/openbmc/qemu/tests/qemu-iotests/ |
H A D | 087.out | diff 8c0dcbc4ad2bf4f9f3b27c637b357e87cad70ec7 Mon Jun 13 06:30:09 CDT 2016 Daniel P. Berrange <berrange@redhat.com> block: drop support for using qcow[2] encryption with system emulators
Back in the 2.3.0 release we declared qcow[2] encryption as deprecated, warning people that it would be removed in a future release.
commit a1f688f4152e65260b94f37543521ceff8bfebe4 Author: Markus Armbruster <armbru@redhat.com> Date: Fri Mar 13 21:09:40 2015 +0100
block: Deprecate QCOW/QCOW2 encryption
The code still exists today, but by a (happy?) accident we entirely broke the ability to use qcow[2] encryption in the system emulators in the 2.4.0 release due to
commit 8336aafae1451d54c81dd2b187b45f7c45d2428e Author: Daniel P. Berrange <berrange@redhat.com> Date: Tue May 12 17:09:18 2015 +0100
qcow2/qcow: protect against uninitialized encryption key
This commit was designed to prevent future coding bugs which might cause QEMU to read/write data on an encrypted block device in plain text mode before a decryption key is set.
It turns out this preventative measure was a little too good, because we already had a long standing bug where QEMU read encrypted data in plain text mode during system emulator startup, in order to guess disk geometry:
Thread 10 (Thread 0x7fffd3fff700 (LWP 30373)): #0 0x00007fffe90b1a28 in raise () at /lib64/libc.so.6 #1 0x00007fffe90b362a in abort () at /lib64/libc.so.6 #2 0x00007fffe90aa227 in __assert_fail_base () at /lib64/libc.so.6 #3 0x00007fffe90aa2d2 in () at /lib64/libc.so.6 #4 0x000055555587ae19 in qcow2_co_readv (bs=0x5555562accb0, sector_num=0, remaining_sectors=1, qiov=0x7fffffffd260) at block/qcow2.c:1229 #5 0x000055555589b60d in bdrv_aligned_preadv (bs=bs@entry=0x5555562accb0, req=req@entry=0x7fffd3ffea50, offset=offset@entry=0, bytes=bytes@entry=512, align=align@entry=512, qiov=qiov@entry=0x7fffffffd260, flags=0) at block/io.c:908 #6 0x000055555589b8bc in bdrv_co_do_preadv (bs=0x5555562accb0, offset=0, bytes=512, qiov=0x7fffffffd260, flags=<optimized out>) at block/io.c:999 #7 0x000055555589c375 in bdrv_rw_co_entry (opaque=0x7fffffffd210) at block/io.c:544 #8 0x000055555586933b in coroutine_thread (opaque=0x555557876310) at coroutine-gthread.c:134 #9 0x00007ffff64e1835 in g_thread_proxy (data=0x5555562b5590) at gthread.c:778 #10 0x00007ffff6bb760a in start_thread () at /lib64/libpthread.so.0 #11 0x00007fffe917f59d in clone () at /lib64/libc.so.6
Thread 1 (Thread 0x7ffff7ecab40 (LWP 30343)): #0 0x00007fffe91797a9 in syscall () at /lib64/libc.so.6 #1 0x00007ffff64ff87f in g_cond_wait (cond=cond@entry=0x555555e085f0 <coroutine_cond>, mutex=mutex@entry=0x555555e08600 <coroutine_lock>) at gthread-posix.c:1397 #2 0x00005555558692c3 in qemu_coroutine_switch (co=<optimized out>) at coroutine-gthread.c:117 #3 0x00005555558692c3 in qemu_coroutine_switch (from_=0x5555562b5e30, to_=to_@entry=0x555557876310, action=action@entry=COROUTINE_ENTER) at coroutine-gthread.c:175 #4 0x0000555555868a90 in qemu_coroutine_enter (co=0x555557876310, opaque=0x0) at qemu-coroutine.c:116 #5 0x0000555555859b84 in thread_pool_completion_bh (opaque=0x7fffd40010e0) at thread-pool.c:187 #6 0x0000555555859514 in aio_bh_poll (ctx=ctx@entry=0x5555562953b0) at async.c:85 #7 0x0000555555864d10 in aio_dispatch (ctx=ctx@entry=0x5555562953b0) at aio-posix.c:135 #8 0x0000555555864f75 in aio_poll (ctx=ctx@entry=0x5555562953b0, blocking=blocking@entry=true) at aio-posix.c:291 #9 0x000055555589c40d in bdrv_prwv_co (bs=bs@entry=0x5555562accb0, offset=offset@entry=0, qiov=qiov@entry=0x7fffffffd260, is_write=is_write@entry=false, flags=flags@entry=(unknown: 0)) at block/io.c:591 #10 0x000055555589c503 in bdrv_rw_co (bs=bs@entry=0x5555562accb0, sector_num=sector_num@entry=0, buf=buf@entry=0x7fffffffd2e0 "\321,", nb_sectors=nb_sectors@entry=21845, is_write=is_write@entry=false, flags=flags@entry=(unknown: 0)) at block/io.c:614 #11 0x000055555589c562 in bdrv_read_unthrottled (nb_sectors=21845, buf=0x7fffffffd2e0 "\321,", sector_num=0, bs=0x5555562accb0) at block/io.c:622 #12 0x000055555589c562 in bdrv_read_unthrottled (bs=0x5555562accb0, sector_num=sector_num@entry=0, buf=buf@entry=0x7fffffffd2e0 "\321,", nb_sectors=nb_sectors@entry=21845) at block/io.c:634 nb_sectors@entry=1) at block/block-backend.c:504 #14 0x0000555555752e9f in guess_disk_lchs (blk=blk@entry=0x5555562a5290, pcylinders=pcylinders@entry=0x7fffffffd52c, pheads=pheads@entry=0x7fffffffd530, psectors=psectors@entry=0x7fffffffd534) at hw/block/hd-geometry.c:68 #15 0x0000555555752ff7 in hd_geometry_guess (blk=0x5555562a5290, pcyls=pcyls@entry=0x555557875d1c, pheads=pheads@entry=0x555557875d20, psecs=psecs@entry=0x555557875d24, ptrans=ptrans@entry=0x555557875d28) at hw/block/hd-geometry.c:133 #16 0x0000555555752b87 in blkconf_geometry (conf=conf@entry=0x555557875d00, ptrans=ptrans@entry=0x555557875d28, cyls_max=cyls_max@entry=65536, heads_max=heads_max@entry=16, secs_max=secs_max@entry=255, errp=errp@entry=0x7fffffffd5e0) at hw/block/block.c:71 #17 0x0000555555799bc4 in ide_dev_initfn (dev=0x555557875c80, kind=IDE_HD) at hw/ide/qdev.c:174 #18 0x0000555555768394 in device_realize (dev=0x555557875c80, errp=0x7fffffffd640) at hw/core/qdev.c:247 #19 0x0000555555769a81 in device_set_realized (obj=0x555557875c80, value=<optimized out>, errp=0x7fffffffd730) at hw/core/qdev.c:1058 #20 0x00005555558240ce in property_set_bool (obj=0x555557875c80, v=<optimized out>, opaque=0x555557875de0, name=<optimized out>, errp=0x7fffffffd730) at qom/object.c:1514 #21 0x0000555555826c87 in object_property_set_qobject (obj=obj@entry=0x555557875c80, value=value@entry=0x55555784bcb0, name=name@entry=0x55555591cb3d "realized", errp=errp@entry=0x7fffffffd730) at qom/qom-qobject.c:24 #22 0x0000555555825760 in object_property_set_bool (obj=obj@entry=0x555557875c80, value=value@entry=true, name=name@entry=0x55555591cb3d "realized", errp=errp@entry=0x7fffffffd730) at qom/object.c:905 #23 0x000055555576897b in qdev_init_nofail (dev=dev@entry=0x555557875c80) at hw/core/qdev.c:380 #24 0x0000555555799ead in ide_create_drive (bus=bus@entry=0x555557629630, unit=unit@entry=0, drive=0x5555562b77e0) at hw/ide/qdev.c:122 #25 0x000055555579a746 in pci_ide_create_devs (dev=dev@entry=0x555557628db0, hd_table=hd_table@entry=0x7fffffffd830) at hw/ide/pci.c:440 #26 0x000055555579b165 in pci_piix3_ide_init (bus=<optimized out>, hd_table=0x7fffffffd830, devfn=<optimized out>) at hw/ide/piix.c:218 #27 0x000055555568ca55 in pc_init1 (machine=0x5555562960a0, pci_enabled=1, kvmclock_enabled=<optimized out>) at /home/berrange/src/virt/qemu/hw/i386/pc_piix.c:256 #28 0x0000555555603ab2 in main (argc=<optimized out>, argv=<optimized out>, envp=<optimized out>) at vl.c:4249
So the safety net is correctly preventing QEMU reading cipher text as if it were plain text, during startup and aborting QEMU to avoid bad usage of this data.
For added fun this bug only happens if the encrypted qcow2 file happens to have data written to the first cluster, otherwise the cluster won't be allocated and so qcow2 would not try the decryption routines at all, just return all 0's.
That no one even noticed, let alone reported, this bug that has shipped in 2.4.0, 2.5.0 and 2.6.0 shows that the number of actual users of encrypted qcow2 is approximately zero.
So rather than fix the crash, and backport it to stable releases, just go ahead with what we have warned users about and disable any use of qcow2 encryption in the system emulators. qemu-img/qemu-io/qemu-nbd are still able to access qcow2 encrypted images for the sake of data conversion.
In the future, qcow2 will gain support for the alternative luks format, but when this happens it'll be using the '-object secret' infrastructure for getting keys, which avoids this problematic scenario entirely.
Signed-off-by: Daniel P. Berrange <berrange@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com> diff a1f688f4152e65260b94f37543521ceff8bfebe4 Fri Mar 13 15:09:40 CDT 2015 Markus Armbruster <armbru@redhat.com> block: Deprecate QCOW/QCOW2 encryption
We've steered users away from QCOW/QCOW2 encryption for a while, because it's a flawed design (commit 136cd19 Describe flaws in qcow/qcow2 encryption in the docs).
In addition to flawed crypto, we have comically bad usability, and plain old bugs. Let me show you.
= Example images =
I'm going to use a raw image as backing file, and two QCOW2 images, one encrypted, and one not:
$ qemu-img create -f raw backing.img 4m Formatting 'backing.img', fmt=raw size=4194304 $ qemu-img create -f qcow2 -o encryption,backing_file=backing.img,backing_fmt=raw geheim.qcow2 4m Formatting 'geheim.qcow2', fmt=qcow2 size=4194304 backing_file='backing.img' backing_fmt='raw' encryption=on cluster_size=65536 lazy_refcounts=off $ qemu-img create -f qcow2 -o backing_file=backing.img,backing_fmt=raw normal.qcow2 4m Formatting 'normal.qcow2', fmt=qcow2 size=4194304 backing_file='backing.img' backing_fmt='raw' encryption=off cluster_size=65536 lazy_refcounts=off
= Usability issues =
== Confusing startup ==
When no image is encrypted, and you don't give -S, QEMU starts the guest immediately:
$ qemu-system-x86_64 -nodefaults -display none -monitor stdio normal.qcow2 QEMU 2.2.50 monitor - type 'help' for more information (qemu) info status VM status: running
But as soon as there's an encrypted image in play, the guest is *not* started, with no notification whatsoever:
$ qemu-system-x86_64 -nodefaults -display none -monitor stdio geheim.qcow2 QEMU 2.2.50 monitor - type 'help' for more information (qemu) info status VM status: paused (prelaunch)
If the user figured out that he needs to type "cont" to enter his keys, the confusion enters the next level: "cont" asks for at most *one* key. If more are needed, it then silently does nothing. The user has to type "cont" once per encrypted image:
$ qemu-system-x86_64 -nodefaults -display none -monitor stdio -drive if=none,file=geheim.qcow2 -drive if=none,file=geheim.qcow2 QEMU 2.2.50 monitor - type 'help' for more information (qemu) info status VM status: paused (prelaunch) (qemu) c none0 (geheim.qcow2) is encrypted. Password: ****** (qemu) info status VM status: paused (prelaunch) (qemu) c none1 (geheim.qcow2) is encrypted. Password: ****** (qemu) info status VM status: running
== Incorrect passwords not caught ==
All existing encryption schemes give you the GIGO treatment: garbage password in, garbage data out. Guests usually refuse to mount garbage, but other usage is prone to data loss.
== Need to stop the guest to add an encrypted image ==
$ qemu-system-x86_64 -nodefaults -display none -monitor stdio QEMU 2.2.50 monitor - type 'help' for more information (qemu) info status VM status: running (qemu) drive_add "" if=none,file=geheim.qcow2 Guest must be stopped for opening of encrypted image (qemu) stop (qemu) drive_add "" if=none,file=geheim.qcow2 OK
Commit c3adb58 added this restriction. Before, we could expose images lacking an encryption key to guests, with potentially catastrophic results. See also "Use without key is not always caught".
= Bugs =
== Use without key is not always caught ==
Encrypted images can be in an intermediate state "opened, but no key". The weird startup behavior and the need to stop the guest are there to ensure the guest isn't exposed to that state. But other things still are!
* drive_backup
$ qemu-system-x86_64 -nodefaults -display none -monitor stdio geheim.qcow2 QEMU 2.2.50 monitor - type 'help' for more information (qemu) drive_backup -f ide0-hd0 out.img raw Formatting 'out.img', fmt=raw size=4194304
I guess this writes encrypted data to raw image out.img. Good luck with figuring out how to decrypt that again.
* commit
$ qemu-system-x86_64 -nodefaults -display none -monitor stdio geheim.qcow2 QEMU 2.2.50 monitor - type 'help' for more information (qemu) commit ide0-hd0
I guess this writes encrypted data into the unencrypted raw backing image, effectively destroying it.
== QMP device_add of usb-storage fails when it shouldn't ==
When the image is encrypted, device_add creates the device, defers actually attaching it to when the key becomes available, then fails. This is wrong. device_add must either create the device and succeed, or do nothing and fail.
$ qemu-system-x86_64 -nodefaults -display none -usb -qmp stdio -drive if=none,id=foo,file=geheim.qcow2 {"QMP": {"version": {"qemu": {"micro": 50, "minor": 2, "major": 2}, "package": ""}, "capabilities": []}} { "execute": "qmp_capabilities" } {"return": {}} { "execute": "device_add", "arguments": { "driver": "usb-storage", "id": "bar", "drive": "foo" } } {"error": {"class": "DeviceEncrypted", "desc": "'foo' (geheim.qcow2) is encrypted"}} {"execute":"device_del","arguments": { "id": "bar" } } {"timestamp": {"seconds": 1426003440, "microseconds": 237181}, "event": "DEVICE_DELETED", "data": {"path": "/machine/peripheral/bar/bar.0/legacy[0]"}} {"timestamp": {"seconds": 1426003440, "microseconds": 238231}, "event": "DEVICE_DELETED", "data": {"device": "bar", "path": "/machine/peripheral/bar"}} {"return": {}}
This stuff is worse than useless, it's a trap for users.
If people become sufficiently interested in encrypted images to contribute a cryptographically sane implementation for QCOW2 (or whatever other format), then rewriting the necessary support around it from scratch will likely be easier and yield better results than fixing up the existing mess.
Let's deprecate the mess now, drop it after a grace period, and move on.
Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
H A D | 049.out | diff a1f688f4152e65260b94f37543521ceff8bfebe4 Fri Mar 13 15:09:40 CDT 2015 Markus Armbruster <armbru@redhat.com> block: Deprecate QCOW/QCOW2 encryption
We've steered users away from QCOW/QCOW2 encryption for a while, because it's a flawed design (commit 136cd19 Describe flaws in qcow/qcow2 encryption in the docs).
In addition to flawed crypto, we have comically bad usability, and plain old bugs. Let me show you.
= Example images =
I'm going to use a raw image as backing file, and two QCOW2 images, one encrypted, and one not:
$ qemu-img create -f raw backing.img 4m Formatting 'backing.img', fmt=raw size=4194304 $ qemu-img create -f qcow2 -o encryption,backing_file=backing.img,backing_fmt=raw geheim.qcow2 4m Formatting 'geheim.qcow2', fmt=qcow2 size=4194304 backing_file='backing.img' backing_fmt='raw' encryption=on cluster_size=65536 lazy_refcounts=off $ qemu-img create -f qcow2 -o backing_file=backing.img,backing_fmt=raw normal.qcow2 4m Formatting 'normal.qcow2', fmt=qcow2 size=4194304 backing_file='backing.img' backing_fmt='raw' encryption=off cluster_size=65536 lazy_refcounts=off
= Usability issues =
== Confusing startup ==
When no image is encrypted, and you don't give -S, QEMU starts the guest immediately:
$ qemu-system-x86_64 -nodefaults -display none -monitor stdio normal.qcow2 QEMU 2.2.50 monitor - type 'help' for more information (qemu) info status VM status: running
But as soon as there's an encrypted image in play, the guest is *not* started, with no notification whatsoever:
$ qemu-system-x86_64 -nodefaults -display none -monitor stdio geheim.qcow2 QEMU 2.2.50 monitor - type 'help' for more information (qemu) info status VM status: paused (prelaunch)
If the user figured out that he needs to type "cont" to enter his keys, the confusion enters the next level: "cont" asks for at most *one* key. If more are needed, it then silently does nothing. The user has to type "cont" once per encrypted image:
$ qemu-system-x86_64 -nodefaults -display none -monitor stdio -drive if=none,file=geheim.qcow2 -drive if=none,file=geheim.qcow2 QEMU 2.2.50 monitor - type 'help' for more information (qemu) info status VM status: paused (prelaunch) (qemu) c none0 (geheim.qcow2) is encrypted. Password: ****** (qemu) info status VM status: paused (prelaunch) (qemu) c none1 (geheim.qcow2) is encrypted. Password: ****** (qemu) info status VM status: running
== Incorrect passwords not caught ==
All existing encryption schemes give you the GIGO treatment: garbage password in, garbage data out. Guests usually refuse to mount garbage, but other usage is prone to data loss.
== Need to stop the guest to add an encrypted image ==
$ qemu-system-x86_64 -nodefaults -display none -monitor stdio QEMU 2.2.50 monitor - type 'help' for more information (qemu) info status VM status: running (qemu) drive_add "" if=none,file=geheim.qcow2 Guest must be stopped for opening of encrypted image (qemu) stop (qemu) drive_add "" if=none,file=geheim.qcow2 OK
Commit c3adb58 added this restriction. Before, we could expose images lacking an encryption key to guests, with potentially catastrophic results. See also "Use without key is not always caught".
= Bugs =
== Use without key is not always caught ==
Encrypted images can be in an intermediate state "opened, but no key". The weird startup behavior and the need to stop the guest are there to ensure the guest isn't exposed to that state. But other things still are!
* drive_backup
$ qemu-system-x86_64 -nodefaults -display none -monitor stdio geheim.qcow2 QEMU 2.2.50 monitor - type 'help' for more information (qemu) drive_backup -f ide0-hd0 out.img raw Formatting 'out.img', fmt=raw size=4194304
I guess this writes encrypted data to raw image out.img. Good luck with figuring out how to decrypt that again.
* commit
$ qemu-system-x86_64 -nodefaults -display none -monitor stdio geheim.qcow2 QEMU 2.2.50 monitor - type 'help' for more information (qemu) commit ide0-hd0
I guess this writes encrypted data into the unencrypted raw backing image, effectively destroying it.
== QMP device_add of usb-storage fails when it shouldn't ==
When the image is encrypted, device_add creates the device, defers actually attaching it to when the key becomes available, then fails. This is wrong. device_add must either create the device and succeed, or do nothing and fail.
$ qemu-system-x86_64 -nodefaults -display none -usb -qmp stdio -drive if=none,id=foo,file=geheim.qcow2 {"QMP": {"version": {"qemu": {"micro": 50, "minor": 2, "major": 2}, "package": ""}, "capabilities": []}} { "execute": "qmp_capabilities" } {"return": {}} { "execute": "device_add", "arguments": { "driver": "usb-storage", "id": "bar", "drive": "foo" } } {"error": {"class": "DeviceEncrypted", "desc": "'foo' (geheim.qcow2) is encrypted"}} {"execute":"device_del","arguments": { "id": "bar" } } {"timestamp": {"seconds": 1426003440, "microseconds": 237181}, "event": "DEVICE_DELETED", "data": {"path": "/machine/peripheral/bar/bar.0/legacy[0]"}} {"timestamp": {"seconds": 1426003440, "microseconds": 238231}, "event": "DEVICE_DELETED", "data": {"device": "bar", "path": "/machine/peripheral/bar"}} {"return": {}}
This stuff is worse than useless, it's a trap for users.
If people become sufficiently interested in encrypted images to contribute a cryptographically sane implementation for QCOW2 (or whatever other format), then rewriting the necessary support around it from scratch will likely be easier and yield better results than fixing up the existing mess.
Let's deprecate the mess now, drop it after a grace period, and move on.
Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
/openbmc/qemu/block/ |
H A D | qcow.c | diff 8c0dcbc4ad2bf4f9f3b27c637b357e87cad70ec7 Mon Jun 13 06:30:09 CDT 2016 Daniel P. Berrange <berrange@redhat.com> block: drop support for using qcow[2] encryption with system emulators
Back in the 2.3.0 release we declared qcow[2] encryption as deprecated, warning people that it would be removed in a future release.
commit a1f688f4152e65260b94f37543521ceff8bfebe4 Author: Markus Armbruster <armbru@redhat.com> Date: Fri Mar 13 21:09:40 2015 +0100
block: Deprecate QCOW/QCOW2 encryption
The code still exists today, but by a (happy?) accident we entirely broke the ability to use qcow[2] encryption in the system emulators in the 2.4.0 release due to
commit 8336aafae1451d54c81dd2b187b45f7c45d2428e Author: Daniel P. Berrange <berrange@redhat.com> Date: Tue May 12 17:09:18 2015 +0100
qcow2/qcow: protect against uninitialized encryption key
This commit was designed to prevent future coding bugs which might cause QEMU to read/write data on an encrypted block device in plain text mode before a decryption key is set.
It turns out this preventative measure was a little too good, because we already had a long standing bug where QEMU read encrypted data in plain text mode during system emulator startup, in order to guess disk geometry:
Thread 10 (Thread 0x7fffd3fff700 (LWP 30373)): #0 0x00007fffe90b1a28 in raise () at /lib64/libc.so.6 #1 0x00007fffe90b362a in abort () at /lib64/libc.so.6 #2 0x00007fffe90aa227 in __assert_fail_base () at /lib64/libc.so.6 #3 0x00007fffe90aa2d2 in () at /lib64/libc.so.6 #4 0x000055555587ae19 in qcow2_co_readv (bs=0x5555562accb0, sector_num=0, remaining_sectors=1, qiov=0x7fffffffd260) at block/qcow2.c:1229 #5 0x000055555589b60d in bdrv_aligned_preadv (bs=bs@entry=0x5555562accb0, req=req@entry=0x7fffd3ffea50, offset=offset@entry=0, bytes=bytes@entry=512, align=align@entry=512, qiov=qiov@entry=0x7fffffffd260, flags=0) at block/io.c:908 #6 0x000055555589b8bc in bdrv_co_do_preadv (bs=0x5555562accb0, offset=0, bytes=512, qiov=0x7fffffffd260, flags=<optimized out>) at block/io.c:999 #7 0x000055555589c375 in bdrv_rw_co_entry (opaque=0x7fffffffd210) at block/io.c:544 #8 0x000055555586933b in coroutine_thread (opaque=0x555557876310) at coroutine-gthread.c:134 #9 0x00007ffff64e1835 in g_thread_proxy (data=0x5555562b5590) at gthread.c:778 #10 0x00007ffff6bb760a in start_thread () at /lib64/libpthread.so.0 #11 0x00007fffe917f59d in clone () at /lib64/libc.so.6
Thread 1 (Thread 0x7ffff7ecab40 (LWP 30343)): #0 0x00007fffe91797a9 in syscall () at /lib64/libc.so.6 #1 0x00007ffff64ff87f in g_cond_wait (cond=cond@entry=0x555555e085f0 <coroutine_cond>, mutex=mutex@entry=0x555555e08600 <coroutine_lock>) at gthread-posix.c:1397 #2 0x00005555558692c3 in qemu_coroutine_switch (co=<optimized out>) at coroutine-gthread.c:117 #3 0x00005555558692c3 in qemu_coroutine_switch (from_=0x5555562b5e30, to_=to_@entry=0x555557876310, action=action@entry=COROUTINE_ENTER) at coroutine-gthread.c:175 #4 0x0000555555868a90 in qemu_coroutine_enter (co=0x555557876310, opaque=0x0) at qemu-coroutine.c:116 #5 0x0000555555859b84 in thread_pool_completion_bh (opaque=0x7fffd40010e0) at thread-pool.c:187 #6 0x0000555555859514 in aio_bh_poll (ctx=ctx@entry=0x5555562953b0) at async.c:85 #7 0x0000555555864d10 in aio_dispatch (ctx=ctx@entry=0x5555562953b0) at aio-posix.c:135 #8 0x0000555555864f75 in aio_poll (ctx=ctx@entry=0x5555562953b0, blocking=blocking@entry=true) at aio-posix.c:291 #9 0x000055555589c40d in bdrv_prwv_co (bs=bs@entry=0x5555562accb0, offset=offset@entry=0, qiov=qiov@entry=0x7fffffffd260, is_write=is_write@entry=false, flags=flags@entry=(unknown: 0)) at block/io.c:591 #10 0x000055555589c503 in bdrv_rw_co (bs=bs@entry=0x5555562accb0, sector_num=sector_num@entry=0, buf=buf@entry=0x7fffffffd2e0 "\321,", nb_sectors=nb_sectors@entry=21845, is_write=is_write@entry=false, flags=flags@entry=(unknown: 0)) at block/io.c:614 #11 0x000055555589c562 in bdrv_read_unthrottled (nb_sectors=21845, buf=0x7fffffffd2e0 "\321,", sector_num=0, bs=0x5555562accb0) at block/io.c:622 #12 0x000055555589c562 in bdrv_read_unthrottled (bs=0x5555562accb0, sector_num=sector_num@entry=0, buf=buf@entry=0x7fffffffd2e0 "\321,", nb_sectors=nb_sectors@entry=21845) at block/io.c:634 nb_sectors@entry=1) at block/block-backend.c:504 #14 0x0000555555752e9f in guess_disk_lchs (blk=blk@entry=0x5555562a5290, pcylinders=pcylinders@entry=0x7fffffffd52c, pheads=pheads@entry=0x7fffffffd530, psectors=psectors@entry=0x7fffffffd534) at hw/block/hd-geometry.c:68 #15 0x0000555555752ff7 in hd_geometry_guess (blk=0x5555562a5290, pcyls=pcyls@entry=0x555557875d1c, pheads=pheads@entry=0x555557875d20, psecs=psecs@entry=0x555557875d24, ptrans=ptrans@entry=0x555557875d28) at hw/block/hd-geometry.c:133 #16 0x0000555555752b87 in blkconf_geometry (conf=conf@entry=0x555557875d00, ptrans=ptrans@entry=0x555557875d28, cyls_max=cyls_max@entry=65536, heads_max=heads_max@entry=16, secs_max=secs_max@entry=255, errp=errp@entry=0x7fffffffd5e0) at hw/block/block.c:71 #17 0x0000555555799bc4 in ide_dev_initfn (dev=0x555557875c80, kind=IDE_HD) at hw/ide/qdev.c:174 #18 0x0000555555768394 in device_realize (dev=0x555557875c80, errp=0x7fffffffd640) at hw/core/qdev.c:247 #19 0x0000555555769a81 in device_set_realized (obj=0x555557875c80, value=<optimized out>, errp=0x7fffffffd730) at hw/core/qdev.c:1058 #20 0x00005555558240ce in property_set_bool (obj=0x555557875c80, v=<optimized out>, opaque=0x555557875de0, name=<optimized out>, errp=0x7fffffffd730) at qom/object.c:1514 #21 0x0000555555826c87 in object_property_set_qobject (obj=obj@entry=0x555557875c80, value=value@entry=0x55555784bcb0, name=name@entry=0x55555591cb3d "realized", errp=errp@entry=0x7fffffffd730) at qom/qom-qobject.c:24 #22 0x0000555555825760 in object_property_set_bool (obj=obj@entry=0x555557875c80, value=value@entry=true, name=name@entry=0x55555591cb3d "realized", errp=errp@entry=0x7fffffffd730) at qom/object.c:905 #23 0x000055555576897b in qdev_init_nofail (dev=dev@entry=0x555557875c80) at hw/core/qdev.c:380 #24 0x0000555555799ead in ide_create_drive (bus=bus@entry=0x555557629630, unit=unit@entry=0, drive=0x5555562b77e0) at hw/ide/qdev.c:122 #25 0x000055555579a746 in pci_ide_create_devs (dev=dev@entry=0x555557628db0, hd_table=hd_table@entry=0x7fffffffd830) at hw/ide/pci.c:440 #26 0x000055555579b165 in pci_piix3_ide_init (bus=<optimized out>, hd_table=0x7fffffffd830, devfn=<optimized out>) at hw/ide/piix.c:218 #27 0x000055555568ca55 in pc_init1 (machine=0x5555562960a0, pci_enabled=1, kvmclock_enabled=<optimized out>) at /home/berrange/src/virt/qemu/hw/i386/pc_piix.c:256 #28 0x0000555555603ab2 in main (argc=<optimized out>, argv=<optimized out>, envp=<optimized out>) at vl.c:4249
So the safety net is correctly preventing QEMU reading cipher text as if it were plain text, during startup and aborting QEMU to avoid bad usage of this data.
For added fun this bug only happens if the encrypted qcow2 file happens to have data written to the first cluster, otherwise the cluster won't be allocated and so qcow2 would not try the decryption routines at all, just return all 0's.
That no one even noticed, let alone reported, this bug that has shipped in 2.4.0, 2.5.0 and 2.6.0 shows that the number of actual users of encrypted qcow2 is approximately zero.
So rather than fix the crash, and backport it to stable releases, just go ahead with what we have warned users about and disable any use of qcow2 encryption in the system emulators. qemu-img/qemu-io/qemu-nbd are still able to access qcow2 encrypted images for the sake of data conversion.
In the future, qcow2 will gain support for the alternative luks format, but when this happens it'll be using the '-object secret' infrastructure for getting keys, which avoids this problematic scenario entirely.
Signed-off-by: Daniel P. Berrange <berrange@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
H A D | qcow2.c | diff 8c0dcbc4ad2bf4f9f3b27c637b357e87cad70ec7 Mon Jun 13 06:30:09 CDT 2016 Daniel P. Berrange <berrange@redhat.com> block: drop support for using qcow[2] encryption with system emulators
Back in the 2.3.0 release we declared qcow[2] encryption as deprecated, warning people that it would be removed in a future release.
commit a1f688f4152e65260b94f37543521ceff8bfebe4 Author: Markus Armbruster <armbru@redhat.com> Date: Fri Mar 13 21:09:40 2015 +0100
block: Deprecate QCOW/QCOW2 encryption
The code still exists today, but by a (happy?) accident we entirely broke the ability to use qcow[2] encryption in the system emulators in the 2.4.0 release due to
commit 8336aafae1451d54c81dd2b187b45f7c45d2428e Author: Daniel P. Berrange <berrange@redhat.com> Date: Tue May 12 17:09:18 2015 +0100
qcow2/qcow: protect against uninitialized encryption key
This commit was designed to prevent future coding bugs which might cause QEMU to read/write data on an encrypted block device in plain text mode before a decryption key is set.
It turns out this preventative measure was a little too good, because we already had a long standing bug where QEMU read encrypted data in plain text mode during system emulator startup, in order to guess disk geometry:
Thread 10 (Thread 0x7fffd3fff700 (LWP 30373)): #0 0x00007fffe90b1a28 in raise () at /lib64/libc.so.6 #1 0x00007fffe90b362a in abort () at /lib64/libc.so.6 #2 0x00007fffe90aa227 in __assert_fail_base () at /lib64/libc.so.6 #3 0x00007fffe90aa2d2 in () at /lib64/libc.so.6 #4 0x000055555587ae19 in qcow2_co_readv (bs=0x5555562accb0, sector_num=0, remaining_sectors=1, qiov=0x7fffffffd260) at block/qcow2.c:1229 #5 0x000055555589b60d in bdrv_aligned_preadv (bs=bs@entry=0x5555562accb0, req=req@entry=0x7fffd3ffea50, offset=offset@entry=0, bytes=bytes@entry=512, align=align@entry=512, qiov=qiov@entry=0x7fffffffd260, flags=0) at block/io.c:908 #6 0x000055555589b8bc in bdrv_co_do_preadv (bs=0x5555562accb0, offset=0, bytes=512, qiov=0x7fffffffd260, flags=<optimized out>) at block/io.c:999 #7 0x000055555589c375 in bdrv_rw_co_entry (opaque=0x7fffffffd210) at block/io.c:544 #8 0x000055555586933b in coroutine_thread (opaque=0x555557876310) at coroutine-gthread.c:134 #9 0x00007ffff64e1835 in g_thread_proxy (data=0x5555562b5590) at gthread.c:778 #10 0x00007ffff6bb760a in start_thread () at /lib64/libpthread.so.0 #11 0x00007fffe917f59d in clone () at /lib64/libc.so.6
Thread 1 (Thread 0x7ffff7ecab40 (LWP 30343)): #0 0x00007fffe91797a9 in syscall () at /lib64/libc.so.6 #1 0x00007ffff64ff87f in g_cond_wait (cond=cond@entry=0x555555e085f0 <coroutine_cond>, mutex=mutex@entry=0x555555e08600 <coroutine_lock>) at gthread-posix.c:1397 #2 0x00005555558692c3 in qemu_coroutine_switch (co=<optimized out>) at coroutine-gthread.c:117 #3 0x00005555558692c3 in qemu_coroutine_switch (from_=0x5555562b5e30, to_=to_@entry=0x555557876310, action=action@entry=COROUTINE_ENTER) at coroutine-gthread.c:175 #4 0x0000555555868a90 in qemu_coroutine_enter (co=0x555557876310, opaque=0x0) at qemu-coroutine.c:116 #5 0x0000555555859b84 in thread_pool_completion_bh (opaque=0x7fffd40010e0) at thread-pool.c:187 #6 0x0000555555859514 in aio_bh_poll (ctx=ctx@entry=0x5555562953b0) at async.c:85 #7 0x0000555555864d10 in aio_dispatch (ctx=ctx@entry=0x5555562953b0) at aio-posix.c:135 #8 0x0000555555864f75 in aio_poll (ctx=ctx@entry=0x5555562953b0, blocking=blocking@entry=true) at aio-posix.c:291 #9 0x000055555589c40d in bdrv_prwv_co (bs=bs@entry=0x5555562accb0, offset=offset@entry=0, qiov=qiov@entry=0x7fffffffd260, is_write=is_write@entry=false, flags=flags@entry=(unknown: 0)) at block/io.c:591 #10 0x000055555589c503 in bdrv_rw_co (bs=bs@entry=0x5555562accb0, sector_num=sector_num@entry=0, buf=buf@entry=0x7fffffffd2e0 "\321,", nb_sectors=nb_sectors@entry=21845, is_write=is_write@entry=false, flags=flags@entry=(unknown: 0)) at block/io.c:614 #11 0x000055555589c562 in bdrv_read_unthrottled (nb_sectors=21845, buf=0x7fffffffd2e0 "\321,", sector_num=0, bs=0x5555562accb0) at block/io.c:622 #12 0x000055555589c562 in bdrv_read_unthrottled (bs=0x5555562accb0, sector_num=sector_num@entry=0, buf=buf@entry=0x7fffffffd2e0 "\321,", nb_sectors=nb_sectors@entry=21845) at block/io.c:634 nb_sectors@entry=1) at block/block-backend.c:504 #14 0x0000555555752e9f in guess_disk_lchs (blk=blk@entry=0x5555562a5290, pcylinders=pcylinders@entry=0x7fffffffd52c, pheads=pheads@entry=0x7fffffffd530, psectors=psectors@entry=0x7fffffffd534) at hw/block/hd-geometry.c:68 #15 0x0000555555752ff7 in hd_geometry_guess (blk=0x5555562a5290, pcyls=pcyls@entry=0x555557875d1c, pheads=pheads@entry=0x555557875d20, psecs=psecs@entry=0x555557875d24, ptrans=ptrans@entry=0x555557875d28) at hw/block/hd-geometry.c:133 #16 0x0000555555752b87 in blkconf_geometry (conf=conf@entry=0x555557875d00, ptrans=ptrans@entry=0x555557875d28, cyls_max=cyls_max@entry=65536, heads_max=heads_max@entry=16, secs_max=secs_max@entry=255, errp=errp@entry=0x7fffffffd5e0) at hw/block/block.c:71 #17 0x0000555555799bc4 in ide_dev_initfn (dev=0x555557875c80, kind=IDE_HD) at hw/ide/qdev.c:174 #18 0x0000555555768394 in device_realize (dev=0x555557875c80, errp=0x7fffffffd640) at hw/core/qdev.c:247 #19 0x0000555555769a81 in device_set_realized (obj=0x555557875c80, value=<optimized out>, errp=0x7fffffffd730) at hw/core/qdev.c:1058 #20 0x00005555558240ce in property_set_bool (obj=0x555557875c80, v=<optimized out>, opaque=0x555557875de0, name=<optimized out>, errp=0x7fffffffd730) at qom/object.c:1514 #21 0x0000555555826c87 in object_property_set_qobject (obj=obj@entry=0x555557875c80, value=value@entry=0x55555784bcb0, name=name@entry=0x55555591cb3d "realized", errp=errp@entry=0x7fffffffd730) at qom/qom-qobject.c:24 #22 0x0000555555825760 in object_property_set_bool (obj=obj@entry=0x555557875c80, value=value@entry=true, name=name@entry=0x55555591cb3d "realized", errp=errp@entry=0x7fffffffd730) at qom/object.c:905 #23 0x000055555576897b in qdev_init_nofail (dev=dev@entry=0x555557875c80) at hw/core/qdev.c:380 #24 0x0000555555799ead in ide_create_drive (bus=bus@entry=0x555557629630, unit=unit@entry=0, drive=0x5555562b77e0) at hw/ide/qdev.c:122 #25 0x000055555579a746 in pci_ide_create_devs (dev=dev@entry=0x555557628db0, hd_table=hd_table@entry=0x7fffffffd830) at hw/ide/pci.c:440 #26 0x000055555579b165 in pci_piix3_ide_init (bus=<optimized out>, hd_table=0x7fffffffd830, devfn=<optimized out>) at hw/ide/piix.c:218 #27 0x000055555568ca55 in pc_init1 (machine=0x5555562960a0, pci_enabled=1, kvmclock_enabled=<optimized out>) at /home/berrange/src/virt/qemu/hw/i386/pc_piix.c:256 #28 0x0000555555603ab2 in main (argc=<optimized out>, argv=<optimized out>, envp=<optimized out>) at vl.c:4249
So the safety net is correctly preventing QEMU reading cipher text as if it were plain text, during startup and aborting QEMU to avoid bad usage of this data.
For added fun this bug only happens if the encrypted qcow2 file happens to have data written to the first cluster, otherwise the cluster won't be allocated and so qcow2 would not try the decryption routines at all, just return all 0's.
That no one even noticed, let alone reported, this bug that has shipped in 2.4.0, 2.5.0 and 2.6.0 shows that the number of actual users of encrypted qcow2 is approximately zero.
So rather than fix the crash, and backport it to stable releases, just go ahead with what we have warned users about and disable any use of qcow2 encryption in the system emulators. qemu-img/qemu-io/qemu-nbd are still able to access qcow2 encrypted images for the sake of data conversion.
In the future, qcow2 will gain support for the alternative luks format, but when this happens it'll be using the '-object secret' infrastructure for getting keys, which avoids this problematic scenario entirely.
Signed-off-by: Daniel P. Berrange <berrange@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
/openbmc/qemu/ |
H A D | block.c | diff a1f688f4152e65260b94f37543521ceff8bfebe4 Fri Mar 13 15:09:40 CDT 2015 Markus Armbruster <armbru@redhat.com> block: Deprecate QCOW/QCOW2 encryption
We've steered users away from QCOW/QCOW2 encryption for a while, because it's a flawed design (commit 136cd19 Describe flaws in qcow/qcow2 encryption in the docs).
In addition to flawed crypto, we have comically bad usability, and plain old bugs. Let me show you.
= Example images =
I'm going to use a raw image as backing file, and two QCOW2 images, one encrypted, and one not:
$ qemu-img create -f raw backing.img 4m Formatting 'backing.img', fmt=raw size=4194304 $ qemu-img create -f qcow2 -o encryption,backing_file=backing.img,backing_fmt=raw geheim.qcow2 4m Formatting 'geheim.qcow2', fmt=qcow2 size=4194304 backing_file='backing.img' backing_fmt='raw' encryption=on cluster_size=65536 lazy_refcounts=off $ qemu-img create -f qcow2 -o backing_file=backing.img,backing_fmt=raw normal.qcow2 4m Formatting 'normal.qcow2', fmt=qcow2 size=4194304 backing_file='backing.img' backing_fmt='raw' encryption=off cluster_size=65536 lazy_refcounts=off
= Usability issues =
== Confusing startup ==
When no image is encrypted, and you don't give -S, QEMU starts the guest immediately:
$ qemu-system-x86_64 -nodefaults -display none -monitor stdio normal.qcow2 QEMU 2.2.50 monitor - type 'help' for more information (qemu) info status VM status: running
But as soon as there's an encrypted image in play, the guest is *not* started, with no notification whatsoever:
$ qemu-system-x86_64 -nodefaults -display none -monitor stdio geheim.qcow2 QEMU 2.2.50 monitor - type 'help' for more information (qemu) info status VM status: paused (prelaunch)
If the user figured out that he needs to type "cont" to enter his keys, the confusion enters the next level: "cont" asks for at most *one* key. If more are needed, it then silently does nothing. The user has to type "cont" once per encrypted image:
$ qemu-system-x86_64 -nodefaults -display none -monitor stdio -drive if=none,file=geheim.qcow2 -drive if=none,file=geheim.qcow2 QEMU 2.2.50 monitor - type 'help' for more information (qemu) info status VM status: paused (prelaunch) (qemu) c none0 (geheim.qcow2) is encrypted. Password: ****** (qemu) info status VM status: paused (prelaunch) (qemu) c none1 (geheim.qcow2) is encrypted. Password: ****** (qemu) info status VM status: running
== Incorrect passwords not caught ==
All existing encryption schemes give you the GIGO treatment: garbage password in, garbage data out. Guests usually refuse to mount garbage, but other usage is prone to data loss.
== Need to stop the guest to add an encrypted image ==
$ qemu-system-x86_64 -nodefaults -display none -monitor stdio QEMU 2.2.50 monitor - type 'help' for more information (qemu) info status VM status: running (qemu) drive_add "" if=none,file=geheim.qcow2 Guest must be stopped for opening of encrypted image (qemu) stop (qemu) drive_add "" if=none,file=geheim.qcow2 OK
Commit c3adb58 added this restriction. Before, we could expose images lacking an encryption key to guests, with potentially catastrophic results. See also "Use without key is not always caught".
= Bugs =
== Use without key is not always caught ==
Encrypted images can be in an intermediate state "opened, but no key". The weird startup behavior and the need to stop the guest are there to ensure the guest isn't exposed to that state. But other things still are!
* drive_backup
$ qemu-system-x86_64 -nodefaults -display none -monitor stdio geheim.qcow2 QEMU 2.2.50 monitor - type 'help' for more information (qemu) drive_backup -f ide0-hd0 out.img raw Formatting 'out.img', fmt=raw size=4194304
I guess this writes encrypted data to raw image out.img. Good luck with figuring out how to decrypt that again.
* commit
$ qemu-system-x86_64 -nodefaults -display none -monitor stdio geheim.qcow2 QEMU 2.2.50 monitor - type 'help' for more information (qemu) commit ide0-hd0
I guess this writes encrypted data into the unencrypted raw backing image, effectively destroying it.
== QMP device_add of usb-storage fails when it shouldn't ==
When the image is encrypted, device_add creates the device, defers actually attaching it to when the key becomes available, then fails. This is wrong. device_add must either create the device and succeed, or do nothing and fail.
$ qemu-system-x86_64 -nodefaults -display none -usb -qmp stdio -drive if=none,id=foo,file=geheim.qcow2 {"QMP": {"version": {"qemu": {"micro": 50, "minor": 2, "major": 2}, "package": ""}, "capabilities": []}} { "execute": "qmp_capabilities" } {"return": {}} { "execute": "device_add", "arguments": { "driver": "usb-storage", "id": "bar", "drive": "foo" } } {"error": {"class": "DeviceEncrypted", "desc": "'foo' (geheim.qcow2) is encrypted"}} {"execute":"device_del","arguments": { "id": "bar" } } {"timestamp": {"seconds": 1426003440, "microseconds": 237181}, "event": "DEVICE_DELETED", "data": {"path": "/machine/peripheral/bar/bar.0/legacy[0]"}} {"timestamp": {"seconds": 1426003440, "microseconds": 238231}, "event": "DEVICE_DELETED", "data": {"device": "bar", "path": "/machine/peripheral/bar"}} {"return": {}}
This stuff is worse than useless, it's a trap for users.
If people become sufficiently interested in encrypted images to contribute a cryptographically sane implementation for QCOW2 (or whatever other format), then rewriting the necessary support around it from scratch will likely be easier and yield better results than fixing up the existing mess.
Let's deprecate the mess now, drop it after a grace period, and move on.
Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|