Home
last modified time | relevance | path

Searched hist:a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 (Results 1 – 12 of 12) sorted by relevance

/openbmc/linux/arch/x86/include/asm/
H A Dnops.hdiff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection

This ensures that a NOP is a NOP and not a random other instruction that
is also a NOP. It allows simplification of dynamic code patching that
wants to verify existing code before writing new instructions (ftrace,
jump_label, static_call, etc..).

Differentiating on NOPs is not a feature.

This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS).
32bit is not a performance target.

Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is
fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL
being required for x86_64, all x86_64 CPUs can use NOPL. So stop
caring about NOPs, simplify things and get on with life.

[ The problem seems to be that some uarchs can only decode NOPL on a
single front-end port while others have severe decode penalties for
excessive prefixes. All modern uarchs can handle both, except Atom,
which has prefix penalties. ]

[ Also, much doubt you can actually measure any of this on normal
workloads. ]

After this, FEATURE_NOPL is unused except for required-features for
x86_64. FEATURE_K8 is only used for PTI.

[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge
which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf
Acked-by: Linus Torvalds <torvalds@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
H A Djump_label.hdiff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection

This ensures that a NOP is a NOP and not a random other instruction that
is also a NOP. It allows simplification of dynamic code patching that
wants to verify existing code before writing new instructions (ftrace,
jump_label, static_call, etc..).

Differentiating on NOPs is not a feature.

This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS).
32bit is not a performance target.

Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is
fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL
being required for x86_64, all x86_64 CPUs can use NOPL. So stop
caring about NOPs, simplify things and get on with life.

[ The problem seems to be that some uarchs can only decode NOPL on a
single front-end port while others have severe decode penalties for
excessive prefixes. All modern uarchs can handle both, except Atom,
which has prefix penalties. ]

[ Also, much doubt you can actually measure any of this on normal
workloads. ]

After this, FEATURE_NOPL is unused except for required-features for
x86_64. FEATURE_K8 is only used for PTI.

[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge
which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf
Acked-by: Linus Torvalds <torvalds@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
H A Dspecial_insns.hdiff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection

This ensures that a NOP is a NOP and not a random other instruction that
is also a NOP. It allows simplification of dynamic code patching that
wants to verify existing code before writing new instructions (ftrace,
jump_label, static_call, etc..).

Differentiating on NOPs is not a feature.

This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS).
32bit is not a performance target.

Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is
fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL
being required for x86_64, all x86_64 CPUs can use NOPL. So stop
caring about NOPs, simplify things and get on with life.

[ The problem seems to be that some uarchs can only decode NOPL on a
single front-end port while others have severe decode penalties for
excessive prefixes. All modern uarchs can handle both, except Atom,
which has prefix penalties. ]

[ Also, much doubt you can actually measure any of this on normal
workloads. ]

After this, FEATURE_NOPL is unused except for required-features for
x86_64. FEATURE_K8 is only used for PTI.

[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge
which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf
Acked-by: Linus Torvalds <torvalds@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
H A Dcpufeatures.hdiff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection

This ensures that a NOP is a NOP and not a random other instruction that
is also a NOP. It allows simplification of dynamic code patching that
wants to verify existing code before writing new instructions (ftrace,
jump_label, static_call, etc..).

Differentiating on NOPs is not a feature.

This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS).
32bit is not a performance target.

Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is
fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL
being required for x86_64, all x86_64 CPUs can use NOPL. So stop
caring about NOPs, simplify things and get on with life.

[ The problem seems to be that some uarchs can only decode NOPL on a
single front-end port while others have severe decode penalties for
excessive prefixes. All modern uarchs can handle both, except Atom,
which has prefix penalties. ]

[ Also, much doubt you can actually measure any of this on normal
workloads. ]

After this, FEATURE_NOPL is unused except for required-features for
x86_64. FEATURE_K8 is only used for PTI.

[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge
which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf
Acked-by: Linus Torvalds <torvalds@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
/openbmc/linux/arch/x86/kernel/
H A Dstatic_call.cdiff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection

This ensures that a NOP is a NOP and not a random other instruction that
is also a NOP. It allows simplification of dynamic code patching that
wants to verify existing code before writing new instructions (ftrace,
jump_label, static_call, etc..).

Differentiating on NOPs is not a feature.

This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS).
32bit is not a performance target.

Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is
fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL
being required for x86_64, all x86_64 CPUs can use NOPL. So stop
caring about NOPs, simplify things and get on with life.

[ The problem seems to be that some uarchs can only decode NOPL on a
single front-end port while others have severe decode penalties for
excessive prefixes. All modern uarchs can handle both, except Atom,
which has prefix penalties. ]

[ Also, much doubt you can actually measure any of this on normal
workloads. ]

After this, FEATURE_NOPL is unused except for required-features for
x86_64. FEATURE_K8 is only used for PTI.

[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge
which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf
Acked-by: Linus Torvalds <torvalds@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
H A Djump_label.cdiff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection

This ensures that a NOP is a NOP and not a random other instruction that
is also a NOP. It allows simplification of dynamic code patching that
wants to verify existing code before writing new instructions (ftrace,
jump_label, static_call, etc..).

Differentiating on NOPs is not a feature.

This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS).
32bit is not a performance target.

Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is
fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL
being required for x86_64, all x86_64 CPUs can use NOPL. So stop
caring about NOPs, simplify things and get on with life.

[ The problem seems to be that some uarchs can only decode NOPL on a
single front-end port while others have severe decode penalties for
excessive prefixes. All modern uarchs can handle both, except Atom,
which has prefix penalties. ]

[ Also, much doubt you can actually measure any of this on normal
workloads. ]

After this, FEATURE_NOPL is unused except for required-features for
x86_64. FEATURE_K8 is only used for PTI.

[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge
which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf
Acked-by: Linus Torvalds <torvalds@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
H A Dftrace.cdiff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection

This ensures that a NOP is a NOP and not a random other instruction that
is also a NOP. It allows simplification of dynamic code patching that
wants to verify existing code before writing new instructions (ftrace,
jump_label, static_call, etc..).

Differentiating on NOPs is not a feature.

This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS).
32bit is not a performance target.

Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is
fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL
being required for x86_64, all x86_64 CPUs can use NOPL. So stop
caring about NOPs, simplify things and get on with life.

[ The problem seems to be that some uarchs can only decode NOPL on a
single front-end port while others have severe decode penalties for
excessive prefixes. All modern uarchs can handle both, except Atom,
which has prefix penalties. ]

[ Also, much doubt you can actually measure any of this on normal
workloads. ]

After this, FEATURE_NOPL is unused except for required-features for
x86_64. FEATURE_K8 is only used for PTI.

[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge
which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf
Acked-by: Linus Torvalds <torvalds@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
H A Dalternative.cdiff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection

This ensures that a NOP is a NOP and not a random other instruction that
is also a NOP. It allows simplification of dynamic code patching that
wants to verify existing code before writing new instructions (ftrace,
jump_label, static_call, etc..).

Differentiating on NOPs is not a feature.

This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS).
32bit is not a performance target.

Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is
fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL
being required for x86_64, all x86_64 CPUs can use NOPL. So stop
caring about NOPs, simplify things and get on with life.

[ The problem seems to be that some uarchs can only decode NOPL on a
single front-end port while others have severe decode penalties for
excessive prefixes. All modern uarchs can handle both, except Atom,
which has prefix penalties. ]

[ Also, much doubt you can actually measure any of this on normal
workloads. ]

After this, FEATURE_NOPL is unused except for required-features for
x86_64. FEATURE_K8 is only used for PTI.

[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge
which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf
Acked-by: Linus Torvalds <torvalds@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
H A Dsetup.cdiff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection

This ensures that a NOP is a NOP and not a random other instruction that
is also a NOP. It allows simplification of dynamic code patching that
wants to verify existing code before writing new instructions (ftrace,
jump_label, static_call, etc..).

Differentiating on NOPs is not a feature.

This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS).
32bit is not a performance target.

Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is
fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL
being required for x86_64, all x86_64 CPUs can use NOPL. So stop
caring about NOPs, simplify things and get on with life.

[ The problem seems to be that some uarchs can only decode NOPL on a
single front-end port while others have severe decode penalties for
excessive prefixes. All modern uarchs can handle both, except Atom,
which has prefix penalties. ]

[ Also, much doubt you can actually measure any of this on normal
workloads. ]

After this, FEATURE_NOPL is unused except for required-features for
x86_64. FEATURE_K8 is only used for PTI.

[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge
which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf
Acked-by: Linus Torvalds <torvalds@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
/openbmc/linux/arch/x86/kernel/kprobes/
H A Dcore.cdiff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection

This ensures that a NOP is a NOP and not a random other instruction that
is also a NOP. It allows simplification of dynamic code patching that
wants to verify existing code before writing new instructions (ftrace,
jump_label, static_call, etc..).

Differentiating on NOPs is not a feature.

This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS).
32bit is not a performance target.

Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is
fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL
being required for x86_64, all x86_64 CPUs can use NOPL. So stop
caring about NOPs, simplify things and get on with life.

[ The problem seems to be that some uarchs can only decode NOPL on a
single front-end port while others have severe decode penalties for
excessive prefixes. All modern uarchs can handle both, except Atom,
which has prefix penalties. ]

[ Also, much doubt you can actually measure any of this on normal
workloads. ]

After this, FEATURE_NOPL is unused except for required-features for
x86_64. FEATURE_K8 is only used for PTI.

[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge
which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf
Acked-by: Linus Torvalds <torvalds@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
/openbmc/linux/arch/x86/kernel/cpu/
H A Damd.cdiff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection

This ensures that a NOP is a NOP and not a random other instruction that
is also a NOP. It allows simplification of dynamic code patching that
wants to verify existing code before writing new instructions (ftrace,
jump_label, static_call, etc..).

Differentiating on NOPs is not a feature.

This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS).
32bit is not a performance target.

Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is
fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL
being required for x86_64, all x86_64 CPUs can use NOPL. So stop
caring about NOPs, simplify things and get on with life.

[ The problem seems to be that some uarchs can only decode NOPL on a
single front-end port while others have severe decode penalties for
excessive prefixes. All modern uarchs can handle both, except Atom,
which has prefix penalties. ]

[ Also, much doubt you can actually measure any of this on normal
workloads. ]

After this, FEATURE_NOPL is unused except for required-features for
x86_64. FEATURE_K8 is only used for PTI.

[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge
which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf
Acked-by: Linus Torvalds <torvalds@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
/openbmc/linux/arch/x86/net/
H A Dbpf_jit_comp.cdiff a89dfde3dc3c2dbf56910af75e2d8b11ec5308f6 Fri Mar 12 05:32:54 CST 2021 Peter Zijlstra <peterz@infradead.org> x86: Remove dynamic NOP selection

This ensures that a NOP is a NOP and not a random other instruction that
is also a NOP. It allows simplification of dynamic code patching that
wants to verify existing code before writing new instructions (ftrace,
jump_label, static_call, etc..).

Differentiating on NOPs is not a feature.

This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS).
32bit is not a performance target.

Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is
fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL
being required for x86_64, all x86_64 CPUs can use NOPL. So stop
caring about NOPs, simplify things and get on with life.

[ The problem seems to be that some uarchs can only decode NOPL on a
single front-end port while others have severe decode penalties for
excessive prefixes. All modern uarchs can handle both, except Atom,
which has prefix penalties. ]

[ Also, much doubt you can actually measure any of this on normal
workloads. ]

After this, FEATURE_NOPL is unused except for required-features for
x86_64. FEATURE_K8 is only used for PTI.

[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge
which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf
Acked-by: Linus Torvalds <torvalds@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org