dimm;
1169  	int ndimms;
1170  	int mtr;
1171  	int size_mb;
1172  	int  channel, slot;
1173  
1174  	pvt = mci->pvt_info;
1175  
1176  	ndimms = 0;
1177  
1178  	/*
1179  	 * FIXME: remove  pvt->dimm_info[slot][channel] and use the 3
1180  	 * layers here.
1181  	 */
1182  	for (channel = 0; channel < mci->layers[0].size * mci->layers[1].size;
1183  	     channel++) {
1184  		for (slot = 0; slot < mci->layers[2].size; slot++) {
1185  			mtr = determine_mtr(pvt, slot, channel);
1186  
1187  			/* if no DIMMS on this slot, continue */
1188  			if (!MTR_DIMMS_PRESENT(mtr))
1189  				continue;
1190  
1191  			dimm = edac_get_dimm(mci, channel / 2, channel % 2, slot);
1192  
1193  			size_mb =  pvt->dimm_info[slot][channel].megabytes;
1194  
1195  			edac_dbg(2, "dimm (branch %d channel %d slot %d): %d.%03d GB\n",
1196  				 channel / 2, channel % 2, slot,
1197  				 size_mb / 1000, size_mb % 1000);
1198  
1199  			dimm->nr_pages = size_mb << 8;
1200  			dimm->grain = 8;
1201  			dimm->dtype = MTR_DRAM_WIDTH(mtr) == 8 ?
1202  				      DEV_X8 : DEV_X4;
1203  			dimm->mtype = MEM_FB_DDR2;
1204  			/*
1205  			 * The eccc mechanism is SDDC (aka SECC), with
1206  			 * is similar to Chipkill.
1207  			 */
1208  			dimm->edac_mode = MTR_DRAM_WIDTH(mtr) == 8 ?
1209  					  EDAC_S8ECD8ED : EDAC_S4ECD4ED;
1210  			ndimms++;
1211  		}
1212  	}
1213  
1214  	/*
1215  	 * When just one memory is provided, it should be at location (0,0,0).
1216  	 * With such single-DIMM mode, the SDCC algorithm degrades to SECDEC+.
1217  	 */
1218  	if (ndimms == 1)
1219  		mci->dimms[0]->edac_mode = EDAC_SECDED;
1220  
1221  	return (ndimms == 0);
1222  }
1223  
1224  /*
1225   *	i5400_enable_error_reporting
1226   *			Turn on the memory reporting features of the hardware
1227   */
i5400_enable_error_reporting(struct mem_ctl_info * mci)1228  static void i5400_enable_error_reporting(struct mem_ctl_info *mci)
1229  {
1230  	struct i5400_pvt *pvt;
1231  	u32 fbd_error_mask;
1232  
1233  	pvt = mci->pvt_info;
1234  
1235  	/* Read the FBD Error Mask Register */
1236  	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1237  			&fbd_error_mask);
1238  
1239  	/* Enable with a '0' */
1240  	fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1241  
1242  	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1243  			fbd_error_mask);
1244  }
1245  
1246  /*
1247   *	i5400_probe1	Probe for ONE instance of device to see if it is
1248   *			present.
1249   *	return:
1250   *		0 for FOUND a device
1251   *		< 0 for error code
1252   */
i5400_probe1(struct pci_dev * pdev,int dev_idx)1253  static int i5400_probe1(struct pci_dev *pdev, int dev_idx)
1254  {
1255  	struct mem_ctl_info *mci;
1256  	struct i5400_pvt *pvt;
1257  	struct edac_mc_layer layers[3];
1258  
1259  	if (dev_idx >= ARRAY_SIZE(i5400_devs))
1260  		return -EINVAL;
1261  
1262  	edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1263  		 pdev->bus->number,
1264  		 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1265  
1266  	/* We only are looking for func 0 of the set */
1267  	if (PCI_FUNC(pdev->devfn) != 0)
1268  		return -ENODEV;
1269  
1270  	/*
1271  	 * allocate a new MC control structure
1272  	 *
1273  	 * This drivers uses the DIMM slot as "csrow" and the rest as "channel".
1274  	 */
1275  	layers[0].type = EDAC_MC_LAYER_BRANCH;
1276  	layers[0].size = MAX_BRANCHES;
1277  	layers[0].is_virt_csrow = false;
1278  	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1279  	layers[1].size = CHANNELS_PER_BRANCH;
1280  	layers[1].is_virt_csrow = false;
1281  	layers[2].type = EDAC_MC_LAYER_SLOT;
1282  	layers[2].size = DIMMS_PER_CHANNEL;
1283  	layers[2].is_virt_csrow = true;
1284  	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1285  	if (mci == NULL)
1286  		return -ENOMEM;
1287  
1288  	edac_dbg(0, "MC: mci = %p\n", mci);
1289  
1290  	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
1291  
1292  	pvt = mci->pvt_info;
1293  	pvt->system_address = pdev;	/* Record this device in our private */
1294  	pvt->maxch = MAX_CHANNELS;
1295  	pvt->maxdimmperch = DIMMS_PER_CHANNEL;
1296  
1297  	/* 'get' the pci devices we want to reserve for our use */
1298  	if (i5400_get_devices(mci, dev_idx))
1299  		goto fail0;
1300  
1301  	/* Time to get serious */
1302  	i5400_get_mc_regs(mci);	/* retrieve the hardware registers */
1303  
1304  	mci->mc_idx = 0;
1305  	mci->mtype_cap = MEM_FLAG_FB_DDR2;
1306  	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1307  	mci->edac_cap = EDAC_FLAG_NONE;
1308  	mci->mod_name = "i5400_edac.c";
1309  	mci->ctl_name = i5400_devs[dev_idx].ctl_name;
1310  	mci->dev_name = pci_name(pdev);
1311  	mci->ctl_page_to_phys = NULL;
1312  
1313  	/* Set the function pointer to an actual operation function */
1314  	mci->edac_check = i5400_check_error;
1315  
1316  	/* initialize the MC control structure 'dimms' table
1317  	 * with the mapping and control information */
1318  	if (i5400_init_dimms(mci)) {
1319  		edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5400_init_dimms() returned nonzero value\n");
1320  		mci->edac_cap = EDAC_FLAG_NONE;	/* no dimms found */
1321  	} else {
1322  		edac_dbg(1, "MC: Enable error reporting now\n");
1323  		i5400_enable_error_reporting(mci);
1324  	}
1325  
1326  	/* add this new MC control structure to EDAC's list of MCs */
1327  	if (edac_mc_add_mc(mci)) {
1328  		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1329  		/* FIXME: perhaps some code should go here that disables error
1330  		 * reporting if we just enabled it
1331  		 */
1332  		goto fail1;
1333  	}
1334  
1335  	i5400_clear_error(mci);
1336  
1337  	/* allocating generic PCI control info */
1338  	i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1339  	if (!i5400_pci) {
1340  		printk(KERN_WARNING
1341  			"%s(): Unable to create PCI control\n",
1342  			__func__);
1343  		printk(KERN_WARNING
1344  			"%s(): PCI error report via EDAC not setup\n",
1345  			__func__);
1346  	}
1347  
1348  	return 0;
1349  
1350  	/* Error exit unwinding stack */
1351  fail1:
1352  
1353  	i5400_put_devices(mci);
1354  
1355  fail0:
1356  	edac_mc_free(mci);
1357  	return -ENODEV;
1358  }
1359  
1360  /*
1361   *	i5400_init_one	constructor for one instance of device
1362   *
1363   * 	returns:
1364   *		negative on error
1365   *		count (>= 0)
1366   */
i5400_init_one(struct pci_dev * pdev,const struct pci_device_id * id)1367  static int i5400_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1368  {
1369  	int rc;
1370  
1371  	edac_dbg(0, "MC:\n");
1372  
1373  	/* wake up device */
1374  	rc = pci_enable_device(pdev);
1375  	if (rc)
1376  		return rc;
1377  
1378  	/* now probe and enable the device */
1379  	return i5400_probe1(pdev, id->driver_data);
1380  }
1381  
1382  /*
1383   *	i5400_remove_one	destructor for one instance of device
1384   *
1385   */
i5400_remove_one(struct pci_dev * pdev)1386  static void i5400_remove_one(struct pci_dev *pdev)
1387  {
1388  	struct mem_ctl_info *mci;
1389  
1390  	edac_dbg(0, "\n");
1391  
1392  	if (i5400_pci)
1393  		edac_pci_release_generic_ctl(i5400_pci);
1394  
1395  	mci = edac_mc_del_mc(&pdev->dev);
1396  	if (!mci)
1397  		return;
1398  
1399  	/* retrieve references to resources, and free those resources */
1400  	i5400_put_devices(mci);
1401  
1402  	pci_disable_device(pdev);
1403  
1404  	edac_mc_free(mci);
1405  }
1406  
1407  /*
1408   *	pci_device_id	table for which devices we are looking for
1409   *
1410   *	The "E500P" device is the first device supported.
1411   */
1412  static const struct pci_device_id i5400_pci_tbl[] = {
1413  	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)},
1414  	{0,}			/* 0 terminated list. */
1415  };
1416  
1417  MODULE_DEVICE_TABLE(pci, i5400_pci_tbl);
1418  
1419  /*
1420   *	i5400_driver	pci_driver structure for this module
1421   *
1422   */
1423  static struct pci_driver i5400_driver = {
1424  	.name = "i5400_edac",
1425  	.probe = i5400_init_one,
1426  	.remove = i5400_remove_one,
1427  	.id_table = i5400_pci_tbl,
1428  };
1429  
1430  /*
1431   *	i5400_init		Module entry function
1432   *			Try to initialize this module for its devices
1433   */
i5400_init(void)1434  static int __init i5400_init(void)
1435  {
1436  	int pci_rc;
1437  
1438  	edac_dbg(2, "MC:\n");
1439  
1440  	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1441  	opstate_init();
1442  
1443  	pci_rc = pci_register_driver(&i5400_driver);
1444  
1445  	return (pci_rc < 0) ? pci_rc : 0;
1446  }
1447  
1448  /*
1449   *	i5400_exit()	Module exit function
1450   *			Unregister the driver
1451   */
i5400_exit(void)1452  static void __exit i5400_exit(void)
1453  {
1454  	edac_dbg(2, "MC:\n");
1455  	pci_unregister_driver(&i5400_driver);
1456  }
1457  
1458  module_init(i5400_init);
1459  module_exit(i5400_exit);
1460  
1461  MODULE_LICENSE("GPL");
1462  MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>");
1463  MODULE_AUTHOR("Mauro Carvalho Chehab");
1464  MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
1465  MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
1466  		   I5400_REVISION);
1467  
1468  module_param(edac_op_state, int, 0444);
1469  MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1470