xref: /openbmc/linux/drivers/clk/renesas/rcar-gen4-cpg.c (revision 9a87ffc99ec8eb8d35eed7c4f816d75f5cc9662e)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * R-Car Gen4 Clock Pulse Generator
4   *
5   * Copyright (C) 2021 Renesas Electronics Corp.
6   *
7   * Based on rcar-gen3-cpg.c
8   *
9   * Copyright (C) 2015-2018 Glider bvba
10   * Copyright (C) 2019 Renesas Electronics Corp.
11   */
12  
13  #include <linux/bitfield.h>
14  #include <linux/clk.h>
15  #include <linux/clk-provider.h>
16  #include <linux/device.h>
17  #include <linux/err.h>
18  #include <linux/init.h>
19  #include <linux/io.h>
20  #include <linux/iopoll.h>
21  #include <linux/slab.h>
22  
23  #include "renesas-cpg-mssr.h"
24  #include "rcar-gen4-cpg.h"
25  #include "rcar-cpg-lib.h"
26  
27  static const struct rcar_gen4_cpg_pll_config *cpg_pll_config __initdata;
28  static unsigned int cpg_clk_extalr __initdata;
29  static u32 cpg_mode __initdata;
30  
31  #define CPG_PLLECR		0x0820	/* PLL Enable Control Register */
32  
33  #define CPG_PLLECR_PLLST(n)	BIT(8 + ((n) < 3 ? (n) - 1 : \
34  					 (n) > 3 ? (n) + 1 : n)) /* PLLn Circuit Status */
35  
36  #define CPG_PLL1CR0		0x830	/* PLLn Control Registers */
37  #define CPG_PLL1CR1		0x8b0
38  #define CPG_PLL2CR0		0x834
39  #define CPG_PLL2CR1		0x8b8
40  #define CPG_PLL3CR0		0x83c
41  #define CPG_PLL3CR1		0x8c0
42  #define CPG_PLL4CR0		0x844
43  #define CPG_PLL4CR1		0x8c8
44  #define CPG_PLL6CR0		0x84c
45  #define CPG_PLL6CR1		0x8d8
46  
47  #define CPG_PLLxCR0_KICK	BIT(31)
48  #define CPG_PLLxCR0_NI		GENMASK(27, 20)	/* Integer mult. factor */
49  #define CPG_PLLxCR0_SSMODE	GENMASK(18, 16)	/* PLL mode */
50  #define CPG_PLLxCR0_SSMODE_FM	BIT(18)	/* Fractional Multiplication */
51  #define CPG_PLLxCR0_SSMODE_DITH	BIT(17) /* Frequency Dithering */
52  #define CPG_PLLxCR0_SSMODE_CENT	BIT(16)	/* Center (vs. Down) Spread Dithering */
53  #define CPG_PLLxCR0_SSFREQ	GENMASK(14, 8)	/* SSCG Modulation Frequency */
54  #define CPG_PLLxCR0_SSDEPT	GENMASK(6, 0)	/* SSCG Modulation Depth */
55  
56  #define SSMODE_FM		BIT(2)	/* Fractional Multiplication */
57  #define SSMODE_DITHER		BIT(1)	/* Frequency Dithering */
58  #define SSMODE_CENTER		BIT(0)	/* Center (vs. Down) Spread Dithering */
59  
60  /* PLL Clocks */
61  struct cpg_pll_clk {
62  	struct clk_hw hw;
63  	void __iomem *pllcr0_reg;
64  	void __iomem *pllecr_reg;
65  	u32 pllecr_pllst_mask;
66  };
67  
68  #define to_pll_clk(_hw)   container_of(_hw, struct cpg_pll_clk, hw)
69  
cpg_pll_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)70  static unsigned long cpg_pll_clk_recalc_rate(struct clk_hw *hw,
71  					     unsigned long parent_rate)
72  {
73  	struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
74  	unsigned int mult;
75  
76  	mult = FIELD_GET(CPG_PLLxCR0_NI, readl(pll_clk->pllcr0_reg)) + 1;
77  
78  	return parent_rate * mult * 2;
79  }
80  
cpg_pll_clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)81  static int cpg_pll_clk_determine_rate(struct clk_hw *hw,
82  				      struct clk_rate_request *req)
83  {
84  	unsigned int min_mult, max_mult, mult;
85  	unsigned long prate;
86  
87  	prate = req->best_parent_rate * 2;
88  	min_mult = max(div64_ul(req->min_rate, prate), 1ULL);
89  	max_mult = min(div64_ul(req->max_rate, prate), 256ULL);
90  	if (max_mult < min_mult)
91  		return -EINVAL;
92  
93  	mult = DIV_ROUND_CLOSEST_ULL(req->rate, prate);
94  	mult = clamp(mult, min_mult, max_mult);
95  
96  	req->rate = prate * mult;
97  	return 0;
98  }
99  
cpg_pll_clk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)100  static int cpg_pll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
101  				unsigned long parent_rate)
102  {
103  	struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
104  	unsigned int mult;
105  	u32 val;
106  
107  	mult = DIV_ROUND_CLOSEST_ULL(rate, parent_rate * 2);
108  	mult = clamp(mult, 1U, 256U);
109  
110  	if (readl(pll_clk->pllcr0_reg) & CPG_PLLxCR0_KICK)
111  		return -EBUSY;
112  
113  	cpg_reg_modify(pll_clk->pllcr0_reg, CPG_PLLxCR0_NI,
114  		       FIELD_PREP(CPG_PLLxCR0_NI, mult - 1));
115  
116  	/*
117  	 * Set KICK bit in PLLxCR0 to update hardware setting and wait for
118  	 * clock change completion.
119  	 */
120  	cpg_reg_modify(pll_clk->pllcr0_reg, 0, CPG_PLLxCR0_KICK);
121  
122  	/*
123  	 * Note: There is no HW information about the worst case latency.
124  	 *
125  	 * Using experimental measurements, it seems that no more than
126  	 * ~45 µs are needed, independently of the CPU rate.
127  	 * Since this value might be dependent on external xtal rate, pll
128  	 * rate or even the other emulation clocks rate, use 1000 as a
129  	 * "super" safe value.
130  	 */
131  	return readl_poll_timeout(pll_clk->pllecr_reg, val,
132  				  val & pll_clk->pllecr_pllst_mask, 0, 1000);
133  }
134  
135  static const struct clk_ops cpg_pll_clk_ops = {
136  	.recalc_rate = cpg_pll_clk_recalc_rate,
137  	.determine_rate = cpg_pll_clk_determine_rate,
138  	.set_rate = cpg_pll_clk_set_rate,
139  };
140  
cpg_pll_clk_register(const char * name,const char * parent_name,void __iomem * base,unsigned int cr0_offset,unsigned int cr1_offset,unsigned int index)141  static struct clk * __init cpg_pll_clk_register(const char *name,
142  						const char *parent_name,
143  						void __iomem *base,
144  						unsigned int cr0_offset,
145  						unsigned int cr1_offset,
146  						unsigned int index)
147  
148  {
149  	struct cpg_pll_clk *pll_clk;
150  	struct clk_init_data init = {};
151  	struct clk *clk;
152  
153  	pll_clk = kzalloc(sizeof(*pll_clk), GFP_KERNEL);
154  	if (!pll_clk)
155  		return ERR_PTR(-ENOMEM);
156  
157  	init.name = name;
158  	init.ops = &cpg_pll_clk_ops;
159  	init.parent_names = &parent_name;
160  	init.num_parents = 1;
161  
162  	pll_clk->hw.init = &init;
163  	pll_clk->pllcr0_reg = base + cr0_offset;
164  	pll_clk->pllecr_reg = base + CPG_PLLECR;
165  	pll_clk->pllecr_pllst_mask = CPG_PLLECR_PLLST(index);
166  
167  	/* Disable Fractional Multiplication and Frequency Dithering */
168  	writel(0, base + cr1_offset);
169  	cpg_reg_modify(pll_clk->pllcr0_reg, CPG_PLLxCR0_SSMODE, 0);
170  
171  	clk = clk_register(NULL, &pll_clk->hw);
172  	if (IS_ERR(clk))
173  		kfree(pll_clk);
174  
175  	return clk;
176  }
177  /*
178   * Z0 Clock & Z1 Clock
179   */
180  #define CPG_FRQCRB			0x00000804
181  #define CPG_FRQCRB_KICK			BIT(31)
182  #define CPG_FRQCRC			0x00000808
183  
184  struct cpg_z_clk {
185  	struct clk_hw hw;
186  	void __iomem *reg;
187  	void __iomem *kick_reg;
188  	unsigned long max_rate;		/* Maximum rate for normal mode */
189  	unsigned int fixed_div;
190  	u32 mask;
191  };
192  
193  #define to_z_clk(_hw)	container_of(_hw, struct cpg_z_clk, hw)
194  
cpg_z_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)195  static unsigned long cpg_z_clk_recalc_rate(struct clk_hw *hw,
196  					   unsigned long parent_rate)
197  {
198  	struct cpg_z_clk *zclk = to_z_clk(hw);
199  	unsigned int mult;
200  	u32 val;
201  
202  	val = readl(zclk->reg) & zclk->mask;
203  	mult = 32 - (val >> __ffs(zclk->mask));
204  
205  	return DIV_ROUND_CLOSEST_ULL((u64)parent_rate * mult,
206  				     32 * zclk->fixed_div);
207  }
208  
cpg_z_clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)209  static int cpg_z_clk_determine_rate(struct clk_hw *hw,
210  				    struct clk_rate_request *req)
211  {
212  	struct cpg_z_clk *zclk = to_z_clk(hw);
213  	unsigned int min_mult, max_mult, mult;
214  	unsigned long rate, prate;
215  
216  	rate = min(req->rate, req->max_rate);
217  	if (rate <= zclk->max_rate) {
218  		/* Set parent rate to initial value for normal modes */
219  		prate = zclk->max_rate;
220  	} else {
221  		/* Set increased parent rate for boost modes */
222  		prate = rate;
223  	}
224  	req->best_parent_rate = clk_hw_round_rate(clk_hw_get_parent(hw),
225  						  prate * zclk->fixed_div);
226  
227  	prate = req->best_parent_rate / zclk->fixed_div;
228  	min_mult = max(div64_ul(req->min_rate * 32ULL, prate), 1ULL);
229  	max_mult = min(div64_ul(req->max_rate * 32ULL, prate), 32ULL);
230  	if (max_mult < min_mult)
231  		return -EINVAL;
232  
233  	mult = DIV_ROUND_CLOSEST_ULL(rate * 32ULL, prate);
234  	mult = clamp(mult, min_mult, max_mult);
235  
236  	req->rate = DIV_ROUND_CLOSEST_ULL((u64)prate * mult, 32);
237  	return 0;
238  }
239  
cpg_z_clk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)240  static int cpg_z_clk_set_rate(struct clk_hw *hw, unsigned long rate,
241  			      unsigned long parent_rate)
242  {
243  	struct cpg_z_clk *zclk = to_z_clk(hw);
244  	unsigned int mult;
245  	unsigned int i;
246  
247  	mult = DIV64_U64_ROUND_CLOSEST(rate * 32ULL * zclk->fixed_div,
248  				       parent_rate);
249  	mult = clamp(mult, 1U, 32U);
250  
251  	if (readl(zclk->kick_reg) & CPG_FRQCRB_KICK)
252  		return -EBUSY;
253  
254  	cpg_reg_modify(zclk->reg, zclk->mask, (32 - mult) << __ffs(zclk->mask));
255  
256  	/*
257  	 * Set KICK bit in FRQCRB to update hardware setting and wait for
258  	 * clock change completion.
259  	 */
260  	cpg_reg_modify(zclk->kick_reg, 0, CPG_FRQCRB_KICK);
261  
262  	/*
263  	 * Note: There is no HW information about the worst case latency.
264  	 *
265  	 * Using experimental measurements, it seems that no more than
266  	 * ~10 iterations are needed, independently of the CPU rate.
267  	 * Since this value might be dependent on external xtal rate, pll1
268  	 * rate or even the other emulation clocks rate, use 1000 as a
269  	 * "super" safe value.
270  	 */
271  	for (i = 1000; i; i--) {
272  		if (!(readl(zclk->kick_reg) & CPG_FRQCRB_KICK))
273  			return 0;
274  
275  		cpu_relax();
276  	}
277  
278  	return -ETIMEDOUT;
279  }
280  
281  static const struct clk_ops cpg_z_clk_ops = {
282  	.recalc_rate = cpg_z_clk_recalc_rate,
283  	.determine_rate = cpg_z_clk_determine_rate,
284  	.set_rate = cpg_z_clk_set_rate,
285  };
286  
cpg_z_clk_register(const char * name,const char * parent_name,void __iomem * reg,unsigned int div,unsigned int offset)287  static struct clk * __init cpg_z_clk_register(const char *name,
288  					      const char *parent_name,
289  					      void __iomem *reg,
290  					      unsigned int div,
291  					      unsigned int offset)
292  {
293  	struct clk_init_data init = {};
294  	struct cpg_z_clk *zclk;
295  	struct clk *clk;
296  
297  	zclk = kzalloc(sizeof(*zclk), GFP_KERNEL);
298  	if (!zclk)
299  		return ERR_PTR(-ENOMEM);
300  
301  	init.name = name;
302  	init.ops = &cpg_z_clk_ops;
303  	init.flags = CLK_SET_RATE_PARENT;
304  	init.parent_names = &parent_name;
305  	init.num_parents = 1;
306  
307  	zclk->reg = reg + CPG_FRQCRC;
308  	zclk->kick_reg = reg + CPG_FRQCRB;
309  	zclk->hw.init = &init;
310  	zclk->mask = GENMASK(offset + 4, offset);
311  	zclk->fixed_div = div; /* PLLVCO x 1/div x SYS-CPU divider */
312  
313  	clk = clk_register(NULL, &zclk->hw);
314  	if (IS_ERR(clk)) {
315  		kfree(zclk);
316  		return clk;
317  	}
318  
319  	zclk->max_rate = clk_hw_get_rate(clk_hw_get_parent(&zclk->hw)) /
320  			 zclk->fixed_div;
321  	return clk;
322  }
323  
324  /*
325   * RPC Clocks
326   */
327  static const struct clk_div_table cpg_rpcsrc_div_table[] = {
328  	{ 0, 4 }, { 1, 6 }, { 2, 5 }, { 3, 6 }, { 0, 0 },
329  };
330  
rcar_gen4_cpg_clk_register(struct device * dev,const struct cpg_core_clk * core,const struct cpg_mssr_info * info,struct clk ** clks,void __iomem * base,struct raw_notifier_head * notifiers)331  struct clk * __init rcar_gen4_cpg_clk_register(struct device *dev,
332  	const struct cpg_core_clk *core, const struct cpg_mssr_info *info,
333  	struct clk **clks, void __iomem *base,
334  	struct raw_notifier_head *notifiers)
335  {
336  	const struct clk *parent;
337  	unsigned int mult = 1;
338  	unsigned int div = 1;
339  	u32 value;
340  
341  	parent = clks[core->parent & 0xffff];	/* some types use high bits */
342  	if (IS_ERR(parent))
343  		return ERR_CAST(parent);
344  
345  	switch (core->type) {
346  	case CLK_TYPE_GEN4_MAIN:
347  		div = cpg_pll_config->extal_div;
348  		break;
349  
350  	case CLK_TYPE_GEN4_PLL1:
351  		mult = cpg_pll_config->pll1_mult;
352  		div = cpg_pll_config->pll1_div;
353  		break;
354  
355  	case CLK_TYPE_GEN4_PLL2_VAR:
356  		/*
357  		 * PLL2 is implemented as a custom clock, to change the
358  		 * multiplier when cpufreq changes between normal and boost
359  		 * modes.
360  		 */
361  		return cpg_pll_clk_register(core->name, __clk_get_name(parent),
362  					    base, CPG_PLL2CR0, CPG_PLL2CR1, 2);
363  
364  	case CLK_TYPE_GEN4_PLL2:
365  		mult = cpg_pll_config->pll2_mult;
366  		div = cpg_pll_config->pll2_div;
367  		break;
368  
369  	case CLK_TYPE_GEN4_PLL3:
370  		mult = cpg_pll_config->pll3_mult;
371  		div = cpg_pll_config->pll3_div;
372  		break;
373  
374  	case CLK_TYPE_GEN4_PLL4:
375  		mult = cpg_pll_config->pll4_mult;
376  		div = cpg_pll_config->pll4_div;
377  		break;
378  
379  	case CLK_TYPE_GEN4_PLL5:
380  		mult = cpg_pll_config->pll5_mult;
381  		div = cpg_pll_config->pll5_div;
382  		break;
383  
384  	case CLK_TYPE_GEN4_PLL6:
385  		mult = cpg_pll_config->pll6_mult;
386  		div = cpg_pll_config->pll6_div;
387  		break;
388  
389  	case CLK_TYPE_GEN4_PLL2X_3X:
390  		value = readl(base + core->offset);
391  		mult = (((value >> 24) & 0x7f) + 1) * 2;
392  		break;
393  
394  	case CLK_TYPE_GEN4_Z:
395  		return cpg_z_clk_register(core->name, __clk_get_name(parent),
396  					  base, core->div, core->offset);
397  
398  	case CLK_TYPE_GEN4_SDSRC:
399  		div = ((readl(base + SD0CKCR1) >> 29) & 0x03) + 4;
400  		break;
401  
402  	case CLK_TYPE_GEN4_SDH:
403  		return cpg_sdh_clk_register(core->name, base + core->offset,
404  					   __clk_get_name(parent), notifiers);
405  
406  	case CLK_TYPE_GEN4_SD:
407  		return cpg_sd_clk_register(core->name, base + core->offset,
408  					   __clk_get_name(parent));
409  
410  	case CLK_TYPE_GEN4_MDSEL:
411  		/*
412  		 * Clock selectable between two parents and two fixed dividers
413  		 * using a mode pin
414  		 */
415  		if (cpg_mode & BIT(core->offset)) {
416  			div = core->div & 0xffff;
417  		} else {
418  			parent = clks[core->parent >> 16];
419  			if (IS_ERR(parent))
420  				return ERR_CAST(parent);
421  			div = core->div >> 16;
422  		}
423  		mult = 1;
424  		break;
425  
426  	case CLK_TYPE_GEN4_OSC:
427  		/*
428  		 * Clock combining OSC EXTAL predivider and a fixed divider
429  		 */
430  		div = cpg_pll_config->osc_prediv * core->div;
431  		break;
432  
433  	case CLK_TYPE_GEN4_RPCSRC:
434  		return clk_register_divider_table(NULL, core->name,
435  						  __clk_get_name(parent), 0,
436  						  base + CPG_RPCCKCR, 3, 2, 0,
437  						  cpg_rpcsrc_div_table,
438  						  &cpg_lock);
439  
440  	case CLK_TYPE_GEN4_RPC:
441  		return cpg_rpc_clk_register(core->name, base + CPG_RPCCKCR,
442  					    __clk_get_name(parent), notifiers);
443  
444  	case CLK_TYPE_GEN4_RPCD2:
445  		return cpg_rpcd2_clk_register(core->name, base + CPG_RPCCKCR,
446  					      __clk_get_name(parent));
447  
448  	default:
449  		return ERR_PTR(-EINVAL);
450  	}
451  
452  	return clk_register_fixed_factor(NULL, core->name,
453  					 __clk_get_name(parent), 0, mult, div);
454  }
455  
rcar_gen4_cpg_init(const struct rcar_gen4_cpg_pll_config * config,unsigned int clk_extalr,u32 mode)456  int __init rcar_gen4_cpg_init(const struct rcar_gen4_cpg_pll_config *config,
457  			      unsigned int clk_extalr, u32 mode)
458  {
459  	cpg_pll_config = config;
460  	cpg_clk_extalr = clk_extalr;
461  	cpg_mode = mode;
462  
463  	spin_lock_init(&cpg_lock);
464  
465  	return 0;
466  }
467