1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 struct xhci_segment *seg = ring->first_seg;
44
45 if (!td || !td->start_seg)
46 return false;
47 do {
48 if (seg == td->start_seg)
49 return true;
50 seg = seg->next;
51 } while (seg && seg != ring->first_seg);
52
53 return false;
54 }
55
56 /*
57 * xhci_handshake - spin reading hc until handshake completes or fails
58 * @ptr: address of hc register to be read
59 * @mask: bits to look at in result of read
60 * @done: value of those bits when handshake succeeds
61 * @usec: timeout in microseconds
62 *
63 * Returns negative errno, or zero on success
64 *
65 * Success happens when the "mask" bits have the specified value (hardware
66 * handshake done). There are two failure modes: "usec" have passed (major
67 * hardware flakeout), or the register reads as all-ones (hardware removed).
68 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71 u32 result;
72 int ret;
73
74 ret = readl_poll_timeout_atomic(ptr, result,
75 (result & mask) == done ||
76 result == U32_MAX,
77 1, timeout_us);
78 if (result == U32_MAX) /* card removed */
79 return -ENODEV;
80
81 return ret;
82 }
83
84 /*
85 * Disable interrupts and begin the xHCI halting process.
86 */
xhci_quiesce(struct xhci_hcd * xhci)87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 u32 halted;
90 u32 cmd;
91 u32 mask;
92
93 mask = ~(XHCI_IRQS);
94 halted = readl(&xhci->op_regs->status) & STS_HALT;
95 if (!halted)
96 mask &= ~CMD_RUN;
97
98 cmd = readl(&xhci->op_regs->command);
99 cmd &= mask;
100 writel(cmd, &xhci->op_regs->command);
101 }
102
103 /*
104 * Force HC into halt state.
105 *
106 * Disable any IRQs and clear the run/stop bit.
107 * HC will complete any current and actively pipelined transactions, and
108 * should halt within 16 ms of the run/stop bit being cleared.
109 * Read HC Halted bit in the status register to see when the HC is finished.
110 */
xhci_halt(struct xhci_hcd * xhci)111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 int ret;
114
115 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
116 xhci_quiesce(xhci);
117
118 ret = xhci_handshake(&xhci->op_regs->status,
119 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
120 if (ret) {
121 xhci_warn(xhci, "Host halt failed, %d\n", ret);
122 return ret;
123 }
124
125 xhci->xhc_state |= XHCI_STATE_HALTED;
126 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127
128 return ret;
129 }
130
131 /*
132 * Set the run bit and wait for the host to be running.
133 */
xhci_start(struct xhci_hcd * xhci)134 int xhci_start(struct xhci_hcd *xhci)
135 {
136 u32 temp;
137 int ret;
138
139 temp = readl(&xhci->op_regs->command);
140 temp |= (CMD_RUN);
141 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
142 temp);
143 writel(temp, &xhci->op_regs->command);
144
145 /*
146 * Wait for the HCHalted Status bit to be 0 to indicate the host is
147 * running.
148 */
149 ret = xhci_handshake(&xhci->op_regs->status,
150 STS_HALT, 0, XHCI_MAX_HALT_USEC);
151 if (ret == -ETIMEDOUT)
152 xhci_err(xhci, "Host took too long to start, "
153 "waited %u microseconds.\n",
154 XHCI_MAX_HALT_USEC);
155 if (!ret) {
156 /* clear state flags. Including dying, halted or removing */
157 xhci->xhc_state = 0;
158 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
159 }
160
161 return ret;
162 }
163
164 /*
165 * Reset a halted HC.
166 *
167 * This resets pipelines, timers, counters, state machines, etc.
168 * Transactions will be terminated immediately, and operational registers
169 * will be set to their defaults.
170 */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)171 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
172 {
173 u32 command;
174 u32 state;
175 int ret;
176
177 state = readl(&xhci->op_regs->status);
178
179 if (state == ~(u32)0) {
180 xhci_warn(xhci, "Host not accessible, reset failed.\n");
181 return -ENODEV;
182 }
183
184 if ((state & STS_HALT) == 0) {
185 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
186 return 0;
187 }
188
189 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
190 command = readl(&xhci->op_regs->command);
191 command |= CMD_RESET;
192 writel(command, &xhci->op_regs->command);
193
194 /* Existing Intel xHCI controllers require a delay of 1 mS,
195 * after setting the CMD_RESET bit, and before accessing any
196 * HC registers. This allows the HC to complete the
197 * reset operation and be ready for HC register access.
198 * Without this delay, the subsequent HC register access,
199 * may result in a system hang very rarely.
200 */
201 if (xhci->quirks & XHCI_INTEL_HOST)
202 udelay(1000);
203
204 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
205 if (ret)
206 return ret;
207
208 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
209 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
210
211 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
212 "Wait for controller to be ready for doorbell rings");
213 /*
214 * xHCI cannot write to any doorbells or operational registers other
215 * than status until the "Controller Not Ready" flag is cleared.
216 */
217 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
218
219 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
220 xhci->usb2_rhub.bus_state.suspended_ports = 0;
221 xhci->usb2_rhub.bus_state.resuming_ports = 0;
222 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
223 xhci->usb3_rhub.bus_state.suspended_ports = 0;
224 xhci->usb3_rhub.bus_state.resuming_ports = 0;
225
226 return ret;
227 }
228
xhci_zero_64b_regs(struct xhci_hcd * xhci)229 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
230 {
231 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
232 struct iommu_domain *domain;
233 int err, i;
234 u64 val;
235 u32 intrs;
236
237 /*
238 * Some Renesas controllers get into a weird state if they are
239 * reset while programmed with 64bit addresses (they will preserve
240 * the top half of the address in internal, non visible
241 * registers). You end up with half the address coming from the
242 * kernel, and the other half coming from the firmware. Also,
243 * changing the programming leads to extra accesses even if the
244 * controller is supposed to be halted. The controller ends up with
245 * a fatal fault, and is then ripe for being properly reset.
246 *
247 * Special care is taken to only apply this if the device is behind
248 * an iommu. Doing anything when there is no iommu is definitely
249 * unsafe...
250 */
251 domain = iommu_get_domain_for_dev(dev);
252 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
253 domain->type == IOMMU_DOMAIN_IDENTITY)
254 return;
255
256 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
257
258 /* Clear HSEIE so that faults do not get signaled */
259 val = readl(&xhci->op_regs->command);
260 val &= ~CMD_HSEIE;
261 writel(val, &xhci->op_regs->command);
262
263 /* Clear HSE (aka FATAL) */
264 val = readl(&xhci->op_regs->status);
265 val |= STS_FATAL;
266 writel(val, &xhci->op_regs->status);
267
268 /* Now zero the registers, and brace for impact */
269 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
270 if (upper_32_bits(val))
271 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
272 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
273 if (upper_32_bits(val))
274 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
275
276 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
277 ARRAY_SIZE(xhci->run_regs->ir_set));
278
279 for (i = 0; i < intrs; i++) {
280 struct xhci_intr_reg __iomem *ir;
281
282 ir = &xhci->run_regs->ir_set[i];
283 val = xhci_read_64(xhci, &ir->erst_base);
284 if (upper_32_bits(val))
285 xhci_write_64(xhci, 0, &ir->erst_base);
286 val= xhci_read_64(xhci, &ir->erst_dequeue);
287 if (upper_32_bits(val))
288 xhci_write_64(xhci, 0, &ir->erst_dequeue);
289 }
290
291 /* Wait for the fault to appear. It will be cleared on reset */
292 err = xhci_handshake(&xhci->op_regs->status,
293 STS_FATAL, STS_FATAL,
294 XHCI_MAX_HALT_USEC);
295 if (!err)
296 xhci_info(xhci, "Fault detected\n");
297 }
298
xhci_enable_interrupter(struct xhci_interrupter * ir)299 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
300 {
301 u32 iman;
302
303 if (!ir || !ir->ir_set)
304 return -EINVAL;
305
306 iman = readl(&ir->ir_set->irq_pending);
307 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
308
309 return 0;
310 }
311
xhci_disable_interrupter(struct xhci_interrupter * ir)312 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
313 {
314 u32 iman;
315
316 if (!ir || !ir->ir_set)
317 return -EINVAL;
318
319 iman = readl(&ir->ir_set->irq_pending);
320 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
321
322 return 0;
323 }
324
compliance_mode_recovery(struct timer_list * t)325 static void compliance_mode_recovery(struct timer_list *t)
326 {
327 struct xhci_hcd *xhci;
328 struct usb_hcd *hcd;
329 struct xhci_hub *rhub;
330 u32 temp;
331 int i;
332
333 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
334 rhub = &xhci->usb3_rhub;
335 hcd = rhub->hcd;
336
337 if (!hcd)
338 return;
339
340 for (i = 0; i < rhub->num_ports; i++) {
341 temp = readl(rhub->ports[i]->addr);
342 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
343 /*
344 * Compliance Mode Detected. Letting USB Core
345 * handle the Warm Reset
346 */
347 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
348 "Compliance mode detected->port %d",
349 i + 1);
350 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
351 "Attempting compliance mode recovery");
352
353 if (hcd->state == HC_STATE_SUSPENDED)
354 usb_hcd_resume_root_hub(hcd);
355
356 usb_hcd_poll_rh_status(hcd);
357 }
358 }
359
360 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
361 mod_timer(&xhci->comp_mode_recovery_timer,
362 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
363 }
364
365 /*
366 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
367 * that causes ports behind that hardware to enter compliance mode sometimes.
368 * The quirk creates a timer that polls every 2 seconds the link state of
369 * each host controller's port and recovers it by issuing a Warm reset
370 * if Compliance mode is detected, otherwise the port will become "dead" (no
371 * device connections or disconnections will be detected anymore). Becasue no
372 * status event is generated when entering compliance mode (per xhci spec),
373 * this quirk is needed on systems that have the failing hardware installed.
374 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)375 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
376 {
377 xhci->port_status_u0 = 0;
378 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
379 0);
380 xhci->comp_mode_recovery_timer.expires = jiffies +
381 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
382
383 add_timer(&xhci->comp_mode_recovery_timer);
384 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
385 "Compliance mode recovery timer initialized");
386 }
387
388 /*
389 * This function identifies the systems that have installed the SN65LVPE502CP
390 * USB3.0 re-driver and that need the Compliance Mode Quirk.
391 * Systems:
392 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
393 */
xhci_compliance_mode_recovery_timer_quirk_check(void)394 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
395 {
396 const char *dmi_product_name, *dmi_sys_vendor;
397
398 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
399 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
400 if (!dmi_product_name || !dmi_sys_vendor)
401 return false;
402
403 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
404 return false;
405
406 if (strstr(dmi_product_name, "Z420") ||
407 strstr(dmi_product_name, "Z620") ||
408 strstr(dmi_product_name, "Z820") ||
409 strstr(dmi_product_name, "Z1 Workstation"))
410 return true;
411
412 return false;
413 }
414
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)415 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
416 {
417 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
418 }
419
420
421 /*
422 * Initialize memory for HCD and xHC (one-time init).
423 *
424 * Program the PAGESIZE register, initialize the device context array, create
425 * device contexts (?), set up a command ring segment (or two?), create event
426 * ring (one for now).
427 */
xhci_init(struct usb_hcd * hcd)428 static int xhci_init(struct usb_hcd *hcd)
429 {
430 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
431 int retval;
432
433 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
434 spin_lock_init(&xhci->lock);
435 if (xhci->hci_version == 0x95 && link_quirk) {
436 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
437 "QUIRK: Not clearing Link TRB chain bits.");
438 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
439 } else {
440 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
441 "xHCI doesn't need link TRB QUIRK");
442 }
443 retval = xhci_mem_init(xhci, GFP_KERNEL);
444 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
445
446 /* Initializing Compliance Mode Recovery Data If Needed */
447 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
448 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
449 compliance_mode_recovery_timer_init(xhci);
450 }
451
452 return retval;
453 }
454
455 /*-------------------------------------------------------------------------*/
456
xhci_run_finished(struct xhci_hcd * xhci)457 static int xhci_run_finished(struct xhci_hcd *xhci)
458 {
459 struct xhci_interrupter *ir = xhci->interrupter;
460 unsigned long flags;
461 u32 temp;
462
463 /*
464 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
465 * Protect the short window before host is running with a lock
466 */
467 spin_lock_irqsave(&xhci->lock, flags);
468
469 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
470 temp = readl(&xhci->op_regs->command);
471 temp |= (CMD_EIE);
472 writel(temp, &xhci->op_regs->command);
473
474 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
475 xhci_enable_interrupter(ir);
476
477 if (xhci_start(xhci)) {
478 xhci_halt(xhci);
479 spin_unlock_irqrestore(&xhci->lock, flags);
480 return -ENODEV;
481 }
482
483 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
484
485 if (xhci->quirks & XHCI_NEC_HOST)
486 xhci_ring_cmd_db(xhci);
487
488 spin_unlock_irqrestore(&xhci->lock, flags);
489
490 return 0;
491 }
492
493 /*
494 * Start the HC after it was halted.
495 *
496 * This function is called by the USB core when the HC driver is added.
497 * Its opposite is xhci_stop().
498 *
499 * xhci_init() must be called once before this function can be called.
500 * Reset the HC, enable device slot contexts, program DCBAAP, and
501 * set command ring pointer and event ring pointer.
502 *
503 * Setup MSI-X vectors and enable interrupts.
504 */
xhci_run(struct usb_hcd * hcd)505 int xhci_run(struct usb_hcd *hcd)
506 {
507 u32 temp;
508 u64 temp_64;
509 int ret;
510 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
511 struct xhci_interrupter *ir = xhci->interrupter;
512 /* Start the xHCI host controller running only after the USB 2.0 roothub
513 * is setup.
514 */
515
516 hcd->uses_new_polling = 1;
517 if (!usb_hcd_is_primary_hcd(hcd))
518 return xhci_run_finished(xhci);
519
520 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
521
522 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
523 temp_64 &= ~ERST_PTR_MASK;
524 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
525 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
526
527 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
528 "// Set the interrupt modulation register");
529 temp = readl(&ir->ir_set->irq_control);
530 temp &= ~ER_IRQ_INTERVAL_MASK;
531 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
532 writel(temp, &ir->ir_set->irq_control);
533
534 if (xhci->quirks & XHCI_NEC_HOST) {
535 struct xhci_command *command;
536
537 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
538 if (!command)
539 return -ENOMEM;
540
541 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
542 TRB_TYPE(TRB_NEC_GET_FW));
543 if (ret)
544 xhci_free_command(xhci, command);
545 }
546 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
547 "Finished %s for main hcd", __func__);
548
549 xhci_create_dbc_dev(xhci);
550
551 xhci_debugfs_init(xhci);
552
553 if (xhci_has_one_roothub(xhci))
554 return xhci_run_finished(xhci);
555
556 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
557
558 return 0;
559 }
560 EXPORT_SYMBOL_GPL(xhci_run);
561
562 /*
563 * Stop xHCI driver.
564 *
565 * This function is called by the USB core when the HC driver is removed.
566 * Its opposite is xhci_run().
567 *
568 * Disable device contexts, disable IRQs, and quiesce the HC.
569 * Reset the HC, finish any completed transactions, and cleanup memory.
570 */
xhci_stop(struct usb_hcd * hcd)571 void xhci_stop(struct usb_hcd *hcd)
572 {
573 u32 temp;
574 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
575 struct xhci_interrupter *ir = xhci->interrupter;
576
577 mutex_lock(&xhci->mutex);
578
579 /* Only halt host and free memory after both hcds are removed */
580 if (!usb_hcd_is_primary_hcd(hcd)) {
581 mutex_unlock(&xhci->mutex);
582 return;
583 }
584
585 xhci_remove_dbc_dev(xhci);
586
587 spin_lock_irq(&xhci->lock);
588 xhci->xhc_state |= XHCI_STATE_HALTED;
589 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
590 xhci_halt(xhci);
591 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
592 spin_unlock_irq(&xhci->lock);
593
594 /* Deleting Compliance Mode Recovery Timer */
595 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
596 (!(xhci_all_ports_seen_u0(xhci)))) {
597 del_timer_sync(&xhci->comp_mode_recovery_timer);
598 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
599 "%s: compliance mode recovery timer deleted",
600 __func__);
601 }
602
603 if (xhci->quirks & XHCI_AMD_PLL_FIX)
604 usb_amd_dev_put();
605
606 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
607 "// Disabling event ring interrupts");
608 temp = readl(&xhci->op_regs->status);
609 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
610 xhci_disable_interrupter(ir);
611
612 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
613 xhci_mem_cleanup(xhci);
614 xhci_debugfs_exit(xhci);
615 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
616 "xhci_stop completed - status = %x",
617 readl(&xhci->op_regs->status));
618 mutex_unlock(&xhci->mutex);
619 }
620 EXPORT_SYMBOL_GPL(xhci_stop);
621
622 /*
623 * Shutdown HC (not bus-specific)
624 *
625 * This is called when the machine is rebooting or halting. We assume that the
626 * machine will be powered off, and the HC's internal state will be reset.
627 * Don't bother to free memory.
628 *
629 * This will only ever be called with the main usb_hcd (the USB3 roothub).
630 */
xhci_shutdown(struct usb_hcd * hcd)631 void xhci_shutdown(struct usb_hcd *hcd)
632 {
633 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
634
635 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
636 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
637
638 /* Don't poll the roothubs after shutdown. */
639 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
640 __func__, hcd->self.busnum);
641 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
642 del_timer_sync(&hcd->rh_timer);
643
644 if (xhci->shared_hcd) {
645 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
646 del_timer_sync(&xhci->shared_hcd->rh_timer);
647 }
648
649 spin_lock_irq(&xhci->lock);
650 xhci_halt(xhci);
651
652 /*
653 * Workaround for spurious wakeps at shutdown with HSW, and for boot
654 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
655 */
656 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
657 xhci->quirks & XHCI_RESET_TO_DEFAULT)
658 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
659
660 spin_unlock_irq(&xhci->lock);
661
662 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
663 "xhci_shutdown completed - status = %x",
664 readl(&xhci->op_regs->status));
665 }
666 EXPORT_SYMBOL_GPL(xhci_shutdown);
667
668 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)669 static void xhci_save_registers(struct xhci_hcd *xhci)
670 {
671 struct xhci_interrupter *ir = xhci->interrupter;
672
673 xhci->s3.command = readl(&xhci->op_regs->command);
674 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
675 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
676 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
677
678 if (!ir)
679 return;
680
681 ir->s3_erst_size = readl(&ir->ir_set->erst_size);
682 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
683 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
684 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
685 ir->s3_irq_control = readl(&ir->ir_set->irq_control);
686 }
687
xhci_restore_registers(struct xhci_hcd * xhci)688 static void xhci_restore_registers(struct xhci_hcd *xhci)
689 {
690 struct xhci_interrupter *ir = xhci->interrupter;
691
692 writel(xhci->s3.command, &xhci->op_regs->command);
693 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
694 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
695 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
696 writel(ir->s3_erst_size, &ir->ir_set->erst_size);
697 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
698 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
699 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
700 writel(ir->s3_irq_control, &ir->ir_set->irq_control);
701 }
702
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)703 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
704 {
705 u64 val_64;
706
707 /* step 2: initialize command ring buffer */
708 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
709 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
710 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
711 xhci->cmd_ring->dequeue) &
712 (u64) ~CMD_RING_RSVD_BITS) |
713 xhci->cmd_ring->cycle_state;
714 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
715 "// Setting command ring address to 0x%llx",
716 (long unsigned long) val_64);
717 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
718 }
719
720 /*
721 * The whole command ring must be cleared to zero when we suspend the host.
722 *
723 * The host doesn't save the command ring pointer in the suspend well, so we
724 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
725 * aligned, because of the reserved bits in the command ring dequeue pointer
726 * register. Therefore, we can't just set the dequeue pointer back in the
727 * middle of the ring (TRBs are 16-byte aligned).
728 */
xhci_clear_command_ring(struct xhci_hcd * xhci)729 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
730 {
731 struct xhci_ring *ring;
732 struct xhci_segment *seg;
733
734 ring = xhci->cmd_ring;
735 seg = ring->deq_seg;
736 do {
737 memset(seg->trbs, 0,
738 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
739 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
740 cpu_to_le32(~TRB_CYCLE);
741 seg = seg->next;
742 } while (seg != ring->deq_seg);
743
744 /* Reset the software enqueue and dequeue pointers */
745 ring->deq_seg = ring->first_seg;
746 ring->dequeue = ring->first_seg->trbs;
747 ring->enq_seg = ring->deq_seg;
748 ring->enqueue = ring->dequeue;
749
750 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
751 /*
752 * Ring is now zeroed, so the HW should look for change of ownership
753 * when the cycle bit is set to 1.
754 */
755 ring->cycle_state = 1;
756
757 /*
758 * Reset the hardware dequeue pointer.
759 * Yes, this will need to be re-written after resume, but we're paranoid
760 * and want to make sure the hardware doesn't access bogus memory
761 * because, say, the BIOS or an SMI started the host without changing
762 * the command ring pointers.
763 */
764 xhci_set_cmd_ring_deq(xhci);
765 }
766
767 /*
768 * Disable port wake bits if do_wakeup is not set.
769 *
770 * Also clear a possible internal port wake state left hanging for ports that
771 * detected termination but never successfully enumerated (trained to 0U).
772 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
773 * at enumeration clears this wake, force one here as well for unconnected ports
774 */
775
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)776 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
777 struct xhci_hub *rhub,
778 bool do_wakeup)
779 {
780 unsigned long flags;
781 u32 t1, t2, portsc;
782 int i;
783
784 spin_lock_irqsave(&xhci->lock, flags);
785
786 for (i = 0; i < rhub->num_ports; i++) {
787 portsc = readl(rhub->ports[i]->addr);
788 t1 = xhci_port_state_to_neutral(portsc);
789 t2 = t1;
790
791 /* clear wake bits if do_wake is not set */
792 if (!do_wakeup)
793 t2 &= ~PORT_WAKE_BITS;
794
795 /* Don't touch csc bit if connected or connect change is set */
796 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
797 t2 |= PORT_CSC;
798
799 if (t1 != t2) {
800 writel(t2, rhub->ports[i]->addr);
801 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
802 rhub->hcd->self.busnum, i + 1, portsc, t2);
803 }
804 }
805 spin_unlock_irqrestore(&xhci->lock, flags);
806 }
807
xhci_pending_portevent(struct xhci_hcd * xhci)808 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
809 {
810 struct xhci_port **ports;
811 int port_index;
812 u32 status;
813 u32 portsc;
814
815 status = readl(&xhci->op_regs->status);
816 if (status & STS_EINT)
817 return true;
818 /*
819 * Checking STS_EINT is not enough as there is a lag between a change
820 * bit being set and the Port Status Change Event that it generated
821 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
822 */
823
824 port_index = xhci->usb2_rhub.num_ports;
825 ports = xhci->usb2_rhub.ports;
826 while (port_index--) {
827 portsc = readl(ports[port_index]->addr);
828 if (portsc & PORT_CHANGE_MASK ||
829 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
830 return true;
831 }
832 port_index = xhci->usb3_rhub.num_ports;
833 ports = xhci->usb3_rhub.ports;
834 while (port_index--) {
835 portsc = readl(ports[port_index]->addr);
836 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
837 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
838 return true;
839 }
840 return false;
841 }
842
843 /*
844 * Stop HC (not bus-specific)
845 *
846 * This is called when the machine transition into S3/S4 mode.
847 *
848 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)849 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
850 {
851 int rc = 0;
852 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
853 struct usb_hcd *hcd = xhci_to_hcd(xhci);
854 u32 command;
855 u32 res;
856
857 if (!hcd->state)
858 return 0;
859
860 if (hcd->state != HC_STATE_SUSPENDED ||
861 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
862 return -EINVAL;
863
864 /* Clear root port wake on bits if wakeup not allowed. */
865 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
866 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
867
868 if (!HCD_HW_ACCESSIBLE(hcd))
869 return 0;
870
871 xhci_dbc_suspend(xhci);
872
873 /* Don't poll the roothubs on bus suspend. */
874 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
875 __func__, hcd->self.busnum);
876 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
877 del_timer_sync(&hcd->rh_timer);
878 if (xhci->shared_hcd) {
879 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
880 del_timer_sync(&xhci->shared_hcd->rh_timer);
881 }
882
883 if (xhci->quirks & XHCI_SUSPEND_DELAY)
884 usleep_range(1000, 1500);
885
886 spin_lock_irq(&xhci->lock);
887 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
888 if (xhci->shared_hcd)
889 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
890 /* step 1: stop endpoint */
891 /* skipped assuming that port suspend has done */
892
893 /* step 2: clear Run/Stop bit */
894 command = readl(&xhci->op_regs->command);
895 command &= ~CMD_RUN;
896 writel(command, &xhci->op_regs->command);
897
898 /* Some chips from Fresco Logic need an extraordinary delay */
899 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
900
901 if (xhci_handshake(&xhci->op_regs->status,
902 STS_HALT, STS_HALT, delay)) {
903 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
904 spin_unlock_irq(&xhci->lock);
905 return -ETIMEDOUT;
906 }
907 xhci_clear_command_ring(xhci);
908
909 /* step 3: save registers */
910 xhci_save_registers(xhci);
911
912 /* step 4: set CSS flag */
913 command = readl(&xhci->op_regs->command);
914 command |= CMD_CSS;
915 writel(command, &xhci->op_regs->command);
916 xhci->broken_suspend = 0;
917 if (xhci_handshake(&xhci->op_regs->status,
918 STS_SAVE, 0, 20 * 1000)) {
919 /*
920 * AMD SNPS xHC 3.0 occasionally does not clear the
921 * SSS bit of USBSTS and when driver tries to poll
922 * to see if the xHC clears BIT(8) which never happens
923 * and driver assumes that controller is not responding
924 * and times out. To workaround this, its good to check
925 * if SRE and HCE bits are not set (as per xhci
926 * Section 5.4.2) and bypass the timeout.
927 */
928 res = readl(&xhci->op_regs->status);
929 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
930 (((res & STS_SRE) == 0) &&
931 ((res & STS_HCE) == 0))) {
932 xhci->broken_suspend = 1;
933 } else {
934 xhci_warn(xhci, "WARN: xHC save state timeout\n");
935 spin_unlock_irq(&xhci->lock);
936 return -ETIMEDOUT;
937 }
938 }
939 spin_unlock_irq(&xhci->lock);
940
941 /*
942 * Deleting Compliance Mode Recovery Timer because the xHCI Host
943 * is about to be suspended.
944 */
945 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
946 (!(xhci_all_ports_seen_u0(xhci)))) {
947 del_timer_sync(&xhci->comp_mode_recovery_timer);
948 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
949 "%s: compliance mode recovery timer deleted",
950 __func__);
951 }
952
953 return rc;
954 }
955 EXPORT_SYMBOL_GPL(xhci_suspend);
956
957 /*
958 * start xHC (not bus-specific)
959 *
960 * This is called when the machine transition from S3/S4 mode.
961 *
962 */
xhci_resume(struct xhci_hcd * xhci,pm_message_t msg)963 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
964 {
965 bool hibernated = (msg.event == PM_EVENT_RESTORE);
966 u32 command, temp = 0;
967 struct usb_hcd *hcd = xhci_to_hcd(xhci);
968 int retval = 0;
969 bool comp_timer_running = false;
970 bool pending_portevent = false;
971 bool suspended_usb3_devs = false;
972 bool reinit_xhc = false;
973
974 if (!hcd->state)
975 return 0;
976
977 /* Wait a bit if either of the roothubs need to settle from the
978 * transition into bus suspend.
979 */
980
981 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
982 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
983 msleep(100);
984
985 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
986 if (xhci->shared_hcd)
987 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
988
989 spin_lock_irq(&xhci->lock);
990
991 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
992 reinit_xhc = true;
993
994 if (!reinit_xhc) {
995 /*
996 * Some controllers might lose power during suspend, so wait
997 * for controller not ready bit to clear, just as in xHC init.
998 */
999 retval = xhci_handshake(&xhci->op_regs->status,
1000 STS_CNR, 0, 10 * 1000 * 1000);
1001 if (retval) {
1002 xhci_warn(xhci, "Controller not ready at resume %d\n",
1003 retval);
1004 spin_unlock_irq(&xhci->lock);
1005 return retval;
1006 }
1007 /* step 1: restore register */
1008 xhci_restore_registers(xhci);
1009 /* step 2: initialize command ring buffer */
1010 xhci_set_cmd_ring_deq(xhci);
1011 /* step 3: restore state and start state*/
1012 /* step 3: set CRS flag */
1013 command = readl(&xhci->op_regs->command);
1014 command |= CMD_CRS;
1015 writel(command, &xhci->op_regs->command);
1016 /*
1017 * Some controllers take up to 55+ ms to complete the controller
1018 * restore so setting the timeout to 100ms. Xhci specification
1019 * doesn't mention any timeout value.
1020 */
1021 if (xhci_handshake(&xhci->op_regs->status,
1022 STS_RESTORE, 0, 100 * 1000)) {
1023 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1024 spin_unlock_irq(&xhci->lock);
1025 return -ETIMEDOUT;
1026 }
1027 }
1028
1029 temp = readl(&xhci->op_regs->status);
1030
1031 /* re-initialize the HC on Restore Error, or Host Controller Error */
1032 if ((temp & (STS_SRE | STS_HCE)) &&
1033 !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1034 reinit_xhc = true;
1035 if (!xhci->broken_suspend)
1036 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1037 }
1038
1039 if (reinit_xhc) {
1040 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1041 !(xhci_all_ports_seen_u0(xhci))) {
1042 del_timer_sync(&xhci->comp_mode_recovery_timer);
1043 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1044 "Compliance Mode Recovery Timer deleted!");
1045 }
1046
1047 /* Let the USB core know _both_ roothubs lost power. */
1048 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1049 if (xhci->shared_hcd)
1050 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1051
1052 xhci_dbg(xhci, "Stop HCD\n");
1053 xhci_halt(xhci);
1054 xhci_zero_64b_regs(xhci);
1055 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1056 spin_unlock_irq(&xhci->lock);
1057 if (retval)
1058 return retval;
1059
1060 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1061 temp = readl(&xhci->op_regs->status);
1062 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1063 xhci_disable_interrupter(xhci->interrupter);
1064
1065 xhci_dbg(xhci, "cleaning up memory\n");
1066 xhci_mem_cleanup(xhci);
1067 xhci_debugfs_exit(xhci);
1068 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1069 readl(&xhci->op_regs->status));
1070
1071 /* USB core calls the PCI reinit and start functions twice:
1072 * first with the primary HCD, and then with the secondary HCD.
1073 * If we don't do the same, the host will never be started.
1074 */
1075 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1076 retval = xhci_init(hcd);
1077 if (retval)
1078 return retval;
1079 comp_timer_running = true;
1080
1081 xhci_dbg(xhci, "Start the primary HCD\n");
1082 retval = xhci_run(hcd);
1083 if (!retval && xhci->shared_hcd) {
1084 xhci_dbg(xhci, "Start the secondary HCD\n");
1085 retval = xhci_run(xhci->shared_hcd);
1086 }
1087 if (retval)
1088 return retval;
1089 /*
1090 * Resume roothubs unconditionally as PORTSC change bits are not
1091 * immediately visible after xHC reset
1092 */
1093 hcd->state = HC_STATE_SUSPENDED;
1094
1095 if (xhci->shared_hcd) {
1096 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1097 usb_hcd_resume_root_hub(xhci->shared_hcd);
1098 }
1099 usb_hcd_resume_root_hub(hcd);
1100
1101 goto done;
1102 }
1103
1104 /* step 4: set Run/Stop bit */
1105 command = readl(&xhci->op_regs->command);
1106 command |= CMD_RUN;
1107 writel(command, &xhci->op_regs->command);
1108 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1109 0, 250 * 1000);
1110
1111 /* step 5: walk topology and initialize portsc,
1112 * portpmsc and portli
1113 */
1114 /* this is done in bus_resume */
1115
1116 /* step 6: restart each of the previously
1117 * Running endpoints by ringing their doorbells
1118 */
1119
1120 spin_unlock_irq(&xhci->lock);
1121
1122 xhci_dbc_resume(xhci);
1123
1124 if (retval == 0) {
1125 /*
1126 * Resume roothubs only if there are pending events.
1127 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1128 * the first wake signalling failed, give it that chance if
1129 * there are suspended USB 3 devices.
1130 */
1131 if (xhci->usb3_rhub.bus_state.suspended_ports ||
1132 xhci->usb3_rhub.bus_state.bus_suspended)
1133 suspended_usb3_devs = true;
1134
1135 pending_portevent = xhci_pending_portevent(xhci);
1136
1137 if (suspended_usb3_devs && !pending_portevent &&
1138 msg.event == PM_EVENT_AUTO_RESUME) {
1139 msleep(120);
1140 pending_portevent = xhci_pending_portevent(xhci);
1141 }
1142
1143 if (pending_portevent) {
1144 if (xhci->shared_hcd)
1145 usb_hcd_resume_root_hub(xhci->shared_hcd);
1146 usb_hcd_resume_root_hub(hcd);
1147 }
1148 }
1149 done:
1150 /*
1151 * If system is subject to the Quirk, Compliance Mode Timer needs to
1152 * be re-initialized Always after a system resume. Ports are subject
1153 * to suffer the Compliance Mode issue again. It doesn't matter if
1154 * ports have entered previously to U0 before system's suspension.
1155 */
1156 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1157 compliance_mode_recovery_timer_init(xhci);
1158
1159 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1160 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1161
1162 /* Re-enable port polling. */
1163 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1164 __func__, hcd->self.busnum);
1165 if (xhci->shared_hcd) {
1166 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1167 usb_hcd_poll_rh_status(xhci->shared_hcd);
1168 }
1169 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1170 usb_hcd_poll_rh_status(hcd);
1171
1172 return retval;
1173 }
1174 EXPORT_SYMBOL_GPL(xhci_resume);
1175 #endif /* CONFIG_PM */
1176
1177 /*-------------------------------------------------------------------------*/
1178
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1179 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1180 {
1181 void *temp;
1182 int ret = 0;
1183 unsigned int buf_len;
1184 enum dma_data_direction dir;
1185
1186 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1187 buf_len = urb->transfer_buffer_length;
1188
1189 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1190 dev_to_node(hcd->self.sysdev));
1191 if (!temp)
1192 return -ENOMEM;
1193
1194 if (usb_urb_dir_out(urb))
1195 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1196 temp, buf_len, 0);
1197
1198 urb->transfer_buffer = temp;
1199 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1200 urb->transfer_buffer,
1201 urb->transfer_buffer_length,
1202 dir);
1203
1204 if (dma_mapping_error(hcd->self.sysdev,
1205 urb->transfer_dma)) {
1206 ret = -EAGAIN;
1207 kfree(temp);
1208 } else {
1209 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1210 }
1211
1212 return ret;
1213 }
1214
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1215 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1216 struct urb *urb)
1217 {
1218 bool ret = false;
1219 unsigned int i;
1220 unsigned int len = 0;
1221 unsigned int trb_size;
1222 unsigned int max_pkt;
1223 struct scatterlist *sg;
1224 struct scatterlist *tail_sg;
1225
1226 tail_sg = urb->sg;
1227 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1228
1229 if (!urb->num_sgs)
1230 return ret;
1231
1232 if (urb->dev->speed >= USB_SPEED_SUPER)
1233 trb_size = TRB_CACHE_SIZE_SS;
1234 else
1235 trb_size = TRB_CACHE_SIZE_HS;
1236
1237 if (urb->transfer_buffer_length != 0 &&
1238 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1239 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1240 len = len + sg->length;
1241 if (i > trb_size - 2) {
1242 len = len - tail_sg->length;
1243 if (len < max_pkt) {
1244 ret = true;
1245 break;
1246 }
1247
1248 tail_sg = sg_next(tail_sg);
1249 }
1250 }
1251 }
1252 return ret;
1253 }
1254
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1255 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1256 {
1257 unsigned int len;
1258 unsigned int buf_len;
1259 enum dma_data_direction dir;
1260
1261 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1262
1263 buf_len = urb->transfer_buffer_length;
1264
1265 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1266 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1267 dma_unmap_single(hcd->self.sysdev,
1268 urb->transfer_dma,
1269 urb->transfer_buffer_length,
1270 dir);
1271
1272 if (usb_urb_dir_in(urb)) {
1273 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1274 urb->transfer_buffer,
1275 buf_len,
1276 0);
1277 if (len != buf_len) {
1278 xhci_dbg(hcd_to_xhci(hcd),
1279 "Copy from tmp buf to urb sg list failed\n");
1280 urb->actual_length = len;
1281 }
1282 }
1283 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1284 kfree(urb->transfer_buffer);
1285 urb->transfer_buffer = NULL;
1286 }
1287
1288 /*
1289 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1290 * we'll copy the actual data into the TRB address register. This is limited to
1291 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1292 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1293 */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1294 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1295 gfp_t mem_flags)
1296 {
1297 struct xhci_hcd *xhci;
1298
1299 xhci = hcd_to_xhci(hcd);
1300
1301 if (xhci_urb_suitable_for_idt(urb))
1302 return 0;
1303
1304 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1305 if (xhci_urb_temp_buffer_required(hcd, urb))
1306 return xhci_map_temp_buffer(hcd, urb);
1307 }
1308 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1309 }
1310
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1311 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1312 {
1313 struct xhci_hcd *xhci;
1314 bool unmap_temp_buf = false;
1315
1316 xhci = hcd_to_xhci(hcd);
1317
1318 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1319 unmap_temp_buf = true;
1320
1321 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1322 xhci_unmap_temp_buf(hcd, urb);
1323 else
1324 usb_hcd_unmap_urb_for_dma(hcd, urb);
1325 }
1326
1327 /**
1328 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1329 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1330 * value to right shift 1 for the bitmask.
1331 *
1332 * Index = (epnum * 2) + direction - 1,
1333 * where direction = 0 for OUT, 1 for IN.
1334 * For control endpoints, the IN index is used (OUT index is unused), so
1335 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1336 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1337 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1338 {
1339 unsigned int index;
1340 if (usb_endpoint_xfer_control(desc))
1341 index = (unsigned int) (usb_endpoint_num(desc)*2);
1342 else
1343 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1344 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1345 return index;
1346 }
1347 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1348
1349 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1350 * address from the XHCI endpoint index.
1351 */
xhci_get_endpoint_address(unsigned int ep_index)1352 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1353 {
1354 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1355 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1356 return direction | number;
1357 }
1358
1359 /* Find the flag for this endpoint (for use in the control context). Use the
1360 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1361 * bit 1, etc.
1362 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1363 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1364 {
1365 return 1 << (xhci_get_endpoint_index(desc) + 1);
1366 }
1367
1368 /* Compute the last valid endpoint context index. Basically, this is the
1369 * endpoint index plus one. For slot contexts with more than valid endpoint,
1370 * we find the most significant bit set in the added contexts flags.
1371 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1372 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1373 */
xhci_last_valid_endpoint(u32 added_ctxs)1374 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1375 {
1376 return fls(added_ctxs) - 1;
1377 }
1378
1379 /* Returns 1 if the arguments are OK;
1380 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1381 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1382 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1383 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1384 const char *func) {
1385 struct xhci_hcd *xhci;
1386 struct xhci_virt_device *virt_dev;
1387
1388 if (!hcd || (check_ep && !ep) || !udev) {
1389 pr_debug("xHCI %s called with invalid args\n", func);
1390 return -EINVAL;
1391 }
1392 if (!udev->parent) {
1393 pr_debug("xHCI %s called for root hub\n", func);
1394 return 0;
1395 }
1396
1397 xhci = hcd_to_xhci(hcd);
1398 if (check_virt_dev) {
1399 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1400 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1401 func);
1402 return -EINVAL;
1403 }
1404
1405 virt_dev = xhci->devs[udev->slot_id];
1406 if (virt_dev->udev != udev) {
1407 xhci_dbg(xhci, "xHCI %s called with udev and "
1408 "virt_dev does not match\n", func);
1409 return -EINVAL;
1410 }
1411 }
1412
1413 if (xhci->xhc_state & XHCI_STATE_HALTED)
1414 return -ENODEV;
1415
1416 return 1;
1417 }
1418
1419 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1420 struct usb_device *udev, struct xhci_command *command,
1421 bool ctx_change, bool must_succeed);
1422
1423 /*
1424 * Full speed devices may have a max packet size greater than 8 bytes, but the
1425 * USB core doesn't know that until it reads the first 8 bytes of the
1426 * descriptor. If the usb_device's max packet size changes after that point,
1427 * we need to issue an evaluate context command and wait on it.
1428 */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb,gfp_t mem_flags)1429 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1430 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1431 {
1432 struct xhci_container_ctx *out_ctx;
1433 struct xhci_input_control_ctx *ctrl_ctx;
1434 struct xhci_ep_ctx *ep_ctx;
1435 struct xhci_command *command;
1436 int max_packet_size;
1437 int hw_max_packet_size;
1438 int ret = 0;
1439
1440 out_ctx = xhci->devs[slot_id]->out_ctx;
1441 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1442 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1443 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1444 if (hw_max_packet_size != max_packet_size) {
1445 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1446 "Max Packet Size for ep 0 changed.");
1447 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1448 "Max packet size in usb_device = %d",
1449 max_packet_size);
1450 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1451 "Max packet size in xHCI HW = %d",
1452 hw_max_packet_size);
1453 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1454 "Issuing evaluate context command.");
1455
1456 /* Set up the input context flags for the command */
1457 /* FIXME: This won't work if a non-default control endpoint
1458 * changes max packet sizes.
1459 */
1460
1461 command = xhci_alloc_command(xhci, true, mem_flags);
1462 if (!command)
1463 return -ENOMEM;
1464
1465 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1466 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1467 if (!ctrl_ctx) {
1468 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1469 __func__);
1470 ret = -ENOMEM;
1471 goto command_cleanup;
1472 }
1473 /* Set up the modified control endpoint 0 */
1474 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1475 xhci->devs[slot_id]->out_ctx, ep_index);
1476
1477 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1478 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1479 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1480 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1481
1482 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1483 ctrl_ctx->drop_flags = 0;
1484
1485 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1486 true, false);
1487
1488 /* Clean up the input context for later use by bandwidth
1489 * functions.
1490 */
1491 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1492 command_cleanup:
1493 kfree(command->completion);
1494 kfree(command);
1495 }
1496 return ret;
1497 }
1498
1499 /*
1500 * non-error returns are a promise to giveback() the urb later
1501 * we drop ownership so next owner (or urb unlink) can get it
1502 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1503 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1504 {
1505 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1506 unsigned long flags;
1507 int ret = 0;
1508 unsigned int slot_id, ep_index;
1509 unsigned int *ep_state;
1510 struct urb_priv *urb_priv;
1511 int num_tds;
1512
1513 if (!urb)
1514 return -EINVAL;
1515 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1516 true, true, __func__);
1517 if (ret <= 0)
1518 return ret ? ret : -EINVAL;
1519
1520 slot_id = urb->dev->slot_id;
1521 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1522 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1523
1524 if (!HCD_HW_ACCESSIBLE(hcd))
1525 return -ESHUTDOWN;
1526
1527 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1528 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1529 return -ENODEV;
1530 }
1531
1532 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1533 num_tds = urb->number_of_packets;
1534 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1535 urb->transfer_buffer_length > 0 &&
1536 urb->transfer_flags & URB_ZERO_PACKET &&
1537 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1538 num_tds = 2;
1539 else
1540 num_tds = 1;
1541
1542 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1543 if (!urb_priv)
1544 return -ENOMEM;
1545
1546 urb_priv->num_tds = num_tds;
1547 urb_priv->num_tds_done = 0;
1548 urb->hcpriv = urb_priv;
1549
1550 trace_xhci_urb_enqueue(urb);
1551
1552 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1553 /* Check to see if the max packet size for the default control
1554 * endpoint changed during FS device enumeration
1555 */
1556 if (urb->dev->speed == USB_SPEED_FULL) {
1557 ret = xhci_check_maxpacket(xhci, slot_id,
1558 ep_index, urb, mem_flags);
1559 if (ret < 0) {
1560 xhci_urb_free_priv(urb_priv);
1561 urb->hcpriv = NULL;
1562 return ret;
1563 }
1564 }
1565 }
1566
1567 spin_lock_irqsave(&xhci->lock, flags);
1568
1569 if (xhci->xhc_state & XHCI_STATE_DYING) {
1570 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1571 urb->ep->desc.bEndpointAddress, urb);
1572 ret = -ESHUTDOWN;
1573 goto free_priv;
1574 }
1575 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1576 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1577 *ep_state);
1578 ret = -EINVAL;
1579 goto free_priv;
1580 }
1581 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1582 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1583 ret = -EINVAL;
1584 goto free_priv;
1585 }
1586
1587 switch (usb_endpoint_type(&urb->ep->desc)) {
1588
1589 case USB_ENDPOINT_XFER_CONTROL:
1590 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1591 slot_id, ep_index);
1592 break;
1593 case USB_ENDPOINT_XFER_BULK:
1594 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1595 slot_id, ep_index);
1596 break;
1597 case USB_ENDPOINT_XFER_INT:
1598 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1599 slot_id, ep_index);
1600 break;
1601 case USB_ENDPOINT_XFER_ISOC:
1602 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1603 slot_id, ep_index);
1604 }
1605
1606 if (ret) {
1607 free_priv:
1608 xhci_urb_free_priv(urb_priv);
1609 urb->hcpriv = NULL;
1610 }
1611 spin_unlock_irqrestore(&xhci->lock, flags);
1612 return ret;
1613 }
1614
1615 /*
1616 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1617 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1618 * should pick up where it left off in the TD, unless a Set Transfer Ring
1619 * Dequeue Pointer is issued.
1620 *
1621 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1622 * the ring. Since the ring is a contiguous structure, they can't be physically
1623 * removed. Instead, there are two options:
1624 *
1625 * 1) If the HC is in the middle of processing the URB to be canceled, we
1626 * simply move the ring's dequeue pointer past those TRBs using the Set
1627 * Transfer Ring Dequeue Pointer command. This will be the common case,
1628 * when drivers timeout on the last submitted URB and attempt to cancel.
1629 *
1630 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1631 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1632 * HC will need to invalidate the any TRBs it has cached after the stop
1633 * endpoint command, as noted in the xHCI 0.95 errata.
1634 *
1635 * 3) The TD may have completed by the time the Stop Endpoint Command
1636 * completes, so software needs to handle that case too.
1637 *
1638 * This function should protect against the TD enqueueing code ringing the
1639 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1640 * It also needs to account for multiple cancellations on happening at the same
1641 * time for the same endpoint.
1642 *
1643 * Note that this function can be called in any context, or so says
1644 * usb_hcd_unlink_urb()
1645 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1646 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1647 {
1648 unsigned long flags;
1649 int ret, i;
1650 u32 temp;
1651 struct xhci_hcd *xhci;
1652 struct urb_priv *urb_priv;
1653 struct xhci_td *td;
1654 unsigned int ep_index;
1655 struct xhci_ring *ep_ring;
1656 struct xhci_virt_ep *ep;
1657 struct xhci_command *command;
1658 struct xhci_virt_device *vdev;
1659
1660 xhci = hcd_to_xhci(hcd);
1661 spin_lock_irqsave(&xhci->lock, flags);
1662
1663 trace_xhci_urb_dequeue(urb);
1664
1665 /* Make sure the URB hasn't completed or been unlinked already */
1666 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1667 if (ret)
1668 goto done;
1669
1670 /* give back URB now if we can't queue it for cancel */
1671 vdev = xhci->devs[urb->dev->slot_id];
1672 urb_priv = urb->hcpriv;
1673 if (!vdev || !urb_priv)
1674 goto err_giveback;
1675
1676 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1677 ep = &vdev->eps[ep_index];
1678 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1679 if (!ep || !ep_ring)
1680 goto err_giveback;
1681
1682 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1683 temp = readl(&xhci->op_regs->status);
1684 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1685 xhci_hc_died(xhci);
1686 goto done;
1687 }
1688
1689 /*
1690 * check ring is not re-allocated since URB was enqueued. If it is, then
1691 * make sure none of the ring related pointers in this URB private data
1692 * are touched, such as td_list, otherwise we overwrite freed data
1693 */
1694 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1695 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1696 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1697 td = &urb_priv->td[i];
1698 if (!list_empty(&td->cancelled_td_list))
1699 list_del_init(&td->cancelled_td_list);
1700 }
1701 goto err_giveback;
1702 }
1703
1704 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1705 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1706 "HC halted, freeing TD manually.");
1707 for (i = urb_priv->num_tds_done;
1708 i < urb_priv->num_tds;
1709 i++) {
1710 td = &urb_priv->td[i];
1711 if (!list_empty(&td->td_list))
1712 list_del_init(&td->td_list);
1713 if (!list_empty(&td->cancelled_td_list))
1714 list_del_init(&td->cancelled_td_list);
1715 }
1716 goto err_giveback;
1717 }
1718
1719 i = urb_priv->num_tds_done;
1720 if (i < urb_priv->num_tds)
1721 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1722 "Cancel URB %p, dev %s, ep 0x%x, "
1723 "starting at offset 0x%llx",
1724 urb, urb->dev->devpath,
1725 urb->ep->desc.bEndpointAddress,
1726 (unsigned long long) xhci_trb_virt_to_dma(
1727 urb_priv->td[i].start_seg,
1728 urb_priv->td[i].first_trb));
1729
1730 for (; i < urb_priv->num_tds; i++) {
1731 td = &urb_priv->td[i];
1732 /* TD can already be on cancelled list if ep halted on it */
1733 if (list_empty(&td->cancelled_td_list)) {
1734 td->cancel_status = TD_DIRTY;
1735 list_add_tail(&td->cancelled_td_list,
1736 &ep->cancelled_td_list);
1737 }
1738 }
1739
1740 /* Queue a stop endpoint command, but only if this is
1741 * the first cancellation to be handled.
1742 */
1743 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1744 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1745 if (!command) {
1746 ret = -ENOMEM;
1747 goto done;
1748 }
1749 ep->ep_state |= EP_STOP_CMD_PENDING;
1750 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1751 ep_index, 0);
1752 xhci_ring_cmd_db(xhci);
1753 }
1754 done:
1755 spin_unlock_irqrestore(&xhci->lock, flags);
1756 return ret;
1757
1758 err_giveback:
1759 if (urb_priv)
1760 xhci_urb_free_priv(urb_priv);
1761 usb_hcd_unlink_urb_from_ep(hcd, urb);
1762 spin_unlock_irqrestore(&xhci->lock, flags);
1763 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1764 return ret;
1765 }
1766
1767 /* Drop an endpoint from a new bandwidth configuration for this device.
1768 * Only one call to this function is allowed per endpoint before
1769 * check_bandwidth() or reset_bandwidth() must be called.
1770 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1771 * add the endpoint to the schedule with possibly new parameters denoted by a
1772 * different endpoint descriptor in usb_host_endpoint.
1773 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1774 * not allowed.
1775 *
1776 * The USB core will not allow URBs to be queued to an endpoint that is being
1777 * disabled, so there's no need for mutual exclusion to protect
1778 * the xhci->devs[slot_id] structure.
1779 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1780 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1781 struct usb_host_endpoint *ep)
1782 {
1783 struct xhci_hcd *xhci;
1784 struct xhci_container_ctx *in_ctx, *out_ctx;
1785 struct xhci_input_control_ctx *ctrl_ctx;
1786 unsigned int ep_index;
1787 struct xhci_ep_ctx *ep_ctx;
1788 u32 drop_flag;
1789 u32 new_add_flags, new_drop_flags;
1790 int ret;
1791
1792 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1793 if (ret <= 0)
1794 return ret;
1795 xhci = hcd_to_xhci(hcd);
1796 if (xhci->xhc_state & XHCI_STATE_DYING)
1797 return -ENODEV;
1798
1799 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1800 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1801 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1802 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1803 __func__, drop_flag);
1804 return 0;
1805 }
1806
1807 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1808 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1809 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1810 if (!ctrl_ctx) {
1811 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1812 __func__);
1813 return 0;
1814 }
1815
1816 ep_index = xhci_get_endpoint_index(&ep->desc);
1817 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1818 /* If the HC already knows the endpoint is disabled,
1819 * or the HCD has noted it is disabled, ignore this request
1820 */
1821 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1822 le32_to_cpu(ctrl_ctx->drop_flags) &
1823 xhci_get_endpoint_flag(&ep->desc)) {
1824 /* Do not warn when called after a usb_device_reset */
1825 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1826 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1827 __func__, ep);
1828 return 0;
1829 }
1830
1831 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1832 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1833
1834 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1835 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1836
1837 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1838
1839 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1840
1841 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1842 (unsigned int) ep->desc.bEndpointAddress,
1843 udev->slot_id,
1844 (unsigned int) new_drop_flags,
1845 (unsigned int) new_add_flags);
1846 return 0;
1847 }
1848 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1849
1850 /* Add an endpoint to a new possible bandwidth configuration for this device.
1851 * Only one call to this function is allowed per endpoint before
1852 * check_bandwidth() or reset_bandwidth() must be called.
1853 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1854 * add the endpoint to the schedule with possibly new parameters denoted by a
1855 * different endpoint descriptor in usb_host_endpoint.
1856 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1857 * not allowed.
1858 *
1859 * The USB core will not allow URBs to be queued to an endpoint until the
1860 * configuration or alt setting is installed in the device, so there's no need
1861 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1862 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1863 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1864 struct usb_host_endpoint *ep)
1865 {
1866 struct xhci_hcd *xhci;
1867 struct xhci_container_ctx *in_ctx;
1868 unsigned int ep_index;
1869 struct xhci_input_control_ctx *ctrl_ctx;
1870 struct xhci_ep_ctx *ep_ctx;
1871 u32 added_ctxs;
1872 u32 new_add_flags, new_drop_flags;
1873 struct xhci_virt_device *virt_dev;
1874 int ret = 0;
1875
1876 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1877 if (ret <= 0) {
1878 /* So we won't queue a reset ep command for a root hub */
1879 ep->hcpriv = NULL;
1880 return ret;
1881 }
1882 xhci = hcd_to_xhci(hcd);
1883 if (xhci->xhc_state & XHCI_STATE_DYING)
1884 return -ENODEV;
1885
1886 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1887 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1888 /* FIXME when we have to issue an evaluate endpoint command to
1889 * deal with ep0 max packet size changing once we get the
1890 * descriptors
1891 */
1892 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1893 __func__, added_ctxs);
1894 return 0;
1895 }
1896
1897 virt_dev = xhci->devs[udev->slot_id];
1898 in_ctx = virt_dev->in_ctx;
1899 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1900 if (!ctrl_ctx) {
1901 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1902 __func__);
1903 return 0;
1904 }
1905
1906 ep_index = xhci_get_endpoint_index(&ep->desc);
1907 /* If this endpoint is already in use, and the upper layers are trying
1908 * to add it again without dropping it, reject the addition.
1909 */
1910 if (virt_dev->eps[ep_index].ring &&
1911 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1912 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1913 "without dropping it.\n",
1914 (unsigned int) ep->desc.bEndpointAddress);
1915 return -EINVAL;
1916 }
1917
1918 /* If the HCD has already noted the endpoint is enabled,
1919 * ignore this request.
1920 */
1921 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1922 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1923 __func__, ep);
1924 return 0;
1925 }
1926
1927 /*
1928 * Configuration and alternate setting changes must be done in
1929 * process context, not interrupt context (or so documenation
1930 * for usb_set_interface() and usb_set_configuration() claim).
1931 */
1932 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1933 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1934 __func__, ep->desc.bEndpointAddress);
1935 return -ENOMEM;
1936 }
1937
1938 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1939 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1940
1941 /* If xhci_endpoint_disable() was called for this endpoint, but the
1942 * xHC hasn't been notified yet through the check_bandwidth() call,
1943 * this re-adds a new state for the endpoint from the new endpoint
1944 * descriptors. We must drop and re-add this endpoint, so we leave the
1945 * drop flags alone.
1946 */
1947 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1948
1949 /* Store the usb_device pointer for later use */
1950 ep->hcpriv = udev;
1951
1952 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1953 trace_xhci_add_endpoint(ep_ctx);
1954
1955 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1956 (unsigned int) ep->desc.bEndpointAddress,
1957 udev->slot_id,
1958 (unsigned int) new_drop_flags,
1959 (unsigned int) new_add_flags);
1960 return 0;
1961 }
1962 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1963
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1964 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1965 {
1966 struct xhci_input_control_ctx *ctrl_ctx;
1967 struct xhci_ep_ctx *ep_ctx;
1968 struct xhci_slot_ctx *slot_ctx;
1969 int i;
1970
1971 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1972 if (!ctrl_ctx) {
1973 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1974 __func__);
1975 return;
1976 }
1977
1978 /* When a device's add flag and drop flag are zero, any subsequent
1979 * configure endpoint command will leave that endpoint's state
1980 * untouched. Make sure we don't leave any old state in the input
1981 * endpoint contexts.
1982 */
1983 ctrl_ctx->drop_flags = 0;
1984 ctrl_ctx->add_flags = 0;
1985 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1986 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1987 /* Endpoint 0 is always valid */
1988 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1989 for (i = 1; i < 31; i++) {
1990 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1991 ep_ctx->ep_info = 0;
1992 ep_ctx->ep_info2 = 0;
1993 ep_ctx->deq = 0;
1994 ep_ctx->tx_info = 0;
1995 }
1996 }
1997
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1998 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1999 struct usb_device *udev, u32 *cmd_status)
2000 {
2001 int ret;
2002
2003 switch (*cmd_status) {
2004 case COMP_COMMAND_ABORTED:
2005 case COMP_COMMAND_RING_STOPPED:
2006 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2007 ret = -ETIME;
2008 break;
2009 case COMP_RESOURCE_ERROR:
2010 dev_warn(&udev->dev,
2011 "Not enough host controller resources for new device state.\n");
2012 ret = -ENOMEM;
2013 /* FIXME: can we allocate more resources for the HC? */
2014 break;
2015 case COMP_BANDWIDTH_ERROR:
2016 case COMP_SECONDARY_BANDWIDTH_ERROR:
2017 dev_warn(&udev->dev,
2018 "Not enough bandwidth for new device state.\n");
2019 ret = -ENOSPC;
2020 /* FIXME: can we go back to the old state? */
2021 break;
2022 case COMP_TRB_ERROR:
2023 /* the HCD set up something wrong */
2024 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2025 "add flag = 1, "
2026 "and endpoint is not disabled.\n");
2027 ret = -EINVAL;
2028 break;
2029 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2030 dev_warn(&udev->dev,
2031 "ERROR: Incompatible device for endpoint configure command.\n");
2032 ret = -ENODEV;
2033 break;
2034 case COMP_SUCCESS:
2035 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2036 "Successful Endpoint Configure command");
2037 ret = 0;
2038 break;
2039 default:
2040 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2041 *cmd_status);
2042 ret = -EINVAL;
2043 break;
2044 }
2045 return ret;
2046 }
2047
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2048 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2049 struct usb_device *udev, u32 *cmd_status)
2050 {
2051 int ret;
2052
2053 switch (*cmd_status) {
2054 case COMP_COMMAND_ABORTED:
2055 case COMP_COMMAND_RING_STOPPED:
2056 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2057 ret = -ETIME;
2058 break;
2059 case COMP_PARAMETER_ERROR:
2060 dev_warn(&udev->dev,
2061 "WARN: xHCI driver setup invalid evaluate context command.\n");
2062 ret = -EINVAL;
2063 break;
2064 case COMP_SLOT_NOT_ENABLED_ERROR:
2065 dev_warn(&udev->dev,
2066 "WARN: slot not enabled for evaluate context command.\n");
2067 ret = -EINVAL;
2068 break;
2069 case COMP_CONTEXT_STATE_ERROR:
2070 dev_warn(&udev->dev,
2071 "WARN: invalid context state for evaluate context command.\n");
2072 ret = -EINVAL;
2073 break;
2074 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2075 dev_warn(&udev->dev,
2076 "ERROR: Incompatible device for evaluate context command.\n");
2077 ret = -ENODEV;
2078 break;
2079 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2080 /* Max Exit Latency too large error */
2081 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2082 ret = -EINVAL;
2083 break;
2084 case COMP_SUCCESS:
2085 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2086 "Successful evaluate context command");
2087 ret = 0;
2088 break;
2089 default:
2090 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2091 *cmd_status);
2092 ret = -EINVAL;
2093 break;
2094 }
2095 return ret;
2096 }
2097
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2098 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2099 struct xhci_input_control_ctx *ctrl_ctx)
2100 {
2101 u32 valid_add_flags;
2102 u32 valid_drop_flags;
2103
2104 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2105 * (bit 1). The default control endpoint is added during the Address
2106 * Device command and is never removed until the slot is disabled.
2107 */
2108 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2109 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2110
2111 /* Use hweight32 to count the number of ones in the add flags, or
2112 * number of endpoints added. Don't count endpoints that are changed
2113 * (both added and dropped).
2114 */
2115 return hweight32(valid_add_flags) -
2116 hweight32(valid_add_flags & valid_drop_flags);
2117 }
2118
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2119 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2120 struct xhci_input_control_ctx *ctrl_ctx)
2121 {
2122 u32 valid_add_flags;
2123 u32 valid_drop_flags;
2124
2125 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2126 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2127
2128 return hweight32(valid_drop_flags) -
2129 hweight32(valid_add_flags & valid_drop_flags);
2130 }
2131
2132 /*
2133 * We need to reserve the new number of endpoints before the configure endpoint
2134 * command completes. We can't subtract the dropped endpoints from the number
2135 * of active endpoints until the command completes because we can oversubscribe
2136 * the host in this case:
2137 *
2138 * - the first configure endpoint command drops more endpoints than it adds
2139 * - a second configure endpoint command that adds more endpoints is queued
2140 * - the first configure endpoint command fails, so the config is unchanged
2141 * - the second command may succeed, even though there isn't enough resources
2142 *
2143 * Must be called with xhci->lock held.
2144 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2145 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2146 struct xhci_input_control_ctx *ctrl_ctx)
2147 {
2148 u32 added_eps;
2149
2150 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2151 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2152 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2153 "Not enough ep ctxs: "
2154 "%u active, need to add %u, limit is %u.",
2155 xhci->num_active_eps, added_eps,
2156 xhci->limit_active_eps);
2157 return -ENOMEM;
2158 }
2159 xhci->num_active_eps += added_eps;
2160 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2161 "Adding %u ep ctxs, %u now active.", added_eps,
2162 xhci->num_active_eps);
2163 return 0;
2164 }
2165
2166 /*
2167 * The configure endpoint was failed by the xHC for some other reason, so we
2168 * need to revert the resources that failed configuration would have used.
2169 *
2170 * Must be called with xhci->lock held.
2171 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2172 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2173 struct xhci_input_control_ctx *ctrl_ctx)
2174 {
2175 u32 num_failed_eps;
2176
2177 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2178 xhci->num_active_eps -= num_failed_eps;
2179 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2180 "Removing %u failed ep ctxs, %u now active.",
2181 num_failed_eps,
2182 xhci->num_active_eps);
2183 }
2184
2185 /*
2186 * Now that the command has completed, clean up the active endpoint count by
2187 * subtracting out the endpoints that were dropped (but not changed).
2188 *
2189 * Must be called with xhci->lock held.
2190 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2191 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2192 struct xhci_input_control_ctx *ctrl_ctx)
2193 {
2194 u32 num_dropped_eps;
2195
2196 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2197 xhci->num_active_eps -= num_dropped_eps;
2198 if (num_dropped_eps)
2199 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2200 "Removing %u dropped ep ctxs, %u now active.",
2201 num_dropped_eps,
2202 xhci->num_active_eps);
2203 }
2204
xhci_get_block_size(struct usb_device * udev)2205 static unsigned int xhci_get_block_size(struct usb_device *udev)
2206 {
2207 switch (udev->speed) {
2208 case USB_SPEED_LOW:
2209 case USB_SPEED_FULL:
2210 return FS_BLOCK;
2211 case USB_SPEED_HIGH:
2212 return HS_BLOCK;
2213 case USB_SPEED_SUPER:
2214 case USB_SPEED_SUPER_PLUS:
2215 return SS_BLOCK;
2216 case USB_SPEED_UNKNOWN:
2217 default:
2218 /* Should never happen */
2219 return 1;
2220 }
2221 }
2222
2223 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2224 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2225 {
2226 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2227 return LS_OVERHEAD;
2228 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2229 return FS_OVERHEAD;
2230 return HS_OVERHEAD;
2231 }
2232
2233 /* If we are changing a LS/FS device under a HS hub,
2234 * make sure (if we are activating a new TT) that the HS bus has enough
2235 * bandwidth for this new TT.
2236 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2237 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2238 struct xhci_virt_device *virt_dev,
2239 int old_active_eps)
2240 {
2241 struct xhci_interval_bw_table *bw_table;
2242 struct xhci_tt_bw_info *tt_info;
2243
2244 /* Find the bandwidth table for the root port this TT is attached to. */
2245 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2246 tt_info = virt_dev->tt_info;
2247 /* If this TT already had active endpoints, the bandwidth for this TT
2248 * has already been added. Removing all periodic endpoints (and thus
2249 * making the TT enactive) will only decrease the bandwidth used.
2250 */
2251 if (old_active_eps)
2252 return 0;
2253 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2254 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2255 return -ENOMEM;
2256 return 0;
2257 }
2258 /* Not sure why we would have no new active endpoints...
2259 *
2260 * Maybe because of an Evaluate Context change for a hub update or a
2261 * control endpoint 0 max packet size change?
2262 * FIXME: skip the bandwidth calculation in that case.
2263 */
2264 return 0;
2265 }
2266
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2267 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2268 struct xhci_virt_device *virt_dev)
2269 {
2270 unsigned int bw_reserved;
2271
2272 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2273 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2274 return -ENOMEM;
2275
2276 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2277 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2278 return -ENOMEM;
2279
2280 return 0;
2281 }
2282
2283 /*
2284 * This algorithm is a very conservative estimate of the worst-case scheduling
2285 * scenario for any one interval. The hardware dynamically schedules the
2286 * packets, so we can't tell which microframe could be the limiting factor in
2287 * the bandwidth scheduling. This only takes into account periodic endpoints.
2288 *
2289 * Obviously, we can't solve an NP complete problem to find the minimum worst
2290 * case scenario. Instead, we come up with an estimate that is no less than
2291 * the worst case bandwidth used for any one microframe, but may be an
2292 * over-estimate.
2293 *
2294 * We walk the requirements for each endpoint by interval, starting with the
2295 * smallest interval, and place packets in the schedule where there is only one
2296 * possible way to schedule packets for that interval. In order to simplify
2297 * this algorithm, we record the largest max packet size for each interval, and
2298 * assume all packets will be that size.
2299 *
2300 * For interval 0, we obviously must schedule all packets for each interval.
2301 * The bandwidth for interval 0 is just the amount of data to be transmitted
2302 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2303 * the number of packets).
2304 *
2305 * For interval 1, we have two possible microframes to schedule those packets
2306 * in. For this algorithm, if we can schedule the same number of packets for
2307 * each possible scheduling opportunity (each microframe), we will do so. The
2308 * remaining number of packets will be saved to be transmitted in the gaps in
2309 * the next interval's scheduling sequence.
2310 *
2311 * As we move those remaining packets to be scheduled with interval 2 packets,
2312 * we have to double the number of remaining packets to transmit. This is
2313 * because the intervals are actually powers of 2, and we would be transmitting
2314 * the previous interval's packets twice in this interval. We also have to be
2315 * sure that when we look at the largest max packet size for this interval, we
2316 * also look at the largest max packet size for the remaining packets and take
2317 * the greater of the two.
2318 *
2319 * The algorithm continues to evenly distribute packets in each scheduling
2320 * opportunity, and push the remaining packets out, until we get to the last
2321 * interval. Then those packets and their associated overhead are just added
2322 * to the bandwidth used.
2323 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2324 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2325 struct xhci_virt_device *virt_dev,
2326 int old_active_eps)
2327 {
2328 unsigned int bw_reserved;
2329 unsigned int max_bandwidth;
2330 unsigned int bw_used;
2331 unsigned int block_size;
2332 struct xhci_interval_bw_table *bw_table;
2333 unsigned int packet_size = 0;
2334 unsigned int overhead = 0;
2335 unsigned int packets_transmitted = 0;
2336 unsigned int packets_remaining = 0;
2337 unsigned int i;
2338
2339 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2340 return xhci_check_ss_bw(xhci, virt_dev);
2341
2342 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2343 max_bandwidth = HS_BW_LIMIT;
2344 /* Convert percent of bus BW reserved to blocks reserved */
2345 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2346 } else {
2347 max_bandwidth = FS_BW_LIMIT;
2348 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2349 }
2350
2351 bw_table = virt_dev->bw_table;
2352 /* We need to translate the max packet size and max ESIT payloads into
2353 * the units the hardware uses.
2354 */
2355 block_size = xhci_get_block_size(virt_dev->udev);
2356
2357 /* If we are manipulating a LS/FS device under a HS hub, double check
2358 * that the HS bus has enough bandwidth if we are activing a new TT.
2359 */
2360 if (virt_dev->tt_info) {
2361 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2362 "Recalculating BW for rootport %u",
2363 virt_dev->real_port);
2364 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2365 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2366 "newly activated TT.\n");
2367 return -ENOMEM;
2368 }
2369 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2370 "Recalculating BW for TT slot %u port %u",
2371 virt_dev->tt_info->slot_id,
2372 virt_dev->tt_info->ttport);
2373 } else {
2374 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2375 "Recalculating BW for rootport %u",
2376 virt_dev->real_port);
2377 }
2378
2379 /* Add in how much bandwidth will be used for interval zero, or the
2380 * rounded max ESIT payload + number of packets * largest overhead.
2381 */
2382 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2383 bw_table->interval_bw[0].num_packets *
2384 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2385
2386 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2387 unsigned int bw_added;
2388 unsigned int largest_mps;
2389 unsigned int interval_overhead;
2390
2391 /*
2392 * How many packets could we transmit in this interval?
2393 * If packets didn't fit in the previous interval, we will need
2394 * to transmit that many packets twice within this interval.
2395 */
2396 packets_remaining = 2 * packets_remaining +
2397 bw_table->interval_bw[i].num_packets;
2398
2399 /* Find the largest max packet size of this or the previous
2400 * interval.
2401 */
2402 if (list_empty(&bw_table->interval_bw[i].endpoints))
2403 largest_mps = 0;
2404 else {
2405 struct xhci_virt_ep *virt_ep;
2406 struct list_head *ep_entry;
2407
2408 ep_entry = bw_table->interval_bw[i].endpoints.next;
2409 virt_ep = list_entry(ep_entry,
2410 struct xhci_virt_ep, bw_endpoint_list);
2411 /* Convert to blocks, rounding up */
2412 largest_mps = DIV_ROUND_UP(
2413 virt_ep->bw_info.max_packet_size,
2414 block_size);
2415 }
2416 if (largest_mps > packet_size)
2417 packet_size = largest_mps;
2418
2419 /* Use the larger overhead of this or the previous interval. */
2420 interval_overhead = xhci_get_largest_overhead(
2421 &bw_table->interval_bw[i]);
2422 if (interval_overhead > overhead)
2423 overhead = interval_overhead;
2424
2425 /* How many packets can we evenly distribute across
2426 * (1 << (i + 1)) possible scheduling opportunities?
2427 */
2428 packets_transmitted = packets_remaining >> (i + 1);
2429
2430 /* Add in the bandwidth used for those scheduled packets */
2431 bw_added = packets_transmitted * (overhead + packet_size);
2432
2433 /* How many packets do we have remaining to transmit? */
2434 packets_remaining = packets_remaining % (1 << (i + 1));
2435
2436 /* What largest max packet size should those packets have? */
2437 /* If we've transmitted all packets, don't carry over the
2438 * largest packet size.
2439 */
2440 if (packets_remaining == 0) {
2441 packet_size = 0;
2442 overhead = 0;
2443 } else if (packets_transmitted > 0) {
2444 /* Otherwise if we do have remaining packets, and we've
2445 * scheduled some packets in this interval, take the
2446 * largest max packet size from endpoints with this
2447 * interval.
2448 */
2449 packet_size = largest_mps;
2450 overhead = interval_overhead;
2451 }
2452 /* Otherwise carry over packet_size and overhead from the last
2453 * time we had a remainder.
2454 */
2455 bw_used += bw_added;
2456 if (bw_used > max_bandwidth) {
2457 xhci_warn(xhci, "Not enough bandwidth. "
2458 "Proposed: %u, Max: %u\n",
2459 bw_used, max_bandwidth);
2460 return -ENOMEM;
2461 }
2462 }
2463 /*
2464 * Ok, we know we have some packets left over after even-handedly
2465 * scheduling interval 15. We don't know which microframes they will
2466 * fit into, so we over-schedule and say they will be scheduled every
2467 * microframe.
2468 */
2469 if (packets_remaining > 0)
2470 bw_used += overhead + packet_size;
2471
2472 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2473 unsigned int port_index = virt_dev->real_port - 1;
2474
2475 /* OK, we're manipulating a HS device attached to a
2476 * root port bandwidth domain. Include the number of active TTs
2477 * in the bandwidth used.
2478 */
2479 bw_used += TT_HS_OVERHEAD *
2480 xhci->rh_bw[port_index].num_active_tts;
2481 }
2482
2483 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2484 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2485 "Available: %u " "percent",
2486 bw_used, max_bandwidth, bw_reserved,
2487 (max_bandwidth - bw_used - bw_reserved) * 100 /
2488 max_bandwidth);
2489
2490 bw_used += bw_reserved;
2491 if (bw_used > max_bandwidth) {
2492 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2493 bw_used, max_bandwidth);
2494 return -ENOMEM;
2495 }
2496
2497 bw_table->bw_used = bw_used;
2498 return 0;
2499 }
2500
xhci_is_async_ep(unsigned int ep_type)2501 static bool xhci_is_async_ep(unsigned int ep_type)
2502 {
2503 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2504 ep_type != ISOC_IN_EP &&
2505 ep_type != INT_IN_EP);
2506 }
2507
xhci_is_sync_in_ep(unsigned int ep_type)2508 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2509 {
2510 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2511 }
2512
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2513 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2514 {
2515 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2516
2517 if (ep_bw->ep_interval == 0)
2518 return SS_OVERHEAD_BURST +
2519 (ep_bw->mult * ep_bw->num_packets *
2520 (SS_OVERHEAD + mps));
2521 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2522 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2523 1 << ep_bw->ep_interval);
2524
2525 }
2526
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2527 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2528 struct xhci_bw_info *ep_bw,
2529 struct xhci_interval_bw_table *bw_table,
2530 struct usb_device *udev,
2531 struct xhci_virt_ep *virt_ep,
2532 struct xhci_tt_bw_info *tt_info)
2533 {
2534 struct xhci_interval_bw *interval_bw;
2535 int normalized_interval;
2536
2537 if (xhci_is_async_ep(ep_bw->type))
2538 return;
2539
2540 if (udev->speed >= USB_SPEED_SUPER) {
2541 if (xhci_is_sync_in_ep(ep_bw->type))
2542 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2543 xhci_get_ss_bw_consumed(ep_bw);
2544 else
2545 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2546 xhci_get_ss_bw_consumed(ep_bw);
2547 return;
2548 }
2549
2550 /* SuperSpeed endpoints never get added to intervals in the table, so
2551 * this check is only valid for HS/FS/LS devices.
2552 */
2553 if (list_empty(&virt_ep->bw_endpoint_list))
2554 return;
2555 /* For LS/FS devices, we need to translate the interval expressed in
2556 * microframes to frames.
2557 */
2558 if (udev->speed == USB_SPEED_HIGH)
2559 normalized_interval = ep_bw->ep_interval;
2560 else
2561 normalized_interval = ep_bw->ep_interval - 3;
2562
2563 if (normalized_interval == 0)
2564 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2565 interval_bw = &bw_table->interval_bw[normalized_interval];
2566 interval_bw->num_packets -= ep_bw->num_packets;
2567 switch (udev->speed) {
2568 case USB_SPEED_LOW:
2569 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2570 break;
2571 case USB_SPEED_FULL:
2572 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2573 break;
2574 case USB_SPEED_HIGH:
2575 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2576 break;
2577 default:
2578 /* Should never happen because only LS/FS/HS endpoints will get
2579 * added to the endpoint list.
2580 */
2581 return;
2582 }
2583 if (tt_info)
2584 tt_info->active_eps -= 1;
2585 list_del_init(&virt_ep->bw_endpoint_list);
2586 }
2587
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2588 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2589 struct xhci_bw_info *ep_bw,
2590 struct xhci_interval_bw_table *bw_table,
2591 struct usb_device *udev,
2592 struct xhci_virt_ep *virt_ep,
2593 struct xhci_tt_bw_info *tt_info)
2594 {
2595 struct xhci_interval_bw *interval_bw;
2596 struct xhci_virt_ep *smaller_ep;
2597 int normalized_interval;
2598
2599 if (xhci_is_async_ep(ep_bw->type))
2600 return;
2601
2602 if (udev->speed == USB_SPEED_SUPER) {
2603 if (xhci_is_sync_in_ep(ep_bw->type))
2604 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2605 xhci_get_ss_bw_consumed(ep_bw);
2606 else
2607 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2608 xhci_get_ss_bw_consumed(ep_bw);
2609 return;
2610 }
2611
2612 /* For LS/FS devices, we need to translate the interval expressed in
2613 * microframes to frames.
2614 */
2615 if (udev->speed == USB_SPEED_HIGH)
2616 normalized_interval = ep_bw->ep_interval;
2617 else
2618 normalized_interval = ep_bw->ep_interval - 3;
2619
2620 if (normalized_interval == 0)
2621 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2622 interval_bw = &bw_table->interval_bw[normalized_interval];
2623 interval_bw->num_packets += ep_bw->num_packets;
2624 switch (udev->speed) {
2625 case USB_SPEED_LOW:
2626 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2627 break;
2628 case USB_SPEED_FULL:
2629 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2630 break;
2631 case USB_SPEED_HIGH:
2632 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2633 break;
2634 default:
2635 /* Should never happen because only LS/FS/HS endpoints will get
2636 * added to the endpoint list.
2637 */
2638 return;
2639 }
2640
2641 if (tt_info)
2642 tt_info->active_eps += 1;
2643 /* Insert the endpoint into the list, largest max packet size first. */
2644 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2645 bw_endpoint_list) {
2646 if (ep_bw->max_packet_size >=
2647 smaller_ep->bw_info.max_packet_size) {
2648 /* Add the new ep before the smaller endpoint */
2649 list_add_tail(&virt_ep->bw_endpoint_list,
2650 &smaller_ep->bw_endpoint_list);
2651 return;
2652 }
2653 }
2654 /* Add the new endpoint at the end of the list. */
2655 list_add_tail(&virt_ep->bw_endpoint_list,
2656 &interval_bw->endpoints);
2657 }
2658
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2659 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2660 struct xhci_virt_device *virt_dev,
2661 int old_active_eps)
2662 {
2663 struct xhci_root_port_bw_info *rh_bw_info;
2664 if (!virt_dev->tt_info)
2665 return;
2666
2667 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2668 if (old_active_eps == 0 &&
2669 virt_dev->tt_info->active_eps != 0) {
2670 rh_bw_info->num_active_tts += 1;
2671 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2672 } else if (old_active_eps != 0 &&
2673 virt_dev->tt_info->active_eps == 0) {
2674 rh_bw_info->num_active_tts -= 1;
2675 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2676 }
2677 }
2678
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2679 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2680 struct xhci_virt_device *virt_dev,
2681 struct xhci_container_ctx *in_ctx)
2682 {
2683 struct xhci_bw_info ep_bw_info[31];
2684 int i;
2685 struct xhci_input_control_ctx *ctrl_ctx;
2686 int old_active_eps = 0;
2687
2688 if (virt_dev->tt_info)
2689 old_active_eps = virt_dev->tt_info->active_eps;
2690
2691 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2692 if (!ctrl_ctx) {
2693 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2694 __func__);
2695 return -ENOMEM;
2696 }
2697
2698 for (i = 0; i < 31; i++) {
2699 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2700 continue;
2701
2702 /* Make a copy of the BW info in case we need to revert this */
2703 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2704 sizeof(ep_bw_info[i]));
2705 /* Drop the endpoint from the interval table if the endpoint is
2706 * being dropped or changed.
2707 */
2708 if (EP_IS_DROPPED(ctrl_ctx, i))
2709 xhci_drop_ep_from_interval_table(xhci,
2710 &virt_dev->eps[i].bw_info,
2711 virt_dev->bw_table,
2712 virt_dev->udev,
2713 &virt_dev->eps[i],
2714 virt_dev->tt_info);
2715 }
2716 /* Overwrite the information stored in the endpoints' bw_info */
2717 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2718 for (i = 0; i < 31; i++) {
2719 /* Add any changed or added endpoints to the interval table */
2720 if (EP_IS_ADDED(ctrl_ctx, i))
2721 xhci_add_ep_to_interval_table(xhci,
2722 &virt_dev->eps[i].bw_info,
2723 virt_dev->bw_table,
2724 virt_dev->udev,
2725 &virt_dev->eps[i],
2726 virt_dev->tt_info);
2727 }
2728
2729 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2730 /* Ok, this fits in the bandwidth we have.
2731 * Update the number of active TTs.
2732 */
2733 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2734 return 0;
2735 }
2736
2737 /* We don't have enough bandwidth for this, revert the stored info. */
2738 for (i = 0; i < 31; i++) {
2739 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2740 continue;
2741
2742 /* Drop the new copies of any added or changed endpoints from
2743 * the interval table.
2744 */
2745 if (EP_IS_ADDED(ctrl_ctx, i)) {
2746 xhci_drop_ep_from_interval_table(xhci,
2747 &virt_dev->eps[i].bw_info,
2748 virt_dev->bw_table,
2749 virt_dev->udev,
2750 &virt_dev->eps[i],
2751 virt_dev->tt_info);
2752 }
2753 /* Revert the endpoint back to its old information */
2754 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2755 sizeof(ep_bw_info[i]));
2756 /* Add any changed or dropped endpoints back into the table */
2757 if (EP_IS_DROPPED(ctrl_ctx, i))
2758 xhci_add_ep_to_interval_table(xhci,
2759 &virt_dev->eps[i].bw_info,
2760 virt_dev->bw_table,
2761 virt_dev->udev,
2762 &virt_dev->eps[i],
2763 virt_dev->tt_info);
2764 }
2765 return -ENOMEM;
2766 }
2767
2768
2769 /* Issue a configure endpoint command or evaluate context command
2770 * and wait for it to finish.
2771 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2772 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2773 struct usb_device *udev,
2774 struct xhci_command *command,
2775 bool ctx_change, bool must_succeed)
2776 {
2777 int ret;
2778 unsigned long flags;
2779 struct xhci_input_control_ctx *ctrl_ctx;
2780 struct xhci_virt_device *virt_dev;
2781 struct xhci_slot_ctx *slot_ctx;
2782
2783 if (!command)
2784 return -EINVAL;
2785
2786 spin_lock_irqsave(&xhci->lock, flags);
2787
2788 if (xhci->xhc_state & XHCI_STATE_DYING) {
2789 spin_unlock_irqrestore(&xhci->lock, flags);
2790 return -ESHUTDOWN;
2791 }
2792
2793 virt_dev = xhci->devs[udev->slot_id];
2794
2795 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2796 if (!ctrl_ctx) {
2797 spin_unlock_irqrestore(&xhci->lock, flags);
2798 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2799 __func__);
2800 return -ENOMEM;
2801 }
2802
2803 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2804 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2805 spin_unlock_irqrestore(&xhci->lock, flags);
2806 xhci_warn(xhci, "Not enough host resources, "
2807 "active endpoint contexts = %u\n",
2808 xhci->num_active_eps);
2809 return -ENOMEM;
2810 }
2811 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2812 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2813 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2814 xhci_free_host_resources(xhci, ctrl_ctx);
2815 spin_unlock_irqrestore(&xhci->lock, flags);
2816 xhci_warn(xhci, "Not enough bandwidth\n");
2817 return -ENOMEM;
2818 }
2819
2820 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2821
2822 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2823 trace_xhci_configure_endpoint(slot_ctx);
2824
2825 if (!ctx_change)
2826 ret = xhci_queue_configure_endpoint(xhci, command,
2827 command->in_ctx->dma,
2828 udev->slot_id, must_succeed);
2829 else
2830 ret = xhci_queue_evaluate_context(xhci, command,
2831 command->in_ctx->dma,
2832 udev->slot_id, must_succeed);
2833 if (ret < 0) {
2834 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2835 xhci_free_host_resources(xhci, ctrl_ctx);
2836 spin_unlock_irqrestore(&xhci->lock, flags);
2837 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2838 "FIXME allocate a new ring segment");
2839 return -ENOMEM;
2840 }
2841 xhci_ring_cmd_db(xhci);
2842 spin_unlock_irqrestore(&xhci->lock, flags);
2843
2844 /* Wait for the configure endpoint command to complete */
2845 wait_for_completion(command->completion);
2846
2847 if (!ctx_change)
2848 ret = xhci_configure_endpoint_result(xhci, udev,
2849 &command->status);
2850 else
2851 ret = xhci_evaluate_context_result(xhci, udev,
2852 &command->status);
2853
2854 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2855 spin_lock_irqsave(&xhci->lock, flags);
2856 /* If the command failed, remove the reserved resources.
2857 * Otherwise, clean up the estimate to include dropped eps.
2858 */
2859 if (ret)
2860 xhci_free_host_resources(xhci, ctrl_ctx);
2861 else
2862 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2863 spin_unlock_irqrestore(&xhci->lock, flags);
2864 }
2865 return ret;
2866 }
2867
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2868 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2869 struct xhci_virt_device *vdev, int i)
2870 {
2871 struct xhci_virt_ep *ep = &vdev->eps[i];
2872
2873 if (ep->ep_state & EP_HAS_STREAMS) {
2874 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2875 xhci_get_endpoint_address(i));
2876 xhci_free_stream_info(xhci, ep->stream_info);
2877 ep->stream_info = NULL;
2878 ep->ep_state &= ~EP_HAS_STREAMS;
2879 }
2880 }
2881
2882 /* Called after one or more calls to xhci_add_endpoint() or
2883 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2884 * to call xhci_reset_bandwidth().
2885 *
2886 * Since we are in the middle of changing either configuration or
2887 * installing a new alt setting, the USB core won't allow URBs to be
2888 * enqueued for any endpoint on the old config or interface. Nothing
2889 * else should be touching the xhci->devs[slot_id] structure, so we
2890 * don't need to take the xhci->lock for manipulating that.
2891 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2892 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2893 {
2894 int i;
2895 int ret = 0;
2896 struct xhci_hcd *xhci;
2897 struct xhci_virt_device *virt_dev;
2898 struct xhci_input_control_ctx *ctrl_ctx;
2899 struct xhci_slot_ctx *slot_ctx;
2900 struct xhci_command *command;
2901
2902 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2903 if (ret <= 0)
2904 return ret;
2905 xhci = hcd_to_xhci(hcd);
2906 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2907 (xhci->xhc_state & XHCI_STATE_REMOVING))
2908 return -ENODEV;
2909
2910 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2911 virt_dev = xhci->devs[udev->slot_id];
2912
2913 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2914 if (!command)
2915 return -ENOMEM;
2916
2917 command->in_ctx = virt_dev->in_ctx;
2918
2919 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2920 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2921 if (!ctrl_ctx) {
2922 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2923 __func__);
2924 ret = -ENOMEM;
2925 goto command_cleanup;
2926 }
2927 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2928 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2929 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2930
2931 /* Don't issue the command if there's no endpoints to update. */
2932 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2933 ctrl_ctx->drop_flags == 0) {
2934 ret = 0;
2935 goto command_cleanup;
2936 }
2937 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2938 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2939 for (i = 31; i >= 1; i--) {
2940 __le32 le32 = cpu_to_le32(BIT(i));
2941
2942 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2943 || (ctrl_ctx->add_flags & le32) || i == 1) {
2944 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2945 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2946 break;
2947 }
2948 }
2949
2950 ret = xhci_configure_endpoint(xhci, udev, command,
2951 false, false);
2952 if (ret)
2953 /* Callee should call reset_bandwidth() */
2954 goto command_cleanup;
2955
2956 /* Free any rings that were dropped, but not changed. */
2957 for (i = 1; i < 31; i++) {
2958 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2959 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2960 xhci_free_endpoint_ring(xhci, virt_dev, i);
2961 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2962 }
2963 }
2964 xhci_zero_in_ctx(xhci, virt_dev);
2965 /*
2966 * Install any rings for completely new endpoints or changed endpoints,
2967 * and free any old rings from changed endpoints.
2968 */
2969 for (i = 1; i < 31; i++) {
2970 if (!virt_dev->eps[i].new_ring)
2971 continue;
2972 /* Only free the old ring if it exists.
2973 * It may not if this is the first add of an endpoint.
2974 */
2975 if (virt_dev->eps[i].ring) {
2976 xhci_free_endpoint_ring(xhci, virt_dev, i);
2977 }
2978 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2979 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2980 virt_dev->eps[i].new_ring = NULL;
2981 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2982 }
2983 command_cleanup:
2984 kfree(command->completion);
2985 kfree(command);
2986
2987 return ret;
2988 }
2989 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
2990
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2991 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2992 {
2993 struct xhci_hcd *xhci;
2994 struct xhci_virt_device *virt_dev;
2995 int i, ret;
2996
2997 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2998 if (ret <= 0)
2999 return;
3000 xhci = hcd_to_xhci(hcd);
3001
3002 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3003 virt_dev = xhci->devs[udev->slot_id];
3004 /* Free any rings allocated for added endpoints */
3005 for (i = 0; i < 31; i++) {
3006 if (virt_dev->eps[i].new_ring) {
3007 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3008 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3009 virt_dev->eps[i].new_ring = NULL;
3010 }
3011 }
3012 xhci_zero_in_ctx(xhci, virt_dev);
3013 }
3014 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3015
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3016 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3017 struct xhci_container_ctx *in_ctx,
3018 struct xhci_container_ctx *out_ctx,
3019 struct xhci_input_control_ctx *ctrl_ctx,
3020 u32 add_flags, u32 drop_flags)
3021 {
3022 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3023 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3024 xhci_slot_copy(xhci, in_ctx, out_ctx);
3025 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3026 }
3027
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3028 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3029 struct usb_host_endpoint *host_ep)
3030 {
3031 struct xhci_hcd *xhci;
3032 struct xhci_virt_device *vdev;
3033 struct xhci_virt_ep *ep;
3034 struct usb_device *udev;
3035 unsigned long flags;
3036 unsigned int ep_index;
3037
3038 xhci = hcd_to_xhci(hcd);
3039 rescan:
3040 spin_lock_irqsave(&xhci->lock, flags);
3041
3042 udev = (struct usb_device *)host_ep->hcpriv;
3043 if (!udev || !udev->slot_id)
3044 goto done;
3045
3046 vdev = xhci->devs[udev->slot_id];
3047 if (!vdev)
3048 goto done;
3049
3050 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3051 ep = &vdev->eps[ep_index];
3052
3053 /* wait for hub_tt_work to finish clearing hub TT */
3054 if (ep->ep_state & EP_CLEARING_TT) {
3055 spin_unlock_irqrestore(&xhci->lock, flags);
3056 schedule_timeout_uninterruptible(1);
3057 goto rescan;
3058 }
3059
3060 if (ep->ep_state)
3061 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3062 ep->ep_state);
3063 done:
3064 host_ep->hcpriv = NULL;
3065 spin_unlock_irqrestore(&xhci->lock, flags);
3066 }
3067
3068 /*
3069 * Called after usb core issues a clear halt control message.
3070 * The host side of the halt should already be cleared by a reset endpoint
3071 * command issued when the STALL event was received.
3072 *
3073 * The reset endpoint command may only be issued to endpoints in the halted
3074 * state. For software that wishes to reset the data toggle or sequence number
3075 * of an endpoint that isn't in the halted state this function will issue a
3076 * configure endpoint command with the Drop and Add bits set for the target
3077 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3078 */
3079
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3080 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3081 struct usb_host_endpoint *host_ep)
3082 {
3083 struct xhci_hcd *xhci;
3084 struct usb_device *udev;
3085 struct xhci_virt_device *vdev;
3086 struct xhci_virt_ep *ep;
3087 struct xhci_input_control_ctx *ctrl_ctx;
3088 struct xhci_command *stop_cmd, *cfg_cmd;
3089 unsigned int ep_index;
3090 unsigned long flags;
3091 u32 ep_flag;
3092 int err;
3093
3094 xhci = hcd_to_xhci(hcd);
3095 if (!host_ep->hcpriv)
3096 return;
3097 udev = (struct usb_device *) host_ep->hcpriv;
3098 vdev = xhci->devs[udev->slot_id];
3099
3100 /*
3101 * vdev may be lost due to xHC restore error and re-initialization
3102 * during S3/S4 resume. A new vdev will be allocated later by
3103 * xhci_discover_or_reset_device()
3104 */
3105 if (!udev->slot_id || !vdev)
3106 return;
3107 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3108 ep = &vdev->eps[ep_index];
3109
3110 /* Bail out if toggle is already being cleared by a endpoint reset */
3111 spin_lock_irqsave(&xhci->lock, flags);
3112 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3113 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3114 spin_unlock_irqrestore(&xhci->lock, flags);
3115 return;
3116 }
3117 spin_unlock_irqrestore(&xhci->lock, flags);
3118 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3119 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3120 usb_endpoint_xfer_isoc(&host_ep->desc))
3121 return;
3122
3123 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3124
3125 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3126 return;
3127
3128 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3129 if (!stop_cmd)
3130 return;
3131
3132 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3133 if (!cfg_cmd)
3134 goto cleanup;
3135
3136 spin_lock_irqsave(&xhci->lock, flags);
3137
3138 /* block queuing new trbs and ringing ep doorbell */
3139 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3140
3141 /*
3142 * Make sure endpoint ring is empty before resetting the toggle/seq.
3143 * Driver is required to synchronously cancel all transfer request.
3144 * Stop the endpoint to force xHC to update the output context
3145 */
3146
3147 if (!list_empty(&ep->ring->td_list)) {
3148 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3149 spin_unlock_irqrestore(&xhci->lock, flags);
3150 xhci_free_command(xhci, cfg_cmd);
3151 goto cleanup;
3152 }
3153
3154 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3155 ep_index, 0);
3156 if (err < 0) {
3157 spin_unlock_irqrestore(&xhci->lock, flags);
3158 xhci_free_command(xhci, cfg_cmd);
3159 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3160 __func__, err);
3161 goto cleanup;
3162 }
3163
3164 xhci_ring_cmd_db(xhci);
3165 spin_unlock_irqrestore(&xhci->lock, flags);
3166
3167 wait_for_completion(stop_cmd->completion);
3168
3169 spin_lock_irqsave(&xhci->lock, flags);
3170
3171 /* config ep command clears toggle if add and drop ep flags are set */
3172 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3173 if (!ctrl_ctx) {
3174 spin_unlock_irqrestore(&xhci->lock, flags);
3175 xhci_free_command(xhci, cfg_cmd);
3176 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3177 __func__);
3178 goto cleanup;
3179 }
3180
3181 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3182 ctrl_ctx, ep_flag, ep_flag);
3183 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3184
3185 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3186 udev->slot_id, false);
3187 if (err < 0) {
3188 spin_unlock_irqrestore(&xhci->lock, flags);
3189 xhci_free_command(xhci, cfg_cmd);
3190 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3191 __func__, err);
3192 goto cleanup;
3193 }
3194
3195 xhci_ring_cmd_db(xhci);
3196 spin_unlock_irqrestore(&xhci->lock, flags);
3197
3198 wait_for_completion(cfg_cmd->completion);
3199
3200 xhci_free_command(xhci, cfg_cmd);
3201 cleanup:
3202 xhci_free_command(xhci, stop_cmd);
3203 spin_lock_irqsave(&xhci->lock, flags);
3204 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3205 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3206 spin_unlock_irqrestore(&xhci->lock, flags);
3207 }
3208
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3209 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3210 struct usb_device *udev, struct usb_host_endpoint *ep,
3211 unsigned int slot_id)
3212 {
3213 int ret;
3214 unsigned int ep_index;
3215 unsigned int ep_state;
3216
3217 if (!ep)
3218 return -EINVAL;
3219 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3220 if (ret <= 0)
3221 return ret ? ret : -EINVAL;
3222 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3223 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3224 " descriptor for ep 0x%x does not support streams\n",
3225 ep->desc.bEndpointAddress);
3226 return -EINVAL;
3227 }
3228
3229 ep_index = xhci_get_endpoint_index(&ep->desc);
3230 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3231 if (ep_state & EP_HAS_STREAMS ||
3232 ep_state & EP_GETTING_STREAMS) {
3233 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3234 "already has streams set up.\n",
3235 ep->desc.bEndpointAddress);
3236 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3237 "dynamic stream context array reallocation.\n");
3238 return -EINVAL;
3239 }
3240 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3241 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3242 "endpoint 0x%x; URBs are pending.\n",
3243 ep->desc.bEndpointAddress);
3244 return -EINVAL;
3245 }
3246 return 0;
3247 }
3248
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3249 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3250 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3251 {
3252 unsigned int max_streams;
3253
3254 /* The stream context array size must be a power of two */
3255 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3256 /*
3257 * Find out how many primary stream array entries the host controller
3258 * supports. Later we may use secondary stream arrays (similar to 2nd
3259 * level page entries), but that's an optional feature for xHCI host
3260 * controllers. xHCs must support at least 4 stream IDs.
3261 */
3262 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3263 if (*num_stream_ctxs > max_streams) {
3264 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3265 max_streams);
3266 *num_stream_ctxs = max_streams;
3267 *num_streams = max_streams;
3268 }
3269 }
3270
3271 /* Returns an error code if one of the endpoint already has streams.
3272 * This does not change any data structures, it only checks and gathers
3273 * information.
3274 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3275 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3276 struct usb_device *udev,
3277 struct usb_host_endpoint **eps, unsigned int num_eps,
3278 unsigned int *num_streams, u32 *changed_ep_bitmask)
3279 {
3280 unsigned int max_streams;
3281 unsigned int endpoint_flag;
3282 int i;
3283 int ret;
3284
3285 for (i = 0; i < num_eps; i++) {
3286 ret = xhci_check_streams_endpoint(xhci, udev,
3287 eps[i], udev->slot_id);
3288 if (ret < 0)
3289 return ret;
3290
3291 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3292 if (max_streams < (*num_streams - 1)) {
3293 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3294 eps[i]->desc.bEndpointAddress,
3295 max_streams);
3296 *num_streams = max_streams+1;
3297 }
3298
3299 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3300 if (*changed_ep_bitmask & endpoint_flag)
3301 return -EINVAL;
3302 *changed_ep_bitmask |= endpoint_flag;
3303 }
3304 return 0;
3305 }
3306
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3307 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3308 struct usb_device *udev,
3309 struct usb_host_endpoint **eps, unsigned int num_eps)
3310 {
3311 u32 changed_ep_bitmask = 0;
3312 unsigned int slot_id;
3313 unsigned int ep_index;
3314 unsigned int ep_state;
3315 int i;
3316
3317 slot_id = udev->slot_id;
3318 if (!xhci->devs[slot_id])
3319 return 0;
3320
3321 for (i = 0; i < num_eps; i++) {
3322 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3323 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3324 /* Are streams already being freed for the endpoint? */
3325 if (ep_state & EP_GETTING_NO_STREAMS) {
3326 xhci_warn(xhci, "WARN Can't disable streams for "
3327 "endpoint 0x%x, "
3328 "streams are being disabled already\n",
3329 eps[i]->desc.bEndpointAddress);
3330 return 0;
3331 }
3332 /* Are there actually any streams to free? */
3333 if (!(ep_state & EP_HAS_STREAMS) &&
3334 !(ep_state & EP_GETTING_STREAMS)) {
3335 xhci_warn(xhci, "WARN Can't disable streams for "
3336 "endpoint 0x%x, "
3337 "streams are already disabled!\n",
3338 eps[i]->desc.bEndpointAddress);
3339 xhci_warn(xhci, "WARN xhci_free_streams() called "
3340 "with non-streams endpoint\n");
3341 return 0;
3342 }
3343 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3344 }
3345 return changed_ep_bitmask;
3346 }
3347
3348 /*
3349 * The USB device drivers use this function (through the HCD interface in USB
3350 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3351 * coordinate mass storage command queueing across multiple endpoints (basically
3352 * a stream ID == a task ID).
3353 *
3354 * Setting up streams involves allocating the same size stream context array
3355 * for each endpoint and issuing a configure endpoint command for all endpoints.
3356 *
3357 * Don't allow the call to succeed if one endpoint only supports one stream
3358 * (which means it doesn't support streams at all).
3359 *
3360 * Drivers may get less stream IDs than they asked for, if the host controller
3361 * hardware or endpoints claim they can't support the number of requested
3362 * stream IDs.
3363 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3364 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3365 struct usb_host_endpoint **eps, unsigned int num_eps,
3366 unsigned int num_streams, gfp_t mem_flags)
3367 {
3368 int i, ret;
3369 struct xhci_hcd *xhci;
3370 struct xhci_virt_device *vdev;
3371 struct xhci_command *config_cmd;
3372 struct xhci_input_control_ctx *ctrl_ctx;
3373 unsigned int ep_index;
3374 unsigned int num_stream_ctxs;
3375 unsigned int max_packet;
3376 unsigned long flags;
3377 u32 changed_ep_bitmask = 0;
3378
3379 if (!eps)
3380 return -EINVAL;
3381
3382 /* Add one to the number of streams requested to account for
3383 * stream 0 that is reserved for xHCI usage.
3384 */
3385 num_streams += 1;
3386 xhci = hcd_to_xhci(hcd);
3387 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3388 num_streams);
3389
3390 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3391 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3392 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3393 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3394 return -ENOSYS;
3395 }
3396
3397 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3398 if (!config_cmd)
3399 return -ENOMEM;
3400
3401 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3402 if (!ctrl_ctx) {
3403 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3404 __func__);
3405 xhci_free_command(xhci, config_cmd);
3406 return -ENOMEM;
3407 }
3408
3409 /* Check to make sure all endpoints are not already configured for
3410 * streams. While we're at it, find the maximum number of streams that
3411 * all the endpoints will support and check for duplicate endpoints.
3412 */
3413 spin_lock_irqsave(&xhci->lock, flags);
3414 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3415 num_eps, &num_streams, &changed_ep_bitmask);
3416 if (ret < 0) {
3417 xhci_free_command(xhci, config_cmd);
3418 spin_unlock_irqrestore(&xhci->lock, flags);
3419 return ret;
3420 }
3421 if (num_streams <= 1) {
3422 xhci_warn(xhci, "WARN: endpoints can't handle "
3423 "more than one stream.\n");
3424 xhci_free_command(xhci, config_cmd);
3425 spin_unlock_irqrestore(&xhci->lock, flags);
3426 return -EINVAL;
3427 }
3428 vdev = xhci->devs[udev->slot_id];
3429 /* Mark each endpoint as being in transition, so
3430 * xhci_urb_enqueue() will reject all URBs.
3431 */
3432 for (i = 0; i < num_eps; i++) {
3433 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3434 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3435 }
3436 spin_unlock_irqrestore(&xhci->lock, flags);
3437
3438 /* Setup internal data structures and allocate HW data structures for
3439 * streams (but don't install the HW structures in the input context
3440 * until we're sure all memory allocation succeeded).
3441 */
3442 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3443 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3444 num_stream_ctxs, num_streams);
3445
3446 for (i = 0; i < num_eps; i++) {
3447 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3448 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3449 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3450 num_stream_ctxs,
3451 num_streams,
3452 max_packet, mem_flags);
3453 if (!vdev->eps[ep_index].stream_info)
3454 goto cleanup;
3455 /* Set maxPstreams in endpoint context and update deq ptr to
3456 * point to stream context array. FIXME
3457 */
3458 }
3459
3460 /* Set up the input context for a configure endpoint command. */
3461 for (i = 0; i < num_eps; i++) {
3462 struct xhci_ep_ctx *ep_ctx;
3463
3464 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3465 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3466
3467 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3468 vdev->out_ctx, ep_index);
3469 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3470 vdev->eps[ep_index].stream_info);
3471 }
3472 /* Tell the HW to drop its old copy of the endpoint context info
3473 * and add the updated copy from the input context.
3474 */
3475 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3476 vdev->out_ctx, ctrl_ctx,
3477 changed_ep_bitmask, changed_ep_bitmask);
3478
3479 /* Issue and wait for the configure endpoint command */
3480 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3481 false, false);
3482
3483 /* xHC rejected the configure endpoint command for some reason, so we
3484 * leave the old ring intact and free our internal streams data
3485 * structure.
3486 */
3487 if (ret < 0)
3488 goto cleanup;
3489
3490 spin_lock_irqsave(&xhci->lock, flags);
3491 for (i = 0; i < num_eps; i++) {
3492 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3493 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3494 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3495 udev->slot_id, ep_index);
3496 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3497 }
3498 xhci_free_command(xhci, config_cmd);
3499 spin_unlock_irqrestore(&xhci->lock, flags);
3500
3501 for (i = 0; i < num_eps; i++) {
3502 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3503 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3504 }
3505 /* Subtract 1 for stream 0, which drivers can't use */
3506 return num_streams - 1;
3507
3508 cleanup:
3509 /* If it didn't work, free the streams! */
3510 for (i = 0; i < num_eps; i++) {
3511 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3512 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3513 vdev->eps[ep_index].stream_info = NULL;
3514 /* FIXME Unset maxPstreams in endpoint context and
3515 * update deq ptr to point to normal string ring.
3516 */
3517 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3518 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3519 xhci_endpoint_zero(xhci, vdev, eps[i]);
3520 }
3521 xhci_free_command(xhci, config_cmd);
3522 return -ENOMEM;
3523 }
3524
3525 /* Transition the endpoint from using streams to being a "normal" endpoint
3526 * without streams.
3527 *
3528 * Modify the endpoint context state, submit a configure endpoint command,
3529 * and free all endpoint rings for streams if that completes successfully.
3530 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3531 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3532 struct usb_host_endpoint **eps, unsigned int num_eps,
3533 gfp_t mem_flags)
3534 {
3535 int i, ret;
3536 struct xhci_hcd *xhci;
3537 struct xhci_virt_device *vdev;
3538 struct xhci_command *command;
3539 struct xhci_input_control_ctx *ctrl_ctx;
3540 unsigned int ep_index;
3541 unsigned long flags;
3542 u32 changed_ep_bitmask;
3543
3544 xhci = hcd_to_xhci(hcd);
3545 vdev = xhci->devs[udev->slot_id];
3546
3547 /* Set up a configure endpoint command to remove the streams rings */
3548 spin_lock_irqsave(&xhci->lock, flags);
3549 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3550 udev, eps, num_eps);
3551 if (changed_ep_bitmask == 0) {
3552 spin_unlock_irqrestore(&xhci->lock, flags);
3553 return -EINVAL;
3554 }
3555
3556 /* Use the xhci_command structure from the first endpoint. We may have
3557 * allocated too many, but the driver may call xhci_free_streams() for
3558 * each endpoint it grouped into one call to xhci_alloc_streams().
3559 */
3560 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3561 command = vdev->eps[ep_index].stream_info->free_streams_command;
3562 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3563 if (!ctrl_ctx) {
3564 spin_unlock_irqrestore(&xhci->lock, flags);
3565 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3566 __func__);
3567 return -EINVAL;
3568 }
3569
3570 for (i = 0; i < num_eps; i++) {
3571 struct xhci_ep_ctx *ep_ctx;
3572
3573 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3574 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3575 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3576 EP_GETTING_NO_STREAMS;
3577
3578 xhci_endpoint_copy(xhci, command->in_ctx,
3579 vdev->out_ctx, ep_index);
3580 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3581 &vdev->eps[ep_index]);
3582 }
3583 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3584 vdev->out_ctx, ctrl_ctx,
3585 changed_ep_bitmask, changed_ep_bitmask);
3586 spin_unlock_irqrestore(&xhci->lock, flags);
3587
3588 /* Issue and wait for the configure endpoint command,
3589 * which must succeed.
3590 */
3591 ret = xhci_configure_endpoint(xhci, udev, command,
3592 false, true);
3593
3594 /* xHC rejected the configure endpoint command for some reason, so we
3595 * leave the streams rings intact.
3596 */
3597 if (ret < 0)
3598 return ret;
3599
3600 spin_lock_irqsave(&xhci->lock, flags);
3601 for (i = 0; i < num_eps; i++) {
3602 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3603 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3604 vdev->eps[ep_index].stream_info = NULL;
3605 /* FIXME Unset maxPstreams in endpoint context and
3606 * update deq ptr to point to normal string ring.
3607 */
3608 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3609 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3610 }
3611 spin_unlock_irqrestore(&xhci->lock, flags);
3612
3613 return 0;
3614 }
3615
3616 /*
3617 * Deletes endpoint resources for endpoints that were active before a Reset
3618 * Device command, or a Disable Slot command. The Reset Device command leaves
3619 * the control endpoint intact, whereas the Disable Slot command deletes it.
3620 *
3621 * Must be called with xhci->lock held.
3622 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3623 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3624 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3625 {
3626 int i;
3627 unsigned int num_dropped_eps = 0;
3628 unsigned int drop_flags = 0;
3629
3630 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3631 if (virt_dev->eps[i].ring) {
3632 drop_flags |= 1 << i;
3633 num_dropped_eps++;
3634 }
3635 }
3636 xhci->num_active_eps -= num_dropped_eps;
3637 if (num_dropped_eps)
3638 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3639 "Dropped %u ep ctxs, flags = 0x%x, "
3640 "%u now active.",
3641 num_dropped_eps, drop_flags,
3642 xhci->num_active_eps);
3643 }
3644
3645 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
3646
3647 /*
3648 * This submits a Reset Device Command, which will set the device state to 0,
3649 * set the device address to 0, and disable all the endpoints except the default
3650 * control endpoint. The USB core should come back and call
3651 * xhci_address_device(), and then re-set up the configuration. If this is
3652 * called because of a usb_reset_and_verify_device(), then the old alternate
3653 * settings will be re-installed through the normal bandwidth allocation
3654 * functions.
3655 *
3656 * Wait for the Reset Device command to finish. Remove all structures
3657 * associated with the endpoints that were disabled. Clear the input device
3658 * structure? Reset the control endpoint 0 max packet size?
3659 *
3660 * If the virt_dev to be reset does not exist or does not match the udev,
3661 * it means the device is lost, possibly due to the xHC restore error and
3662 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3663 * re-allocate the device.
3664 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3665 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3666 struct usb_device *udev)
3667 {
3668 int ret, i;
3669 unsigned long flags;
3670 struct xhci_hcd *xhci;
3671 unsigned int slot_id;
3672 struct xhci_virt_device *virt_dev;
3673 struct xhci_command *reset_device_cmd;
3674 struct xhci_slot_ctx *slot_ctx;
3675 int old_active_eps = 0;
3676
3677 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3678 if (ret <= 0)
3679 return ret;
3680 xhci = hcd_to_xhci(hcd);
3681 slot_id = udev->slot_id;
3682 virt_dev = xhci->devs[slot_id];
3683 if (!virt_dev) {
3684 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3685 "not exist. Re-allocate the device\n", slot_id);
3686 ret = xhci_alloc_dev(hcd, udev);
3687 if (ret == 1)
3688 return 0;
3689 else
3690 return -EINVAL;
3691 }
3692
3693 if (virt_dev->tt_info)
3694 old_active_eps = virt_dev->tt_info->active_eps;
3695
3696 if (virt_dev->udev != udev) {
3697 /* If the virt_dev and the udev does not match, this virt_dev
3698 * may belong to another udev.
3699 * Re-allocate the device.
3700 */
3701 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3702 "not match the udev. Re-allocate the device\n",
3703 slot_id);
3704 ret = xhci_alloc_dev(hcd, udev);
3705 if (ret == 1)
3706 return 0;
3707 else
3708 return -EINVAL;
3709 }
3710
3711 /* If device is not setup, there is no point in resetting it */
3712 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3713 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3714 SLOT_STATE_DISABLED)
3715 return 0;
3716
3717 if (xhci->quirks & XHCI_ETRON_HOST) {
3718 /*
3719 * Obtaining a new device slot to inform the xHCI host that
3720 * the USB device has been reset.
3721 */
3722 ret = xhci_disable_slot(xhci, udev->slot_id);
3723 xhci_free_virt_device(xhci, udev->slot_id);
3724 if (!ret) {
3725 ret = xhci_alloc_dev(hcd, udev);
3726 if (ret == 1)
3727 ret = 0;
3728 else
3729 ret = -EINVAL;
3730 }
3731 return ret;
3732 }
3733
3734 trace_xhci_discover_or_reset_device(slot_ctx);
3735
3736 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3737 /* Allocate the command structure that holds the struct completion.
3738 * Assume we're in process context, since the normal device reset
3739 * process has to wait for the device anyway. Storage devices are
3740 * reset as part of error handling, so use GFP_NOIO instead of
3741 * GFP_KERNEL.
3742 */
3743 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3744 if (!reset_device_cmd) {
3745 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3746 return -ENOMEM;
3747 }
3748
3749 /* Attempt to submit the Reset Device command to the command ring */
3750 spin_lock_irqsave(&xhci->lock, flags);
3751
3752 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3753 if (ret) {
3754 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3755 spin_unlock_irqrestore(&xhci->lock, flags);
3756 goto command_cleanup;
3757 }
3758 xhci_ring_cmd_db(xhci);
3759 spin_unlock_irqrestore(&xhci->lock, flags);
3760
3761 /* Wait for the Reset Device command to finish */
3762 wait_for_completion(reset_device_cmd->completion);
3763
3764 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3765 * unless we tried to reset a slot ID that wasn't enabled,
3766 * or the device wasn't in the addressed or configured state.
3767 */
3768 ret = reset_device_cmd->status;
3769 switch (ret) {
3770 case COMP_COMMAND_ABORTED:
3771 case COMP_COMMAND_RING_STOPPED:
3772 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3773 ret = -ETIME;
3774 goto command_cleanup;
3775 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3776 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3777 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3778 slot_id,
3779 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3780 xhci_dbg(xhci, "Not freeing device rings.\n");
3781 /* Don't treat this as an error. May change my mind later. */
3782 ret = 0;
3783 goto command_cleanup;
3784 case COMP_SUCCESS:
3785 xhci_dbg(xhci, "Successful reset device command.\n");
3786 break;
3787 default:
3788 if (xhci_is_vendor_info_code(xhci, ret))
3789 break;
3790 xhci_warn(xhci, "Unknown completion code %u for "
3791 "reset device command.\n", ret);
3792 ret = -EINVAL;
3793 goto command_cleanup;
3794 }
3795
3796 /* Free up host controller endpoint resources */
3797 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3798 spin_lock_irqsave(&xhci->lock, flags);
3799 /* Don't delete the default control endpoint resources */
3800 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3801 spin_unlock_irqrestore(&xhci->lock, flags);
3802 }
3803
3804 /* Everything but endpoint 0 is disabled, so free the rings. */
3805 for (i = 1; i < 31; i++) {
3806 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3807
3808 if (ep->ep_state & EP_HAS_STREAMS) {
3809 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3810 xhci_get_endpoint_address(i));
3811 xhci_free_stream_info(xhci, ep->stream_info);
3812 ep->stream_info = NULL;
3813 ep->ep_state &= ~EP_HAS_STREAMS;
3814 }
3815
3816 if (ep->ring) {
3817 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3818 xhci_free_endpoint_ring(xhci, virt_dev, i);
3819 }
3820 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3821 xhci_drop_ep_from_interval_table(xhci,
3822 &virt_dev->eps[i].bw_info,
3823 virt_dev->bw_table,
3824 udev,
3825 &virt_dev->eps[i],
3826 virt_dev->tt_info);
3827 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3828 }
3829 /* If necessary, update the number of active TTs on this root port */
3830 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3831 virt_dev->flags = 0;
3832 ret = 0;
3833
3834 command_cleanup:
3835 xhci_free_command(xhci, reset_device_cmd);
3836 return ret;
3837 }
3838
3839 /*
3840 * At this point, the struct usb_device is about to go away, the device has
3841 * disconnected, and all traffic has been stopped and the endpoints have been
3842 * disabled. Free any HC data structures associated with that device.
3843 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3844 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3845 {
3846 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3847 struct xhci_virt_device *virt_dev;
3848 struct xhci_slot_ctx *slot_ctx;
3849 unsigned long flags;
3850 int i, ret;
3851
3852 /*
3853 * We called pm_runtime_get_noresume when the device was attached.
3854 * Decrement the counter here to allow controller to runtime suspend
3855 * if no devices remain.
3856 */
3857 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3858 pm_runtime_put_noidle(hcd->self.controller);
3859
3860 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3861 /* If the host is halted due to driver unload, we still need to free the
3862 * device.
3863 */
3864 if (ret <= 0 && ret != -ENODEV)
3865 return;
3866
3867 virt_dev = xhci->devs[udev->slot_id];
3868 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3869 trace_xhci_free_dev(slot_ctx);
3870
3871 /* Stop any wayward timer functions (which may grab the lock) */
3872 for (i = 0; i < 31; i++)
3873 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3874 virt_dev->udev = NULL;
3875 xhci_disable_slot(xhci, udev->slot_id);
3876
3877 spin_lock_irqsave(&xhci->lock, flags);
3878 xhci_free_virt_device(xhci, udev->slot_id);
3879 spin_unlock_irqrestore(&xhci->lock, flags);
3880
3881 }
3882
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3883 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3884 {
3885 struct xhci_command *command;
3886 unsigned long flags;
3887 u32 state;
3888 int ret;
3889
3890 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3891 if (!command)
3892 return -ENOMEM;
3893
3894 xhci_debugfs_remove_slot(xhci, slot_id);
3895
3896 spin_lock_irqsave(&xhci->lock, flags);
3897 /* Don't disable the slot if the host controller is dead. */
3898 state = readl(&xhci->op_regs->status);
3899 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3900 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3901 spin_unlock_irqrestore(&xhci->lock, flags);
3902 kfree(command);
3903 return -ENODEV;
3904 }
3905
3906 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3907 slot_id);
3908 if (ret) {
3909 spin_unlock_irqrestore(&xhci->lock, flags);
3910 kfree(command);
3911 return ret;
3912 }
3913 xhci_ring_cmd_db(xhci);
3914 spin_unlock_irqrestore(&xhci->lock, flags);
3915
3916 wait_for_completion(command->completion);
3917
3918 if (command->status != COMP_SUCCESS)
3919 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3920 slot_id, command->status);
3921
3922 xhci_free_command(xhci, command);
3923
3924 return 0;
3925 }
3926
3927 /*
3928 * Checks if we have enough host controller resources for the default control
3929 * endpoint.
3930 *
3931 * Must be called with xhci->lock held.
3932 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3933 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3934 {
3935 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3936 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3937 "Not enough ep ctxs: "
3938 "%u active, need to add 1, limit is %u.",
3939 xhci->num_active_eps, xhci->limit_active_eps);
3940 return -ENOMEM;
3941 }
3942 xhci->num_active_eps += 1;
3943 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3944 "Adding 1 ep ctx, %u now active.",
3945 xhci->num_active_eps);
3946 return 0;
3947 }
3948
3949
3950 /*
3951 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3952 * timed out, or allocating memory failed. Returns 1 on success.
3953 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3954 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3955 {
3956 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3957 struct xhci_virt_device *vdev;
3958 struct xhci_slot_ctx *slot_ctx;
3959 unsigned long flags;
3960 int ret, slot_id;
3961 struct xhci_command *command;
3962
3963 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3964 if (!command)
3965 return 0;
3966
3967 spin_lock_irqsave(&xhci->lock, flags);
3968 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3969 if (ret) {
3970 spin_unlock_irqrestore(&xhci->lock, flags);
3971 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3972 xhci_free_command(xhci, command);
3973 return 0;
3974 }
3975 xhci_ring_cmd_db(xhci);
3976 spin_unlock_irqrestore(&xhci->lock, flags);
3977
3978 wait_for_completion(command->completion);
3979 slot_id = command->slot_id;
3980
3981 if (!slot_id || command->status != COMP_SUCCESS) {
3982 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
3983 xhci_trb_comp_code_string(command->status));
3984 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3985 HCS_MAX_SLOTS(
3986 readl(&xhci->cap_regs->hcs_params1)));
3987 xhci_free_command(xhci, command);
3988 return 0;
3989 }
3990
3991 xhci_free_command(xhci, command);
3992
3993 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3994 spin_lock_irqsave(&xhci->lock, flags);
3995 ret = xhci_reserve_host_control_ep_resources(xhci);
3996 if (ret) {
3997 spin_unlock_irqrestore(&xhci->lock, flags);
3998 xhci_warn(xhci, "Not enough host resources, "
3999 "active endpoint contexts = %u\n",
4000 xhci->num_active_eps);
4001 goto disable_slot;
4002 }
4003 spin_unlock_irqrestore(&xhci->lock, flags);
4004 }
4005 /* Use GFP_NOIO, since this function can be called from
4006 * xhci_discover_or_reset_device(), which may be called as part of
4007 * mass storage driver error handling.
4008 */
4009 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4010 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4011 goto disable_slot;
4012 }
4013 vdev = xhci->devs[slot_id];
4014 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4015 trace_xhci_alloc_dev(slot_ctx);
4016
4017 udev->slot_id = slot_id;
4018
4019 xhci_debugfs_create_slot(xhci, slot_id);
4020
4021 /*
4022 * If resetting upon resume, we can't put the controller into runtime
4023 * suspend if there is a device attached.
4024 */
4025 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4026 pm_runtime_get_noresume(hcd->self.controller);
4027
4028 /* Is this a LS or FS device under a HS hub? */
4029 /* Hub or peripherial? */
4030 return 1;
4031
4032 disable_slot:
4033 xhci_disable_slot(xhci, udev->slot_id);
4034 xhci_free_virt_device(xhci, udev->slot_id);
4035
4036 return 0;
4037 }
4038
4039 /**
4040 * xhci_setup_device - issues an Address Device command to assign a unique
4041 * USB bus address.
4042 * @hcd: USB host controller data structure.
4043 * @udev: USB dev structure representing the connected device.
4044 * @setup: Enum specifying setup mode: address only or with context.
4045 * @timeout_ms: Max wait time (ms) for the command operation to complete.
4046 *
4047 * Return: 0 if successful; otherwise, negative error code.
4048 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4049 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4050 enum xhci_setup_dev setup, unsigned int timeout_ms)
4051 {
4052 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4053 unsigned long flags;
4054 struct xhci_virt_device *virt_dev;
4055 int ret = 0;
4056 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4057 struct xhci_slot_ctx *slot_ctx;
4058 struct xhci_input_control_ctx *ctrl_ctx;
4059 u64 temp_64;
4060 struct xhci_command *command = NULL;
4061
4062 mutex_lock(&xhci->mutex);
4063
4064 if (xhci->xhc_state) { /* dying, removing or halted */
4065 ret = -ESHUTDOWN;
4066 goto out;
4067 }
4068
4069 if (!udev->slot_id) {
4070 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4071 "Bad Slot ID %d", udev->slot_id);
4072 ret = -EINVAL;
4073 goto out;
4074 }
4075
4076 virt_dev = xhci->devs[udev->slot_id];
4077
4078 if (WARN_ON(!virt_dev)) {
4079 /*
4080 * In plug/unplug torture test with an NEC controller,
4081 * a zero-dereference was observed once due to virt_dev = 0.
4082 * Print useful debug rather than crash if it is observed again!
4083 */
4084 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4085 udev->slot_id);
4086 ret = -EINVAL;
4087 goto out;
4088 }
4089 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4090 trace_xhci_setup_device_slot(slot_ctx);
4091
4092 if (setup == SETUP_CONTEXT_ONLY) {
4093 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4094 SLOT_STATE_DEFAULT) {
4095 xhci_dbg(xhci, "Slot already in default state\n");
4096 goto out;
4097 }
4098 }
4099
4100 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4101 if (!command) {
4102 ret = -ENOMEM;
4103 goto out;
4104 }
4105
4106 command->in_ctx = virt_dev->in_ctx;
4107 command->timeout_ms = timeout_ms;
4108
4109 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4110 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4111 if (!ctrl_ctx) {
4112 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4113 __func__);
4114 ret = -EINVAL;
4115 goto out;
4116 }
4117 /*
4118 * If this is the first Set Address since device plug-in or
4119 * virt_device realloaction after a resume with an xHCI power loss,
4120 * then set up the slot context.
4121 */
4122 if (!slot_ctx->dev_info)
4123 xhci_setup_addressable_virt_dev(xhci, udev);
4124 /* Otherwise, update the control endpoint ring enqueue pointer. */
4125 else
4126 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4127 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4128 ctrl_ctx->drop_flags = 0;
4129
4130 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4131 le32_to_cpu(slot_ctx->dev_info) >> 27);
4132
4133 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4134 spin_lock_irqsave(&xhci->lock, flags);
4135 trace_xhci_setup_device(virt_dev);
4136 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4137 udev->slot_id, setup);
4138 if (ret) {
4139 spin_unlock_irqrestore(&xhci->lock, flags);
4140 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4141 "FIXME: allocate a command ring segment");
4142 goto out;
4143 }
4144 xhci_ring_cmd_db(xhci);
4145 spin_unlock_irqrestore(&xhci->lock, flags);
4146
4147 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4148 wait_for_completion(command->completion);
4149
4150 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4151 * the SetAddress() "recovery interval" required by USB and aborting the
4152 * command on a timeout.
4153 */
4154 switch (command->status) {
4155 case COMP_COMMAND_ABORTED:
4156 case COMP_COMMAND_RING_STOPPED:
4157 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4158 ret = -ETIME;
4159 break;
4160 case COMP_CONTEXT_STATE_ERROR:
4161 case COMP_SLOT_NOT_ENABLED_ERROR:
4162 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4163 act, udev->slot_id);
4164 ret = -EINVAL;
4165 break;
4166 case COMP_USB_TRANSACTION_ERROR:
4167 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4168
4169 mutex_unlock(&xhci->mutex);
4170 ret = xhci_disable_slot(xhci, udev->slot_id);
4171 xhci_free_virt_device(xhci, udev->slot_id);
4172 if (!ret) {
4173 if (xhci_alloc_dev(hcd, udev) == 1)
4174 xhci_setup_addressable_virt_dev(xhci, udev);
4175 }
4176 kfree(command->completion);
4177 kfree(command);
4178 return -EPROTO;
4179 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4180 dev_warn(&udev->dev,
4181 "ERROR: Incompatible device for setup %s command\n", act);
4182 ret = -ENODEV;
4183 break;
4184 case COMP_SUCCESS:
4185 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4186 "Successful setup %s command", act);
4187 break;
4188 default:
4189 xhci_err(xhci,
4190 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4191 act, command->status);
4192 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4193 ret = -EINVAL;
4194 break;
4195 }
4196 if (ret)
4197 goto out;
4198 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4199 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4200 "Op regs DCBAA ptr = %#016llx", temp_64);
4201 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4202 "Slot ID %d dcbaa entry @%p = %#016llx",
4203 udev->slot_id,
4204 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4205 (unsigned long long)
4206 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4207 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4208 "Output Context DMA address = %#08llx",
4209 (unsigned long long)virt_dev->out_ctx->dma);
4210 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4211 le32_to_cpu(slot_ctx->dev_info) >> 27);
4212 /*
4213 * USB core uses address 1 for the roothubs, so we add one to the
4214 * address given back to us by the HC.
4215 */
4216 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4217 le32_to_cpu(slot_ctx->dev_info) >> 27);
4218 /* Zero the input context control for later use */
4219 ctrl_ctx->add_flags = 0;
4220 ctrl_ctx->drop_flags = 0;
4221 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4222 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4223
4224 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4225 "Internal device address = %d",
4226 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4227 out:
4228 mutex_unlock(&xhci->mutex);
4229 if (command) {
4230 kfree(command->completion);
4231 kfree(command);
4232 }
4233 return ret;
4234 }
4235
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4236 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4237 unsigned int timeout_ms)
4238 {
4239 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4240 }
4241
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4242 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4243 {
4244 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4245 XHCI_CMD_DEFAULT_TIMEOUT);
4246 }
4247
4248 /*
4249 * Transfer the port index into real index in the HW port status
4250 * registers. Caculate offset between the port's PORTSC register
4251 * and port status base. Divide the number of per port register
4252 * to get the real index. The raw port number bases 1.
4253 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4254 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4255 {
4256 struct xhci_hub *rhub;
4257
4258 rhub = xhci_get_rhub(hcd);
4259 return rhub->ports[port1 - 1]->hw_portnum + 1;
4260 }
4261
4262 /*
4263 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4264 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4265 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4266 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4267 struct usb_device *udev, u16 max_exit_latency)
4268 {
4269 struct xhci_virt_device *virt_dev;
4270 struct xhci_command *command;
4271 struct xhci_input_control_ctx *ctrl_ctx;
4272 struct xhci_slot_ctx *slot_ctx;
4273 unsigned long flags;
4274 int ret;
4275
4276 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4277 if (!command)
4278 return -ENOMEM;
4279
4280 spin_lock_irqsave(&xhci->lock, flags);
4281
4282 virt_dev = xhci->devs[udev->slot_id];
4283
4284 /*
4285 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4286 * xHC was re-initialized. Exit latency will be set later after
4287 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4288 */
4289
4290 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4291 spin_unlock_irqrestore(&xhci->lock, flags);
4292 xhci_free_command(xhci, command);
4293 return 0;
4294 }
4295
4296 /* Attempt to issue an Evaluate Context command to change the MEL. */
4297 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4298 if (!ctrl_ctx) {
4299 spin_unlock_irqrestore(&xhci->lock, flags);
4300 xhci_free_command(xhci, command);
4301 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4302 __func__);
4303 return -ENOMEM;
4304 }
4305
4306 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4307 spin_unlock_irqrestore(&xhci->lock, flags);
4308
4309 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4310 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4311 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4312 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4313 slot_ctx->dev_state = 0;
4314
4315 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4316 "Set up evaluate context for LPM MEL change.");
4317
4318 /* Issue and wait for the evaluate context command. */
4319 ret = xhci_configure_endpoint(xhci, udev, command,
4320 true, true);
4321
4322 if (!ret) {
4323 spin_lock_irqsave(&xhci->lock, flags);
4324 virt_dev->current_mel = max_exit_latency;
4325 spin_unlock_irqrestore(&xhci->lock, flags);
4326 }
4327
4328 xhci_free_command(xhci, command);
4329
4330 return ret;
4331 }
4332
4333 #ifdef CONFIG_PM
4334
4335 /* BESL to HIRD Encoding array for USB2 LPM */
4336 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4337 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4338
4339 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4340 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4341 struct usb_device *udev)
4342 {
4343 int u2del, besl, besl_host;
4344 int besl_device = 0;
4345 u32 field;
4346
4347 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4348 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4349
4350 if (field & USB_BESL_SUPPORT) {
4351 for (besl_host = 0; besl_host < 16; besl_host++) {
4352 if (xhci_besl_encoding[besl_host] >= u2del)
4353 break;
4354 }
4355 /* Use baseline BESL value as default */
4356 if (field & USB_BESL_BASELINE_VALID)
4357 besl_device = USB_GET_BESL_BASELINE(field);
4358 else if (field & USB_BESL_DEEP_VALID)
4359 besl_device = USB_GET_BESL_DEEP(field);
4360 } else {
4361 if (u2del <= 50)
4362 besl_host = 0;
4363 else
4364 besl_host = (u2del - 51) / 75 + 1;
4365 }
4366
4367 besl = besl_host + besl_device;
4368 if (besl > 15)
4369 besl = 15;
4370
4371 return besl;
4372 }
4373
4374 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4375 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4376 {
4377 u32 field;
4378 int l1;
4379 int besld = 0;
4380 int hirdm = 0;
4381
4382 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4383
4384 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4385 l1 = udev->l1_params.timeout / 256;
4386
4387 /* device has preferred BESLD */
4388 if (field & USB_BESL_DEEP_VALID) {
4389 besld = USB_GET_BESL_DEEP(field);
4390 hirdm = 1;
4391 }
4392
4393 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4394 }
4395
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4396 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4397 struct usb_device *udev, int enable)
4398 {
4399 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4400 struct xhci_port **ports;
4401 __le32 __iomem *pm_addr, *hlpm_addr;
4402 u32 pm_val, hlpm_val, field;
4403 unsigned int port_num;
4404 unsigned long flags;
4405 int hird, exit_latency;
4406 int ret;
4407
4408 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4409 return -EPERM;
4410
4411 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4412 !udev->lpm_capable)
4413 return -EPERM;
4414
4415 if (!udev->parent || udev->parent->parent ||
4416 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4417 return -EPERM;
4418
4419 if (udev->usb2_hw_lpm_capable != 1)
4420 return -EPERM;
4421
4422 spin_lock_irqsave(&xhci->lock, flags);
4423
4424 ports = xhci->usb2_rhub.ports;
4425 port_num = udev->portnum - 1;
4426 pm_addr = ports[port_num]->addr + PORTPMSC;
4427 pm_val = readl(pm_addr);
4428 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4429
4430 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4431 enable ? "enable" : "disable", port_num + 1);
4432
4433 if (enable) {
4434 /* Host supports BESL timeout instead of HIRD */
4435 if (udev->usb2_hw_lpm_besl_capable) {
4436 /* if device doesn't have a preferred BESL value use a
4437 * default one which works with mixed HIRD and BESL
4438 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4439 */
4440 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4441 if ((field & USB_BESL_SUPPORT) &&
4442 (field & USB_BESL_BASELINE_VALID))
4443 hird = USB_GET_BESL_BASELINE(field);
4444 else
4445 hird = udev->l1_params.besl;
4446
4447 exit_latency = xhci_besl_encoding[hird];
4448 spin_unlock_irqrestore(&xhci->lock, flags);
4449
4450 ret = xhci_change_max_exit_latency(xhci, udev,
4451 exit_latency);
4452 if (ret < 0)
4453 return ret;
4454 spin_lock_irqsave(&xhci->lock, flags);
4455
4456 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4457 writel(hlpm_val, hlpm_addr);
4458 /* flush write */
4459 readl(hlpm_addr);
4460 } else {
4461 hird = xhci_calculate_hird_besl(xhci, udev);
4462 }
4463
4464 pm_val &= ~PORT_HIRD_MASK;
4465 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4466 writel(pm_val, pm_addr);
4467 pm_val = readl(pm_addr);
4468 pm_val |= PORT_HLE;
4469 writel(pm_val, pm_addr);
4470 /* flush write */
4471 readl(pm_addr);
4472 } else {
4473 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4474 writel(pm_val, pm_addr);
4475 /* flush write */
4476 readl(pm_addr);
4477 if (udev->usb2_hw_lpm_besl_capable) {
4478 spin_unlock_irqrestore(&xhci->lock, flags);
4479 xhci_change_max_exit_latency(xhci, udev, 0);
4480 readl_poll_timeout(ports[port_num]->addr, pm_val,
4481 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4482 100, 10000);
4483 return 0;
4484 }
4485 }
4486
4487 spin_unlock_irqrestore(&xhci->lock, flags);
4488 return 0;
4489 }
4490
4491 /* check if a usb2 port supports a given extened capability protocol
4492 * only USB2 ports extended protocol capability values are cached.
4493 * Return 1 if capability is supported
4494 */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4495 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4496 unsigned capability)
4497 {
4498 u32 port_offset, port_count;
4499 int i;
4500
4501 for (i = 0; i < xhci->num_ext_caps; i++) {
4502 if (xhci->ext_caps[i] & capability) {
4503 /* port offsets starts at 1 */
4504 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4505 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4506 if (port >= port_offset &&
4507 port < port_offset + port_count)
4508 return 1;
4509 }
4510 }
4511 return 0;
4512 }
4513
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4514 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4515 {
4516 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4517 int portnum = udev->portnum - 1;
4518
4519 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4520 return 0;
4521
4522 /* we only support lpm for non-hub device connected to root hub yet */
4523 if (!udev->parent || udev->parent->parent ||
4524 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4525 return 0;
4526
4527 if (xhci->hw_lpm_support == 1 &&
4528 xhci_check_usb2_port_capability(
4529 xhci, portnum, XHCI_HLC)) {
4530 udev->usb2_hw_lpm_capable = 1;
4531 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4532 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4533 if (xhci_check_usb2_port_capability(xhci, portnum,
4534 XHCI_BLC))
4535 udev->usb2_hw_lpm_besl_capable = 1;
4536 }
4537
4538 return 0;
4539 }
4540
4541 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4542
4543 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4544 static unsigned long long xhci_service_interval_to_ns(
4545 struct usb_endpoint_descriptor *desc)
4546 {
4547 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4548 }
4549
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4550 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4551 enum usb3_link_state state)
4552 {
4553 unsigned long long sel;
4554 unsigned long long pel;
4555 unsigned int max_sel_pel;
4556 char *state_name;
4557
4558 switch (state) {
4559 case USB3_LPM_U1:
4560 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4561 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4562 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4563 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4564 state_name = "U1";
4565 break;
4566 case USB3_LPM_U2:
4567 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4568 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4569 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4570 state_name = "U2";
4571 break;
4572 default:
4573 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4574 __func__);
4575 return USB3_LPM_DISABLED;
4576 }
4577
4578 if (sel <= max_sel_pel && pel <= max_sel_pel)
4579 return USB3_LPM_DEVICE_INITIATED;
4580
4581 if (sel > max_sel_pel)
4582 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4583 "due to long SEL %llu ms\n",
4584 state_name, sel);
4585 else
4586 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4587 "due to long PEL %llu ms\n",
4588 state_name, pel);
4589 return USB3_LPM_DISABLED;
4590 }
4591
4592 /* The U1 timeout should be the maximum of the following values:
4593 * - For control endpoints, U1 system exit latency (SEL) * 3
4594 * - For bulk endpoints, U1 SEL * 5
4595 * - For interrupt endpoints:
4596 * - Notification EPs, U1 SEL * 3
4597 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4598 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4599 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4600 static unsigned long long xhci_calculate_intel_u1_timeout(
4601 struct usb_device *udev,
4602 struct usb_endpoint_descriptor *desc)
4603 {
4604 unsigned long long timeout_ns;
4605 int ep_type;
4606 int intr_type;
4607
4608 ep_type = usb_endpoint_type(desc);
4609 switch (ep_type) {
4610 case USB_ENDPOINT_XFER_CONTROL:
4611 timeout_ns = udev->u1_params.sel * 3;
4612 break;
4613 case USB_ENDPOINT_XFER_BULK:
4614 timeout_ns = udev->u1_params.sel * 5;
4615 break;
4616 case USB_ENDPOINT_XFER_INT:
4617 intr_type = usb_endpoint_interrupt_type(desc);
4618 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4619 timeout_ns = udev->u1_params.sel * 3;
4620 break;
4621 }
4622 /* Otherwise the calculation is the same as isoc eps */
4623 fallthrough;
4624 case USB_ENDPOINT_XFER_ISOC:
4625 timeout_ns = xhci_service_interval_to_ns(desc);
4626 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4627 if (timeout_ns < udev->u1_params.sel * 2)
4628 timeout_ns = udev->u1_params.sel * 2;
4629 break;
4630 default:
4631 return 0;
4632 }
4633
4634 return timeout_ns;
4635 }
4636
4637 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4638 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4639 struct usb_device *udev,
4640 struct usb_endpoint_descriptor *desc)
4641 {
4642 unsigned long long timeout_ns;
4643
4644 /* Prevent U1 if service interval is shorter than U1 exit latency */
4645 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4646 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4647 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4648 return USB3_LPM_DISABLED;
4649 }
4650 }
4651
4652 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4653 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4654 else
4655 timeout_ns = udev->u1_params.sel;
4656
4657 /* The U1 timeout is encoded in 1us intervals.
4658 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4659 */
4660 if (timeout_ns == USB3_LPM_DISABLED)
4661 timeout_ns = 1;
4662 else
4663 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4664
4665 /* If the necessary timeout value is bigger than what we can set in the
4666 * USB 3.0 hub, we have to disable hub-initiated U1.
4667 */
4668 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4669 return timeout_ns;
4670 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4671 "due to long timeout %llu ms\n", timeout_ns);
4672 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4673 }
4674
4675 /* The U2 timeout should be the maximum of:
4676 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4677 * - largest bInterval of any active periodic endpoint (to avoid going
4678 * into lower power link states between intervals).
4679 * - the U2 Exit Latency of the device
4680 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4681 static unsigned long long xhci_calculate_intel_u2_timeout(
4682 struct usb_device *udev,
4683 struct usb_endpoint_descriptor *desc)
4684 {
4685 unsigned long long timeout_ns;
4686 unsigned long long u2_del_ns;
4687
4688 timeout_ns = 10 * 1000 * 1000;
4689
4690 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4691 (xhci_service_interval_to_ns(desc) > timeout_ns))
4692 timeout_ns = xhci_service_interval_to_ns(desc);
4693
4694 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4695 if (u2_del_ns > timeout_ns)
4696 timeout_ns = u2_del_ns;
4697
4698 return timeout_ns;
4699 }
4700
4701 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4702 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4703 struct usb_device *udev,
4704 struct usb_endpoint_descriptor *desc)
4705 {
4706 unsigned long long timeout_ns;
4707
4708 /* Prevent U2 if service interval is shorter than U2 exit latency */
4709 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4710 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4711 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4712 return USB3_LPM_DISABLED;
4713 }
4714 }
4715
4716 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4717 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4718 else
4719 timeout_ns = udev->u2_params.sel;
4720
4721 /* The U2 timeout is encoded in 256us intervals */
4722 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4723 /* If the necessary timeout value is bigger than what we can set in the
4724 * USB 3.0 hub, we have to disable hub-initiated U2.
4725 */
4726 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4727 return timeout_ns;
4728 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4729 "due to long timeout %llu ms\n", timeout_ns);
4730 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4731 }
4732
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4733 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4734 struct usb_device *udev,
4735 struct usb_endpoint_descriptor *desc,
4736 enum usb3_link_state state,
4737 u16 *timeout)
4738 {
4739 if (state == USB3_LPM_U1)
4740 return xhci_calculate_u1_timeout(xhci, udev, desc);
4741 else if (state == USB3_LPM_U2)
4742 return xhci_calculate_u2_timeout(xhci, udev, desc);
4743
4744 return USB3_LPM_DISABLED;
4745 }
4746
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4747 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4748 struct usb_device *udev,
4749 struct usb_endpoint_descriptor *desc,
4750 enum usb3_link_state state,
4751 u16 *timeout)
4752 {
4753 u16 alt_timeout;
4754
4755 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4756 desc, state, timeout);
4757
4758 /* If we found we can't enable hub-initiated LPM, and
4759 * the U1 or U2 exit latency was too high to allow
4760 * device-initiated LPM as well, then we will disable LPM
4761 * for this device, so stop searching any further.
4762 */
4763 if (alt_timeout == USB3_LPM_DISABLED) {
4764 *timeout = alt_timeout;
4765 return -E2BIG;
4766 }
4767 if (alt_timeout > *timeout)
4768 *timeout = alt_timeout;
4769 return 0;
4770 }
4771
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4772 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4773 struct usb_device *udev,
4774 struct usb_host_interface *alt,
4775 enum usb3_link_state state,
4776 u16 *timeout)
4777 {
4778 int j;
4779
4780 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4781 if (xhci_update_timeout_for_endpoint(xhci, udev,
4782 &alt->endpoint[j].desc, state, timeout))
4783 return -E2BIG;
4784 }
4785 return 0;
4786 }
4787
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4788 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4789 struct usb_device *udev,
4790 enum usb3_link_state state)
4791 {
4792 struct usb_device *parent = udev->parent;
4793 int tier = 1; /* roothub is tier1 */
4794
4795 while (parent) {
4796 parent = parent->parent;
4797 tier++;
4798 }
4799
4800 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4801 goto fail;
4802 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4803 goto fail;
4804
4805 return 0;
4806 fail:
4807 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4808 tier);
4809 return -E2BIG;
4810 }
4811
4812 /* Returns the U1 or U2 timeout that should be enabled.
4813 * If the tier check or timeout setting functions return with a non-zero exit
4814 * code, that means the timeout value has been finalized and we shouldn't look
4815 * at any more endpoints.
4816 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4817 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4818 struct usb_device *udev, enum usb3_link_state state)
4819 {
4820 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4821 struct usb_host_config *config;
4822 char *state_name;
4823 int i;
4824 u16 timeout = USB3_LPM_DISABLED;
4825
4826 if (state == USB3_LPM_U1)
4827 state_name = "U1";
4828 else if (state == USB3_LPM_U2)
4829 state_name = "U2";
4830 else {
4831 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4832 state);
4833 return timeout;
4834 }
4835
4836 /* Gather some information about the currently installed configuration
4837 * and alternate interface settings.
4838 */
4839 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4840 state, &timeout))
4841 return timeout;
4842
4843 config = udev->actconfig;
4844 if (!config)
4845 return timeout;
4846
4847 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4848 struct usb_driver *driver;
4849 struct usb_interface *intf = config->interface[i];
4850
4851 if (!intf)
4852 continue;
4853
4854 /* Check if any currently bound drivers want hub-initiated LPM
4855 * disabled.
4856 */
4857 if (intf->dev.driver) {
4858 driver = to_usb_driver(intf->dev.driver);
4859 if (driver && driver->disable_hub_initiated_lpm) {
4860 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4861 state_name, driver->name);
4862 timeout = xhci_get_timeout_no_hub_lpm(udev,
4863 state);
4864 if (timeout == USB3_LPM_DISABLED)
4865 return timeout;
4866 }
4867 }
4868
4869 /* Not sure how this could happen... */
4870 if (!intf->cur_altsetting)
4871 continue;
4872
4873 if (xhci_update_timeout_for_interface(xhci, udev,
4874 intf->cur_altsetting,
4875 state, &timeout))
4876 return timeout;
4877 }
4878 return timeout;
4879 }
4880
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4881 static int calculate_max_exit_latency(struct usb_device *udev,
4882 enum usb3_link_state state_changed,
4883 u16 hub_encoded_timeout)
4884 {
4885 unsigned long long u1_mel_us = 0;
4886 unsigned long long u2_mel_us = 0;
4887 unsigned long long mel_us = 0;
4888 bool disabling_u1;
4889 bool disabling_u2;
4890 bool enabling_u1;
4891 bool enabling_u2;
4892
4893 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4894 hub_encoded_timeout == USB3_LPM_DISABLED);
4895 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4896 hub_encoded_timeout == USB3_LPM_DISABLED);
4897
4898 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4899 hub_encoded_timeout != USB3_LPM_DISABLED);
4900 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4901 hub_encoded_timeout != USB3_LPM_DISABLED);
4902
4903 /* If U1 was already enabled and we're not disabling it,
4904 * or we're going to enable U1, account for the U1 max exit latency.
4905 */
4906 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4907 enabling_u1)
4908 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4909 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4910 enabling_u2)
4911 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4912
4913 mel_us = max(u1_mel_us, u2_mel_us);
4914
4915 /* xHCI host controller max exit latency field is only 16 bits wide. */
4916 if (mel_us > MAX_EXIT) {
4917 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4918 "is too big.\n", mel_us);
4919 return -E2BIG;
4920 }
4921 return mel_us;
4922 }
4923
4924 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4925 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4926 struct usb_device *udev, enum usb3_link_state state)
4927 {
4928 struct xhci_hcd *xhci;
4929 struct xhci_port *port;
4930 u16 hub_encoded_timeout;
4931 int mel;
4932 int ret;
4933
4934 xhci = hcd_to_xhci(hcd);
4935 /* The LPM timeout values are pretty host-controller specific, so don't
4936 * enable hub-initiated timeouts unless the vendor has provided
4937 * information about their timeout algorithm.
4938 */
4939 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4940 !xhci->devs[udev->slot_id])
4941 return USB3_LPM_DISABLED;
4942
4943 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4944 return USB3_LPM_DISABLED;
4945
4946 /* If connected to root port then check port can handle lpm */
4947 if (udev->parent && !udev->parent->parent) {
4948 port = xhci->usb3_rhub.ports[udev->portnum - 1];
4949 if (port->lpm_incapable)
4950 return USB3_LPM_DISABLED;
4951 }
4952
4953 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4954 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4955 if (mel < 0) {
4956 /* Max Exit Latency is too big, disable LPM. */
4957 hub_encoded_timeout = USB3_LPM_DISABLED;
4958 mel = 0;
4959 }
4960
4961 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4962 if (ret)
4963 return ret;
4964 return hub_encoded_timeout;
4965 }
4966
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4967 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4968 struct usb_device *udev, enum usb3_link_state state)
4969 {
4970 struct xhci_hcd *xhci;
4971 u16 mel;
4972
4973 xhci = hcd_to_xhci(hcd);
4974 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4975 !xhci->devs[udev->slot_id])
4976 return 0;
4977
4978 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4979 return xhci_change_max_exit_latency(xhci, udev, mel);
4980 }
4981 #else /* CONFIG_PM */
4982
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4983 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4984 struct usb_device *udev, int enable)
4985 {
4986 return 0;
4987 }
4988
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4989 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4990 {
4991 return 0;
4992 }
4993
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4994 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4995 struct usb_device *udev, enum usb3_link_state state)
4996 {
4997 return USB3_LPM_DISABLED;
4998 }
4999
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5000 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5001 struct usb_device *udev, enum usb3_link_state state)
5002 {
5003 return 0;
5004 }
5005 #endif /* CONFIG_PM */
5006
5007 /*-------------------------------------------------------------------------*/
5008
5009 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5010 * internal data structures for the device.
5011 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5012 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5013 struct usb_tt *tt, gfp_t mem_flags)
5014 {
5015 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5016 struct xhci_virt_device *vdev;
5017 struct xhci_command *config_cmd;
5018 struct xhci_input_control_ctx *ctrl_ctx;
5019 struct xhci_slot_ctx *slot_ctx;
5020 unsigned long flags;
5021 unsigned think_time;
5022 int ret;
5023
5024 /* Ignore root hubs */
5025 if (!hdev->parent)
5026 return 0;
5027
5028 vdev = xhci->devs[hdev->slot_id];
5029 if (!vdev) {
5030 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5031 return -EINVAL;
5032 }
5033
5034 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5035 if (!config_cmd)
5036 return -ENOMEM;
5037
5038 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5039 if (!ctrl_ctx) {
5040 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5041 __func__);
5042 xhci_free_command(xhci, config_cmd);
5043 return -ENOMEM;
5044 }
5045
5046 spin_lock_irqsave(&xhci->lock, flags);
5047 if (hdev->speed == USB_SPEED_HIGH &&
5048 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5049 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5050 xhci_free_command(xhci, config_cmd);
5051 spin_unlock_irqrestore(&xhci->lock, flags);
5052 return -ENOMEM;
5053 }
5054
5055 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5056 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5057 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5058 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5059 /*
5060 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5061 * but it may be already set to 1 when setup an xHCI virtual
5062 * device, so clear it anyway.
5063 */
5064 if (tt->multi)
5065 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5066 else if (hdev->speed == USB_SPEED_FULL)
5067 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5068
5069 if (xhci->hci_version > 0x95) {
5070 xhci_dbg(xhci, "xHCI version %x needs hub "
5071 "TT think time and number of ports\n",
5072 (unsigned int) xhci->hci_version);
5073 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5074 /* Set TT think time - convert from ns to FS bit times.
5075 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5076 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5077 *
5078 * xHCI 1.0: this field shall be 0 if the device is not a
5079 * High-spped hub.
5080 */
5081 think_time = tt->think_time;
5082 if (think_time != 0)
5083 think_time = (think_time / 666) - 1;
5084 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5085 slot_ctx->tt_info |=
5086 cpu_to_le32(TT_THINK_TIME(think_time));
5087 } else {
5088 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5089 "TT think time or number of ports\n",
5090 (unsigned int) xhci->hci_version);
5091 }
5092 slot_ctx->dev_state = 0;
5093 spin_unlock_irqrestore(&xhci->lock, flags);
5094
5095 xhci_dbg(xhci, "Set up %s for hub device.\n",
5096 (xhci->hci_version > 0x95) ?
5097 "configure endpoint" : "evaluate context");
5098
5099 /* Issue and wait for the configure endpoint or
5100 * evaluate context command.
5101 */
5102 if (xhci->hci_version > 0x95)
5103 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5104 false, false);
5105 else
5106 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5107 true, false);
5108
5109 xhci_free_command(xhci, config_cmd);
5110 return ret;
5111 }
5112 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5113
xhci_get_frame(struct usb_hcd * hcd)5114 static int xhci_get_frame(struct usb_hcd *hcd)
5115 {
5116 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5117 /* EHCI mods by the periodic size. Why? */
5118 return readl(&xhci->run_regs->microframe_index) >> 3;
5119 }
5120
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5121 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5122 {
5123 xhci->usb2_rhub.hcd = hcd;
5124 hcd->speed = HCD_USB2;
5125 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5126 /*
5127 * USB 2.0 roothub under xHCI has an integrated TT,
5128 * (rate matching hub) as opposed to having an OHCI/UHCI
5129 * companion controller.
5130 */
5131 hcd->has_tt = 1;
5132 }
5133
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5134 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5135 {
5136 unsigned int minor_rev;
5137
5138 /*
5139 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5140 * should return 0x31 for sbrn, or that the minor revision
5141 * is a two digit BCD containig minor and sub-minor numbers.
5142 * This was later clarified in xHCI 1.2.
5143 *
5144 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5145 * minor revision set to 0x1 instead of 0x10.
5146 */
5147 if (xhci->usb3_rhub.min_rev == 0x1)
5148 minor_rev = 1;
5149 else
5150 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5151
5152 switch (minor_rev) {
5153 case 2:
5154 hcd->speed = HCD_USB32;
5155 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5156 hcd->self.root_hub->rx_lanes = 2;
5157 hcd->self.root_hub->tx_lanes = 2;
5158 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5159 break;
5160 case 1:
5161 hcd->speed = HCD_USB31;
5162 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5163 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5164 break;
5165 }
5166 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5167 minor_rev, minor_rev ? "Enhanced " : "");
5168
5169 xhci->usb3_rhub.hcd = hcd;
5170 }
5171
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5172 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5173 {
5174 struct xhci_hcd *xhci;
5175 /*
5176 * TODO: Check with DWC3 clients for sysdev according to
5177 * quirks
5178 */
5179 struct device *dev = hcd->self.sysdev;
5180 int retval;
5181
5182 /* Accept arbitrarily long scatter-gather lists */
5183 hcd->self.sg_tablesize = ~0;
5184
5185 /* support to build packet from discontinuous buffers */
5186 hcd->self.no_sg_constraint = 1;
5187
5188 /* XHCI controllers don't stop the ep queue on short packets :| */
5189 hcd->self.no_stop_on_short = 1;
5190
5191 xhci = hcd_to_xhci(hcd);
5192
5193 if (!usb_hcd_is_primary_hcd(hcd)) {
5194 xhci_hcd_init_usb3_data(xhci, hcd);
5195 return 0;
5196 }
5197
5198 mutex_init(&xhci->mutex);
5199 xhci->main_hcd = hcd;
5200 xhci->cap_regs = hcd->regs;
5201 xhci->op_regs = hcd->regs +
5202 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5203 xhci->run_regs = hcd->regs +
5204 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5205 /* Cache read-only capability registers */
5206 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5207 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5208 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5209 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5210 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5211 if (xhci->hci_version > 0x100)
5212 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5213
5214 /* xhci-plat or xhci-pci might have set max_interrupters already */
5215 if ((!xhci->max_interrupters) ||
5216 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5217 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5218
5219 xhci->quirks |= quirks;
5220
5221 if (get_quirks)
5222 get_quirks(dev, xhci);
5223
5224 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5225 * success event after a short transfer. This quirk will ignore such
5226 * spurious event.
5227 */
5228 if (xhci->hci_version > 0x96)
5229 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5230
5231 /* Make sure the HC is halted. */
5232 retval = xhci_halt(xhci);
5233 if (retval)
5234 return retval;
5235
5236 xhci_zero_64b_regs(xhci);
5237
5238 xhci_dbg(xhci, "Resetting HCD\n");
5239 /* Reset the internal HC memory state and registers. */
5240 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5241 if (retval)
5242 return retval;
5243 xhci_dbg(xhci, "Reset complete\n");
5244
5245 /*
5246 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5247 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5248 * address memory pointers actually. So, this driver clears the AC64
5249 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5250 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5251 */
5252 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5253 xhci->hcc_params &= ~BIT(0);
5254
5255 /* Set dma_mask and coherent_dma_mask to 64-bits,
5256 * if xHC supports 64-bit addressing */
5257 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5258 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5259 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5260 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5261 } else {
5262 /*
5263 * This is to avoid error in cases where a 32-bit USB
5264 * controller is used on a 64-bit capable system.
5265 */
5266 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5267 if (retval)
5268 return retval;
5269 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5270 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5271 }
5272
5273 xhci_dbg(xhci, "Calling HCD init\n");
5274 /* Initialize HCD and host controller data structures. */
5275 retval = xhci_init(hcd);
5276 if (retval)
5277 return retval;
5278 xhci_dbg(xhci, "Called HCD init\n");
5279
5280 if (xhci_hcd_is_usb3(hcd))
5281 xhci_hcd_init_usb3_data(xhci, hcd);
5282 else
5283 xhci_hcd_init_usb2_data(xhci, hcd);
5284
5285 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5286 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5287
5288 return 0;
5289 }
5290 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5291
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5292 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5293 struct usb_host_endpoint *ep)
5294 {
5295 struct xhci_hcd *xhci;
5296 struct usb_device *udev;
5297 unsigned int slot_id;
5298 unsigned int ep_index;
5299 unsigned long flags;
5300
5301 xhci = hcd_to_xhci(hcd);
5302
5303 spin_lock_irqsave(&xhci->lock, flags);
5304 udev = (struct usb_device *)ep->hcpriv;
5305 slot_id = udev->slot_id;
5306 ep_index = xhci_get_endpoint_index(&ep->desc);
5307
5308 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5309 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5310 spin_unlock_irqrestore(&xhci->lock, flags);
5311 }
5312
5313 static const struct hc_driver xhci_hc_driver = {
5314 .description = "xhci-hcd",
5315 .product_desc = "xHCI Host Controller",
5316 .hcd_priv_size = sizeof(struct xhci_hcd),
5317
5318 /*
5319 * generic hardware linkage
5320 */
5321 .irq = xhci_irq,
5322 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5323 HCD_BH,
5324
5325 /*
5326 * basic lifecycle operations
5327 */
5328 .reset = NULL, /* set in xhci_init_driver() */
5329 .start = xhci_run,
5330 .stop = xhci_stop,
5331 .shutdown = xhci_shutdown,
5332
5333 /*
5334 * managing i/o requests and associated device resources
5335 */
5336 .map_urb_for_dma = xhci_map_urb_for_dma,
5337 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5338 .urb_enqueue = xhci_urb_enqueue,
5339 .urb_dequeue = xhci_urb_dequeue,
5340 .alloc_dev = xhci_alloc_dev,
5341 .free_dev = xhci_free_dev,
5342 .alloc_streams = xhci_alloc_streams,
5343 .free_streams = xhci_free_streams,
5344 .add_endpoint = xhci_add_endpoint,
5345 .drop_endpoint = xhci_drop_endpoint,
5346 .endpoint_disable = xhci_endpoint_disable,
5347 .endpoint_reset = xhci_endpoint_reset,
5348 .check_bandwidth = xhci_check_bandwidth,
5349 .reset_bandwidth = xhci_reset_bandwidth,
5350 .address_device = xhci_address_device,
5351 .enable_device = xhci_enable_device,
5352 .update_hub_device = xhci_update_hub_device,
5353 .reset_device = xhci_discover_or_reset_device,
5354
5355 /*
5356 * scheduling support
5357 */
5358 .get_frame_number = xhci_get_frame,
5359
5360 /*
5361 * root hub support
5362 */
5363 .hub_control = xhci_hub_control,
5364 .hub_status_data = xhci_hub_status_data,
5365 .bus_suspend = xhci_bus_suspend,
5366 .bus_resume = xhci_bus_resume,
5367 .get_resuming_ports = xhci_get_resuming_ports,
5368
5369 /*
5370 * call back when device connected and addressed
5371 */
5372 .update_device = xhci_update_device,
5373 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5374 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5375 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5376 .find_raw_port_number = xhci_find_raw_port_number,
5377 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5378 };
5379
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5380 void xhci_init_driver(struct hc_driver *drv,
5381 const struct xhci_driver_overrides *over)
5382 {
5383 BUG_ON(!over);
5384
5385 /* Copy the generic table to drv then apply the overrides */
5386 *drv = xhci_hc_driver;
5387
5388 if (over) {
5389 drv->hcd_priv_size += over->extra_priv_size;
5390 if (over->reset)
5391 drv->reset = over->reset;
5392 if (over->start)
5393 drv->start = over->start;
5394 if (over->add_endpoint)
5395 drv->add_endpoint = over->add_endpoint;
5396 if (over->drop_endpoint)
5397 drv->drop_endpoint = over->drop_endpoint;
5398 if (over->check_bandwidth)
5399 drv->check_bandwidth = over->check_bandwidth;
5400 if (over->reset_bandwidth)
5401 drv->reset_bandwidth = over->reset_bandwidth;
5402 if (over->update_hub_device)
5403 drv->update_hub_device = over->update_hub_device;
5404 if (over->hub_control)
5405 drv->hub_control = over->hub_control;
5406 }
5407 }
5408 EXPORT_SYMBOL_GPL(xhci_init_driver);
5409
5410 MODULE_DESCRIPTION(DRIVER_DESC);
5411 MODULE_AUTHOR(DRIVER_AUTHOR);
5412 MODULE_LICENSE("GPL");
5413
xhci_hcd_init(void)5414 static int __init xhci_hcd_init(void)
5415 {
5416 /*
5417 * Check the compiler generated sizes of structures that must be laid
5418 * out in specific ways for hardware access.
5419 */
5420 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5421 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5422 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5423 /* xhci_device_control has eight fields, and also
5424 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5425 */
5426 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5427 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5428 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5429 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5430 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5431 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5432 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5433
5434 if (usb_disabled())
5435 return -ENODEV;
5436
5437 xhci_debugfs_create_root();
5438 xhci_dbc_init();
5439
5440 return 0;
5441 }
5442
5443 /*
5444 * If an init function is provided, an exit function must also be provided
5445 * to allow module unload.
5446 */
xhci_hcd_fini(void)5447 static void __exit xhci_hcd_fini(void)
5448 {
5449 xhci_debugfs_remove_root();
5450 xhci_dbc_exit();
5451 }
5452
5453 module_init(xhci_hcd_init);
5454 module_exit(xhci_hcd_fini);
5455