1/* 2 * 3 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2 or later, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17#include "tcg/tcg-op-gvec.h" 18#include "tcg/tcg-gvec-desc.h" 19#include "internals.h" 20 21static inline bool is_overlapped(const int8_t astart, int8_t asize, 22 const int8_t bstart, int8_t bsize) 23{ 24 const int8_t aend = astart + asize; 25 const int8_t bend = bstart + bsize; 26 27 return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize; 28} 29 30static bool require_rvv(DisasContext *s) 31{ 32 return s->mstatus_vs != EXT_STATUS_DISABLED; 33} 34 35static bool require_rvf(DisasContext *s) 36{ 37 if (s->mstatus_fs == EXT_STATUS_DISABLED) { 38 return false; 39 } 40 41 switch (s->sew) { 42 case MO_16: 43 return s->cfg_ptr->ext_zvfh; 44 case MO_32: 45 return s->cfg_ptr->ext_zve32f; 46 case MO_64: 47 return s->cfg_ptr->ext_zve64d; 48 default: 49 return false; 50 } 51} 52 53static bool require_rvfmin(DisasContext *s) 54{ 55 if (s->mstatus_fs == EXT_STATUS_DISABLED) { 56 return false; 57 } 58 59 switch (s->sew) { 60 case MO_16: 61 return s->cfg_ptr->ext_zvfhmin; 62 case MO_32: 63 return s->cfg_ptr->ext_zve32f; 64 default: 65 return false; 66 } 67} 68 69static bool require_scale_rvf(DisasContext *s) 70{ 71 if (s->mstatus_fs == EXT_STATUS_DISABLED) { 72 return false; 73 } 74 75 switch (s->sew) { 76 case MO_8: 77 return s->cfg_ptr->ext_zvfh; 78 case MO_16: 79 return s->cfg_ptr->ext_zve32f; 80 case MO_32: 81 return s->cfg_ptr->ext_zve64d; 82 default: 83 return false; 84 } 85} 86 87static bool require_scale_rvfmin(DisasContext *s) 88{ 89 if (s->mstatus_fs == EXT_STATUS_DISABLED) { 90 return false; 91 } 92 93 switch (s->sew) { 94 case MO_16: 95 return s->cfg_ptr->ext_zve32f; 96 case MO_32: 97 return s->cfg_ptr->ext_zve64d; 98 default: 99 return false; 100 } 101} 102 103/* 104 * Source and destination vector register groups cannot overlap source mask 105 * register: 106 * 107 * A vector register cannot be used to provide source operands with more than 108 * one EEW for a single instruction. A mask register source is considered to 109 * have EEW=1 for this constraint. An encoding that would result in the same 110 * vector register being read with two or more different EEWs, including when 111 * the vector register appears at different positions within two or more vector 112 * register groups, is reserved. 113 * (Section 5.2) 114 * 115 * A destination vector register group can overlap a source vector 116 * register group only if one of the following holds: 117 * 1. The destination EEW equals the source EEW. 118 * 2. The destination EEW is smaller than the source EEW and the overlap 119 * is in the lowest-numbered part of the source register group. 120 * 3. The destination EEW is greater than the source EEW, the source EMUL 121 * is at least 1, and the overlap is in the highest-numbered part of 122 * the destination register group. 123 * For the purpose of determining register group overlap constraints, mask 124 * elements have EEW=1. 125 * (Section 5.2) 126 */ 127static bool require_vm(int vm, int v) 128{ 129 return (vm != 0 || v != 0); 130} 131 132static bool require_nf(int vd, int nf, int lmul) 133{ 134 int size = nf << MAX(lmul, 0); 135 return size <= 8 && vd + size <= 32; 136} 137 138/* 139 * Vector register should aligned with the passed-in LMUL (EMUL). 140 * If LMUL < 0, i.e. fractional LMUL, any vector register is allowed. 141 */ 142static bool require_align(const int8_t val, const int8_t lmul) 143{ 144 return lmul <= 0 || extract32(val, 0, lmul) == 0; 145} 146 147/* 148 * A destination vector register group can overlap a source vector 149 * register group only if one of the following holds: 150 * 1. The destination EEW equals the source EEW. 151 * 2. The destination EEW is smaller than the source EEW and the overlap 152 * is in the lowest-numbered part of the source register group. 153 * 3. The destination EEW is greater than the source EEW, the source EMUL 154 * is at least 1, and the overlap is in the highest-numbered part of 155 * the destination register group. 156 * (Section 5.2) 157 * 158 * This function returns true if one of the following holds: 159 * * Destination vector register group does not overlap a source vector 160 * register group. 161 * * Rule 3 met. 162 * For rule 1, overlap is allowed so this function doesn't need to be called. 163 * For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before 164 * calling this function. 165 */ 166static bool require_noover(const int8_t dst, const int8_t dst_lmul, 167 const int8_t src, const int8_t src_lmul) 168{ 169 int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul; 170 int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul; 171 172 /* Destination EEW is greater than the source EEW, check rule 3. */ 173 if (dst_size > src_size) { 174 if (dst < src && 175 src_lmul >= 0 && 176 is_overlapped(dst, dst_size, src, src_size) && 177 !is_overlapped(dst, dst_size, src + src_size, src_size)) { 178 return true; 179 } 180 } 181 182 return !is_overlapped(dst, dst_size, src, src_size); 183} 184 185static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2) 186{ 187 TCGv s1, dst; 188 189 if (!require_rvv(s) || !s->cfg_ptr->ext_zve32x) { 190 return false; 191 } 192 193 dst = dest_gpr(s, rd); 194 195 if (rd == 0 && rs1 == 0) { 196 s1 = tcg_temp_new(); 197 tcg_gen_mov_tl(s1, cpu_vl); 198 } else if (rs1 == 0) { 199 /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ 200 s1 = tcg_constant_tl(RV_VLEN_MAX); 201 } else { 202 s1 = get_gpr(s, rs1, EXT_ZERO); 203 } 204 205 gen_helper_vsetvl(dst, tcg_env, s1, s2); 206 gen_set_gpr(s, rd, dst); 207 finalize_rvv_inst(s); 208 209 gen_update_pc(s, s->cur_insn_len); 210 lookup_and_goto_ptr(s); 211 s->base.is_jmp = DISAS_NORETURN; 212 return true; 213} 214 215static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2) 216{ 217 TCGv dst; 218 219 if (!require_rvv(s) || !s->cfg_ptr->ext_zve32x) { 220 return false; 221 } 222 223 dst = dest_gpr(s, rd); 224 225 gen_helper_vsetvl(dst, tcg_env, s1, s2); 226 gen_set_gpr(s, rd, dst); 227 finalize_rvv_inst(s); 228 gen_update_pc(s, s->cur_insn_len); 229 lookup_and_goto_ptr(s); 230 s->base.is_jmp = DISAS_NORETURN; 231 232 return true; 233} 234 235static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a) 236{ 237 TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO); 238 return do_vsetvl(s, a->rd, a->rs1, s2); 239} 240 241static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a) 242{ 243 TCGv s2 = tcg_constant_tl(a->zimm); 244 return do_vsetvl(s, a->rd, a->rs1, s2); 245} 246 247static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a) 248{ 249 TCGv s1 = tcg_constant_tl(a->rs1); 250 TCGv s2 = tcg_constant_tl(a->zimm); 251 return do_vsetivli(s, a->rd, s1, s2); 252} 253 254/* vector register offset from env */ 255static uint32_t vreg_ofs(DisasContext *s, int reg) 256{ 257 return offsetof(CPURISCVState, vreg) + reg * s->cfg_ptr->vlenb; 258} 259 260/* check functions */ 261 262/* 263 * Vector unit-stride, strided, unit-stride segment, strided segment 264 * store check function. 265 * 266 * Rules to be checked here: 267 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 268 * 2. Destination vector register number is multiples of EMUL. 269 * (Section 3.4.2, 7.3) 270 * 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 271 * 4. Vector register numbers accessed by the segment load or store 272 * cannot increment past 31. (Section 7.8) 273 */ 274static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew) 275{ 276 int8_t emul = eew - s->sew + s->lmul; 277 return (emul >= -3 && emul <= 3) && 278 require_align(vd, emul) && 279 require_nf(vd, nf, emul); 280} 281 282/* 283 * Vector unit-stride, strided, unit-stride segment, strided segment 284 * load check function. 285 * 286 * Rules to be checked here: 287 * 1. All rules applies to store instructions are applies 288 * to load instructions. 289 * 2. Destination vector register group for a masked vector 290 * instruction cannot overlap the source mask register (v0). 291 * (Section 5.3) 292 */ 293static bool vext_check_load(DisasContext *s, int vd, int nf, int vm, 294 uint8_t eew) 295{ 296 return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd); 297} 298 299/* 300 * Vector indexed, indexed segment store check function. 301 * 302 * Rules to be checked here: 303 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 304 * 2. Index vector register number is multiples of EMUL. 305 * (Section 3.4.2, 7.3) 306 * 3. Destination vector register number is multiples of LMUL. 307 * (Section 3.4.2, 7.3) 308 * 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 309 * 5. Vector register numbers accessed by the segment load or store 310 * cannot increment past 31. (Section 7.8) 311 */ 312static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf, 313 uint8_t eew) 314{ 315 int8_t emul = eew - s->sew + s->lmul; 316 bool ret = (emul >= -3 && emul <= 3) && 317 require_align(vs2, emul) && 318 require_align(vd, s->lmul) && 319 require_nf(vd, nf, s->lmul); 320 321 /* 322 * V extension supports all vector load and store instructions, 323 * except V extension does not support EEW=64 for index values 324 * when XLEN=32. (Section 18.3) 325 */ 326 if (get_xl(s) == MXL_RV32) { 327 ret &= (eew != MO_64); 328 } 329 330 return ret; 331} 332 333/* 334 * Vector indexed, indexed segment load check function. 335 * 336 * Rules to be checked here: 337 * 1. All rules applies to store instructions are applies 338 * to load instructions. 339 * 2. Destination vector register group for a masked vector 340 * instruction cannot overlap the source mask register (v0). 341 * (Section 5.3) 342 * 3. Destination vector register cannot overlap a source vector 343 * register (vs2) group. 344 * (Section 5.2) 345 * 4. Destination vector register groups cannot overlap 346 * the source vector register (vs2) group for 347 * indexed segment load instructions. (Section 7.8.3) 348 */ 349static bool vext_check_ld_index(DisasContext *s, int vd, int vs2, 350 int nf, int vm, uint8_t eew) 351{ 352 int8_t seg_vd; 353 int8_t emul = eew - s->sew + s->lmul; 354 bool ret = vext_check_st_index(s, vd, vs2, nf, eew) && 355 require_vm(vm, vd); 356 357 /* Each segment register group has to follow overlap rules. */ 358 for (int i = 0; i < nf; ++i) { 359 seg_vd = vd + (1 << MAX(s->lmul, 0)) * i; 360 361 if (eew > s->sew) { 362 if (seg_vd != vs2) { 363 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 364 } 365 } else if (eew < s->sew) { 366 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 367 } 368 369 /* 370 * Destination vector register groups cannot overlap 371 * the source vector register (vs2) group for 372 * indexed segment load instructions. 373 */ 374 if (nf > 1) { 375 ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0), 376 vs2, 1 << MAX(emul, 0)); 377 } 378 } 379 return ret; 380} 381 382/* 383 * Check whether a vector register is used to provide source operands with 384 * more than one EEW for the vector instruction. 385 * Returns true if the instruction has valid encoding 386 * Returns false if encoding violates the mismatched input EEWs constraint 387 */ 388static bool vext_check_input_eew(DisasContext *s, int vs1, uint8_t eew_vs1, 389 int vs2, uint8_t eew_vs2, int vm) 390{ 391 bool is_valid = true; 392 int8_t emul_vs1 = eew_vs1 - s->sew + s->lmul; 393 int8_t emul_vs2 = eew_vs2 - s->sew + s->lmul; 394 395 /* When vm is 0, vs1 & vs2(EEW!=1) group can't overlap v0 (EEW=1) */ 396 if ((vs1 != -1 && !require_vm(vm, vs1)) || 397 (vs2 != -1 && !require_vm(vm, vs2))) { 398 is_valid = false; 399 } 400 401 /* When eew_vs1 != eew_vs2, check whether vs1 and vs2 are overlapped */ 402 if ((vs1 != -1 && vs2 != -1) && (eew_vs1 != eew_vs2) && 403 is_overlapped(vs1, 1 << MAX(emul_vs1, 0), 404 vs2, 1 << MAX(emul_vs2, 0))) { 405 is_valid = false; 406 } 407 408 return is_valid; 409} 410 411static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm) 412{ 413 return require_vm(vm, vd) && 414 require_align(vd, s->lmul) && 415 require_align(vs, s->lmul) && 416 vext_check_input_eew(s, vs, s->sew, -1, s->sew, vm); 417} 418 419/* 420 * Check function for vector instruction with format: 421 * single-width result and single-width sources (SEW = SEW op SEW) 422 * 423 * Rules to be checked here: 424 * 1. Destination vector register group for a masked vector 425 * instruction cannot overlap the source mask register (v0). 426 * (Section 5.3) 427 * 2. Destination vector register number is multiples of LMUL. 428 * (Section 3.4.2) 429 * 3. Source (vs2, vs1) vector register number are multiples of LMUL. 430 * (Section 3.4.2) 431 */ 432static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm) 433{ 434 return vext_check_ss(s, vd, vs2, vm) && 435 vext_check_input_eew(s, vs1, s->sew, vs2, s->sew, vm) && 436 require_align(vs1, s->lmul); 437} 438 439static bool vext_check_ms(DisasContext *s, int vd, int vs) 440{ 441 bool ret = require_align(vs, s->lmul); 442 if (vd != vs) { 443 ret &= require_noover(vd, 0, vs, s->lmul); 444 } 445 return ret; 446} 447 448/* 449 * Check function for maskable vector instruction with format: 450 * single-width result and single-width sources (SEW = SEW op SEW) 451 * 452 * Rules to be checked here: 453 * 1. Source (vs2, vs1) vector register number are multiples of LMUL. 454 * (Section 3.4.2) 455 * 2. Destination vector register cannot overlap a source vector 456 * register (vs2, vs1) group. 457 * (Section 5.2) 458 * 3. The destination vector register group for a masked vector 459 * instruction cannot overlap the source mask register (v0), 460 * unless the destination vector register is being written 461 * with a mask value (e.g., comparisons) or the scalar result 462 * of a reduction. (Section 5.3) 463 */ 464static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2) 465{ 466 bool ret = vext_check_ms(s, vd, vs2) && 467 require_align(vs1, s->lmul); 468 if (vd != vs1) { 469 ret &= require_noover(vd, 0, vs1, s->lmul); 470 } 471 return ret; 472} 473 474/* 475 * Common check function for vector widening instructions 476 * of double-width result (2*SEW). 477 * 478 * Rules to be checked here: 479 * 1. The largest vector register group used by an instruction 480 * can not be greater than 8 vector registers (Section 5.2): 481 * => LMUL < 8. 482 * => SEW < 64. 483 * 2. Double-width SEW cannot greater than ELEN. 484 * 3. Destination vector register number is multiples of 2 * LMUL. 485 * (Section 3.4.2) 486 * 4. Destination vector register group for a masked vector 487 * instruction cannot overlap the source mask register (v0). 488 * (Section 5.3) 489 */ 490static bool vext_wide_check_common(DisasContext *s, int vd, int vm) 491{ 492 return (s->lmul <= 2) && 493 (s->sew < MO_64) && 494 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 495 require_align(vd, s->lmul + 1) && 496 require_vm(vm, vd); 497} 498 499/* 500 * Common check function for vector narrowing instructions 501 * of single-width result (SEW) and double-width source (2*SEW). 502 * 503 * Rules to be checked here: 504 * 1. The largest vector register group used by an instruction 505 * can not be greater than 8 vector registers (Section 5.2): 506 * => LMUL < 8. 507 * => SEW < 64. 508 * 2. Double-width SEW cannot greater than ELEN. 509 * 3. Source vector register number is multiples of 2 * LMUL. 510 * (Section 3.4.2) 511 * 4. Destination vector register number is multiples of LMUL. 512 * (Section 3.4.2) 513 * 5. Destination vector register group for a masked vector 514 * instruction cannot overlap the source mask register (v0). 515 * (Section 5.3) 516 */ 517static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2, 518 int vm) 519{ 520 return (s->lmul <= 2) && 521 (s->sew < MO_64) && 522 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 523 require_align(vs2, s->lmul + 1) && 524 require_align(vd, s->lmul) && 525 require_vm(vm, vd); 526} 527 528static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm) 529{ 530 return vext_wide_check_common(s, vd, vm) && 531 vext_check_input_eew(s, vs, s->sew, -1, 0, vm) && 532 require_align(vs, s->lmul) && 533 require_noover(vd, s->lmul + 1, vs, s->lmul); 534} 535 536static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm) 537{ 538 return vext_wide_check_common(s, vd, vm) && 539 vext_check_input_eew(s, vs, s->sew + 1, -1, 0, vm) && 540 require_align(vs, s->lmul + 1); 541} 542 543/* 544 * Check function for vector instruction with format: 545 * double-width result and single-width sources (2*SEW = SEW op SEW) 546 * 547 * Rules to be checked here: 548 * 1. All rules in defined in widen common rules are applied. 549 * 2. Source (vs2, vs1) vector register number are multiples of LMUL. 550 * (Section 3.4.2) 551 * 3. Destination vector register cannot overlap a source vector 552 * register (vs2, vs1) group. 553 * (Section 5.2) 554 */ 555static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm) 556{ 557 return vext_check_ds(s, vd, vs2, vm) && 558 vext_check_input_eew(s, vs1, s->sew, vs2, s->sew, vm) && 559 require_align(vs1, s->lmul) && 560 require_noover(vd, s->lmul + 1, vs1, s->lmul); 561} 562 563/* 564 * Check function for vector instruction with format: 565 * double-width result and double-width source1 and single-width 566 * source2 (2*SEW = 2*SEW op SEW) 567 * 568 * Rules to be checked here: 569 * 1. All rules in defined in widen common rules are applied. 570 * 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL. 571 * (Section 3.4.2) 572 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 573 * (Section 3.4.2) 574 * 4. Destination vector register cannot overlap a source vector 575 * register (vs1) group. 576 * (Section 5.2) 577 */ 578static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm) 579{ 580 return vext_check_ds(s, vd, vs1, vm) && 581 vext_check_input_eew(s, vs1, s->sew, vs2, s->sew + 1, vm) && 582 require_align(vs2, s->lmul + 1); 583} 584 585static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm) 586{ 587 bool ret = vext_narrow_check_common(s, vd, vs, vm) && 588 vext_check_input_eew(s, vs, s->sew + 1, -1, 0, vm); 589 if (vd != vs) { 590 ret &= require_noover(vd, s->lmul, vs, s->lmul + 1); 591 } 592 return ret; 593} 594 595/* 596 * Check function for vector instruction with format: 597 * single-width result and double-width source 1 and single-width 598 * source 2 (SEW = 2*SEW op SEW) 599 * 600 * Rules to be checked here: 601 * 1. All rules in defined in narrow common rules are applied. 602 * 2. Destination vector register cannot overlap a source vector 603 * register (vs2) group. 604 * (Section 5.2) 605 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 606 * (Section 3.4.2) 607 */ 608static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm) 609{ 610 return vext_check_sd(s, vd, vs2, vm) && 611 vext_check_input_eew(s, vs1, s->sew, vs2, s->sew + 1, vm) && 612 require_align(vs1, s->lmul); 613} 614 615/* 616 * Check function for vector reduction instructions. 617 * 618 * Rules to be checked here: 619 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 620 * (Section 3.4.2) 621 */ 622static bool vext_check_reduction(DisasContext *s, int vs2) 623{ 624 return require_align(vs2, s->lmul) && s->vstart_eq_zero; 625} 626 627/* 628 * Check function for vector slide instructions. 629 * 630 * Rules to be checked here: 631 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 632 * (Section 3.4.2) 633 * 2. Destination vector register number is multiples of LMUL. 634 * (Section 3.4.2) 635 * 3. Destination vector register group for a masked vector 636 * instruction cannot overlap the source mask register (v0). 637 * (Section 5.3) 638 * 4. The destination vector register group for vslideup, vslide1up, 639 * vfslide1up, cannot overlap the source vector register (vs2) group. 640 * (Section 5.2, 16.3.1, 16.3.3) 641 */ 642static bool vext_check_slide(DisasContext *s, int vd, int vs2, 643 int vm, bool is_over) 644{ 645 bool ret = require_align(vs2, s->lmul) && 646 require_align(vd, s->lmul) && 647 require_vm(vm, vd) && 648 vext_check_input_eew(s, -1, 0, vs2, s->sew, vm); 649 650 if (is_over) { 651 ret &= (vd != vs2); 652 } 653 return ret; 654} 655 656/* 657 * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. 658 * So RVV is also be checked in this function. 659 */ 660static bool vext_check_isa_ill(DisasContext *s) 661{ 662 return !s->vill; 663} 664 665/* common translation macro */ 666#define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \ 667static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \ 668{ \ 669 if (CHECK(s, a, EEW)) { \ 670 return OP(s, a, EEW); \ 671 } \ 672 return false; \ 673} 674 675static uint8_t vext_get_emul(DisasContext *s, uint8_t eew) 676{ 677 int8_t emul = eew - s->sew + s->lmul; 678 return emul < 0 ? 0 : emul; 679} 680 681/* 682 *** unit stride load and store 683 */ 684typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, 685 TCGv_env, TCGv_i32); 686 687static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, 688 gen_helper_ldst_us *fn, DisasContext *s, 689 bool is_store) 690{ 691 TCGv_ptr dest, mask; 692 TCGv base; 693 TCGv_i32 desc; 694 695 dest = tcg_temp_new_ptr(); 696 mask = tcg_temp_new_ptr(); 697 base = get_gpr(s, rs1, EXT_NONE); 698 699 /* 700 * As simd_desc supports at most 2048 bytes, and in this implementation, 701 * the max vector group length is 4096 bytes. So split it into two parts. 702 * 703 * The first part is vlen in bytes (vlenb), encoded in maxsz of simd_desc. 704 * The second part is lmul, encoded in data of simd_desc. 705 */ 706 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, 707 s->cfg_ptr->vlenb, data)); 708 709 tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, vd)); 710 tcg_gen_addi_ptr(mask, tcg_env, vreg_ofs(s, 0)); 711 712 /* 713 * According to the specification 714 * 715 * Additionally, if the Ztso extension is implemented, then vector memory 716 * instructions in the V extension and Zve family of extensions follow 717 * RVTSO at the instruction level. The Ztso extension does not 718 * strengthen the ordering of intra-instruction element accesses. 719 * 720 * as a result neither ordered nor unordered accesses from the V 721 * instructions need ordering within the loop but we do still need barriers 722 * around the loop. 723 */ 724 if (is_store && s->ztso) { 725 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 726 } 727 728 mark_vs_dirty(s); 729 730 fn(dest, mask, base, tcg_env, desc); 731 732 if (!is_store && s->ztso) { 733 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 734 } 735 736 finalize_rvv_inst(s); 737 return true; 738} 739 740static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 741{ 742 uint32_t data = 0; 743 gen_helper_ldst_us *fn; 744 static gen_helper_ldst_us * const fns[2][4] = { 745 /* masked unit stride load */ 746 { gen_helper_vle8_v_mask, gen_helper_vle16_v_mask, 747 gen_helper_vle32_v_mask, gen_helper_vle64_v_mask }, 748 /* unmasked unit stride load */ 749 { gen_helper_vle8_v, gen_helper_vle16_v, 750 gen_helper_vle32_v, gen_helper_vle64_v } 751 }; 752 753 fn = fns[a->vm][eew]; 754 if (fn == NULL) { 755 return false; 756 } 757 758 /* 759 * Vector load/store instructions have the EEW encoded 760 * directly in the instructions. The maximum vector size is 761 * calculated with EMUL rather than LMUL. 762 */ 763 uint8_t emul = vext_get_emul(s, eew); 764 data = FIELD_DP32(data, VDATA, VM, a->vm); 765 data = FIELD_DP32(data, VDATA, LMUL, emul); 766 data = FIELD_DP32(data, VDATA, NF, a->nf); 767 data = FIELD_DP32(data, VDATA, VTA, s->vta); 768 data = FIELD_DP32(data, VDATA, VMA, s->vma); 769 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 770} 771 772static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 773{ 774 return require_rvv(s) && 775 vext_check_isa_ill(s) && 776 vext_check_load(s, a->rd, a->nf, a->vm, eew); 777} 778 779GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check) 780GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check) 781GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check) 782GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check) 783 784static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 785{ 786 uint32_t data = 0; 787 gen_helper_ldst_us *fn; 788 static gen_helper_ldst_us * const fns[2][4] = { 789 /* masked unit stride store */ 790 { gen_helper_vse8_v_mask, gen_helper_vse16_v_mask, 791 gen_helper_vse32_v_mask, gen_helper_vse64_v_mask }, 792 /* unmasked unit stride store */ 793 { gen_helper_vse8_v, gen_helper_vse16_v, 794 gen_helper_vse32_v, gen_helper_vse64_v } 795 }; 796 797 fn = fns[a->vm][eew]; 798 if (fn == NULL) { 799 return false; 800 } 801 802 uint8_t emul = vext_get_emul(s, eew); 803 data = FIELD_DP32(data, VDATA, VM, a->vm); 804 data = FIELD_DP32(data, VDATA, LMUL, emul); 805 data = FIELD_DP32(data, VDATA, NF, a->nf); 806 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 807} 808 809static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 810{ 811 return require_rvv(s) && 812 vext_check_isa_ill(s) && 813 vext_check_store(s, a->rd, a->nf, eew); 814} 815 816GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check) 817GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check) 818GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check) 819GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check) 820 821/* 822 *** unit stride mask load and store 823 */ 824static bool ld_us_mask_op(DisasContext *s, arg_vlm_v *a, uint8_t eew) 825{ 826 uint32_t data = 0; 827 gen_helper_ldst_us *fn = gen_helper_vlm_v; 828 829 /* EMUL = 1, NFIELDS = 1 */ 830 data = FIELD_DP32(data, VDATA, LMUL, 0); 831 data = FIELD_DP32(data, VDATA, NF, 1); 832 /* Mask destination register are always tail-agnostic */ 833 data = FIELD_DP32(data, VDATA, VTA, s->cfg_vta_all_1s); 834 data = FIELD_DP32(data, VDATA, VMA, s->vma); 835 data = FIELD_DP32(data, VDATA, VM, 1); 836 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 837} 838 839static bool ld_us_mask_check(DisasContext *s, arg_vlm_v *a, uint8_t eew) 840{ 841 /* EMUL = 1, NFIELDS = 1 */ 842 return require_rvv(s) && vext_check_isa_ill(s); 843} 844 845static bool st_us_mask_op(DisasContext *s, arg_vsm_v *a, uint8_t eew) 846{ 847 uint32_t data = 0; 848 gen_helper_ldst_us *fn = gen_helper_vsm_v; 849 850 /* EMUL = 1, NFIELDS = 1 */ 851 data = FIELD_DP32(data, VDATA, LMUL, 0); 852 data = FIELD_DP32(data, VDATA, NF, 1); 853 data = FIELD_DP32(data, VDATA, VM, 1); 854 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 855} 856 857static bool st_us_mask_check(DisasContext *s, arg_vsm_v *a, uint8_t eew) 858{ 859 /* EMUL = 1, NFIELDS = 1 */ 860 return require_rvv(s) && vext_check_isa_ill(s); 861} 862 863GEN_VEXT_TRANS(vlm_v, MO_8, vlm_v, ld_us_mask_op, ld_us_mask_check) 864GEN_VEXT_TRANS(vsm_v, MO_8, vsm_v, st_us_mask_op, st_us_mask_check) 865 866/* 867 *** stride load and store 868 */ 869typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, 870 TCGv, TCGv_env, TCGv_i32); 871 872static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, 873 uint32_t data, gen_helper_ldst_stride *fn, 874 DisasContext *s) 875{ 876 TCGv_ptr dest, mask; 877 TCGv base, stride; 878 TCGv_i32 desc; 879 880 dest = tcg_temp_new_ptr(); 881 mask = tcg_temp_new_ptr(); 882 base = get_gpr(s, rs1, EXT_NONE); 883 stride = get_gpr(s, rs2, EXT_NONE); 884 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, 885 s->cfg_ptr->vlenb, data)); 886 887 tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, vd)); 888 tcg_gen_addi_ptr(mask, tcg_env, vreg_ofs(s, 0)); 889 890 mark_vs_dirty(s); 891 892 fn(dest, mask, base, stride, tcg_env, desc); 893 894 finalize_rvv_inst(s); 895 return true; 896} 897 898static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 899{ 900 uint32_t data = 0; 901 gen_helper_ldst_stride *fn; 902 static gen_helper_ldst_stride * const fns[4] = { 903 gen_helper_vlse8_v, gen_helper_vlse16_v, 904 gen_helper_vlse32_v, gen_helper_vlse64_v 905 }; 906 907 fn = fns[eew]; 908 if (fn == NULL) { 909 return false; 910 } 911 912 uint8_t emul = vext_get_emul(s, eew); 913 data = FIELD_DP32(data, VDATA, VM, a->vm); 914 data = FIELD_DP32(data, VDATA, LMUL, emul); 915 data = FIELD_DP32(data, VDATA, NF, a->nf); 916 data = FIELD_DP32(data, VDATA, VTA, s->vta); 917 data = FIELD_DP32(data, VDATA, VMA, s->vma); 918 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s); 919} 920 921static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 922{ 923 return require_rvv(s) && 924 vext_check_isa_ill(s) && 925 vext_check_load(s, a->rd, a->nf, a->vm, eew); 926} 927 928GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check) 929GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check) 930GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check) 931GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check) 932 933static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 934{ 935 uint32_t data = 0; 936 gen_helper_ldst_stride *fn; 937 static gen_helper_ldst_stride * const fns[4] = { 938 /* masked stride store */ 939 gen_helper_vsse8_v, gen_helper_vsse16_v, 940 gen_helper_vsse32_v, gen_helper_vsse64_v 941 }; 942 943 uint8_t emul = vext_get_emul(s, eew); 944 data = FIELD_DP32(data, VDATA, VM, a->vm); 945 data = FIELD_DP32(data, VDATA, LMUL, emul); 946 data = FIELD_DP32(data, VDATA, NF, a->nf); 947 fn = fns[eew]; 948 if (fn == NULL) { 949 return false; 950 } 951 952 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s); 953} 954 955static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 956{ 957 return require_rvv(s) && 958 vext_check_isa_ill(s) && 959 vext_check_store(s, a->rd, a->nf, eew); 960} 961 962GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check) 963GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check) 964GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check) 965GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check) 966 967/* 968 *** index load and store 969 */ 970typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, 971 TCGv_ptr, TCGv_env, TCGv_i32); 972 973static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 974 uint32_t data, gen_helper_ldst_index *fn, 975 DisasContext *s) 976{ 977 TCGv_ptr dest, mask, index; 978 TCGv base; 979 TCGv_i32 desc; 980 981 dest = tcg_temp_new_ptr(); 982 mask = tcg_temp_new_ptr(); 983 index = tcg_temp_new_ptr(); 984 base = get_gpr(s, rs1, EXT_NONE); 985 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, 986 s->cfg_ptr->vlenb, data)); 987 988 tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, vd)); 989 tcg_gen_addi_ptr(index, tcg_env, vreg_ofs(s, vs2)); 990 tcg_gen_addi_ptr(mask, tcg_env, vreg_ofs(s, 0)); 991 992 mark_vs_dirty(s); 993 994 fn(dest, mask, base, index, tcg_env, desc); 995 996 finalize_rvv_inst(s); 997 return true; 998} 999 1000static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 1001{ 1002 uint32_t data = 0; 1003 gen_helper_ldst_index *fn; 1004 static gen_helper_ldst_index * const fns[4][4] = { 1005 /* 1006 * offset vector register group EEW = 8, 1007 * data vector register group EEW = SEW 1008 */ 1009 { gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v, 1010 gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v }, 1011 /* 1012 * offset vector register group EEW = 16, 1013 * data vector register group EEW = SEW 1014 */ 1015 { gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v, 1016 gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v }, 1017 /* 1018 * offset vector register group EEW = 32, 1019 * data vector register group EEW = SEW 1020 */ 1021 { gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v, 1022 gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v }, 1023 /* 1024 * offset vector register group EEW = 64, 1025 * data vector register group EEW = SEW 1026 */ 1027 { gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v, 1028 gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v } 1029 }; 1030 1031 fn = fns[eew][s->sew]; 1032 1033 uint8_t emul = vext_get_emul(s, s->sew); 1034 data = FIELD_DP32(data, VDATA, VM, a->vm); 1035 data = FIELD_DP32(data, VDATA, LMUL, emul); 1036 data = FIELD_DP32(data, VDATA, NF, a->nf); 1037 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1038 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1039 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s); 1040} 1041 1042static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1043{ 1044 return require_rvv(s) && 1045 vext_check_isa_ill(s) && 1046 vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew) && 1047 vext_check_input_eew(s, -1, 0, a->rs2, eew, a->vm); 1048} 1049 1050GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check) 1051GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check) 1052GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check) 1053GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check) 1054 1055static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 1056{ 1057 uint32_t data = 0; 1058 gen_helper_ldst_index *fn; 1059 static gen_helper_ldst_index * const fns[4][4] = { 1060 /* 1061 * offset vector register group EEW = 8, 1062 * data vector register group EEW = SEW 1063 */ 1064 { gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v, 1065 gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v }, 1066 /* 1067 * offset vector register group EEW = 16, 1068 * data vector register group EEW = SEW 1069 */ 1070 { gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v, 1071 gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v }, 1072 /* 1073 * offset vector register group EEW = 32, 1074 * data vector register group EEW = SEW 1075 */ 1076 { gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v, 1077 gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v }, 1078 /* 1079 * offset vector register group EEW = 64, 1080 * data vector register group EEW = SEW 1081 */ 1082 { gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v, 1083 gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v } 1084 }; 1085 1086 fn = fns[eew][s->sew]; 1087 1088 uint8_t emul = vext_get_emul(s, s->sew); 1089 data = FIELD_DP32(data, VDATA, VM, a->vm); 1090 data = FIELD_DP32(data, VDATA, LMUL, emul); 1091 data = FIELD_DP32(data, VDATA, NF, a->nf); 1092 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s); 1093} 1094 1095static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1096{ 1097 return require_rvv(s) && 1098 vext_check_isa_ill(s) && 1099 vext_check_st_index(s, a->rd, a->rs2, a->nf, eew) && 1100 vext_check_input_eew(s, a->rd, s->sew, a->rs2, eew, a->vm); 1101} 1102 1103GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check) 1104GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check) 1105GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check) 1106GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check) 1107 1108/* 1109 *** unit stride fault-only-first load 1110 */ 1111static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, 1112 gen_helper_ldst_us *fn, DisasContext *s) 1113{ 1114 TCGv_ptr dest, mask; 1115 TCGv base; 1116 TCGv_i32 desc; 1117 1118 dest = tcg_temp_new_ptr(); 1119 mask = tcg_temp_new_ptr(); 1120 base = get_gpr(s, rs1, EXT_NONE); 1121 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, 1122 s->cfg_ptr->vlenb, data)); 1123 1124 tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, vd)); 1125 tcg_gen_addi_ptr(mask, tcg_env, vreg_ofs(s, 0)); 1126 1127 fn(dest, mask, base, tcg_env, desc); 1128 1129 finalize_rvv_inst(s); 1130 return true; 1131} 1132 1133static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 1134{ 1135 uint32_t data = 0; 1136 gen_helper_ldst_us *fn; 1137 static gen_helper_ldst_us * const fns[4] = { 1138 gen_helper_vle8ff_v, gen_helper_vle16ff_v, 1139 gen_helper_vle32ff_v, gen_helper_vle64ff_v 1140 }; 1141 1142 fn = fns[eew]; 1143 if (fn == NULL) { 1144 return false; 1145 } 1146 1147 uint8_t emul = vext_get_emul(s, eew); 1148 data = FIELD_DP32(data, VDATA, VM, a->vm); 1149 data = FIELD_DP32(data, VDATA, LMUL, emul); 1150 data = FIELD_DP32(data, VDATA, NF, a->nf); 1151 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1152 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1153 return ldff_trans(a->rd, a->rs1, data, fn, s); 1154} 1155 1156GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check) 1157GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check) 1158GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check) 1159GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check) 1160 1161/* 1162 * load and store whole register instructions 1163 */ 1164typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32); 1165 1166static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf, 1167 gen_helper_ldst_whole *fn, 1168 DisasContext *s) 1169{ 1170 TCGv_ptr dest; 1171 TCGv base; 1172 TCGv_i32 desc; 1173 1174 uint32_t data = FIELD_DP32(0, VDATA, NF, nf); 1175 data = FIELD_DP32(data, VDATA, VM, 1); 1176 dest = tcg_temp_new_ptr(); 1177 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, 1178 s->cfg_ptr->vlenb, data)); 1179 1180 base = get_gpr(s, rs1, EXT_NONE); 1181 tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, vd)); 1182 1183 mark_vs_dirty(s); 1184 1185 fn(dest, base, tcg_env, desc); 1186 1187 finalize_rvv_inst(s); 1188 return true; 1189} 1190 1191/* 1192 * load and store whole register instructions ignore vtype and vl setting. 1193 * Thus, we don't need to check vill bit. (Section 7.9) 1194 */ 1195#define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF) \ 1196static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 1197{ \ 1198 if (require_rvv(s) && \ 1199 QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \ 1200 return ldst_whole_trans(a->rd, a->rs1, ARG_NF, \ 1201 gen_helper_##NAME, s); \ 1202 } \ 1203 return false; \ 1204} 1205 1206GEN_LDST_WHOLE_TRANS(vl1re8_v, 1) 1207GEN_LDST_WHOLE_TRANS(vl1re16_v, 1) 1208GEN_LDST_WHOLE_TRANS(vl1re32_v, 1) 1209GEN_LDST_WHOLE_TRANS(vl1re64_v, 1) 1210GEN_LDST_WHOLE_TRANS(vl2re8_v, 2) 1211GEN_LDST_WHOLE_TRANS(vl2re16_v, 2) 1212GEN_LDST_WHOLE_TRANS(vl2re32_v, 2) 1213GEN_LDST_WHOLE_TRANS(vl2re64_v, 2) 1214GEN_LDST_WHOLE_TRANS(vl4re8_v, 4) 1215GEN_LDST_WHOLE_TRANS(vl4re16_v, 4) 1216GEN_LDST_WHOLE_TRANS(vl4re32_v, 4) 1217GEN_LDST_WHOLE_TRANS(vl4re64_v, 4) 1218GEN_LDST_WHOLE_TRANS(vl8re8_v, 8) 1219GEN_LDST_WHOLE_TRANS(vl8re16_v, 8) 1220GEN_LDST_WHOLE_TRANS(vl8re32_v, 8) 1221GEN_LDST_WHOLE_TRANS(vl8re64_v, 8) 1222 1223/* 1224 * The vector whole register store instructions are encoded similar to 1225 * unmasked unit-stride store of elements with EEW=8. 1226 */ 1227GEN_LDST_WHOLE_TRANS(vs1r_v, 1) 1228GEN_LDST_WHOLE_TRANS(vs2r_v, 2) 1229GEN_LDST_WHOLE_TRANS(vs4r_v, 4) 1230GEN_LDST_WHOLE_TRANS(vs8r_v, 8) 1231 1232/* 1233 *** Vector Integer Arithmetic Instructions 1234 */ 1235 1236/* 1237 * MAXSZ returns the maximum vector size can be operated in bytes, 1238 * which is used in GVEC IR when vl_eq_vlmax flag is set to true 1239 * to accelerate vector operation. 1240 */ 1241static inline uint32_t MAXSZ(DisasContext *s) 1242{ 1243 int max_sz = s->cfg_ptr->vlenb * 8; 1244 return max_sz >> (3 - s->lmul); 1245} 1246 1247static bool opivv_check(DisasContext *s, arg_rmrr *a) 1248{ 1249 return require_rvv(s) && 1250 vext_check_isa_ill(s) && 1251 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1252} 1253 1254typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 1255 uint32_t, uint32_t, uint32_t); 1256 1257static inline bool 1258do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, 1259 gen_helper_gvec_4_ptr *fn) 1260{ 1261 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1262 gvec_fn(s->sew, vreg_ofs(s, a->rd), 1263 vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), 1264 MAXSZ(s), MAXSZ(s)); 1265 } else { 1266 uint32_t data = 0; 1267 1268 data = FIELD_DP32(data, VDATA, VM, a->vm); 1269 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1270 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1271 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1272 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1273 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 1274 tcg_env, s->cfg_ptr->vlenb, 1275 s->cfg_ptr->vlenb, data, fn); 1276 } 1277 finalize_rvv_inst(s); 1278 return true; 1279} 1280 1281/* OPIVV with GVEC IR */ 1282#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ 1283static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1284{ \ 1285 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1286 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1287 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1288 }; \ 1289 if (!opivv_check(s, a)) { \ 1290 return false; \ 1291 } \ 1292 return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1293} 1294 1295GEN_OPIVV_GVEC_TRANS(vadd_vv, add) 1296GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) 1297 1298typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, 1299 TCGv_env, TCGv_i32); 1300 1301static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, 1302 gen_helper_opivx *fn, DisasContext *s) 1303{ 1304 TCGv_ptr dest, src2, mask; 1305 TCGv src1; 1306 TCGv_i32 desc; 1307 uint32_t data = 0; 1308 1309 dest = tcg_temp_new_ptr(); 1310 mask = tcg_temp_new_ptr(); 1311 src2 = tcg_temp_new_ptr(); 1312 src1 = get_gpr(s, rs1, EXT_SIGN); 1313 1314 data = FIELD_DP32(data, VDATA, VM, vm); 1315 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1316 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1317 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); 1318 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1319 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, 1320 s->cfg_ptr->vlenb, data)); 1321 1322 tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, vd)); 1323 tcg_gen_addi_ptr(src2, tcg_env, vreg_ofs(s, vs2)); 1324 tcg_gen_addi_ptr(mask, tcg_env, vreg_ofs(s, 0)); 1325 1326 fn(dest, mask, src1, src2, tcg_env, desc); 1327 1328 finalize_rvv_inst(s); 1329 return true; 1330} 1331 1332static bool opivx_check(DisasContext *s, arg_rmrr *a) 1333{ 1334 return require_rvv(s) && 1335 vext_check_isa_ill(s) && 1336 vext_check_ss(s, a->rd, a->rs2, a->vm); 1337} 1338 1339typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, 1340 uint32_t, uint32_t); 1341 1342static inline bool 1343do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, 1344 gen_helper_opivx *fn) 1345{ 1346 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1347 TCGv_i64 src1 = tcg_temp_new_i64(); 1348 1349 tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN)); 1350 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1351 src1, MAXSZ(s), MAXSZ(s)); 1352 1353 finalize_rvv_inst(s); 1354 return true; 1355 } 1356 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1357} 1358 1359/* OPIVX with GVEC IR */ 1360#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ 1361static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1362{ \ 1363 static gen_helper_opivx * const fns[4] = { \ 1364 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1365 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1366 }; \ 1367 if (!opivx_check(s, a)) { \ 1368 return false; \ 1369 } \ 1370 return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1371} 1372 1373GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) 1374GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) 1375 1376static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1377{ 1378 tcg_gen_vec_sub8_i64(d, b, a); 1379} 1380 1381static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1382{ 1383 tcg_gen_vec_sub16_i64(d, b, a); 1384} 1385 1386static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) 1387{ 1388 tcg_gen_sub_i32(ret, arg2, arg1); 1389} 1390 1391static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) 1392{ 1393 tcg_gen_sub_i64(ret, arg2, arg1); 1394} 1395 1396static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) 1397{ 1398 tcg_gen_sub_vec(vece, r, b, a); 1399} 1400 1401static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, 1402 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1403{ 1404 static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 }; 1405 static const GVecGen2s rsub_op[4] = { 1406 { .fni8 = gen_vec_rsub8_i64, 1407 .fniv = gen_rsub_vec, 1408 .fno = gen_helper_vec_rsubs8, 1409 .opt_opc = vecop_list, 1410 .vece = MO_8 }, 1411 { .fni8 = gen_vec_rsub16_i64, 1412 .fniv = gen_rsub_vec, 1413 .fno = gen_helper_vec_rsubs16, 1414 .opt_opc = vecop_list, 1415 .vece = MO_16 }, 1416 { .fni4 = gen_rsub_i32, 1417 .fniv = gen_rsub_vec, 1418 .fno = gen_helper_vec_rsubs32, 1419 .opt_opc = vecop_list, 1420 .vece = MO_32 }, 1421 { .fni8 = gen_rsub_i64, 1422 .fniv = gen_rsub_vec, 1423 .fno = gen_helper_vec_rsubs64, 1424 .opt_opc = vecop_list, 1425 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1426 .vece = MO_64 }, 1427 }; 1428 1429 tcg_debug_assert(vece <= MO_64); 1430 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); 1431} 1432 1433GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) 1434 1435typedef enum { 1436 IMM_ZX, /* Zero-extended */ 1437 IMM_SX, /* Sign-extended */ 1438 IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */ 1439 IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */ 1440} imm_mode_t; 1441 1442static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode) 1443{ 1444 switch (imm_mode) { 1445 case IMM_ZX: 1446 return extract64(imm, 0, 5); 1447 case IMM_SX: 1448 return sextract64(imm, 0, 5); 1449 case IMM_TRUNC_SEW: 1450 return extract64(imm, 0, s->sew + 3); 1451 case IMM_TRUNC_2SEW: 1452 return extract64(imm, 0, s->sew + 4); 1453 default: 1454 g_assert_not_reached(); 1455 } 1456} 1457 1458static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, 1459 gen_helper_opivx *fn, DisasContext *s, 1460 imm_mode_t imm_mode) 1461{ 1462 TCGv_ptr dest, src2, mask; 1463 TCGv src1; 1464 TCGv_i32 desc; 1465 uint32_t data = 0; 1466 1467 dest = tcg_temp_new_ptr(); 1468 mask = tcg_temp_new_ptr(); 1469 src2 = tcg_temp_new_ptr(); 1470 src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode)); 1471 1472 data = FIELD_DP32(data, VDATA, VM, vm); 1473 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1474 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1475 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); 1476 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1477 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, 1478 s->cfg_ptr->vlenb, data)); 1479 1480 tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, vd)); 1481 tcg_gen_addi_ptr(src2, tcg_env, vreg_ofs(s, vs2)); 1482 tcg_gen_addi_ptr(mask, tcg_env, vreg_ofs(s, 0)); 1483 1484 fn(dest, mask, src1, src2, tcg_env, desc); 1485 1486 finalize_rvv_inst(s); 1487 return true; 1488} 1489 1490typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 1491 uint32_t, uint32_t); 1492 1493static inline bool 1494do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, 1495 gen_helper_opivx *fn, imm_mode_t imm_mode) 1496{ 1497 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1498 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1499 extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s)); 1500 finalize_rvv_inst(s); 1501 return true; 1502 } 1503 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode); 1504} 1505 1506/* OPIVI with GVEC IR */ 1507#define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \ 1508static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1509{ \ 1510 static gen_helper_opivx * const fns[4] = { \ 1511 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1512 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1513 }; \ 1514 if (!opivx_check(s, a)) { \ 1515 return false; \ 1516 } \ 1517 return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ 1518 fns[s->sew], IMM_MODE); \ 1519} 1520 1521GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi) 1522 1523static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, 1524 int64_t c, uint32_t oprsz, uint32_t maxsz) 1525{ 1526 TCGv_i64 tmp = tcg_constant_i64(c); 1527 tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); 1528} 1529 1530GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi) 1531 1532/* Vector Widening Integer Add/Subtract */ 1533 1534/* OPIVV with WIDEN */ 1535static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) 1536{ 1537 return require_rvv(s) && 1538 vext_check_isa_ill(s) && 1539 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 1540} 1541 1542/* OPIVV with overwrite and WIDEN */ 1543static bool opivv_overwrite_widen_check(DisasContext *s, arg_rmrr *a) 1544{ 1545 return require_rvv(s) && 1546 vext_check_isa_ill(s) && 1547 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm) && 1548 vext_check_input_eew(s, a->rd, s->sew + 1, a->rs1, s->sew, a->vm) && 1549 vext_check_input_eew(s, a->rd, s->sew + 1, a->rs2, s->sew, a->vm); 1550} 1551 1552static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, 1553 gen_helper_gvec_4_ptr *fn, 1554 bool (*checkfn)(DisasContext *, arg_rmrr *)) 1555{ 1556 if (checkfn(s, a)) { 1557 uint32_t data = 0; 1558 1559 data = FIELD_DP32(data, VDATA, VM, a->vm); 1560 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1561 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1562 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1563 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1564 vreg_ofs(s, a->rs1), 1565 vreg_ofs(s, a->rs2), 1566 tcg_env, s->cfg_ptr->vlenb, 1567 s->cfg_ptr->vlenb, 1568 data, fn); 1569 finalize_rvv_inst(s); 1570 return true; 1571 } 1572 return false; 1573} 1574 1575#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ 1576static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1577{ \ 1578 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1579 gen_helper_##NAME##_b, \ 1580 gen_helper_##NAME##_h, \ 1581 gen_helper_##NAME##_w \ 1582 }; \ 1583 return do_opivv_widen(s, a, fns[s->sew], CHECK); \ 1584} 1585 1586GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) 1587GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) 1588GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) 1589GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) 1590 1591/* OPIVX with WIDEN */ 1592static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) 1593{ 1594 return require_rvv(s) && 1595 vext_check_isa_ill(s) && 1596 vext_check_ds(s, a->rd, a->rs2, a->vm); 1597} 1598 1599static bool opivx_overwrite_widen_check(DisasContext *s, arg_rmrr *a) 1600{ 1601 return require_rvv(s) && 1602 vext_check_isa_ill(s) && 1603 vext_check_ds(s, a->rd, a->rs2, a->vm) && 1604 vext_check_input_eew(s, a->rd, s->sew + 1, a->rs2, s->sew, a->vm); 1605} 1606 1607#define GEN_OPIVX_WIDEN_TRANS(NAME, CHECK) \ 1608static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1609{ \ 1610 if (CHECK(s, a)) { \ 1611 static gen_helper_opivx * const fns[3] = { \ 1612 gen_helper_##NAME##_b, \ 1613 gen_helper_##NAME##_h, \ 1614 gen_helper_##NAME##_w \ 1615 }; \ 1616 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); \ 1617 } \ 1618 return false; \ 1619} 1620 1621GEN_OPIVX_WIDEN_TRANS(vwaddu_vx, opivx_widen_check) 1622GEN_OPIVX_WIDEN_TRANS(vwadd_vx, opivx_widen_check) 1623GEN_OPIVX_WIDEN_TRANS(vwsubu_vx, opivx_widen_check) 1624GEN_OPIVX_WIDEN_TRANS(vwsub_vx, opivx_widen_check) 1625 1626/* WIDEN OPIVV with WIDEN */ 1627static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) 1628{ 1629 return require_rvv(s) && 1630 vext_check_isa_ill(s) && 1631 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 1632} 1633 1634static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, 1635 gen_helper_gvec_4_ptr *fn) 1636{ 1637 if (opiwv_widen_check(s, a)) { 1638 uint32_t data = 0; 1639 1640 data = FIELD_DP32(data, VDATA, VM, a->vm); 1641 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1642 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1643 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1644 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1645 vreg_ofs(s, a->rs1), 1646 vreg_ofs(s, a->rs2), 1647 tcg_env, s->cfg_ptr->vlenb, 1648 s->cfg_ptr->vlenb, data, fn); 1649 finalize_rvv_inst(s); 1650 return true; 1651 } 1652 return false; 1653} 1654 1655#define GEN_OPIWV_WIDEN_TRANS(NAME) \ 1656static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1657{ \ 1658 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1659 gen_helper_##NAME##_b, \ 1660 gen_helper_##NAME##_h, \ 1661 gen_helper_##NAME##_w \ 1662 }; \ 1663 return do_opiwv_widen(s, a, fns[s->sew]); \ 1664} 1665 1666GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) 1667GEN_OPIWV_WIDEN_TRANS(vwadd_wv) 1668GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) 1669GEN_OPIWV_WIDEN_TRANS(vwsub_wv) 1670 1671/* WIDEN OPIVX with WIDEN */ 1672static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) 1673{ 1674 return require_rvv(s) && 1675 vext_check_isa_ill(s) && 1676 vext_check_dd(s, a->rd, a->rs2, a->vm); 1677} 1678 1679static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, 1680 gen_helper_opivx *fn) 1681{ 1682 if (opiwx_widen_check(s, a)) { 1683 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1684 } 1685 return false; 1686} 1687 1688#define GEN_OPIWX_WIDEN_TRANS(NAME) \ 1689static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1690{ \ 1691 static gen_helper_opivx * const fns[3] = { \ 1692 gen_helper_##NAME##_b, \ 1693 gen_helper_##NAME##_h, \ 1694 gen_helper_##NAME##_w \ 1695 }; \ 1696 return do_opiwx_widen(s, a, fns[s->sew]); \ 1697} 1698 1699GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) 1700GEN_OPIWX_WIDEN_TRANS(vwadd_wx) 1701GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) 1702GEN_OPIWX_WIDEN_TRANS(vwsub_wx) 1703 1704static bool opivv_trans(uint32_t vd, uint32_t vs1, uint32_t vs2, uint32_t vm, 1705 gen_helper_gvec_4_ptr *fn, DisasContext *s) 1706{ 1707 uint32_t data = 0; 1708 1709 data = FIELD_DP32(data, VDATA, VM, vm); 1710 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1711 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1712 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); 1713 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1714 tcg_gen_gvec_4_ptr(vreg_ofs(s, vd), vreg_ofs(s, 0), vreg_ofs(s, vs1), 1715 vreg_ofs(s, vs2), tcg_env, s->cfg_ptr->vlenb, 1716 s->cfg_ptr->vlenb, data, fn); 1717 finalize_rvv_inst(s); 1718 return true; 1719} 1720 1721/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ 1722/* OPIVV without GVEC IR */ 1723#define GEN_OPIVV_TRANS(NAME, CHECK) \ 1724static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1725{ \ 1726 if (CHECK(s, a)) { \ 1727 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1728 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1729 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1730 }; \ 1731 return opivv_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1732 } \ 1733 return false; \ 1734} 1735 1736/* 1737 * For vadc and vsbc, an illegal instruction exception is raised if the 1738 * destination vector register is v0 and LMUL > 1. (Section 11.4) 1739 */ 1740static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) 1741{ 1742 return require_rvv(s) && 1743 vext_check_isa_ill(s) && 1744 (a->rd != 0) && 1745 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1746} 1747 1748GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) 1749GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) 1750 1751/* 1752 * For vmadc and vmsbc, an illegal instruction exception is raised if the 1753 * destination vector register overlaps a source vector register group. 1754 */ 1755static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) 1756{ 1757 return require_rvv(s) && 1758 vext_check_isa_ill(s) && 1759 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1760} 1761 1762GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) 1763GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) 1764 1765static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) 1766{ 1767 return require_rvv(s) && 1768 vext_check_isa_ill(s) && 1769 (a->rd != 0) && 1770 vext_check_ss(s, a->rd, a->rs2, a->vm); 1771} 1772 1773/* OPIVX without GVEC IR */ 1774#define GEN_OPIVX_TRANS(NAME, CHECK) \ 1775static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1776{ \ 1777 if (CHECK(s, a)) { \ 1778 static gen_helper_opivx * const fns[4] = { \ 1779 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1780 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1781 }; \ 1782 \ 1783 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1784 } \ 1785 return false; \ 1786} 1787 1788GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) 1789GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) 1790 1791static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) 1792{ 1793 return require_rvv(s) && 1794 vext_check_isa_ill(s) && 1795 vext_check_ms(s, a->rd, a->rs2); 1796} 1797 1798GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) 1799GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) 1800 1801/* OPIVI without GVEC IR */ 1802#define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \ 1803static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1804{ \ 1805 if (CHECK(s, a)) { \ 1806 static gen_helper_opivx * const fns[4] = { \ 1807 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1808 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1809 }; \ 1810 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1811 fns[s->sew], s, IMM_MODE); \ 1812 } \ 1813 return false; \ 1814} 1815 1816GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check) 1817GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check) 1818 1819/* Vector Bitwise Logical Instructions */ 1820GEN_OPIVV_GVEC_TRANS(vand_vv, and) 1821GEN_OPIVV_GVEC_TRANS(vor_vv, or) 1822GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) 1823GEN_OPIVX_GVEC_TRANS(vand_vx, ands) 1824GEN_OPIVX_GVEC_TRANS(vor_vx, ors) 1825GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) 1826GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi) 1827GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori) 1828GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori) 1829 1830/* Vector Single-Width Bit Shift Instructions */ 1831GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) 1832GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) 1833GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) 1834 1835typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, 1836 uint32_t, uint32_t); 1837 1838static inline bool 1839do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, 1840 gen_helper_opivx *fn) 1841{ 1842 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1843 TCGv_i32 src1 = tcg_temp_new_i32(); 1844 1845 tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE)); 1846 tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); 1847 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1848 src1, MAXSZ(s), MAXSZ(s)); 1849 1850 finalize_rvv_inst(s); 1851 return true; 1852 } 1853 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1854} 1855 1856#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ 1857static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1858{ \ 1859 static gen_helper_opivx * const fns[4] = { \ 1860 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1861 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1862 }; \ 1863 if (!opivx_check(s, a)) { \ 1864 return false; \ 1865 } \ 1866 return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1867} 1868 1869GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) 1870GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) 1871GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) 1872 1873GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli) 1874GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri) 1875GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari) 1876 1877/* Vector Narrowing Integer Right Shift Instructions */ 1878static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a) 1879{ 1880 return require_rvv(s) && 1881 vext_check_isa_ill(s) && 1882 vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm); 1883} 1884 1885/* OPIVV with NARROW */ 1886#define GEN_OPIWV_NARROW_TRANS(NAME) \ 1887static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1888{ \ 1889 if (opiwv_narrow_check(s, a)) { \ 1890 uint32_t data = 0; \ 1891 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1892 gen_helper_##NAME##_b, \ 1893 gen_helper_##NAME##_h, \ 1894 gen_helper_##NAME##_w, \ 1895 }; \ 1896 \ 1897 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1898 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1899 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 1900 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 1901 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1902 vreg_ofs(s, a->rs1), \ 1903 vreg_ofs(s, a->rs2), tcg_env, \ 1904 s->cfg_ptr->vlenb, \ 1905 s->cfg_ptr->vlenb, data, \ 1906 fns[s->sew]); \ 1907 finalize_rvv_inst(s); \ 1908 return true; \ 1909 } \ 1910 return false; \ 1911} 1912GEN_OPIWV_NARROW_TRANS(vnsra_wv) 1913GEN_OPIWV_NARROW_TRANS(vnsrl_wv) 1914 1915static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a) 1916{ 1917 return require_rvv(s) && 1918 vext_check_isa_ill(s) && 1919 vext_check_sd(s, a->rd, a->rs2, a->vm); 1920} 1921 1922/* OPIVX with NARROW */ 1923#define GEN_OPIWX_NARROW_TRANS(NAME) \ 1924static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1925{ \ 1926 if (opiwx_narrow_check(s, a)) { \ 1927 static gen_helper_opivx * const fns[3] = { \ 1928 gen_helper_##NAME##_b, \ 1929 gen_helper_##NAME##_h, \ 1930 gen_helper_##NAME##_w, \ 1931 }; \ 1932 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1933 } \ 1934 return false; \ 1935} 1936 1937GEN_OPIWX_NARROW_TRANS(vnsra_wx) 1938GEN_OPIWX_NARROW_TRANS(vnsrl_wx) 1939 1940/* OPIWI with NARROW */ 1941#define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \ 1942static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1943{ \ 1944 if (opiwx_narrow_check(s, a)) { \ 1945 static gen_helper_opivx * const fns[3] = { \ 1946 gen_helper_##OPIVX##_b, \ 1947 gen_helper_##OPIVX##_h, \ 1948 gen_helper_##OPIVX##_w, \ 1949 }; \ 1950 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1951 fns[s->sew], s, IMM_MODE); \ 1952 } \ 1953 return false; \ 1954} 1955 1956GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx) 1957GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx) 1958 1959/* Vector Integer Comparison Instructions */ 1960/* 1961 * For all comparison instructions, an illegal instruction exception is raised 1962 * if the destination vector register overlaps a source vector register group 1963 * and LMUL > 1. 1964 */ 1965static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) 1966{ 1967 return require_rvv(s) && 1968 vext_check_isa_ill(s) && 1969 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1970} 1971 1972GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) 1973GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) 1974GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) 1975GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) 1976GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) 1977GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) 1978 1979static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) 1980{ 1981 return require_rvv(s) && 1982 vext_check_isa_ill(s) && 1983 vext_check_ms(s, a->rd, a->rs2); 1984} 1985 1986GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) 1987GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) 1988GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) 1989GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) 1990GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) 1991GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) 1992GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) 1993GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) 1994 1995GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check) 1996GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check) 1997GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check) 1998GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check) 1999GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check) 2000GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check) 2001 2002/* Vector Integer Min/Max Instructions */ 2003GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) 2004GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) 2005GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) 2006GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) 2007GEN_OPIVX_TRANS(vminu_vx, opivx_check) 2008GEN_OPIVX_TRANS(vmin_vx, opivx_check) 2009GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) 2010GEN_OPIVX_TRANS(vmax_vx, opivx_check) 2011 2012/* Vector Single-Width Integer Multiply Instructions */ 2013 2014static bool vmulh_vv_check(DisasContext *s, arg_rmrr *a) 2015{ 2016 /* 2017 * All Zve* extensions support all vector integer instructions, 2018 * except that the vmulh integer multiply variants 2019 * that return the high word of the product 2020 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2021 * are not included for EEW=64 in Zve64*. (Section 18.2) 2022 */ 2023 return opivv_check(s, a) && 2024 (!has_ext(s, RVV) ? s->sew != MO_64 : true); 2025} 2026 2027static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a) 2028{ 2029 /* 2030 * All Zve* extensions support all vector integer instructions, 2031 * except that the vmulh integer multiply variants 2032 * that return the high word of the product 2033 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2034 * are not included for EEW=64 in Zve64*. (Section 18.2) 2035 */ 2036 return opivx_check(s, a) && 2037 (!has_ext(s, RVV) ? s->sew != MO_64 : true); 2038} 2039 2040GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) 2041GEN_OPIVV_TRANS(vmulh_vv, vmulh_vv_check) 2042GEN_OPIVV_TRANS(vmulhu_vv, vmulh_vv_check) 2043GEN_OPIVV_TRANS(vmulhsu_vv, vmulh_vv_check) 2044GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) 2045GEN_OPIVX_TRANS(vmulh_vx, vmulh_vx_check) 2046GEN_OPIVX_TRANS(vmulhu_vx, vmulh_vx_check) 2047GEN_OPIVX_TRANS(vmulhsu_vx, vmulh_vx_check) 2048 2049/* Vector Integer Divide Instructions */ 2050GEN_OPIVV_TRANS(vdivu_vv, opivv_check) 2051GEN_OPIVV_TRANS(vdiv_vv, opivv_check) 2052GEN_OPIVV_TRANS(vremu_vv, opivv_check) 2053GEN_OPIVV_TRANS(vrem_vv, opivv_check) 2054GEN_OPIVX_TRANS(vdivu_vx, opivx_check) 2055GEN_OPIVX_TRANS(vdiv_vx, opivx_check) 2056GEN_OPIVX_TRANS(vremu_vx, opivx_check) 2057GEN_OPIVX_TRANS(vrem_vx, opivx_check) 2058 2059/* Vector Widening Integer Multiply Instructions */ 2060GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) 2061GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) 2062GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) 2063GEN_OPIVX_WIDEN_TRANS(vwmul_vx, opivx_widen_check) 2064GEN_OPIVX_WIDEN_TRANS(vwmulu_vx, opivx_widen_check) 2065GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx, opivx_widen_check) 2066 2067/* Vector Single-Width Integer Multiply-Add Instructions */ 2068GEN_OPIVV_TRANS(vmacc_vv, opivv_check) 2069GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) 2070GEN_OPIVV_TRANS(vmadd_vv, opivv_check) 2071GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) 2072GEN_OPIVX_TRANS(vmacc_vx, opivx_check) 2073GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) 2074GEN_OPIVX_TRANS(vmadd_vx, opivx_check) 2075GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) 2076 2077/* Vector Widening Integer Multiply-Add Instructions */ 2078GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_overwrite_widen_check) 2079GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_overwrite_widen_check) 2080GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_overwrite_widen_check) 2081GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx, opivx_overwrite_widen_check) 2082GEN_OPIVX_WIDEN_TRANS(vwmacc_vx, opivx_overwrite_widen_check) 2083GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx, opivx_overwrite_widen_check) 2084GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx, opivx_overwrite_widen_check) 2085 2086/* Vector Integer Merge and Move Instructions */ 2087static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) 2088{ 2089 if (require_rvv(s) && 2090 vext_check_isa_ill(s) && 2091 /* vmv.v.v has rs2 = 0 and vm = 1 */ 2092 vext_check_sss(s, a->rd, a->rs1, 0, 1)) { 2093 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2094 tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), 2095 vreg_ofs(s, a->rs1), 2096 MAXSZ(s), MAXSZ(s)); 2097 } else { 2098 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2099 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2100 static gen_helper_gvec_2_ptr * const fns[4] = { 2101 gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, 2102 gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, 2103 }; 2104 2105 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), 2106 tcg_env, s->cfg_ptr->vlenb, 2107 s->cfg_ptr->vlenb, data, 2108 fns[s->sew]); 2109 } 2110 finalize_rvv_inst(s); 2111 return true; 2112 } 2113 return false; 2114} 2115 2116typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); 2117static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) 2118{ 2119 if (require_rvv(s) && 2120 vext_check_isa_ill(s) && 2121 /* vmv.v.x has rs2 = 0 and vm = 1 */ 2122 vext_check_ss(s, a->rd, 0, 1)) { 2123 TCGv s1; 2124 2125 s1 = get_gpr(s, a->rs1, EXT_SIGN); 2126 2127 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2128 if (get_xl(s) == MXL_RV32 && s->sew == MO_64) { 2129 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2130 tcg_gen_ext_tl_i64(s1_i64, s1); 2131 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2132 MAXSZ(s), MAXSZ(s), s1_i64); 2133 } else { 2134 tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), 2135 MAXSZ(s), MAXSZ(s), s1); 2136 } 2137 } else { 2138 TCGv_i32 desc; 2139 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2140 TCGv_ptr dest = tcg_temp_new_ptr(); 2141 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2142 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2143 static gen_helper_vmv_vx * const fns[4] = { 2144 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2145 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2146 }; 2147 2148 tcg_gen_ext_tl_i64(s1_i64, s1); 2149 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, 2150 s->cfg_ptr->vlenb, data)); 2151 tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, a->rd)); 2152 fns[s->sew](dest, s1_i64, tcg_env, desc); 2153 } 2154 2155 finalize_rvv_inst(s); 2156 return true; 2157 } 2158 return false; 2159} 2160 2161static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) 2162{ 2163 if (require_rvv(s) && 2164 vext_check_isa_ill(s) && 2165 /* vmv.v.i has rs2 = 0 and vm = 1 */ 2166 vext_check_ss(s, a->rd, 0, 1)) { 2167 int64_t simm = sextract64(a->rs1, 0, 5); 2168 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2169 tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), 2170 MAXSZ(s), MAXSZ(s), simm); 2171 } else { 2172 TCGv_i32 desc; 2173 TCGv_i64 s1; 2174 TCGv_ptr dest; 2175 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2176 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2177 static gen_helper_vmv_vx * const fns[4] = { 2178 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2179 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2180 }; 2181 2182 s1 = tcg_constant_i64(simm); 2183 dest = tcg_temp_new_ptr(); 2184 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, 2185 s->cfg_ptr->vlenb, data)); 2186 tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, a->rd)); 2187 fns[s->sew](dest, s1, tcg_env, desc); 2188 } 2189 finalize_rvv_inst(s); 2190 return true; 2191 } 2192 return false; 2193} 2194 2195GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) 2196GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) 2197GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check) 2198 2199/* 2200 *** Vector Fixed-Point Arithmetic Instructions 2201 */ 2202 2203/* Vector Single-Width Saturating Add and Subtract */ 2204GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) 2205GEN_OPIVV_TRANS(vsadd_vv, opivv_check) 2206GEN_OPIVV_TRANS(vssubu_vv, opivv_check) 2207GEN_OPIVV_TRANS(vssub_vv, opivv_check) 2208GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) 2209GEN_OPIVX_TRANS(vsadd_vx, opivx_check) 2210GEN_OPIVX_TRANS(vssubu_vx, opivx_check) 2211GEN_OPIVX_TRANS(vssub_vx, opivx_check) 2212GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check) 2213GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check) 2214 2215/* Vector Single-Width Averaging Add and Subtract */ 2216GEN_OPIVV_TRANS(vaadd_vv, opivv_check) 2217GEN_OPIVV_TRANS(vaaddu_vv, opivv_check) 2218GEN_OPIVV_TRANS(vasub_vv, opivv_check) 2219GEN_OPIVV_TRANS(vasubu_vv, opivv_check) 2220GEN_OPIVX_TRANS(vaadd_vx, opivx_check) 2221GEN_OPIVX_TRANS(vaaddu_vx, opivx_check) 2222GEN_OPIVX_TRANS(vasub_vx, opivx_check) 2223GEN_OPIVX_TRANS(vasubu_vx, opivx_check) 2224 2225/* Vector Single-Width Fractional Multiply with Rounding and Saturation */ 2226 2227static bool vsmul_vv_check(DisasContext *s, arg_rmrr *a) 2228{ 2229 /* 2230 * All Zve* extensions support all vector fixed-point arithmetic 2231 * instructions, except that vsmul.vv and vsmul.vx are not supported 2232 * for EEW=64 in Zve64*. (Section 18.2) 2233 */ 2234 return opivv_check(s, a) && 2235 (!has_ext(s, RVV) ? s->sew != MO_64 : true); 2236} 2237 2238static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a) 2239{ 2240 /* 2241 * All Zve* extensions support all vector fixed-point arithmetic 2242 * instructions, except that vsmul.vv and vsmul.vx are not supported 2243 * for EEW=64 in Zve64*. (Section 18.2) 2244 */ 2245 return opivx_check(s, a) && 2246 (!has_ext(s, RVV) ? s->sew != MO_64 : true); 2247} 2248 2249GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check) 2250GEN_OPIVX_TRANS(vsmul_vx, vsmul_vx_check) 2251 2252/* Vector Single-Width Scaling Shift Instructions */ 2253GEN_OPIVV_TRANS(vssrl_vv, opivv_check) 2254GEN_OPIVV_TRANS(vssra_vv, opivv_check) 2255GEN_OPIVX_TRANS(vssrl_vx, opivx_check) 2256GEN_OPIVX_TRANS(vssra_vx, opivx_check) 2257GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check) 2258GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check) 2259 2260/* Vector Narrowing Fixed-Point Clip Instructions */ 2261GEN_OPIWV_NARROW_TRANS(vnclipu_wv) 2262GEN_OPIWV_NARROW_TRANS(vnclip_wv) 2263GEN_OPIWX_NARROW_TRANS(vnclipu_wx) 2264GEN_OPIWX_NARROW_TRANS(vnclip_wx) 2265GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx) 2266GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx) 2267 2268/* 2269 *** Vector Float Point Arithmetic Instructions 2270 */ 2271 2272/* 2273 * As RVF-only cpus always have values NaN-boxed to 64-bits, 2274 * RVF and RVD can be treated equally. 2275 * We don't have to deal with the cases of: SEW > FLEN. 2276 * 2277 * If SEW < FLEN, check whether input fp register is a valid 2278 * NaN-boxed value, in which case the least-significant SEW bits 2279 * of the f register are used, else the canonical NaN value is used. 2280 */ 2281static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in) 2282{ 2283 switch (s->sew) { 2284 case 1: 2285 gen_check_nanbox_h(out, in); 2286 break; 2287 case 2: 2288 gen_check_nanbox_s(out, in); 2289 break; 2290 case 3: 2291 tcg_gen_mov_i64(out, in); 2292 break; 2293 default: 2294 g_assert_not_reached(); 2295 } 2296} 2297 2298/* Vector Single-Width Floating-Point Add/Subtract Instructions */ 2299 2300/* 2301 * If the current SEW does not correspond to a supported IEEE floating-point 2302 * type, an illegal instruction exception is raised. 2303 */ 2304static bool opfvv_check(DisasContext *s, arg_rmrr *a) 2305{ 2306 return require_rvv(s) && 2307 require_rvf(s) && 2308 vext_check_isa_ill(s) && 2309 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 2310} 2311 2312/* OPFVV without GVEC IR */ 2313#define GEN_OPFVV_TRANS(NAME, CHECK) \ 2314static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2315{ \ 2316 if (CHECK(s, a)) { \ 2317 uint32_t data = 0; \ 2318 static gen_helper_gvec_4_ptr * const fns[3] = { \ 2319 gen_helper_##NAME##_h, \ 2320 gen_helper_##NAME##_w, \ 2321 gen_helper_##NAME##_d, \ 2322 }; \ 2323 gen_set_rm(s, RISCV_FRM_DYN); \ 2324 \ 2325 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2326 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2327 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2328 data = \ 2329 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 2330 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2331 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2332 vreg_ofs(s, a->rs1), \ 2333 vreg_ofs(s, a->rs2), tcg_env, \ 2334 s->cfg_ptr->vlenb, \ 2335 s->cfg_ptr->vlenb, data, \ 2336 fns[s->sew - 1]); \ 2337 finalize_rvv_inst(s); \ 2338 return true; \ 2339 } \ 2340 return false; \ 2341} 2342GEN_OPFVV_TRANS(vfadd_vv, opfvv_check) 2343GEN_OPFVV_TRANS(vfsub_vv, opfvv_check) 2344 2345typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr, 2346 TCGv_env, TCGv_i32); 2347 2348static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 2349 uint32_t data, gen_helper_opfvf *fn, DisasContext *s) 2350{ 2351 TCGv_ptr dest, src2, mask; 2352 TCGv_i32 desc; 2353 TCGv_i64 t1; 2354 2355 dest = tcg_temp_new_ptr(); 2356 mask = tcg_temp_new_ptr(); 2357 src2 = tcg_temp_new_ptr(); 2358 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, 2359 s->cfg_ptr->vlenb, data)); 2360 2361 tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, vd)); 2362 tcg_gen_addi_ptr(src2, tcg_env, vreg_ofs(s, vs2)); 2363 tcg_gen_addi_ptr(mask, tcg_env, vreg_ofs(s, 0)); 2364 2365 /* NaN-box f[rs1] */ 2366 t1 = tcg_temp_new_i64(); 2367 do_nanbox(s, t1, cpu_fpr[rs1]); 2368 2369 fn(dest, mask, t1, src2, tcg_env, desc); 2370 2371 finalize_rvv_inst(s); 2372 return true; 2373} 2374 2375/* 2376 * If the current SEW does not correspond to a supported IEEE floating-point 2377 * type, an illegal instruction exception is raised 2378 */ 2379static bool opfvf_check(DisasContext *s, arg_rmrr *a) 2380{ 2381 return require_rvv(s) && 2382 require_rvf(s) && 2383 vext_check_isa_ill(s) && 2384 vext_check_ss(s, a->rd, a->rs2, a->vm); 2385} 2386 2387/* OPFVF without GVEC IR */ 2388#define GEN_OPFVF_TRANS(NAME, CHECK) \ 2389static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2390{ \ 2391 if (CHECK(s, a)) { \ 2392 uint32_t data = 0; \ 2393 static gen_helper_opfvf *const fns[3] = { \ 2394 gen_helper_##NAME##_h, \ 2395 gen_helper_##NAME##_w, \ 2396 gen_helper_##NAME##_d, \ 2397 }; \ 2398 gen_set_rm(s, RISCV_FRM_DYN); \ 2399 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2400 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2401 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2402 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, \ 2403 s->cfg_vta_all_1s); \ 2404 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2405 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2406 fns[s->sew - 1], s); \ 2407 } \ 2408 return false; \ 2409} 2410 2411GEN_OPFVF_TRANS(vfadd_vf, opfvf_check) 2412GEN_OPFVF_TRANS(vfsub_vf, opfvf_check) 2413GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check) 2414 2415/* Vector Widening Floating-Point Add/Subtract Instructions */ 2416static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a) 2417{ 2418 return require_rvv(s) && 2419 require_rvf(s) && 2420 require_scale_rvf(s) && 2421 vext_check_isa_ill(s) && 2422 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 2423} 2424 2425static bool opfvv_overwrite_widen_check(DisasContext *s, arg_rmrr *a) 2426{ 2427 return require_rvv(s) && 2428 require_rvf(s) && 2429 require_scale_rvf(s) && 2430 vext_check_isa_ill(s) && 2431 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm) && 2432 vext_check_input_eew(s, a->rd, s->sew + 1, a->rs1, s->sew, a->vm) && 2433 vext_check_input_eew(s, a->rd, s->sew + 1, a->rs2, s->sew, a->vm); 2434} 2435 2436/* OPFVV with WIDEN */ 2437#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \ 2438static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2439{ \ 2440 if (CHECK(s, a)) { \ 2441 uint32_t data = 0; \ 2442 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2443 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2444 }; \ 2445 gen_set_rm(s, RISCV_FRM_DYN); \ 2446 \ 2447 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2448 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2449 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2450 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2451 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2452 vreg_ofs(s, a->rs1), \ 2453 vreg_ofs(s, a->rs2), tcg_env, \ 2454 s->cfg_ptr->vlenb, \ 2455 s->cfg_ptr->vlenb, data, \ 2456 fns[s->sew - 1]); \ 2457 finalize_rvv_inst(s); \ 2458 return true; \ 2459 } \ 2460 return false; \ 2461} 2462 2463GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check) 2464GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check) 2465 2466static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a) 2467{ 2468 return require_rvv(s) && 2469 require_rvf(s) && 2470 require_scale_rvf(s) && 2471 vext_check_isa_ill(s) && 2472 vext_check_ds(s, a->rd, a->rs2, a->vm); 2473} 2474 2475static bool opfvf_overwrite_widen_check(DisasContext *s, arg_rmrr *a) 2476{ 2477 return require_rvv(s) && 2478 require_rvf(s) && 2479 require_scale_rvf(s) && 2480 vext_check_isa_ill(s) && 2481 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2482 vext_check_input_eew(s, a->rd, s->sew + 1, a->rs2, s->sew, a->vm); 2483} 2484 2485/* OPFVF with WIDEN */ 2486#define GEN_OPFVF_WIDEN_TRANS(NAME, CHECK) \ 2487static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2488{ \ 2489 if (CHECK(s, a)) { \ 2490 uint32_t data = 0; \ 2491 static gen_helper_opfvf *const fns[2] = { \ 2492 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2493 }; \ 2494 gen_set_rm(s, RISCV_FRM_DYN); \ 2495 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2496 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2497 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2498 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2499 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2500 fns[s->sew - 1], s); \ 2501 } \ 2502 return false; \ 2503} 2504 2505GEN_OPFVF_WIDEN_TRANS(vfwadd_vf, opfvf_widen_check) 2506GEN_OPFVF_WIDEN_TRANS(vfwsub_vf, opfvf_widen_check) 2507 2508static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a) 2509{ 2510 return require_rvv(s) && 2511 require_rvf(s) && 2512 require_scale_rvf(s) && 2513 vext_check_isa_ill(s) && 2514 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 2515} 2516 2517/* WIDEN OPFVV with WIDEN */ 2518#define GEN_OPFWV_WIDEN_TRANS(NAME) \ 2519static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2520{ \ 2521 if (opfwv_widen_check(s, a)) { \ 2522 uint32_t data = 0; \ 2523 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2524 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2525 }; \ 2526 gen_set_rm(s, RISCV_FRM_DYN); \ 2527 \ 2528 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2529 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2530 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2531 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2532 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2533 vreg_ofs(s, a->rs1), \ 2534 vreg_ofs(s, a->rs2), tcg_env, \ 2535 s->cfg_ptr->vlenb, \ 2536 s->cfg_ptr->vlenb, data, \ 2537 fns[s->sew - 1]); \ 2538 finalize_rvv_inst(s); \ 2539 return true; \ 2540 } \ 2541 return false; \ 2542} 2543 2544GEN_OPFWV_WIDEN_TRANS(vfwadd_wv) 2545GEN_OPFWV_WIDEN_TRANS(vfwsub_wv) 2546 2547static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a) 2548{ 2549 return require_rvv(s) && 2550 require_rvf(s) && 2551 require_scale_rvf(s) && 2552 vext_check_isa_ill(s) && 2553 vext_check_dd(s, a->rd, a->rs2, a->vm); 2554} 2555 2556/* WIDEN OPFVF with WIDEN */ 2557#define GEN_OPFWF_WIDEN_TRANS(NAME) \ 2558static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2559{ \ 2560 if (opfwf_widen_check(s, a)) { \ 2561 uint32_t data = 0; \ 2562 static gen_helper_opfvf *const fns[2] = { \ 2563 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2564 }; \ 2565 gen_set_rm(s, RISCV_FRM_DYN); \ 2566 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2567 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2568 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2569 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2570 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2571 fns[s->sew - 1], s); \ 2572 } \ 2573 return false; \ 2574} 2575 2576GEN_OPFWF_WIDEN_TRANS(vfwadd_wf) 2577GEN_OPFWF_WIDEN_TRANS(vfwsub_wf) 2578 2579/* Vector Single-Width Floating-Point Multiply/Divide Instructions */ 2580GEN_OPFVV_TRANS(vfmul_vv, opfvv_check) 2581GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check) 2582GEN_OPFVF_TRANS(vfmul_vf, opfvf_check) 2583GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check) 2584GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check) 2585 2586/* Vector Widening Floating-Point Multiply */ 2587GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check) 2588GEN_OPFVF_WIDEN_TRANS(vfwmul_vf, opfvf_widen_check) 2589 2590/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ 2591GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check) 2592GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check) 2593GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check) 2594GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check) 2595GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check) 2596GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check) 2597GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check) 2598GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check) 2599GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check) 2600GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check) 2601GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check) 2602GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check) 2603GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check) 2604GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check) 2605GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check) 2606GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check) 2607 2608/* Vector Widening Floating-Point Fused Multiply-Add Instructions */ 2609GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_overwrite_widen_check) 2610GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_overwrite_widen_check) 2611GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_overwrite_widen_check) 2612GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_overwrite_widen_check) 2613GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf, opfvf_overwrite_widen_check) 2614GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf, opfvf_overwrite_widen_check) 2615GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf, opfvf_overwrite_widen_check) 2616GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf, opfvf_overwrite_widen_check) 2617 2618/* Vector Floating-Point Square-Root Instruction */ 2619 2620/* 2621 * If the current SEW does not correspond to a supported IEEE floating-point 2622 * type, an illegal instruction exception is raised 2623 */ 2624static bool opfv_check(DisasContext *s, arg_rmr *a) 2625{ 2626 return require_rvv(s) && 2627 require_rvf(s) && 2628 vext_check_isa_ill(s) && 2629 /* OPFV instructions ignore vs1 check */ 2630 vext_check_ss(s, a->rd, a->rs2, a->vm); 2631} 2632 2633static bool do_opfv(DisasContext *s, arg_rmr *a, 2634 gen_helper_gvec_3_ptr *fn, 2635 bool (*checkfn)(DisasContext *, arg_rmr *), 2636 int rm) 2637{ 2638 if (checkfn(s, a)) { 2639 uint32_t data = 0; 2640 gen_set_rm_chkfrm(s, rm); 2641 2642 data = FIELD_DP32(data, VDATA, VM, a->vm); 2643 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2644 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2645 data = FIELD_DP32(data, VDATA, VMA, s->vma); 2646 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2647 vreg_ofs(s, a->rs2), tcg_env, 2648 s->cfg_ptr->vlenb, 2649 s->cfg_ptr->vlenb, data, fn); 2650 finalize_rvv_inst(s); 2651 return true; 2652 } 2653 return false; 2654} 2655 2656#define GEN_OPFV_TRANS(NAME, CHECK, FRM) \ 2657static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2658{ \ 2659 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2660 gen_helper_##NAME##_h, \ 2661 gen_helper_##NAME##_w, \ 2662 gen_helper_##NAME##_d \ 2663 }; \ 2664 return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \ 2665} 2666 2667GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN) 2668GEN_OPFV_TRANS(vfrsqrt7_v, opfv_check, RISCV_FRM_DYN) 2669GEN_OPFV_TRANS(vfrec7_v, opfv_check, RISCV_FRM_DYN) 2670 2671/* Vector Floating-Point MIN/MAX Instructions */ 2672GEN_OPFVV_TRANS(vfmin_vv, opfvv_check) 2673GEN_OPFVV_TRANS(vfmax_vv, opfvv_check) 2674GEN_OPFVF_TRANS(vfmin_vf, opfvf_check) 2675GEN_OPFVF_TRANS(vfmax_vf, opfvf_check) 2676 2677/* Vector Floating-Point Sign-Injection Instructions */ 2678GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check) 2679GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check) 2680GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check) 2681GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check) 2682GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check) 2683GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check) 2684 2685/* Vector Floating-Point Compare Instructions */ 2686static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a) 2687{ 2688 return require_rvv(s) && 2689 require_rvf(s) && 2690 vext_check_isa_ill(s) && 2691 vext_check_mss(s, a->rd, a->rs1, a->rs2); 2692} 2693 2694GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check) 2695GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check) 2696GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check) 2697GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check) 2698 2699static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a) 2700{ 2701 return require_rvv(s) && 2702 require_rvf(s) && 2703 vext_check_isa_ill(s) && 2704 vext_check_ms(s, a->rd, a->rs2); 2705} 2706 2707GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check) 2708GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check) 2709GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check) 2710GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check) 2711GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check) 2712GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check) 2713 2714/* Vector Floating-Point Classify Instruction */ 2715GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN) 2716 2717/* Vector Floating-Point Merge Instruction */ 2718GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check) 2719 2720static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a) 2721{ 2722 if (require_rvv(s) && 2723 require_rvf(s) && 2724 vext_check_isa_ill(s) && 2725 require_align(a->rd, s->lmul)) { 2726 gen_set_rm(s, RISCV_FRM_DYN); 2727 2728 TCGv_i64 t1; 2729 2730 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2731 t1 = tcg_temp_new_i64(); 2732 /* NaN-box f[rs1] */ 2733 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2734 2735 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2736 MAXSZ(s), MAXSZ(s), t1); 2737 } else { 2738 TCGv_ptr dest; 2739 TCGv_i32 desc; 2740 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2741 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2742 data = FIELD_DP32(data, VDATA, VMA, s->vma); 2743 static gen_helper_vmv_vx * const fns[3] = { 2744 gen_helper_vmv_v_x_h, 2745 gen_helper_vmv_v_x_w, 2746 gen_helper_vmv_v_x_d, 2747 }; 2748 2749 t1 = tcg_temp_new_i64(); 2750 /* NaN-box f[rs1] */ 2751 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2752 2753 dest = tcg_temp_new_ptr(); 2754 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, 2755 s->cfg_ptr->vlenb, data)); 2756 tcg_gen_addi_ptr(dest, tcg_env, vreg_ofs(s, a->rd)); 2757 2758 fns[s->sew - 1](dest, t1, tcg_env, desc); 2759 } 2760 finalize_rvv_inst(s); 2761 return true; 2762 } 2763 return false; 2764} 2765 2766/* Single-Width Floating-Point/Integer Type-Convert Instructions */ 2767#define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \ 2768static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2769{ \ 2770 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2771 gen_helper_##HELPER##_h, \ 2772 gen_helper_##HELPER##_w, \ 2773 gen_helper_##HELPER##_d \ 2774 }; \ 2775 return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \ 2776} 2777 2778GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN) 2779GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN) 2780GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN) 2781GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN) 2782/* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */ 2783GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ) 2784GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ) 2785 2786/* Widening Floating-Point/Integer Type-Convert Instructions */ 2787 2788/* 2789 * If the current SEW does not correspond to a supported IEEE floating-point 2790 * type, an illegal instruction exception is raised 2791 */ 2792static bool opfv_widen_check(DisasContext *s, arg_rmr *a) 2793{ 2794 return require_rvv(s) && 2795 vext_check_isa_ill(s) && 2796 vext_check_ds(s, a->rd, a->rs2, a->vm); 2797} 2798 2799static bool opxfv_widen_check(DisasContext *s, arg_rmr *a) 2800{ 2801 return opfv_widen_check(s, a) && 2802 require_rvf(s); 2803} 2804 2805static bool opffv_widen_check(DisasContext *s, arg_rmr *a) 2806{ 2807 return opfv_widen_check(s, a) && 2808 require_rvfmin(s) && 2809 require_scale_rvfmin(s); 2810} 2811 2812#define GEN_OPFV_WIDEN_TRANS(NAME, CHECK, HELPER, FRM) \ 2813static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2814{ \ 2815 if (CHECK(s, a)) { \ 2816 uint32_t data = 0; \ 2817 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2818 gen_helper_##HELPER##_h, \ 2819 gen_helper_##HELPER##_w, \ 2820 }; \ 2821 gen_set_rm_chkfrm(s, FRM); \ 2822 \ 2823 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2824 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2825 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2826 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2827 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2828 vreg_ofs(s, a->rs2), tcg_env, \ 2829 s->cfg_ptr->vlenb, \ 2830 s->cfg_ptr->vlenb, data, \ 2831 fns[s->sew - 1]); \ 2832 finalize_rvv_inst(s); \ 2833 return true; \ 2834 } \ 2835 return false; \ 2836} 2837 2838GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2839 RISCV_FRM_DYN) 2840GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2841 RISCV_FRM_DYN) 2842GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, opffv_widen_check, vfwcvt_f_f_v, 2843 RISCV_FRM_DYN) 2844/* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */ 2845GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2846 RISCV_FRM_RTZ) 2847GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2848 RISCV_FRM_RTZ) 2849 2850static bool opfxv_widen_check(DisasContext *s, arg_rmr *a) 2851{ 2852 return require_rvv(s) && 2853 require_scale_rvf(s) && 2854 vext_check_isa_ill(s) && 2855 /* OPFV widening instructions ignore vs1 check */ 2856 vext_check_ds(s, a->rd, a->rs2, a->vm); 2857} 2858 2859#define GEN_OPFXV_WIDEN_TRANS(NAME) \ 2860static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2861{ \ 2862 if (opfxv_widen_check(s, a)) { \ 2863 uint32_t data = 0; \ 2864 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2865 gen_helper_##NAME##_b, \ 2866 gen_helper_##NAME##_h, \ 2867 gen_helper_##NAME##_w, \ 2868 }; \ 2869 gen_set_rm(s, RISCV_FRM_DYN); \ 2870 \ 2871 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2872 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2873 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2874 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2875 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2876 vreg_ofs(s, a->rs2), tcg_env, \ 2877 s->cfg_ptr->vlenb, \ 2878 s->cfg_ptr->vlenb, data, \ 2879 fns[s->sew]); \ 2880 finalize_rvv_inst(s); \ 2881 return true; \ 2882 } \ 2883 return false; \ 2884} 2885 2886GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v) 2887GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v) 2888 2889/* Narrowing Floating-Point/Integer Type-Convert Instructions */ 2890 2891/* 2892 * If the current SEW does not correspond to a supported IEEE floating-point 2893 * type, an illegal instruction exception is raised 2894 */ 2895static bool opfv_narrow_check(DisasContext *s, arg_rmr *a) 2896{ 2897 return require_rvv(s) && 2898 vext_check_isa_ill(s) && 2899 /* OPFV narrowing instructions ignore vs1 check */ 2900 vext_check_sd(s, a->rd, a->rs2, a->vm); 2901} 2902 2903static bool opfxv_narrow_check(DisasContext *s, arg_rmr *a) 2904{ 2905 return opfv_narrow_check(s, a) && 2906 require_rvf(s) && 2907 (s->sew != MO_64); 2908} 2909 2910static bool opffv_narrow_check(DisasContext *s, arg_rmr *a) 2911{ 2912 return opfv_narrow_check(s, a) && 2913 require_rvfmin(s) && 2914 require_scale_rvfmin(s); 2915} 2916 2917static bool opffv_rod_narrow_check(DisasContext *s, arg_rmr *a) 2918{ 2919 return opfv_narrow_check(s, a) && 2920 require_rvf(s) && 2921 require_scale_rvf(s); 2922} 2923 2924#define GEN_OPFV_NARROW_TRANS(NAME, CHECK, HELPER, FRM) \ 2925static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2926{ \ 2927 if (CHECK(s, a)) { \ 2928 uint32_t data = 0; \ 2929 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2930 gen_helper_##HELPER##_h, \ 2931 gen_helper_##HELPER##_w, \ 2932 }; \ 2933 gen_set_rm_chkfrm(s, FRM); \ 2934 \ 2935 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2936 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2937 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2938 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2939 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2940 vreg_ofs(s, a->rs2), tcg_env, \ 2941 s->cfg_ptr->vlenb, \ 2942 s->cfg_ptr->vlenb, data, \ 2943 fns[s->sew - 1]); \ 2944 finalize_rvv_inst(s); \ 2945 return true; \ 2946 } \ 2947 return false; \ 2948} 2949 2950GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, opfxv_narrow_check, vfncvt_f_xu_w, 2951 RISCV_FRM_DYN) 2952GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, opfxv_narrow_check, vfncvt_f_x_w, 2953 RISCV_FRM_DYN) 2954GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 2955 RISCV_FRM_DYN) 2956/* Reuse the helper function from vfncvt.f.f.w */ 2957GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, opffv_rod_narrow_check, vfncvt_f_f_w, 2958 RISCV_FRM_ROD) 2959 2960static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a) 2961{ 2962 return require_rvv(s) && 2963 require_scale_rvf(s) && 2964 vext_check_isa_ill(s) && 2965 /* OPFV narrowing instructions ignore vs1 check */ 2966 vext_check_sd(s, a->rd, a->rs2, a->vm); 2967} 2968 2969#define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \ 2970static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2971{ \ 2972 if (opxfv_narrow_check(s, a)) { \ 2973 uint32_t data = 0; \ 2974 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2975 gen_helper_##HELPER##_b, \ 2976 gen_helper_##HELPER##_h, \ 2977 gen_helper_##HELPER##_w, \ 2978 }; \ 2979 gen_set_rm_chkfrm(s, FRM); \ 2980 \ 2981 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2982 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2983 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2984 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2985 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2986 vreg_ofs(s, a->rs2), tcg_env, \ 2987 s->cfg_ptr->vlenb, \ 2988 s->cfg_ptr->vlenb, data, \ 2989 fns[s->sew]); \ 2990 finalize_rvv_inst(s); \ 2991 return true; \ 2992 } \ 2993 return false; \ 2994} 2995 2996GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN) 2997GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN) 2998/* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */ 2999GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ) 3000GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ) 3001 3002/* 3003 *** Vector Reduction Operations 3004 */ 3005/* Vector Single-Width Integer Reduction Instructions */ 3006static bool reduction_check(DisasContext *s, arg_rmrr *a) 3007{ 3008 return require_rvv(s) && 3009 vext_check_isa_ill(s) && 3010 vext_check_reduction(s, a->rs2); 3011} 3012 3013GEN_OPIVV_TRANS(vredsum_vs, reduction_check) 3014GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check) 3015GEN_OPIVV_TRANS(vredmax_vs, reduction_check) 3016GEN_OPIVV_TRANS(vredminu_vs, reduction_check) 3017GEN_OPIVV_TRANS(vredmin_vs, reduction_check) 3018GEN_OPIVV_TRANS(vredand_vs, reduction_check) 3019GEN_OPIVV_TRANS(vredor_vs, reduction_check) 3020GEN_OPIVV_TRANS(vredxor_vs, reduction_check) 3021 3022/* Vector Widening Integer Reduction Instructions */ 3023static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) 3024{ 3025 return reduction_check(s, a) && (s->sew < MO_64) && 3026 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)); 3027} 3028 3029GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) 3030GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check) 3031 3032/* Vector Single-Width Floating-Point Reduction Instructions */ 3033static bool freduction_check(DisasContext *s, arg_rmrr *a) 3034{ 3035 return reduction_check(s, a) && 3036 require_rvf(s); 3037} 3038 3039GEN_OPFVV_TRANS(vfredusum_vs, freduction_check) 3040GEN_OPFVV_TRANS(vfredosum_vs, freduction_check) 3041GEN_OPFVV_TRANS(vfredmax_vs, freduction_check) 3042GEN_OPFVV_TRANS(vfredmin_vs, freduction_check) 3043 3044/* Vector Widening Floating-Point Reduction Instructions */ 3045static bool freduction_widen_check(DisasContext *s, arg_rmrr *a) 3046{ 3047 return reduction_widen_check(s, a) && 3048 require_rvf(s) && 3049 require_scale_rvf(s); 3050} 3051 3052GEN_OPFVV_WIDEN_TRANS(vfwredusum_vs, freduction_widen_check) 3053GEN_OPFVV_WIDEN_TRANS(vfwredosum_vs, freduction_widen_check) 3054 3055/* 3056 *** Vector Mask Operations 3057 */ 3058 3059/* Vector Mask-Register Logical Instructions */ 3060#define GEN_MM_TRANS(NAME) \ 3061static bool trans_##NAME(DisasContext *s, arg_r *a) \ 3062{ \ 3063 if (require_rvv(s) && \ 3064 vext_check_isa_ill(s)) { \ 3065 uint32_t data = 0; \ 3066 gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \ 3067 \ 3068 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3069 data = \ 3070 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 3071 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3072 vreg_ofs(s, a->rs1), \ 3073 vreg_ofs(s, a->rs2), tcg_env, \ 3074 s->cfg_ptr->vlenb, \ 3075 s->cfg_ptr->vlenb, data, fn); \ 3076 finalize_rvv_inst(s); \ 3077 return true; \ 3078 } \ 3079 return false; \ 3080} 3081 3082GEN_MM_TRANS(vmand_mm) 3083GEN_MM_TRANS(vmnand_mm) 3084GEN_MM_TRANS(vmandn_mm) 3085GEN_MM_TRANS(vmxor_mm) 3086GEN_MM_TRANS(vmor_mm) 3087GEN_MM_TRANS(vmnor_mm) 3088GEN_MM_TRANS(vmorn_mm) 3089GEN_MM_TRANS(vmxnor_mm) 3090 3091/* Vector count population in mask vcpop */ 3092static bool trans_vcpop_m(DisasContext *s, arg_rmr *a) 3093{ 3094 if (require_rvv(s) && 3095 vext_check_isa_ill(s) && 3096 s->vstart_eq_zero) { 3097 TCGv_ptr src2, mask; 3098 TCGv dst; 3099 TCGv_i32 desc; 3100 uint32_t data = 0; 3101 data = FIELD_DP32(data, VDATA, VM, a->vm); 3102 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3103 3104 mask = tcg_temp_new_ptr(); 3105 src2 = tcg_temp_new_ptr(); 3106 dst = dest_gpr(s, a->rd); 3107 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, 3108 s->cfg_ptr->vlenb, data)); 3109 3110 tcg_gen_addi_ptr(src2, tcg_env, vreg_ofs(s, a->rs2)); 3111 tcg_gen_addi_ptr(mask, tcg_env, vreg_ofs(s, 0)); 3112 3113 gen_helper_vcpop_m(dst, mask, src2, tcg_env, desc); 3114 gen_set_gpr(s, a->rd, dst); 3115 return true; 3116 } 3117 return false; 3118} 3119 3120/* vmfirst find-first-set mask bit */ 3121static bool trans_vfirst_m(DisasContext *s, arg_rmr *a) 3122{ 3123 if (require_rvv(s) && 3124 vext_check_isa_ill(s) && 3125 s->vstart_eq_zero) { 3126 TCGv_ptr src2, mask; 3127 TCGv dst; 3128 TCGv_i32 desc; 3129 uint32_t data = 0; 3130 data = FIELD_DP32(data, VDATA, VM, a->vm); 3131 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3132 3133 mask = tcg_temp_new_ptr(); 3134 src2 = tcg_temp_new_ptr(); 3135 dst = dest_gpr(s, a->rd); 3136 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlenb, 3137 s->cfg_ptr->vlenb, data)); 3138 3139 tcg_gen_addi_ptr(src2, tcg_env, vreg_ofs(s, a->rs2)); 3140 tcg_gen_addi_ptr(mask, tcg_env, vreg_ofs(s, 0)); 3141 3142 gen_helper_vfirst_m(dst, mask, src2, tcg_env, desc); 3143 gen_set_gpr(s, a->rd, dst); 3144 return true; 3145 } 3146 return false; 3147} 3148 3149/* 3150 * vmsbf.m set-before-first mask bit 3151 * vmsif.m set-including-first mask bit 3152 * vmsof.m set-only-first mask bit 3153 */ 3154#define GEN_M_TRANS(NAME) \ 3155static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3156{ \ 3157 if (require_rvv(s) && \ 3158 vext_check_isa_ill(s) && \ 3159 require_vm(a->vm, a->rd) && \ 3160 (a->rd != a->rs2) && \ 3161 s->vstart_eq_zero) { \ 3162 uint32_t data = 0; \ 3163 gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \ 3164 \ 3165 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3166 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3167 data = \ 3168 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 3169 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 3170 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ 3171 vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ 3172 tcg_env, s->cfg_ptr->vlenb, \ 3173 s->cfg_ptr->vlenb, \ 3174 data, fn); \ 3175 finalize_rvv_inst(s); \ 3176 return true; \ 3177 } \ 3178 return false; \ 3179} 3180 3181GEN_M_TRANS(vmsbf_m) 3182GEN_M_TRANS(vmsif_m) 3183GEN_M_TRANS(vmsof_m) 3184 3185/* 3186 * Vector Iota Instruction 3187 * 3188 * 1. The destination register cannot overlap the source register. 3189 * 2. If masked, cannot overlap the mask register ('v0'). 3190 * 3. An illegal instruction exception is raised if vstart is non-zero. 3191 */ 3192static bool trans_viota_m(DisasContext *s, arg_viota_m *a) 3193{ 3194 if (require_rvv(s) && 3195 vext_check_isa_ill(s) && 3196 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) && 3197 require_vm(a->vm, a->rd) && 3198 require_align(a->rd, s->lmul) && 3199 s->vstart_eq_zero) { 3200 uint32_t data = 0; 3201 3202 data = FIELD_DP32(data, VDATA, VM, a->vm); 3203 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3204 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3205 data = FIELD_DP32(data, VDATA, VMA, s->vma); 3206 static gen_helper_gvec_3_ptr * const fns[4] = { 3207 gen_helper_viota_m_b, gen_helper_viota_m_h, 3208 gen_helper_viota_m_w, gen_helper_viota_m_d, 3209 }; 3210 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3211 vreg_ofs(s, a->rs2), tcg_env, 3212 s->cfg_ptr->vlenb, 3213 s->cfg_ptr->vlenb, data, fns[s->sew]); 3214 finalize_rvv_inst(s); 3215 return true; 3216 } 3217 return false; 3218} 3219 3220/* Vector Element Index Instruction */ 3221static bool trans_vid_v(DisasContext *s, arg_vid_v *a) 3222{ 3223 if (require_rvv(s) && 3224 vext_check_isa_ill(s) && 3225 require_align(a->rd, s->lmul) && 3226 require_vm(a->vm, a->rd)) { 3227 uint32_t data = 0; 3228 3229 data = FIELD_DP32(data, VDATA, VM, a->vm); 3230 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3231 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3232 data = FIELD_DP32(data, VDATA, VMA, s->vma); 3233 static gen_helper_gvec_2_ptr * const fns[4] = { 3234 gen_helper_vid_v_b, gen_helper_vid_v_h, 3235 gen_helper_vid_v_w, gen_helper_vid_v_d, 3236 }; 3237 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3238 tcg_env, s->cfg_ptr->vlenb, 3239 s->cfg_ptr->vlenb, 3240 data, fns[s->sew]); 3241 finalize_rvv_inst(s); 3242 return true; 3243 } 3244 return false; 3245} 3246 3247/* 3248 *** Vector Permutation Instructions 3249 */ 3250 3251static void load_element(TCGv_i64 dest, TCGv_ptr base, 3252 int ofs, int sew, bool sign) 3253{ 3254 switch (sew) { 3255 case MO_8: 3256 if (!sign) { 3257 tcg_gen_ld8u_i64(dest, base, ofs); 3258 } else { 3259 tcg_gen_ld8s_i64(dest, base, ofs); 3260 } 3261 break; 3262 case MO_16: 3263 if (!sign) { 3264 tcg_gen_ld16u_i64(dest, base, ofs); 3265 } else { 3266 tcg_gen_ld16s_i64(dest, base, ofs); 3267 } 3268 break; 3269 case MO_32: 3270 if (!sign) { 3271 tcg_gen_ld32u_i64(dest, base, ofs); 3272 } else { 3273 tcg_gen_ld32s_i64(dest, base, ofs); 3274 } 3275 break; 3276 case MO_64: 3277 tcg_gen_ld_i64(dest, base, ofs); 3278 break; 3279 default: 3280 g_assert_not_reached(); 3281 } 3282} 3283 3284/* offset of the idx element with base register r */ 3285static uint32_t endian_ofs(DisasContext *s, int r, int idx) 3286{ 3287#if HOST_BIG_ENDIAN 3288 return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew); 3289#else 3290 return vreg_ofs(s, r) + (idx << s->sew); 3291#endif 3292} 3293 3294/* adjust the index according to the endian */ 3295static void endian_adjust(TCGv_i32 ofs, int sew) 3296{ 3297#if HOST_BIG_ENDIAN 3298 tcg_gen_xori_i32(ofs, ofs, 7 >> sew); 3299#endif 3300} 3301 3302/* Load idx >= VLMAX ? 0 : vreg[idx] */ 3303static void vec_element_loadx(DisasContext *s, TCGv_i64 dest, 3304 int vreg, TCGv idx, int vlmax) 3305{ 3306 TCGv_i32 ofs = tcg_temp_new_i32(); 3307 TCGv_ptr base = tcg_temp_new_ptr(); 3308 TCGv_i64 t_idx = tcg_temp_new_i64(); 3309 TCGv_i64 t_vlmax, t_zero; 3310 3311 /* 3312 * Mask the index to the length so that we do 3313 * not produce an out-of-range load. 3314 */ 3315 tcg_gen_trunc_tl_i32(ofs, idx); 3316 tcg_gen_andi_i32(ofs, ofs, vlmax - 1); 3317 3318 /* Convert the index to an offset. */ 3319 endian_adjust(ofs, s->sew); 3320 tcg_gen_shli_i32(ofs, ofs, s->sew); 3321 3322 /* Convert the index to a pointer. */ 3323 tcg_gen_ext_i32_ptr(base, ofs); 3324 tcg_gen_add_ptr(base, base, tcg_env); 3325 3326 /* Perform the load. */ 3327 load_element(dest, base, 3328 vreg_ofs(s, vreg), s->sew, false); 3329 3330 /* Flush out-of-range indexing to zero. */ 3331 t_vlmax = tcg_constant_i64(vlmax); 3332 t_zero = tcg_constant_i64(0); 3333 tcg_gen_extu_tl_i64(t_idx, idx); 3334 3335 tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx, 3336 t_vlmax, dest, t_zero); 3337} 3338 3339static void vec_element_loadi(DisasContext *s, TCGv_i64 dest, 3340 int vreg, int idx, bool sign) 3341{ 3342 load_element(dest, tcg_env, endian_ofs(s, vreg, idx), s->sew, sign); 3343} 3344 3345/* Integer Scalar Move Instruction */ 3346 3347static void store_element(TCGv_i64 val, TCGv_ptr base, 3348 int ofs, int sew) 3349{ 3350 switch (sew) { 3351 case MO_8: 3352 tcg_gen_st8_i64(val, base, ofs); 3353 break; 3354 case MO_16: 3355 tcg_gen_st16_i64(val, base, ofs); 3356 break; 3357 case MO_32: 3358 tcg_gen_st32_i64(val, base, ofs); 3359 break; 3360 case MO_64: 3361 tcg_gen_st_i64(val, base, ofs); 3362 break; 3363 default: 3364 g_assert_not_reached(); 3365 } 3366} 3367 3368/* 3369 * Store vreg[idx] = val. 3370 * The index must be in range of VLMAX. 3371 */ 3372static void vec_element_storei(DisasContext *s, int vreg, 3373 int idx, TCGv_i64 val) 3374{ 3375 store_element(val, tcg_env, endian_ofs(s, vreg, idx), s->sew); 3376} 3377 3378/* vmv.x.s rd, vs2 # x[rd] = vs2[0] */ 3379static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a) 3380{ 3381 if (require_rvv(s) && 3382 vext_check_isa_ill(s)) { 3383 TCGv_i64 t1; 3384 TCGv dest; 3385 3386 t1 = tcg_temp_new_i64(); 3387 dest = tcg_temp_new(); 3388 /* 3389 * load vreg and sign-extend to 64 bits, 3390 * then truncate to XLEN bits before storing to gpr. 3391 */ 3392 vec_element_loadi(s, t1, a->rs2, 0, true); 3393 tcg_gen_trunc_i64_tl(dest, t1); 3394 gen_set_gpr(s, a->rd, dest); 3395 tcg_gen_movi_tl(cpu_vstart, 0); 3396 finalize_rvv_inst(s); 3397 return true; 3398 } 3399 return false; 3400} 3401 3402/* vmv.s.x vd, rs1 # vd[0] = rs1 */ 3403static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a) 3404{ 3405 if (require_rvv(s) && 3406 vext_check_isa_ill(s)) { 3407 /* This instruction ignores LMUL and vector register groups */ 3408 TCGv_i64 t1; 3409 TCGv s1; 3410 TCGLabel *over = gen_new_label(); 3411 3412 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3413 3414 t1 = tcg_temp_new_i64(); 3415 3416 /* 3417 * load gpr and sign-extend to 64 bits, 3418 * then truncate to SEW bits when storing to vreg. 3419 */ 3420 s1 = get_gpr(s, a->rs1, EXT_NONE); 3421 tcg_gen_ext_tl_i64(t1, s1); 3422 vec_element_storei(s, a->rd, 0, t1); 3423 gen_set_label(over); 3424 tcg_gen_movi_tl(cpu_vstart, 0); 3425 finalize_rvv_inst(s); 3426 return true; 3427 } 3428 return false; 3429} 3430 3431/* Floating-Point Scalar Move Instructions */ 3432static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a) 3433{ 3434 if (require_rvv(s) && 3435 require_rvf(s) && 3436 vext_check_isa_ill(s)) { 3437 gen_set_rm(s, RISCV_FRM_DYN); 3438 3439 unsigned int ofs = (8 << s->sew); 3440 unsigned int len = 64 - ofs; 3441 TCGv_i64 t_nan; 3442 3443 vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false); 3444 /* NaN-box f[rd] as necessary for SEW */ 3445 if (len) { 3446 t_nan = tcg_constant_i64(UINT64_MAX); 3447 tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd], 3448 t_nan, ofs, len); 3449 } 3450 3451 mark_fs_dirty(s); 3452 tcg_gen_movi_tl(cpu_vstart, 0); 3453 finalize_rvv_inst(s); 3454 return true; 3455 } 3456 return false; 3457} 3458 3459/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */ 3460static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a) 3461{ 3462 if (require_rvv(s) && 3463 require_rvf(s) && 3464 vext_check_isa_ill(s)) { 3465 gen_set_rm(s, RISCV_FRM_DYN); 3466 3467 /* The instructions ignore LMUL and vector register group. */ 3468 TCGv_i64 t1; 3469 TCGLabel *over = gen_new_label(); 3470 3471 /* if vstart >= vl, skip vector register write back */ 3472 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3473 3474 /* NaN-box f[rs1] */ 3475 t1 = tcg_temp_new_i64(); 3476 do_nanbox(s, t1, cpu_fpr[a->rs1]); 3477 3478 vec_element_storei(s, a->rd, 0, t1); 3479 3480 gen_set_label(over); 3481 tcg_gen_movi_tl(cpu_vstart, 0); 3482 finalize_rvv_inst(s); 3483 return true; 3484 } 3485 return false; 3486} 3487 3488/* Vector Slide Instructions */ 3489static bool slideup_check(DisasContext *s, arg_rmrr *a) 3490{ 3491 return require_rvv(s) && 3492 vext_check_isa_ill(s) && 3493 vext_check_slide(s, a->rd, a->rs2, a->vm, true); 3494} 3495 3496GEN_OPIVX_TRANS(vslideup_vx, slideup_check) 3497GEN_OPIVX_TRANS(vslide1up_vx, slideup_check) 3498GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check) 3499 3500static bool slidedown_check(DisasContext *s, arg_rmrr *a) 3501{ 3502 return require_rvv(s) && 3503 vext_check_isa_ill(s) && 3504 vext_check_slide(s, a->rd, a->rs2, a->vm, false); 3505} 3506 3507GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check) 3508GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check) 3509GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check) 3510 3511/* Vector Floating-Point Slide Instructions */ 3512static bool fslideup_check(DisasContext *s, arg_rmrr *a) 3513{ 3514 return slideup_check(s, a) && 3515 require_rvf(s); 3516} 3517 3518static bool fslidedown_check(DisasContext *s, arg_rmrr *a) 3519{ 3520 return slidedown_check(s, a) && 3521 require_rvf(s); 3522} 3523 3524GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check) 3525GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check) 3526 3527/* Vector Register Gather Instruction */ 3528static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a) 3529{ 3530 return require_rvv(s) && 3531 vext_check_isa_ill(s) && 3532 vext_check_input_eew(s, a->rs1, s->sew, a->rs2, s->sew, a->vm) && 3533 require_align(a->rd, s->lmul) && 3534 require_align(a->rs1, s->lmul) && 3535 require_align(a->rs2, s->lmul) && 3536 (a->rd != a->rs2 && a->rd != a->rs1) && 3537 require_vm(a->vm, a->rd); 3538} 3539 3540static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a) 3541{ 3542 int8_t emul = MO_16 - s->sew + s->lmul; 3543 return require_rvv(s) && 3544 vext_check_isa_ill(s) && 3545 vext_check_input_eew(s, a->rs1, MO_16, a->rs2, s->sew, a->vm) && 3546 (emul >= -3 && emul <= 3) && 3547 require_align(a->rd, s->lmul) && 3548 require_align(a->rs1, emul) && 3549 require_align(a->rs2, s->lmul) && 3550 (a->rd != a->rs2 && a->rd != a->rs1) && 3551 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3552 a->rs1, 1 << MAX(emul, 0)) && 3553 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3554 a->rs2, 1 << MAX(s->lmul, 0)) && 3555 require_vm(a->vm, a->rd); 3556} 3557 3558GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check) 3559GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check) 3560 3561static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a) 3562{ 3563 return require_rvv(s) && 3564 vext_check_isa_ill(s) && 3565 vext_check_input_eew(s, -1, MO_64, a->rs2, s->sew, a->vm) && 3566 require_align(a->rd, s->lmul) && 3567 require_align(a->rs2, s->lmul) && 3568 (a->rd != a->rs2) && 3569 require_vm(a->vm, a->rd); 3570} 3571 3572/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ 3573static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a) 3574{ 3575 if (!vrgather_vx_check(s, a)) { 3576 return false; 3577 } 3578 3579 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 3580 int vlmax = vext_get_vlmax(s->cfg_ptr->vlenb, s->sew, s->lmul); 3581 TCGv_i64 dest = tcg_temp_new_i64(); 3582 3583 if (a->rs1 == 0) { 3584 vec_element_loadi(s, dest, a->rs2, 0, false); 3585 } else { 3586 vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax); 3587 } 3588 3589 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 3590 MAXSZ(s), MAXSZ(s), dest); 3591 finalize_rvv_inst(s); 3592 } else { 3593 static gen_helper_opivx * const fns[4] = { 3594 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3595 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3596 }; 3597 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); 3598 } 3599 return true; 3600} 3601 3602/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */ 3603static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a) 3604{ 3605 if (!vrgather_vx_check(s, a)) { 3606 return false; 3607 } 3608 3609 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 3610 int vlmax = vext_get_vlmax(s->cfg_ptr->vlenb, s->sew, s->lmul); 3611 if (a->rs1 >= vlmax) { 3612 tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd), 3613 MAXSZ(s), MAXSZ(s), 0); 3614 } else { 3615 tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd), 3616 endian_ofs(s, a->rs2, a->rs1), 3617 MAXSZ(s), MAXSZ(s)); 3618 } 3619 finalize_rvv_inst(s); 3620 } else { 3621 static gen_helper_opivx * const fns[4] = { 3622 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3623 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3624 }; 3625 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], 3626 s, IMM_ZX); 3627 } 3628 return true; 3629} 3630 3631/* 3632 * Vector Compress Instruction 3633 * 3634 * The destination vector register group cannot overlap the 3635 * source vector register group or the source mask register. 3636 */ 3637static bool vcompress_vm_check(DisasContext *s, arg_r *a) 3638{ 3639 return require_rvv(s) && 3640 vext_check_isa_ill(s) && 3641 require_align(a->rd, s->lmul) && 3642 require_align(a->rs2, s->lmul) && 3643 (a->rd != a->rs2) && 3644 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1) && 3645 s->vstart_eq_zero; 3646} 3647 3648static bool trans_vcompress_vm(DisasContext *s, arg_r *a) 3649{ 3650 if (vcompress_vm_check(s, a)) { 3651 uint32_t data = 0; 3652 static gen_helper_gvec_4_ptr * const fns[4] = { 3653 gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h, 3654 gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d, 3655 }; 3656 3657 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3658 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3659 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3660 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 3661 tcg_env, s->cfg_ptr->vlenb, 3662 s->cfg_ptr->vlenb, data, 3663 fns[s->sew]); 3664 finalize_rvv_inst(s); 3665 return true; 3666 } 3667 return false; 3668} 3669 3670/* 3671 * Whole Vector Register Move Instructions depend on vtype register(vsew). 3672 * Thus, we need to check vill bit. (Section 16.6) 3673 */ 3674#define GEN_VMV_WHOLE_TRANS(NAME, LEN) \ 3675static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 3676{ \ 3677 if (require_rvv(s) && \ 3678 vext_check_isa_ill(s) && \ 3679 QEMU_IS_ALIGNED(a->rd, LEN) && \ 3680 QEMU_IS_ALIGNED(a->rs2, LEN)) { \ 3681 uint32_t maxsz = s->cfg_ptr->vlenb * LEN; \ 3682 if (s->vstart_eq_zero) { \ 3683 tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), \ 3684 vreg_ofs(s, a->rs2), maxsz, maxsz); \ 3685 } else { \ 3686 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), \ 3687 tcg_env, maxsz, maxsz, 0, gen_helper_vmvr_v); \ 3688 } \ 3689 finalize_rvv_inst(s); \ 3690 return true; \ 3691 } \ 3692 return false; \ 3693} 3694 3695GEN_VMV_WHOLE_TRANS(vmv1r_v, 1) 3696GEN_VMV_WHOLE_TRANS(vmv2r_v, 2) 3697GEN_VMV_WHOLE_TRANS(vmv4r_v, 4) 3698GEN_VMV_WHOLE_TRANS(vmv8r_v, 8) 3699 3700static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div) 3701{ 3702 uint8_t from = (s->sew + 3) - div; 3703 bool ret = require_rvv(s) && 3704 (from >= 3 && from <= 8) && 3705 (a->rd != a->rs2) && 3706 require_align(a->rd, s->lmul) && 3707 require_align(a->rs2, s->lmul - div) && 3708 require_vm(a->vm, a->rd) && 3709 require_noover(a->rd, s->lmul, a->rs2, s->lmul - div) && 3710 vext_check_input_eew(s, -1, 0, a->rs2, s->sew, a->vm); 3711 3712 return ret; 3713} 3714 3715static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq) 3716{ 3717 uint32_t data = 0; 3718 gen_helper_gvec_3_ptr *fn; 3719 3720 static gen_helper_gvec_3_ptr * const fns[6][4] = { 3721 { 3722 NULL, gen_helper_vzext_vf2_h, 3723 gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d 3724 }, 3725 { 3726 NULL, NULL, 3727 gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d, 3728 }, 3729 { 3730 NULL, NULL, 3731 NULL, gen_helper_vzext_vf8_d 3732 }, 3733 { 3734 NULL, gen_helper_vsext_vf2_h, 3735 gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d 3736 }, 3737 { 3738 NULL, NULL, 3739 gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d, 3740 }, 3741 { 3742 NULL, NULL, 3743 NULL, gen_helper_vsext_vf8_d 3744 } 3745 }; 3746 3747 fn = fns[seq][s->sew]; 3748 if (fn == NULL) { 3749 return false; 3750 } 3751 3752 data = FIELD_DP32(data, VDATA, VM, a->vm); 3753 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3754 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3755 data = FIELD_DP32(data, VDATA, VMA, s->vma); 3756 3757 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3758 vreg_ofs(s, a->rs2), tcg_env, 3759 s->cfg_ptr->vlenb, 3760 s->cfg_ptr->vlenb, data, fn); 3761 3762 finalize_rvv_inst(s); 3763 return true; 3764} 3765 3766/* Vector Integer Extension */ 3767#define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \ 3768static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3769{ \ 3770 if (int_ext_check(s, a, DIV)) { \ 3771 return int_ext_op(s, a, SEQ); \ 3772 } \ 3773 return false; \ 3774} 3775 3776GEN_INT_EXT_TRANS(vzext_vf2, 1, 0) 3777GEN_INT_EXT_TRANS(vzext_vf4, 2, 1) 3778GEN_INT_EXT_TRANS(vzext_vf8, 3, 2) 3779GEN_INT_EXT_TRANS(vsext_vf2, 1, 3) 3780GEN_INT_EXT_TRANS(vsext_vf4, 2, 4) 3781GEN_INT_EXT_TRANS(vsext_vf8, 3, 5) 3782