1 /*
2 * Utility compute operations used by translated code.
3 *
4 * Copyright (c) 2007 Thiemo Seufer
5 * Copyright (c) 2007 Jocelyn Mayer
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25
26 /* Portions of this work are licensed under the terms of the GNU GPL,
27 * version 2 or later. See the COPYING file in the top-level directory.
28 */
29
30 #ifndef HOST_UTILS_H
31 #define HOST_UTILS_H
32
33 #include "qemu/bswap.h"
34 #include "qemu/int128.h"
35
36 #ifdef CONFIG_INT128
mulu64(uint64_t * plow,uint64_t * phigh,uint64_t a,uint64_t b)37 static inline void mulu64(uint64_t *plow, uint64_t *phigh,
38 uint64_t a, uint64_t b)
39 {
40 __uint128_t r = (__uint128_t)a * b;
41 *plow = r;
42 *phigh = r >> 64;
43 }
44
muls64(uint64_t * plow,uint64_t * phigh,int64_t a,int64_t b)45 static inline void muls64(uint64_t *plow, uint64_t *phigh,
46 int64_t a, int64_t b)
47 {
48 __int128_t r = (__int128_t)a * b;
49 *plow = r;
50 *phigh = r >> 64;
51 }
52
53 /* compute with 96 bit intermediate result: (a*b)/c */
muldiv64(uint64_t a,uint32_t b,uint32_t c)54 static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
55 {
56 return (__int128_t)a * b / c;
57 }
58
muldiv64_round_up(uint64_t a,uint32_t b,uint32_t c)59 static inline uint64_t muldiv64_round_up(uint64_t a, uint32_t b, uint32_t c)
60 {
61 return ((__int128_t)a * b + c - 1) / c;
62 }
63
divu128(uint64_t * plow,uint64_t * phigh,uint64_t divisor)64 static inline uint64_t divu128(uint64_t *plow, uint64_t *phigh,
65 uint64_t divisor)
66 {
67 __uint128_t dividend = ((__uint128_t)*phigh << 64) | *plow;
68 __uint128_t result = dividend / divisor;
69
70 *plow = result;
71 *phigh = result >> 64;
72 return dividend % divisor;
73 }
74
divs128(uint64_t * plow,int64_t * phigh,int64_t divisor)75 static inline int64_t divs128(uint64_t *plow, int64_t *phigh,
76 int64_t divisor)
77 {
78 __int128_t dividend = ((__int128_t)*phigh << 64) | *plow;
79 __int128_t result = dividend / divisor;
80
81 *plow = result;
82 *phigh = result >> 64;
83 return dividend % divisor;
84 }
85 #else
86 void muls64(uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b);
87 void mulu64(uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b);
88 uint64_t divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor);
89 int64_t divs128(uint64_t *plow, int64_t *phigh, int64_t divisor);
90
muldiv64_rounding(uint64_t a,uint32_t b,uint32_t c,bool round_up)91 static inline uint64_t muldiv64_rounding(uint64_t a, uint32_t b, uint32_t c,
92 bool round_up)
93 {
94 union {
95 uint64_t ll;
96 struct {
97 #if HOST_BIG_ENDIAN
98 uint32_t high, low;
99 #else
100 uint32_t low, high;
101 #endif
102 } l;
103 } u, res;
104 uint64_t rl, rh;
105
106 u.ll = a;
107 rl = (uint64_t)u.l.low * (uint64_t)b;
108 if (round_up) {
109 rl += c - 1;
110 }
111 rh = (uint64_t)u.l.high * (uint64_t)b;
112 rh += (rl >> 32);
113 res.l.high = rh / c;
114 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
115 return res.ll;
116 }
117
muldiv64(uint64_t a,uint32_t b,uint32_t c)118 static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
119 {
120 return muldiv64_rounding(a, b, c, false);
121 }
122
muldiv64_round_up(uint64_t a,uint32_t b,uint32_t c)123 static inline uint64_t muldiv64_round_up(uint64_t a, uint32_t b, uint32_t c)
124 {
125 return muldiv64_rounding(a, b, c, true);
126 }
127 #endif
128
129 /**
130 * clz8 - count leading zeros in a 8-bit value.
131 * @val: The value to search
132 *
133 * Returns 8 if the value is zero. Note that the GCC builtin is
134 * undefined if the value is zero.
135 *
136 * Note that the GCC builtin will upcast its argument to an `unsigned int`
137 * so this function subtracts off the number of prepended zeroes.
138 */
clz8(uint8_t val)139 static inline int clz8(uint8_t val)
140 {
141 return val ? __builtin_clz(val) - 24 : 8;
142 }
143
144 /**
145 * clz16 - count leading zeros in a 16-bit value.
146 * @val: The value to search
147 *
148 * Returns 16 if the value is zero. Note that the GCC builtin is
149 * undefined if the value is zero.
150 *
151 * Note that the GCC builtin will upcast its argument to an `unsigned int`
152 * so this function subtracts off the number of prepended zeroes.
153 */
clz16(uint16_t val)154 static inline int clz16(uint16_t val)
155 {
156 return val ? __builtin_clz(val) - 16 : 16;
157 }
158
159 /**
160 * clz32 - count leading zeros in a 32-bit value.
161 * @val: The value to search
162 *
163 * Returns 32 if the value is zero. Note that the GCC builtin is
164 * undefined if the value is zero.
165 */
clz32(uint32_t val)166 static inline int clz32(uint32_t val)
167 {
168 return val ? __builtin_clz(val) : 32;
169 }
170
171 /**
172 * clo32 - count leading ones in a 32-bit value.
173 * @val: The value to search
174 *
175 * Returns 32 if the value is -1.
176 */
clo32(uint32_t val)177 static inline int clo32(uint32_t val)
178 {
179 return clz32(~val);
180 }
181
182 /**
183 * clz64 - count leading zeros in a 64-bit value.
184 * @val: The value to search
185 *
186 * Returns 64 if the value is zero. Note that the GCC builtin is
187 * undefined if the value is zero.
188 */
clz64(uint64_t val)189 static inline int clz64(uint64_t val)
190 {
191 return val ? __builtin_clzll(val) : 64;
192 }
193
194 /**
195 * clo64 - count leading ones in a 64-bit value.
196 * @val: The value to search
197 *
198 * Returns 64 if the value is -1.
199 */
clo64(uint64_t val)200 static inline int clo64(uint64_t val)
201 {
202 return clz64(~val);
203 }
204
205 /**
206 * ctz8 - count trailing zeros in a 8-bit value.
207 * @val: The value to search
208 *
209 * Returns 8 if the value is zero. Note that the GCC builtin is
210 * undefined if the value is zero.
211 */
ctz8(uint8_t val)212 static inline int ctz8(uint8_t val)
213 {
214 return val ? __builtin_ctz(val) : 8;
215 }
216
217 /**
218 * ctz16 - count trailing zeros in a 16-bit value.
219 * @val: The value to search
220 *
221 * Returns 16 if the value is zero. Note that the GCC builtin is
222 * undefined if the value is zero.
223 */
ctz16(uint16_t val)224 static inline int ctz16(uint16_t val)
225 {
226 return val ? __builtin_ctz(val) : 16;
227 }
228
229 /**
230 * ctz32 - count trailing zeros in a 32-bit value.
231 * @val: The value to search
232 *
233 * Returns 32 if the value is zero. Note that the GCC builtin is
234 * undefined if the value is zero.
235 */
ctz32(uint32_t val)236 static inline int ctz32(uint32_t val)
237 {
238 return val ? __builtin_ctz(val) : 32;
239 }
240
241 /**
242 * cto32 - count trailing ones in a 32-bit value.
243 * @val: The value to search
244 *
245 * Returns 32 if the value is -1.
246 */
cto32(uint32_t val)247 static inline int cto32(uint32_t val)
248 {
249 return ctz32(~val);
250 }
251
252 /**
253 * ctz64 - count trailing zeros in a 64-bit value.
254 * @val: The value to search
255 *
256 * Returns 64 if the value is zero. Note that the GCC builtin is
257 * undefined if the value is zero.
258 */
ctz64(uint64_t val)259 static inline int ctz64(uint64_t val)
260 {
261 return val ? __builtin_ctzll(val) : 64;
262 }
263
264 /**
265 * cto64 - count trailing ones in a 64-bit value.
266 * @val: The value to search
267 *
268 * Returns 64 if the value is -1.
269 */
cto64(uint64_t val)270 static inline int cto64(uint64_t val)
271 {
272 return ctz64(~val);
273 }
274
275 /**
276 * clrsb32 - count leading redundant sign bits in a 32-bit value.
277 * @val: The value to search
278 *
279 * Returns the number of bits following the sign bit that are equal to it.
280 * No special cases; output range is [0-31].
281 */
clrsb32(uint32_t val)282 static inline int clrsb32(uint32_t val)
283 {
284 #if __has_builtin(__builtin_clrsb) || !defined(__clang__)
285 return __builtin_clrsb(val);
286 #else
287 return clz32(val ^ ((int32_t)val >> 1)) - 1;
288 #endif
289 }
290
291 /**
292 * clrsb64 - count leading redundant sign bits in a 64-bit value.
293 * @val: The value to search
294 *
295 * Returns the number of bits following the sign bit that are equal to it.
296 * No special cases; output range is [0-63].
297 */
clrsb64(uint64_t val)298 static inline int clrsb64(uint64_t val)
299 {
300 #if __has_builtin(__builtin_clrsbll) || !defined(__clang__)
301 return __builtin_clrsbll(val);
302 #else
303 return clz64(val ^ ((int64_t)val >> 1)) - 1;
304 #endif
305 }
306
307 /**
308 * ctpop8 - count the population of one bits in an 8-bit value.
309 * @val: The value to search
310 */
ctpop8(uint8_t val)311 static inline int ctpop8(uint8_t val)
312 {
313 return __builtin_popcount(val);
314 }
315
316 /*
317 * parity8 - return the parity (1 = odd) of an 8-bit value.
318 * @val: The value to search
319 */
parity8(uint8_t val)320 static inline int parity8(uint8_t val)
321 {
322 return __builtin_parity(val);
323 }
324
325 /**
326 * ctpop16 - count the population of one bits in a 16-bit value.
327 * @val: The value to search
328 */
ctpop16(uint16_t val)329 static inline int ctpop16(uint16_t val)
330 {
331 return __builtin_popcount(val);
332 }
333
334 /**
335 * ctpop32 - count the population of one bits in a 32-bit value.
336 * @val: The value to search
337 */
ctpop32(uint32_t val)338 static inline int ctpop32(uint32_t val)
339 {
340 return __builtin_popcount(val);
341 }
342
343 /**
344 * ctpop64 - count the population of one bits in a 64-bit value.
345 * @val: The value to search
346 */
ctpop64(uint64_t val)347 static inline int ctpop64(uint64_t val)
348 {
349 return __builtin_popcountll(val);
350 }
351
352 /**
353 * revbit8 - reverse the bits in an 8-bit value.
354 * @x: The value to modify.
355 */
revbit8(uint8_t x)356 static inline uint8_t revbit8(uint8_t x)
357 {
358 #if __has_builtin(__builtin_bitreverse8)
359 return __builtin_bitreverse8(x);
360 #else
361 /* Assign the correct nibble position. */
362 x = ((x & 0xf0) >> 4)
363 | ((x & 0x0f) << 4);
364 /* Assign the correct bit position. */
365 x = ((x & 0x88) >> 3)
366 | ((x & 0x44) >> 1)
367 | ((x & 0x22) << 1)
368 | ((x & 0x11) << 3);
369 return x;
370 #endif
371 }
372
373 /**
374 * revbit16 - reverse the bits in a 16-bit value.
375 * @x: The value to modify.
376 */
revbit16(uint16_t x)377 static inline uint16_t revbit16(uint16_t x)
378 {
379 #if __has_builtin(__builtin_bitreverse16)
380 return __builtin_bitreverse16(x);
381 #else
382 /* Assign the correct byte position. */
383 x = bswap16(x);
384 /* Assign the correct nibble position. */
385 x = ((x & 0xf0f0) >> 4)
386 | ((x & 0x0f0f) << 4);
387 /* Assign the correct bit position. */
388 x = ((x & 0x8888) >> 3)
389 | ((x & 0x4444) >> 1)
390 | ((x & 0x2222) << 1)
391 | ((x & 0x1111) << 3);
392 return x;
393 #endif
394 }
395
396 /**
397 * revbit32 - reverse the bits in a 32-bit value.
398 * @x: The value to modify.
399 */
revbit32(uint32_t x)400 static inline uint32_t revbit32(uint32_t x)
401 {
402 #if __has_builtin(__builtin_bitreverse32)
403 return __builtin_bitreverse32(x);
404 #else
405 /* Assign the correct byte position. */
406 x = bswap32(x);
407 /* Assign the correct nibble position. */
408 x = ((x & 0xf0f0f0f0u) >> 4)
409 | ((x & 0x0f0f0f0fu) << 4);
410 /* Assign the correct bit position. */
411 x = ((x & 0x88888888u) >> 3)
412 | ((x & 0x44444444u) >> 1)
413 | ((x & 0x22222222u) << 1)
414 | ((x & 0x11111111u) << 3);
415 return x;
416 #endif
417 }
418
419 /**
420 * revbit64 - reverse the bits in a 64-bit value.
421 * @x: The value to modify.
422 */
revbit64(uint64_t x)423 static inline uint64_t revbit64(uint64_t x)
424 {
425 #if __has_builtin(__builtin_bitreverse64)
426 return __builtin_bitreverse64(x);
427 #else
428 /* Assign the correct byte position. */
429 x = bswap64(x);
430 /* Assign the correct nibble position. */
431 x = ((x & 0xf0f0f0f0f0f0f0f0ull) >> 4)
432 | ((x & 0x0f0f0f0f0f0f0f0full) << 4);
433 /* Assign the correct bit position. */
434 x = ((x & 0x8888888888888888ull) >> 3)
435 | ((x & 0x4444444444444444ull) >> 1)
436 | ((x & 0x2222222222222222ull) << 1)
437 | ((x & 0x1111111111111111ull) << 3);
438 return x;
439 #endif
440 }
441
442 /**
443 * Return the absolute value of a 64-bit integer as an unsigned 64-bit value
444 */
uabs64(int64_t v)445 static inline uint64_t uabs64(int64_t v)
446 {
447 return v < 0 ? -v : v;
448 }
449
450 /**
451 * sadd32_overflow - addition with overflow indication
452 * @x, @y: addends
453 * @ret: Output for sum
454 *
455 * Computes *@ret = @x + @y, and returns true if and only if that
456 * value has been truncated.
457 */
sadd32_overflow(int32_t x,int32_t y,int32_t * ret)458 static inline bool sadd32_overflow(int32_t x, int32_t y, int32_t *ret)
459 {
460 return __builtin_add_overflow(x, y, ret);
461 }
462
463 /**
464 * sadd64_overflow - addition with overflow indication
465 * @x, @y: addends
466 * @ret: Output for sum
467 *
468 * Computes *@ret = @x + @y, and returns true if and only if that
469 * value has been truncated.
470 */
sadd64_overflow(int64_t x,int64_t y,int64_t * ret)471 static inline bool sadd64_overflow(int64_t x, int64_t y, int64_t *ret)
472 {
473 return __builtin_add_overflow(x, y, ret);
474 }
475
476 /**
477 * uadd32_overflow - addition with overflow indication
478 * @x, @y: addends
479 * @ret: Output for sum
480 *
481 * Computes *@ret = @x + @y, and returns true if and only if that
482 * value has been truncated.
483 */
uadd32_overflow(uint32_t x,uint32_t y,uint32_t * ret)484 static inline bool uadd32_overflow(uint32_t x, uint32_t y, uint32_t *ret)
485 {
486 return __builtin_add_overflow(x, y, ret);
487 }
488
489 /**
490 * uadd64_overflow - addition with overflow indication
491 * @x, @y: addends
492 * @ret: Output for sum
493 *
494 * Computes *@ret = @x + @y, and returns true if and only if that
495 * value has been truncated.
496 */
uadd64_overflow(uint64_t x,uint64_t y,uint64_t * ret)497 static inline bool uadd64_overflow(uint64_t x, uint64_t y, uint64_t *ret)
498 {
499 return __builtin_add_overflow(x, y, ret);
500 }
501
502 /**
503 * ssub32_overflow - subtraction with overflow indication
504 * @x: Minuend
505 * @y: Subtrahend
506 * @ret: Output for difference
507 *
508 * Computes *@ret = @x - @y, and returns true if and only if that
509 * value has been truncated.
510 */
ssub32_overflow(int32_t x,int32_t y,int32_t * ret)511 static inline bool ssub32_overflow(int32_t x, int32_t y, int32_t *ret)
512 {
513 return __builtin_sub_overflow(x, y, ret);
514 }
515
516 /**
517 * ssub64_overflow - subtraction with overflow indication
518 * @x: Minuend
519 * @y: Subtrahend
520 * @ret: Output for sum
521 *
522 * Computes *@ret = @x - @y, and returns true if and only if that
523 * value has been truncated.
524 */
ssub64_overflow(int64_t x,int64_t y,int64_t * ret)525 static inline bool ssub64_overflow(int64_t x, int64_t y, int64_t *ret)
526 {
527 return __builtin_sub_overflow(x, y, ret);
528 }
529
530 /**
531 * usub32_overflow - subtraction with overflow indication
532 * @x: Minuend
533 * @y: Subtrahend
534 * @ret: Output for sum
535 *
536 * Computes *@ret = @x - @y, and returns true if and only if that
537 * value has been truncated.
538 */
usub32_overflow(uint32_t x,uint32_t y,uint32_t * ret)539 static inline bool usub32_overflow(uint32_t x, uint32_t y, uint32_t *ret)
540 {
541 return __builtin_sub_overflow(x, y, ret);
542 }
543
544 /**
545 * usub64_overflow - subtraction with overflow indication
546 * @x: Minuend
547 * @y: Subtrahend
548 * @ret: Output for sum
549 *
550 * Computes *@ret = @x - @y, and returns true if and only if that
551 * value has been truncated.
552 */
usub64_overflow(uint64_t x,uint64_t y,uint64_t * ret)553 static inline bool usub64_overflow(uint64_t x, uint64_t y, uint64_t *ret)
554 {
555 return __builtin_sub_overflow(x, y, ret);
556 }
557
558 /**
559 * smul32_overflow - multiplication with overflow indication
560 * @x, @y: Input multipliers
561 * @ret: Output for product
562 *
563 * Computes *@ret = @x * @y, and returns true if and only if that
564 * value has been truncated.
565 */
smul32_overflow(int32_t x,int32_t y,int32_t * ret)566 static inline bool smul32_overflow(int32_t x, int32_t y, int32_t *ret)
567 {
568 return __builtin_mul_overflow(x, y, ret);
569 }
570
571 /**
572 * smul64_overflow - multiplication with overflow indication
573 * @x, @y: Input multipliers
574 * @ret: Output for product
575 *
576 * Computes *@ret = @x * @y, and returns true if and only if that
577 * value has been truncated.
578 */
smul64_overflow(int64_t x,int64_t y,int64_t * ret)579 static inline bool smul64_overflow(int64_t x, int64_t y, int64_t *ret)
580 {
581 return __builtin_mul_overflow(x, y, ret);
582 }
583
584 /**
585 * umul32_overflow - multiplication with overflow indication
586 * @x, @y: Input multipliers
587 * @ret: Output for product
588 *
589 * Computes *@ret = @x * @y, and returns true if and only if that
590 * value has been truncated.
591 */
umul32_overflow(uint32_t x,uint32_t y,uint32_t * ret)592 static inline bool umul32_overflow(uint32_t x, uint32_t y, uint32_t *ret)
593 {
594 return __builtin_mul_overflow(x, y, ret);
595 }
596
597 /**
598 * umul64_overflow - multiplication with overflow indication
599 * @x, @y: Input multipliers
600 * @ret: Output for product
601 *
602 * Computes *@ret = @x * @y, and returns true if and only if that
603 * value has been truncated.
604 */
umul64_overflow(uint64_t x,uint64_t y,uint64_t * ret)605 static inline bool umul64_overflow(uint64_t x, uint64_t y, uint64_t *ret)
606 {
607 return __builtin_mul_overflow(x, y, ret);
608 }
609
610 /*
611 * Unsigned 128x64 multiplication.
612 * Returns true if the result got truncated to 128 bits.
613 * Otherwise, returns false and the multiplication result via plow and phigh.
614 */
mulu128(uint64_t * plow,uint64_t * phigh,uint64_t factor)615 static inline bool mulu128(uint64_t *plow, uint64_t *phigh, uint64_t factor)
616 {
617 #if defined(CONFIG_INT128)
618 bool res;
619 __uint128_t r;
620 __uint128_t f = ((__uint128_t)*phigh << 64) | *plow;
621 res = __builtin_mul_overflow(f, factor, &r);
622
623 *plow = r;
624 *phigh = r >> 64;
625
626 return res;
627 #else
628 uint64_t dhi = *phigh;
629 uint64_t dlo = *plow;
630 uint64_t ahi;
631 uint64_t blo, bhi;
632
633 if (dhi == 0) {
634 mulu64(plow, phigh, dlo, factor);
635 return false;
636 }
637
638 mulu64(plow, &ahi, dlo, factor);
639 mulu64(&blo, &bhi, dhi, factor);
640
641 return uadd64_overflow(ahi, blo, phigh) || bhi != 0;
642 #endif
643 }
644
645 /**
646 * uadd64_carry - addition with carry-in and carry-out
647 * @x, @y: addends
648 * @pcarry: in-out carry value
649 *
650 * Computes @x + @y + *@pcarry, placing the carry-out back
651 * into *@pcarry and returning the 64-bit sum.
652 */
uadd64_carry(uint64_t x,uint64_t y,bool * pcarry)653 static inline uint64_t uadd64_carry(uint64_t x, uint64_t y, bool *pcarry)
654 {
655 #if __has_builtin(__builtin_addcll)
656 unsigned long long c = *pcarry;
657 x = __builtin_addcll(x, y, c, &c);
658 *pcarry = c & 1;
659 return x;
660 #else
661 bool c = *pcarry;
662 /* This is clang's internal expansion of __builtin_addc. */
663 c = uadd64_overflow(x, c, &x);
664 c |= uadd64_overflow(x, y, &x);
665 *pcarry = c;
666 return x;
667 #endif
668 }
669
670 /**
671 * usub64_borrow - subtraction with borrow-in and borrow-out
672 * @x, @y: addends
673 * @pborrow: in-out borrow value
674 *
675 * Computes @x - @y - *@pborrow, placing the borrow-out back
676 * into *@pborrow and returning the 64-bit sum.
677 */
usub64_borrow(uint64_t x,uint64_t y,bool * pborrow)678 static inline uint64_t usub64_borrow(uint64_t x, uint64_t y, bool *pborrow)
679 {
680 #if __has_builtin(__builtin_subcll) && !defined(BUILTIN_SUBCLL_BROKEN)
681 unsigned long long b = *pborrow;
682 x = __builtin_subcll(x, y, b, &b);
683 *pborrow = b & 1;
684 return x;
685 #else
686 bool b = *pborrow;
687 b = usub64_overflow(x, b, &x);
688 b |= usub64_overflow(x, y, &x);
689 *pborrow = b;
690 return x;
691 #endif
692 }
693
694 /* Host type specific sizes of these routines. */
695
696 #if ULONG_MAX == UINT32_MAX
697 # define clzl clz32
698 # define ctzl ctz32
699 # define clol clo32
700 # define ctol cto32
701 # define ctpopl ctpop32
702 # define revbitl revbit32
703 #elif ULONG_MAX == UINT64_MAX
704 # define clzl clz64
705 # define ctzl ctz64
706 # define clol clo64
707 # define ctol cto64
708 # define ctpopl ctpop64
709 # define revbitl revbit64
710 #else
711 # error Unknown sizeof long
712 #endif
713
is_power_of_2(uint64_t value)714 static inline bool is_power_of_2(uint64_t value)
715 {
716 if (!value) {
717 return false;
718 }
719
720 return !(value & (value - 1));
721 }
722
723 /**
724 * Return @value rounded down to the nearest power of two or zero.
725 */
pow2floor(uint64_t value)726 static inline uint64_t pow2floor(uint64_t value)
727 {
728 if (!value) {
729 /* Avoid undefined shift by 64 */
730 return 0;
731 }
732 return 0x8000000000000000ull >> clz64(value);
733 }
734
735 /*
736 * Return @value rounded up to the nearest power of two modulo 2^64.
737 * This is *zero* for @value > 2^63, so be careful.
738 */
pow2ceil(uint64_t value)739 static inline uint64_t pow2ceil(uint64_t value)
740 {
741 int n = clz64(value - 1);
742
743 if (!n) {
744 /*
745 * @value - 1 has no leading zeroes, thus @value - 1 >= 2^63
746 * Therefore, either @value == 0 or @value > 2^63.
747 * If it's 0, return 1, else return 0.
748 */
749 return !value;
750 }
751 return 0x8000000000000000ull >> (n - 1);
752 }
753
pow2roundup32(uint32_t x)754 static inline uint32_t pow2roundup32(uint32_t x)
755 {
756 x |= (x >> 1);
757 x |= (x >> 2);
758 x |= (x >> 4);
759 x |= (x >> 8);
760 x |= (x >> 16);
761 return x + 1;
762 }
763
764 /**
765 * urshift - 128-bit Unsigned Right Shift.
766 * @plow: in/out - lower 64-bit integer.
767 * @phigh: in/out - higher 64-bit integer.
768 * @shift: in - bytes to shift, between 0 and 127.
769 *
770 * Result is zero-extended and stored in plow/phigh, which are
771 * input/output variables. Shift values outside the range will
772 * be mod to 128. In other words, the caller is responsible to
773 * verify/assert both the shift range and plow/phigh pointers.
774 */
775 void urshift(uint64_t *plow, uint64_t *phigh, int32_t shift);
776
777 /**
778 * ulshift - 128-bit Unsigned Left Shift.
779 * @plow: in/out - lower 64-bit integer.
780 * @phigh: in/out - higher 64-bit integer.
781 * @shift: in - bytes to shift, between 0 and 127.
782 * @overflow: out - true if any 1-bit is shifted out.
783 *
784 * Result is zero-extended and stored in plow/phigh, which are
785 * input/output variables. Shift values outside the range will
786 * be mod to 128. In other words, the caller is responsible to
787 * verify/assert both the shift range and plow/phigh pointers.
788 */
789 void ulshift(uint64_t *plow, uint64_t *phigh, int32_t shift, bool *overflow);
790
791 /* From the GNU Multi Precision Library - longlong.h __udiv_qrnnd
792 * (https://gmplib.org/repo/gmp/file/tip/longlong.h)
793 *
794 * Licensed under the GPLv2/LGPLv3
795 */
udiv_qrnnd(uint64_t * r,uint64_t n1,uint64_t n0,uint64_t d)796 static inline uint64_t udiv_qrnnd(uint64_t *r, uint64_t n1,
797 uint64_t n0, uint64_t d)
798 {
799 #if defined(__x86_64__)
800 uint64_t q;
801 asm("divq %4" : "=a"(q), "=d"(*r) : "0"(n0), "1"(n1), "rm"(d));
802 return q;
803 #elif defined(__s390x__) && !defined(__clang__)
804 /* Need to use a TImode type to get an even register pair for DLGR. */
805 unsigned __int128 n = (unsigned __int128)n1 << 64 | n0;
806 asm("dlgr %0, %1" : "+r"(n) : "r"(d));
807 *r = n >> 64;
808 return n;
809 #elif defined(_ARCH_PPC64) && defined(_ARCH_PWR7)
810 /* From Power ISA 2.06, programming note for divdeu. */
811 uint64_t q1, q2, Q, r1, r2, R;
812 asm("divdeu %0,%2,%4; divdu %1,%3,%4"
813 : "=&r"(q1), "=r"(q2)
814 : "r"(n1), "r"(n0), "r"(d));
815 r1 = -(q1 * d); /* low part of (n1<<64) - (q1 * d) */
816 r2 = n0 - (q2 * d);
817 Q = q1 + q2;
818 R = r1 + r2;
819 if (R >= d || R < r2) { /* overflow implies R > d */
820 Q += 1;
821 R -= d;
822 }
823 *r = R;
824 return Q;
825 #else
826 uint64_t d0, d1, q0, q1, r1, r0, m;
827
828 d0 = (uint32_t)d;
829 d1 = d >> 32;
830
831 r1 = n1 % d1;
832 q1 = n1 / d1;
833 m = q1 * d0;
834 r1 = (r1 << 32) | (n0 >> 32);
835 if (r1 < m) {
836 q1 -= 1;
837 r1 += d;
838 if (r1 >= d) {
839 if (r1 < m) {
840 q1 -= 1;
841 r1 += d;
842 }
843 }
844 }
845 r1 -= m;
846
847 r0 = r1 % d1;
848 q0 = r1 / d1;
849 m = q0 * d0;
850 r0 = (r0 << 32) | (uint32_t)n0;
851 if (r0 < m) {
852 q0 -= 1;
853 r0 += d;
854 if (r0 >= d) {
855 if (r0 < m) {
856 q0 -= 1;
857 r0 += d;
858 }
859 }
860 }
861 r0 -= m;
862
863 *r = r0;
864 return (q1 << 32) | q0;
865 #endif
866 }
867
868 Int128 divu256(Int128 *plow, Int128 *phigh, Int128 divisor);
869 Int128 divs256(Int128 *plow, Int128 *phigh, Int128 divisor);
870 #endif
871