/openbmc/linux/arch/x86/include/asm/ |
H A D | nops.h | diff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection
This ensures that a NOP is a NOP and not a random other instruction that is also a NOP. It allows simplification of dynamic code patching that wants to verify existing code before writing new instructions (ftrace, jump_label, static_call, etc..).
Differentiating on NOPs is not a feature.
This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS). 32bit is not a performance target.
Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL being required for x86_64, all x86_64 CPUs can use NOPL. So stop caring about NOPs, simplify things and get on with life.
[ The problem seems to be that some uarchs can only decode NOPL on a single front-end port while others have severe decode penalties for excessive prefixes. All modern uarchs can handle both, except Atom, which has prefix penalties. ]
[ Also, much doubt you can actually measure any of this on normal workloads. ]
After this, FEATURE_NOPL is unused except for required-features for x86_64. FEATURE_K8 is only used for PTI.
[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf Acked-by: Linus Torvalds <torvalds@linuxfoundation.org> Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
|
H A D | jump_label.h | diff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection
This ensures that a NOP is a NOP and not a random other instruction that is also a NOP. It allows simplification of dynamic code patching that wants to verify existing code before writing new instructions (ftrace, jump_label, static_call, etc..).
Differentiating on NOPs is not a feature.
This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS). 32bit is not a performance target.
Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL being required for x86_64, all x86_64 CPUs can use NOPL. So stop caring about NOPs, simplify things and get on with life.
[ The problem seems to be that some uarchs can only decode NOPL on a single front-end port while others have severe decode penalties for excessive prefixes. All modern uarchs can handle both, except Atom, which has prefix penalties. ]
[ Also, much doubt you can actually measure any of this on normal workloads. ]
After this, FEATURE_NOPL is unused except for required-features for x86_64. FEATURE_K8 is only used for PTI.
[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf Acked-by: Linus Torvalds <torvalds@linuxfoundation.org> Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
|
H A D | special_insns.h | diff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection
This ensures that a NOP is a NOP and not a random other instruction that is also a NOP. It allows simplification of dynamic code patching that wants to verify existing code before writing new instructions (ftrace, jump_label, static_call, etc..).
Differentiating on NOPs is not a feature.
This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS). 32bit is not a performance target.
Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL being required for x86_64, all x86_64 CPUs can use NOPL. So stop caring about NOPs, simplify things and get on with life.
[ The problem seems to be that some uarchs can only decode NOPL on a single front-end port while others have severe decode penalties for excessive prefixes. All modern uarchs can handle both, except Atom, which has prefix penalties. ]
[ Also, much doubt you can actually measure any of this on normal workloads. ]
After this, FEATURE_NOPL is unused except for required-features for x86_64. FEATURE_K8 is only used for PTI.
[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf Acked-by: Linus Torvalds <torvalds@linuxfoundation.org> Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
|
H A D | cpufeatures.h | diff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection
This ensures that a NOP is a NOP and not a random other instruction that is also a NOP. It allows simplification of dynamic code patching that wants to verify existing code before writing new instructions (ftrace, jump_label, static_call, etc..).
Differentiating on NOPs is not a feature.
This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS). 32bit is not a performance target.
Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL being required for x86_64, all x86_64 CPUs can use NOPL. So stop caring about NOPs, simplify things and get on with life.
[ The problem seems to be that some uarchs can only decode NOPL on a single front-end port while others have severe decode penalties for excessive prefixes. All modern uarchs can handle both, except Atom, which has prefix penalties. ]
[ Also, much doubt you can actually measure any of this on normal workloads. ]
After this, FEATURE_NOPL is unused except for required-features for x86_64. FEATURE_K8 is only used for PTI.
[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf Acked-by: Linus Torvalds <torvalds@linuxfoundation.org> Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
|
/openbmc/linux/arch/x86/kernel/ |
H A D | static_call.c | diff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection
This ensures that a NOP is a NOP and not a random other instruction that is also a NOP. It allows simplification of dynamic code patching that wants to verify existing code before writing new instructions (ftrace, jump_label, static_call, etc..).
Differentiating on NOPs is not a feature.
This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS). 32bit is not a performance target.
Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL being required for x86_64, all x86_64 CPUs can use NOPL. So stop caring about NOPs, simplify things and get on with life.
[ The problem seems to be that some uarchs can only decode NOPL on a single front-end port while others have severe decode penalties for excessive prefixes. All modern uarchs can handle both, except Atom, which has prefix penalties. ]
[ Also, much doubt you can actually measure any of this on normal workloads. ]
After this, FEATURE_NOPL is unused except for required-features for x86_64. FEATURE_K8 is only used for PTI.
[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf Acked-by: Linus Torvalds <torvalds@linuxfoundation.org> Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
|
H A D | jump_label.c | diff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection
This ensures that a NOP is a NOP and not a random other instruction that is also a NOP. It allows simplification of dynamic code patching that wants to verify existing code before writing new instructions (ftrace, jump_label, static_call, etc..).
Differentiating on NOPs is not a feature.
This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS). 32bit is not a performance target.
Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL being required for x86_64, all x86_64 CPUs can use NOPL. So stop caring about NOPs, simplify things and get on with life.
[ The problem seems to be that some uarchs can only decode NOPL on a single front-end port while others have severe decode penalties for excessive prefixes. All modern uarchs can handle both, except Atom, which has prefix penalties. ]
[ Also, much doubt you can actually measure any of this on normal workloads. ]
After this, FEATURE_NOPL is unused except for required-features for x86_64. FEATURE_K8 is only used for PTI.
[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf Acked-by: Linus Torvalds <torvalds@linuxfoundation.org> Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
|
H A D | ftrace.c | diff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection
This ensures that a NOP is a NOP and not a random other instruction that is also a NOP. It allows simplification of dynamic code patching that wants to verify existing code before writing new instructions (ftrace, jump_label, static_call, etc..).
Differentiating on NOPs is not a feature.
This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS). 32bit is not a performance target.
Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL being required for x86_64, all x86_64 CPUs can use NOPL. So stop caring about NOPs, simplify things and get on with life.
[ The problem seems to be that some uarchs can only decode NOPL on a single front-end port while others have severe decode penalties for excessive prefixes. All modern uarchs can handle both, except Atom, which has prefix penalties. ]
[ Also, much doubt you can actually measure any of this on normal workloads. ]
After this, FEATURE_NOPL is unused except for required-features for x86_64. FEATURE_K8 is only used for PTI.
[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf Acked-by: Linus Torvalds <torvalds@linuxfoundation.org> Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
|
H A D | alternative.c | diff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection
This ensures that a NOP is a NOP and not a random other instruction that is also a NOP. It allows simplification of dynamic code patching that wants to verify existing code before writing new instructions (ftrace, jump_label, static_call, etc..).
Differentiating on NOPs is not a feature.
This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS). 32bit is not a performance target.
Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL being required for x86_64, all x86_64 CPUs can use NOPL. So stop caring about NOPs, simplify things and get on with life.
[ The problem seems to be that some uarchs can only decode NOPL on a single front-end port while others have severe decode penalties for excessive prefixes. All modern uarchs can handle both, except Atom, which has prefix penalties. ]
[ Also, much doubt you can actually measure any of this on normal workloads. ]
After this, FEATURE_NOPL is unused except for required-features for x86_64. FEATURE_K8 is only used for PTI.
[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf Acked-by: Linus Torvalds <torvalds@linuxfoundation.org> Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
|
H A D | setup.c | diff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection
This ensures that a NOP is a NOP and not a random other instruction that is also a NOP. It allows simplification of dynamic code patching that wants to verify existing code before writing new instructions (ftrace, jump_label, static_call, etc..).
Differentiating on NOPs is not a feature.
This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS). 32bit is not a performance target.
Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL being required for x86_64, all x86_64 CPUs can use NOPL. So stop caring about NOPs, simplify things and get on with life.
[ The problem seems to be that some uarchs can only decode NOPL on a single front-end port while others have severe decode penalties for excessive prefixes. All modern uarchs can handle both, except Atom, which has prefix penalties. ]
[ Also, much doubt you can actually measure any of this on normal workloads. ]
After this, FEATURE_NOPL is unused except for required-features for x86_64. FEATURE_K8 is only used for PTI.
[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf Acked-by: Linus Torvalds <torvalds@linuxfoundation.org> Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
|
/openbmc/linux/arch/x86/kernel/kprobes/ |
H A D | core.c | diff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection
This ensures that a NOP is a NOP and not a random other instruction that is also a NOP. It allows simplification of dynamic code patching that wants to verify existing code before writing new instructions (ftrace, jump_label, static_call, etc..).
Differentiating on NOPs is not a feature.
This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS). 32bit is not a performance target.
Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL being required for x86_64, all x86_64 CPUs can use NOPL. So stop caring about NOPs, simplify things and get on with life.
[ The problem seems to be that some uarchs can only decode NOPL on a single front-end port while others have severe decode penalties for excessive prefixes. All modern uarchs can handle both, except Atom, which has prefix penalties. ]
[ Also, much doubt you can actually measure any of this on normal workloads. ]
After this, FEATURE_NOPL is unused except for required-features for x86_64. FEATURE_K8 is only used for PTI.
[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf Acked-by: Linus Torvalds <torvalds@linuxfoundation.org> Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
|
/openbmc/linux/arch/x86/kernel/cpu/ |
H A D | amd.c | diff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection
This ensures that a NOP is a NOP and not a random other instruction that is also a NOP. It allows simplification of dynamic code patching that wants to verify existing code before writing new instructions (ftrace, jump_label, static_call, etc..).
Differentiating on NOPs is not a feature.
This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS). 32bit is not a performance target.
Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL being required for x86_64, all x86_64 CPUs can use NOPL. So stop caring about NOPs, simplify things and get on with life.
[ The problem seems to be that some uarchs can only decode NOPL on a single front-end port while others have severe decode penalties for excessive prefixes. All modern uarchs can handle both, except Atom, which has prefix penalties. ]
[ Also, much doubt you can actually measure any of this on normal workloads. ]
After this, FEATURE_NOPL is unused except for required-features for x86_64. FEATURE_K8 is only used for PTI.
[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf Acked-by: Linus Torvalds <torvalds@linuxfoundation.org> Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
|
/openbmc/linux/arch/x86/net/ |
H A D | bpf_jit_comp.c | diff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection
This ensures that a NOP is a NOP and not a random other instruction that is also a NOP. It allows simplification of dynamic code patching that wants to verify existing code before writing new instructions (ftrace, jump_label, static_call, etc..).
Differentiating on NOPs is not a feature.
This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS). 32bit is not a performance target.
Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL being required for x86_64, all x86_64 CPUs can use NOPL. So stop caring about NOPs, simplify things and get on with life.
[ The problem seems to be that some uarchs can only decode NOPL on a single front-end port while others have severe decode penalties for excessive prefixes. All modern uarchs can handle both, except Atom, which has prefix penalties. ]
[ Also, much doubt you can actually measure any of this on normal workloads. ]
After this, FEATURE_NOPL is unused except for required-features for x86_64. FEATURE_K8 is only used for PTI.
[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf Acked-by: Linus Torvalds <torvalds@linuxfoundation.org> Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
|