1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/jiffies.h>
12 #include <linux/pci.h>
13 #include <linux/iommu.h>
14 #include <linux/iopoll.h>
15 #include <linux/irq.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/slab.h>
20 #include <linux/dmi.h>
21 #include <linux/dma-mapping.h>
22
23 #include "xhci.h"
24 #include "xhci-trace.h"
25 #include "xhci-debugfs.h"
26 #include "xhci-dbgcap.h"
27
28 #define DRIVER_AUTHOR "Sarah Sharp"
29 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
30
31 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
32
33 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
34 static int link_quirk;
35 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
36 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
37
38 static unsigned long long quirks;
39 module_param(quirks, ullong, S_IRUGO);
40 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
41
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)42 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
43 {
44 struct xhci_segment *seg = ring->first_seg;
45
46 if (!td || !td->start_seg)
47 return false;
48 do {
49 if (seg == td->start_seg)
50 return true;
51 seg = seg->next;
52 } while (seg && seg != ring->first_seg);
53
54 return false;
55 }
56
57 /*
58 * xhci_handshake - spin reading hc until handshake completes or fails
59 * @ptr: address of hc register to be read
60 * @mask: bits to look at in result of read
61 * @done: value of those bits when handshake succeeds
62 * @usec: timeout in microseconds
63 *
64 * Returns negative errno, or zero on success
65 *
66 * Success happens when the "mask" bits have the specified value (hardware
67 * handshake done). There are two failure modes: "usec" have passed (major
68 * hardware flakeout), or the register reads as all-ones (hardware removed).
69 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)70 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
71 {
72 u32 result;
73 int ret;
74
75 ret = readl_poll_timeout_atomic(ptr, result,
76 (result & mask) == done ||
77 result == U32_MAX,
78 1, timeout_us);
79 if (result == U32_MAX) /* card removed */
80 return -ENODEV;
81
82 return ret;
83 }
84
85 /*
86 * Disable interrupts and begin the xHCI halting process.
87 */
xhci_quiesce(struct xhci_hcd * xhci)88 void xhci_quiesce(struct xhci_hcd *xhci)
89 {
90 u32 halted;
91 u32 cmd;
92 u32 mask;
93
94 mask = ~(XHCI_IRQS);
95 halted = readl(&xhci->op_regs->status) & STS_HALT;
96 if (!halted)
97 mask &= ~CMD_RUN;
98
99 cmd = readl(&xhci->op_regs->command);
100 cmd &= mask;
101 writel(cmd, &xhci->op_regs->command);
102 }
103
104 /*
105 * Force HC into halt state.
106 *
107 * Disable any IRQs and clear the run/stop bit.
108 * HC will complete any current and actively pipelined transactions, and
109 * should halt within 16 ms of the run/stop bit being cleared.
110 * Read HC Halted bit in the status register to see when the HC is finished.
111 */
xhci_halt(struct xhci_hcd * xhci)112 int xhci_halt(struct xhci_hcd *xhci)
113 {
114 int ret;
115
116 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
117 xhci_quiesce(xhci);
118
119 ret = xhci_handshake(&xhci->op_regs->status,
120 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
121 if (ret) {
122 xhci_warn(xhci, "Host halt failed, %d\n", ret);
123 return ret;
124 }
125
126 xhci->xhc_state |= XHCI_STATE_HALTED;
127 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
128
129 return ret;
130 }
131
132 /*
133 * Set the run bit and wait for the host to be running.
134 */
xhci_start(struct xhci_hcd * xhci)135 int xhci_start(struct xhci_hcd *xhci)
136 {
137 u32 temp;
138 int ret;
139
140 temp = readl(&xhci->op_regs->command);
141 temp |= (CMD_RUN);
142 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
143 temp);
144 writel(temp, &xhci->op_regs->command);
145
146 /*
147 * Wait for the HCHalted Status bit to be 0 to indicate the host is
148 * running.
149 */
150 ret = xhci_handshake(&xhci->op_regs->status,
151 STS_HALT, 0, XHCI_MAX_HALT_USEC);
152 if (ret == -ETIMEDOUT)
153 xhci_err(xhci, "Host took too long to start, "
154 "waited %u microseconds.\n",
155 XHCI_MAX_HALT_USEC);
156 if (!ret) {
157 /* clear state flags. Including dying, halted or removing */
158 xhci->xhc_state = 0;
159 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
160 }
161
162 return ret;
163 }
164
165 /*
166 * Reset a halted HC.
167 *
168 * This resets pipelines, timers, counters, state machines, etc.
169 * Transactions will be terminated immediately, and operational registers
170 * will be set to their defaults.
171 */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)172 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
173 {
174 u32 command;
175 u32 state;
176 int ret;
177
178 state = readl(&xhci->op_regs->status);
179
180 if (state == ~(u32)0) {
181 xhci_warn(xhci, "Host not accessible, reset failed.\n");
182 return -ENODEV;
183 }
184
185 if ((state & STS_HALT) == 0) {
186 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
187 return 0;
188 }
189
190 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
191 command = readl(&xhci->op_regs->command);
192 command |= CMD_RESET;
193 writel(command, &xhci->op_regs->command);
194
195 /* Existing Intel xHCI controllers require a delay of 1 mS,
196 * after setting the CMD_RESET bit, and before accessing any
197 * HC registers. This allows the HC to complete the
198 * reset operation and be ready for HC register access.
199 * Without this delay, the subsequent HC register access,
200 * may result in a system hang very rarely.
201 */
202 if (xhci->quirks & XHCI_INTEL_HOST)
203 udelay(1000);
204
205 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
206 if (ret)
207 return ret;
208
209 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
210 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
211
212 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
213 "Wait for controller to be ready for doorbell rings");
214 /*
215 * xHCI cannot write to any doorbells or operational registers other
216 * than status until the "Controller Not Ready" flag is cleared.
217 */
218 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
219
220 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
221 xhci->usb2_rhub.bus_state.suspended_ports = 0;
222 xhci->usb2_rhub.bus_state.resuming_ports = 0;
223 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
224 xhci->usb3_rhub.bus_state.suspended_ports = 0;
225 xhci->usb3_rhub.bus_state.resuming_ports = 0;
226
227 return ret;
228 }
229
xhci_zero_64b_regs(struct xhci_hcd * xhci)230 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
231 {
232 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
233 struct iommu_domain *domain;
234 int err, i;
235 u64 val;
236 u32 intrs;
237
238 /*
239 * Some Renesas controllers get into a weird state if they are
240 * reset while programmed with 64bit addresses (they will preserve
241 * the top half of the address in internal, non visible
242 * registers). You end up with half the address coming from the
243 * kernel, and the other half coming from the firmware. Also,
244 * changing the programming leads to extra accesses even if the
245 * controller is supposed to be halted. The controller ends up with
246 * a fatal fault, and is then ripe for being properly reset.
247 *
248 * Special care is taken to only apply this if the device is behind
249 * an iommu. Doing anything when there is no iommu is definitely
250 * unsafe...
251 */
252 domain = iommu_get_domain_for_dev(dev);
253 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
254 domain->type == IOMMU_DOMAIN_IDENTITY)
255 return;
256
257 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
258
259 /* Clear HSEIE so that faults do not get signaled */
260 val = readl(&xhci->op_regs->command);
261 val &= ~CMD_HSEIE;
262 writel(val, &xhci->op_regs->command);
263
264 /* Clear HSE (aka FATAL) */
265 val = readl(&xhci->op_regs->status);
266 val |= STS_FATAL;
267 writel(val, &xhci->op_regs->status);
268
269 /* Now zero the registers, and brace for impact */
270 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
271 if (upper_32_bits(val))
272 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
273 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
274 if (upper_32_bits(val))
275 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
276
277 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
278 ARRAY_SIZE(xhci->run_regs->ir_set));
279
280 for (i = 0; i < intrs; i++) {
281 struct xhci_intr_reg __iomem *ir;
282
283 ir = &xhci->run_regs->ir_set[i];
284 val = xhci_read_64(xhci, &ir->erst_base);
285 if (upper_32_bits(val))
286 xhci_write_64(xhci, 0, &ir->erst_base);
287 val= xhci_read_64(xhci, &ir->erst_dequeue);
288 if (upper_32_bits(val))
289 xhci_write_64(xhci, 0, &ir->erst_dequeue);
290 }
291
292 /* Wait for the fault to appear. It will be cleared on reset */
293 err = xhci_handshake(&xhci->op_regs->status,
294 STS_FATAL, STS_FATAL,
295 XHCI_MAX_HALT_USEC);
296 if (!err)
297 xhci_info(xhci, "Fault detected\n");
298 }
299
xhci_enable_interrupter(struct xhci_interrupter * ir)300 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
301 {
302 u32 iman;
303
304 if (!ir || !ir->ir_set)
305 return -EINVAL;
306
307 iman = readl(&ir->ir_set->irq_pending);
308 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
309
310 return 0;
311 }
312
xhci_disable_interrupter(struct xhci_interrupter * ir)313 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
314 {
315 u32 iman;
316
317 if (!ir || !ir->ir_set)
318 return -EINVAL;
319
320 iman = readl(&ir->ir_set->irq_pending);
321 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
322
323 return 0;
324 }
325
compliance_mode_recovery(struct timer_list * t)326 static void compliance_mode_recovery(struct timer_list *t)
327 {
328 struct xhci_hcd *xhci;
329 struct usb_hcd *hcd;
330 struct xhci_hub *rhub;
331 u32 temp;
332 int i;
333
334 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
335 rhub = &xhci->usb3_rhub;
336 hcd = rhub->hcd;
337
338 if (!hcd)
339 return;
340
341 for (i = 0; i < rhub->num_ports; i++) {
342 temp = readl(rhub->ports[i]->addr);
343 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
344 /*
345 * Compliance Mode Detected. Letting USB Core
346 * handle the Warm Reset
347 */
348 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
349 "Compliance mode detected->port %d",
350 i + 1);
351 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
352 "Attempting compliance mode recovery");
353
354 if (hcd->state == HC_STATE_SUSPENDED)
355 usb_hcd_resume_root_hub(hcd);
356
357 usb_hcd_poll_rh_status(hcd);
358 }
359 }
360
361 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
362 mod_timer(&xhci->comp_mode_recovery_timer,
363 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
364 }
365
366 /*
367 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
368 * that causes ports behind that hardware to enter compliance mode sometimes.
369 * The quirk creates a timer that polls every 2 seconds the link state of
370 * each host controller's port and recovers it by issuing a Warm reset
371 * if Compliance mode is detected, otherwise the port will become "dead" (no
372 * device connections or disconnections will be detected anymore). Becasue no
373 * status event is generated when entering compliance mode (per xhci spec),
374 * this quirk is needed on systems that have the failing hardware installed.
375 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)376 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
377 {
378 xhci->port_status_u0 = 0;
379 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
380 0);
381 xhci->comp_mode_recovery_timer.expires = jiffies +
382 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
383
384 add_timer(&xhci->comp_mode_recovery_timer);
385 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
386 "Compliance mode recovery timer initialized");
387 }
388
389 /*
390 * This function identifies the systems that have installed the SN65LVPE502CP
391 * USB3.0 re-driver and that need the Compliance Mode Quirk.
392 * Systems:
393 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
394 */
xhci_compliance_mode_recovery_timer_quirk_check(void)395 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
396 {
397 const char *dmi_product_name, *dmi_sys_vendor;
398
399 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
400 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
401 if (!dmi_product_name || !dmi_sys_vendor)
402 return false;
403
404 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
405 return false;
406
407 if (strstr(dmi_product_name, "Z420") ||
408 strstr(dmi_product_name, "Z620") ||
409 strstr(dmi_product_name, "Z820") ||
410 strstr(dmi_product_name, "Z1 Workstation"))
411 return true;
412
413 return false;
414 }
415
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)416 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
417 {
418 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
419 }
420
421
422 /*
423 * Initialize memory for HCD and xHC (one-time init).
424 *
425 * Program the PAGESIZE register, initialize the device context array, create
426 * device contexts (?), set up a command ring segment (or two?), create event
427 * ring (one for now).
428 */
xhci_init(struct usb_hcd * hcd)429 static int xhci_init(struct usb_hcd *hcd)
430 {
431 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
432 int retval;
433
434 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
435 spin_lock_init(&xhci->lock);
436 if (xhci->hci_version == 0x95 && link_quirk) {
437 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
438 "QUIRK: Not clearing Link TRB chain bits.");
439 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
440 } else {
441 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
442 "xHCI doesn't need link TRB QUIRK");
443 }
444 retval = xhci_mem_init(xhci, GFP_KERNEL);
445 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
446
447 /* Initializing Compliance Mode Recovery Data If Needed */
448 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
449 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
450 compliance_mode_recovery_timer_init(xhci);
451 }
452
453 return retval;
454 }
455
456 /*-------------------------------------------------------------------------*/
457
xhci_run_finished(struct xhci_hcd * xhci)458 static int xhci_run_finished(struct xhci_hcd *xhci)
459 {
460 struct xhci_interrupter *ir = xhci->interrupter;
461 unsigned long flags;
462 u32 temp;
463
464 /*
465 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
466 * Protect the short window before host is running with a lock
467 */
468 spin_lock_irqsave(&xhci->lock, flags);
469
470 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
471 temp = readl(&xhci->op_regs->command);
472 temp |= (CMD_EIE);
473 writel(temp, &xhci->op_regs->command);
474
475 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
476 xhci_enable_interrupter(ir);
477
478 if (xhci_start(xhci)) {
479 xhci_halt(xhci);
480 spin_unlock_irqrestore(&xhci->lock, flags);
481 return -ENODEV;
482 }
483
484 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
485
486 if (xhci->quirks & XHCI_NEC_HOST)
487 xhci_ring_cmd_db(xhci);
488
489 spin_unlock_irqrestore(&xhci->lock, flags);
490
491 return 0;
492 }
493
494 /*
495 * Start the HC after it was halted.
496 *
497 * This function is called by the USB core when the HC driver is added.
498 * Its opposite is xhci_stop().
499 *
500 * xhci_init() must be called once before this function can be called.
501 * Reset the HC, enable device slot contexts, program DCBAAP, and
502 * set command ring pointer and event ring pointer.
503 *
504 * Setup MSI-X vectors and enable interrupts.
505 */
xhci_run(struct usb_hcd * hcd)506 int xhci_run(struct usb_hcd *hcd)
507 {
508 u32 temp;
509 u64 temp_64;
510 int ret;
511 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
512 struct xhci_interrupter *ir = xhci->interrupter;
513 /* Start the xHCI host controller running only after the USB 2.0 roothub
514 * is setup.
515 */
516
517 hcd->uses_new_polling = 1;
518 if (!usb_hcd_is_primary_hcd(hcd))
519 return xhci_run_finished(xhci);
520
521 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
522
523 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
524 temp_64 &= ~ERST_PTR_MASK;
525 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
526 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
527
528 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
529 "// Set the interrupt modulation register");
530 temp = readl(&ir->ir_set->irq_control);
531 temp &= ~ER_IRQ_INTERVAL_MASK;
532 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
533 writel(temp, &ir->ir_set->irq_control);
534
535 if (xhci->quirks & XHCI_NEC_HOST) {
536 struct xhci_command *command;
537
538 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
539 if (!command)
540 return -ENOMEM;
541
542 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
543 TRB_TYPE(TRB_NEC_GET_FW));
544 if (ret)
545 xhci_free_command(xhci, command);
546 }
547 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
548 "Finished %s for main hcd", __func__);
549
550 xhci_create_dbc_dev(xhci);
551
552 xhci_debugfs_init(xhci);
553
554 if (xhci_has_one_roothub(xhci))
555 return xhci_run_finished(xhci);
556
557 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
558
559 return 0;
560 }
561 EXPORT_SYMBOL_GPL(xhci_run);
562
563 /*
564 * Stop xHCI driver.
565 *
566 * This function is called by the USB core when the HC driver is removed.
567 * Its opposite is xhci_run().
568 *
569 * Disable device contexts, disable IRQs, and quiesce the HC.
570 * Reset the HC, finish any completed transactions, and cleanup memory.
571 */
xhci_stop(struct usb_hcd * hcd)572 void xhci_stop(struct usb_hcd *hcd)
573 {
574 u32 temp;
575 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
576 struct xhci_interrupter *ir = xhci->interrupter;
577
578 mutex_lock(&xhci->mutex);
579
580 /* Only halt host and free memory after both hcds are removed */
581 if (!usb_hcd_is_primary_hcd(hcd)) {
582 mutex_unlock(&xhci->mutex);
583 return;
584 }
585
586 xhci_remove_dbc_dev(xhci);
587
588 spin_lock_irq(&xhci->lock);
589 xhci->xhc_state |= XHCI_STATE_HALTED;
590 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
591 xhci_halt(xhci);
592 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
593 spin_unlock_irq(&xhci->lock);
594
595 /* Deleting Compliance Mode Recovery Timer */
596 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
597 (!(xhci_all_ports_seen_u0(xhci)))) {
598 del_timer_sync(&xhci->comp_mode_recovery_timer);
599 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
600 "%s: compliance mode recovery timer deleted",
601 __func__);
602 }
603
604 if (xhci->quirks & XHCI_AMD_PLL_FIX)
605 usb_amd_dev_put();
606
607 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
608 "// Disabling event ring interrupts");
609 temp = readl(&xhci->op_regs->status);
610 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
611 xhci_disable_interrupter(ir);
612
613 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
614 xhci_mem_cleanup(xhci);
615 xhci_debugfs_exit(xhci);
616 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
617 "xhci_stop completed - status = %x",
618 readl(&xhci->op_regs->status));
619 mutex_unlock(&xhci->mutex);
620 }
621 EXPORT_SYMBOL_GPL(xhci_stop);
622
623 /*
624 * Shutdown HC (not bus-specific)
625 *
626 * This is called when the machine is rebooting or halting. We assume that the
627 * machine will be powered off, and the HC's internal state will be reset.
628 * Don't bother to free memory.
629 *
630 * This will only ever be called with the main usb_hcd (the USB3 roothub).
631 */
xhci_shutdown(struct usb_hcd * hcd)632 void xhci_shutdown(struct usb_hcd *hcd)
633 {
634 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
635
636 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
637 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
638
639 /* Don't poll the roothubs after shutdown. */
640 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
641 __func__, hcd->self.busnum);
642 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
643 del_timer_sync(&hcd->rh_timer);
644
645 if (xhci->shared_hcd) {
646 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
647 del_timer_sync(&xhci->shared_hcd->rh_timer);
648 }
649
650 spin_lock_irq(&xhci->lock);
651 xhci_halt(xhci);
652
653 /*
654 * Workaround for spurious wakeps at shutdown with HSW, and for boot
655 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
656 */
657 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
658 xhci->quirks & XHCI_RESET_TO_DEFAULT)
659 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
660
661 spin_unlock_irq(&xhci->lock);
662
663 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664 "xhci_shutdown completed - status = %x",
665 readl(&xhci->op_regs->status));
666 }
667 EXPORT_SYMBOL_GPL(xhci_shutdown);
668
669 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)670 static void xhci_save_registers(struct xhci_hcd *xhci)
671 {
672 struct xhci_interrupter *ir = xhci->interrupter;
673
674 xhci->s3.command = readl(&xhci->op_regs->command);
675 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
676 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
677 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
678
679 if (!ir)
680 return;
681
682 ir->s3_erst_size = readl(&ir->ir_set->erst_size);
683 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
684 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
685 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
686 ir->s3_irq_control = readl(&ir->ir_set->irq_control);
687 }
688
xhci_restore_registers(struct xhci_hcd * xhci)689 static void xhci_restore_registers(struct xhci_hcd *xhci)
690 {
691 struct xhci_interrupter *ir = xhci->interrupter;
692
693 writel(xhci->s3.command, &xhci->op_regs->command);
694 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
695 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
696 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
697 writel(ir->s3_erst_size, &ir->ir_set->erst_size);
698 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
699 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
700 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
701 writel(ir->s3_irq_control, &ir->ir_set->irq_control);
702 }
703
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)704 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
705 {
706 u64 val_64;
707
708 /* step 2: initialize command ring buffer */
709 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
710 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
711 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
712 xhci->cmd_ring->dequeue) &
713 (u64) ~CMD_RING_RSVD_BITS) |
714 xhci->cmd_ring->cycle_state;
715 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
716 "// Setting command ring address to 0x%llx",
717 (long unsigned long) val_64);
718 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
719 }
720
721 /*
722 * The whole command ring must be cleared to zero when we suspend the host.
723 *
724 * The host doesn't save the command ring pointer in the suspend well, so we
725 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
726 * aligned, because of the reserved bits in the command ring dequeue pointer
727 * register. Therefore, we can't just set the dequeue pointer back in the
728 * middle of the ring (TRBs are 16-byte aligned).
729 */
xhci_clear_command_ring(struct xhci_hcd * xhci)730 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
731 {
732 struct xhci_ring *ring;
733 struct xhci_segment *seg;
734
735 ring = xhci->cmd_ring;
736 seg = ring->deq_seg;
737 do {
738 memset(seg->trbs, 0,
739 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
740 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
741 cpu_to_le32(~TRB_CYCLE);
742 seg = seg->next;
743 } while (seg != ring->deq_seg);
744
745 /* Reset the software enqueue and dequeue pointers */
746 ring->deq_seg = ring->first_seg;
747 ring->dequeue = ring->first_seg->trbs;
748 ring->enq_seg = ring->deq_seg;
749 ring->enqueue = ring->dequeue;
750
751 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
752 /*
753 * Ring is now zeroed, so the HW should look for change of ownership
754 * when the cycle bit is set to 1.
755 */
756 ring->cycle_state = 1;
757
758 /*
759 * Reset the hardware dequeue pointer.
760 * Yes, this will need to be re-written after resume, but we're paranoid
761 * and want to make sure the hardware doesn't access bogus memory
762 * because, say, the BIOS or an SMI started the host without changing
763 * the command ring pointers.
764 */
765 xhci_set_cmd_ring_deq(xhci);
766 }
767
768 /*
769 * Disable port wake bits if do_wakeup is not set.
770 *
771 * Also clear a possible internal port wake state left hanging for ports that
772 * detected termination but never successfully enumerated (trained to 0U).
773 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
774 * at enumeration clears this wake, force one here as well for unconnected ports
775 */
776
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)777 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
778 struct xhci_hub *rhub,
779 bool do_wakeup)
780 {
781 unsigned long flags;
782 u32 t1, t2, portsc;
783 int i;
784
785 spin_lock_irqsave(&xhci->lock, flags);
786
787 for (i = 0; i < rhub->num_ports; i++) {
788 portsc = readl(rhub->ports[i]->addr);
789 t1 = xhci_port_state_to_neutral(portsc);
790 t2 = t1;
791
792 /* clear wake bits if do_wake is not set */
793 if (!do_wakeup)
794 t2 &= ~PORT_WAKE_BITS;
795
796 /* Don't touch csc bit if connected or connect change is set */
797 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
798 t2 |= PORT_CSC;
799
800 if (t1 != t2) {
801 writel(t2, rhub->ports[i]->addr);
802 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
803 rhub->hcd->self.busnum, i + 1, portsc, t2);
804 }
805 }
806 spin_unlock_irqrestore(&xhci->lock, flags);
807 }
808
xhci_pending_portevent(struct xhci_hcd * xhci)809 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
810 {
811 struct xhci_port **ports;
812 int port_index;
813 u32 status;
814 u32 portsc;
815
816 status = readl(&xhci->op_regs->status);
817 if (status & STS_EINT)
818 return true;
819 /*
820 * Checking STS_EINT is not enough as there is a lag between a change
821 * bit being set and the Port Status Change Event that it generated
822 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
823 */
824
825 port_index = xhci->usb2_rhub.num_ports;
826 ports = xhci->usb2_rhub.ports;
827 while (port_index--) {
828 portsc = readl(ports[port_index]->addr);
829 if (portsc & PORT_CHANGE_MASK ||
830 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
831 return true;
832 }
833 port_index = xhci->usb3_rhub.num_ports;
834 ports = xhci->usb3_rhub.ports;
835 while (port_index--) {
836 portsc = readl(ports[port_index]->addr);
837 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
838 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
839 return true;
840 }
841 return false;
842 }
843
844 /*
845 * Stop HC (not bus-specific)
846 *
847 * This is called when the machine transition into S3/S4 mode.
848 *
849 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)850 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
851 {
852 int rc = 0;
853 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
854 struct usb_hcd *hcd = xhci_to_hcd(xhci);
855 u32 command;
856 u32 res;
857
858 if (!hcd->state)
859 return 0;
860
861 if (hcd->state != HC_STATE_SUSPENDED ||
862 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
863 return -EINVAL;
864
865 /* Clear root port wake on bits if wakeup not allowed. */
866 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
867 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
868
869 if (!HCD_HW_ACCESSIBLE(hcd))
870 return 0;
871
872 xhci_dbc_suspend(xhci);
873
874 /* Don't poll the roothubs on bus suspend. */
875 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
876 __func__, hcd->self.busnum);
877 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
878 del_timer_sync(&hcd->rh_timer);
879 if (xhci->shared_hcd) {
880 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
881 del_timer_sync(&xhci->shared_hcd->rh_timer);
882 }
883
884 if (xhci->quirks & XHCI_SUSPEND_DELAY)
885 usleep_range(1000, 1500);
886
887 spin_lock_irq(&xhci->lock);
888 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
889 if (xhci->shared_hcd)
890 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
891 /* step 1: stop endpoint */
892 /* skipped assuming that port suspend has done */
893
894 /* step 2: clear Run/Stop bit */
895 command = readl(&xhci->op_regs->command);
896 command &= ~CMD_RUN;
897 writel(command, &xhci->op_regs->command);
898
899 /* Some chips from Fresco Logic need an extraordinary delay */
900 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
901
902 if (xhci_handshake(&xhci->op_regs->status,
903 STS_HALT, STS_HALT, delay)) {
904 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
905 spin_unlock_irq(&xhci->lock);
906 return -ETIMEDOUT;
907 }
908 xhci_clear_command_ring(xhci);
909
910 /* step 3: save registers */
911 xhci_save_registers(xhci);
912
913 /* step 4: set CSS flag */
914 command = readl(&xhci->op_regs->command);
915 command |= CMD_CSS;
916 writel(command, &xhci->op_regs->command);
917 xhci->broken_suspend = 0;
918 if (xhci_handshake(&xhci->op_regs->status,
919 STS_SAVE, 0, 20 * 1000)) {
920 /*
921 * AMD SNPS xHC 3.0 occasionally does not clear the
922 * SSS bit of USBSTS and when driver tries to poll
923 * to see if the xHC clears BIT(8) which never happens
924 * and driver assumes that controller is not responding
925 * and times out. To workaround this, its good to check
926 * if SRE and HCE bits are not set (as per xhci
927 * Section 5.4.2) and bypass the timeout.
928 */
929 res = readl(&xhci->op_regs->status);
930 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
931 (((res & STS_SRE) == 0) &&
932 ((res & STS_HCE) == 0))) {
933 xhci->broken_suspend = 1;
934 } else {
935 xhci_warn(xhci, "WARN: xHC save state timeout\n");
936 spin_unlock_irq(&xhci->lock);
937 return -ETIMEDOUT;
938 }
939 }
940 spin_unlock_irq(&xhci->lock);
941
942 /*
943 * Deleting Compliance Mode Recovery Timer because the xHCI Host
944 * is about to be suspended.
945 */
946 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
947 (!(xhci_all_ports_seen_u0(xhci)))) {
948 del_timer_sync(&xhci->comp_mode_recovery_timer);
949 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
950 "%s: compliance mode recovery timer deleted",
951 __func__);
952 }
953
954 return rc;
955 }
956 EXPORT_SYMBOL_GPL(xhci_suspend);
957
958 /*
959 * start xHC (not bus-specific)
960 *
961 * This is called when the machine transition from S3/S4 mode.
962 *
963 */
xhci_resume(struct xhci_hcd * xhci,pm_message_t msg)964 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
965 {
966 bool hibernated = (msg.event == PM_EVENT_RESTORE);
967 u32 command, temp = 0;
968 struct usb_hcd *hcd = xhci_to_hcd(xhci);
969 int retval = 0;
970 bool comp_timer_running = false;
971 bool pending_portevent = false;
972 bool suspended_usb3_devs = false;
973 bool reinit_xhc = false;
974
975 if (!hcd->state)
976 return 0;
977
978 /* Wait a bit if either of the roothubs need to settle from the
979 * transition into bus suspend.
980 */
981
982 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
983 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
984 msleep(100);
985
986 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
987 if (xhci->shared_hcd)
988 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
989
990 spin_lock_irq(&xhci->lock);
991
992 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
993 reinit_xhc = true;
994
995 if (!reinit_xhc) {
996 /*
997 * Some controllers might lose power during suspend, so wait
998 * for controller not ready bit to clear, just as in xHC init.
999 */
1000 retval = xhci_handshake(&xhci->op_regs->status,
1001 STS_CNR, 0, 10 * 1000 * 1000);
1002 if (retval) {
1003 xhci_warn(xhci, "Controller not ready at resume %d\n",
1004 retval);
1005 spin_unlock_irq(&xhci->lock);
1006 return retval;
1007 }
1008 /* step 1: restore register */
1009 xhci_restore_registers(xhci);
1010 /* step 2: initialize command ring buffer */
1011 xhci_set_cmd_ring_deq(xhci);
1012 /* step 3: restore state and start state*/
1013 /* step 3: set CRS flag */
1014 command = readl(&xhci->op_regs->command);
1015 command |= CMD_CRS;
1016 writel(command, &xhci->op_regs->command);
1017 /*
1018 * Some controllers take up to 55+ ms to complete the controller
1019 * restore so setting the timeout to 100ms. Xhci specification
1020 * doesn't mention any timeout value.
1021 */
1022 if (xhci_handshake(&xhci->op_regs->status,
1023 STS_RESTORE, 0, 100 * 1000)) {
1024 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1025 spin_unlock_irq(&xhci->lock);
1026 return -ETIMEDOUT;
1027 }
1028 }
1029
1030 temp = readl(&xhci->op_regs->status);
1031
1032 /* re-initialize the HC on Restore Error, or Host Controller Error */
1033 if ((temp & (STS_SRE | STS_HCE)) &&
1034 !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1035 reinit_xhc = true;
1036 if (!xhci->broken_suspend)
1037 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1038 }
1039
1040 if (reinit_xhc) {
1041 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1042 !(xhci_all_ports_seen_u0(xhci))) {
1043 del_timer_sync(&xhci->comp_mode_recovery_timer);
1044 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1045 "Compliance Mode Recovery Timer deleted!");
1046 }
1047
1048 /* Let the USB core know _both_ roothubs lost power. */
1049 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1050 if (xhci->shared_hcd)
1051 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1052
1053 xhci_dbg(xhci, "Stop HCD\n");
1054 xhci_halt(xhci);
1055 xhci_zero_64b_regs(xhci);
1056 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1057 spin_unlock_irq(&xhci->lock);
1058 if (retval)
1059 return retval;
1060
1061 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1062 temp = readl(&xhci->op_regs->status);
1063 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1064 xhci_disable_interrupter(xhci->interrupter);
1065
1066 xhci_dbg(xhci, "cleaning up memory\n");
1067 xhci_mem_cleanup(xhci);
1068 xhci_debugfs_exit(xhci);
1069 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1070 readl(&xhci->op_regs->status));
1071
1072 /* USB core calls the PCI reinit and start functions twice:
1073 * first with the primary HCD, and then with the secondary HCD.
1074 * If we don't do the same, the host will never be started.
1075 */
1076 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1077 retval = xhci_init(hcd);
1078 if (retval)
1079 return retval;
1080 comp_timer_running = true;
1081
1082 xhci_dbg(xhci, "Start the primary HCD\n");
1083 retval = xhci_run(hcd);
1084 if (!retval && xhci->shared_hcd) {
1085 xhci_dbg(xhci, "Start the secondary HCD\n");
1086 retval = xhci_run(xhci->shared_hcd);
1087 }
1088 if (retval)
1089 return retval;
1090 /*
1091 * Resume roothubs unconditionally as PORTSC change bits are not
1092 * immediately visible after xHC reset
1093 */
1094 hcd->state = HC_STATE_SUSPENDED;
1095
1096 if (xhci->shared_hcd) {
1097 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1098 usb_hcd_resume_root_hub(xhci->shared_hcd);
1099 }
1100 usb_hcd_resume_root_hub(hcd);
1101
1102 goto done;
1103 }
1104
1105 /* step 4: set Run/Stop bit */
1106 command = readl(&xhci->op_regs->command);
1107 command |= CMD_RUN;
1108 writel(command, &xhci->op_regs->command);
1109 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1110 0, 250 * 1000);
1111
1112 /* step 5: walk topology and initialize portsc,
1113 * portpmsc and portli
1114 */
1115 /* this is done in bus_resume */
1116
1117 /* step 6: restart each of the previously
1118 * Running endpoints by ringing their doorbells
1119 */
1120
1121 spin_unlock_irq(&xhci->lock);
1122
1123 xhci_dbc_resume(xhci);
1124
1125 if (retval == 0) {
1126 /*
1127 * Resume roothubs only if there are pending events.
1128 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1129 * the first wake signalling failed, give it that chance if
1130 * there are suspended USB 3 devices.
1131 */
1132 if (xhci->usb3_rhub.bus_state.suspended_ports ||
1133 xhci->usb3_rhub.bus_state.bus_suspended)
1134 suspended_usb3_devs = true;
1135
1136 pending_portevent = xhci_pending_portevent(xhci);
1137
1138 if (suspended_usb3_devs && !pending_portevent &&
1139 msg.event == PM_EVENT_AUTO_RESUME) {
1140 msleep(120);
1141 pending_portevent = xhci_pending_portevent(xhci);
1142 }
1143
1144 if (pending_portevent) {
1145 if (xhci->shared_hcd)
1146 usb_hcd_resume_root_hub(xhci->shared_hcd);
1147 usb_hcd_resume_root_hub(hcd);
1148 }
1149 }
1150 done:
1151 /*
1152 * If system is subject to the Quirk, Compliance Mode Timer needs to
1153 * be re-initialized Always after a system resume. Ports are subject
1154 * to suffer the Compliance Mode issue again. It doesn't matter if
1155 * ports have entered previously to U0 before system's suspension.
1156 */
1157 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1158 compliance_mode_recovery_timer_init(xhci);
1159
1160 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1161 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1162
1163 /* Re-enable port polling. */
1164 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1165 __func__, hcd->self.busnum);
1166 if (xhci->shared_hcd) {
1167 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1168 usb_hcd_poll_rh_status(xhci->shared_hcd);
1169 }
1170 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1171 usb_hcd_poll_rh_status(hcd);
1172
1173 return retval;
1174 }
1175 EXPORT_SYMBOL_GPL(xhci_resume);
1176 #endif /* CONFIG_PM */
1177
1178 /*-------------------------------------------------------------------------*/
1179
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1180 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1181 {
1182 void *temp;
1183 int ret = 0;
1184 unsigned int buf_len;
1185 enum dma_data_direction dir;
1186
1187 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1188 buf_len = urb->transfer_buffer_length;
1189
1190 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1191 dev_to_node(hcd->self.sysdev));
1192 if (!temp)
1193 return -ENOMEM;
1194
1195 if (usb_urb_dir_out(urb))
1196 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1197 temp, buf_len, 0);
1198
1199 urb->transfer_buffer = temp;
1200 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1201 urb->transfer_buffer,
1202 urb->transfer_buffer_length,
1203 dir);
1204
1205 if (dma_mapping_error(hcd->self.sysdev,
1206 urb->transfer_dma)) {
1207 ret = -EAGAIN;
1208 kfree(temp);
1209 } else {
1210 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1211 }
1212
1213 return ret;
1214 }
1215
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1216 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1217 struct urb *urb)
1218 {
1219 bool ret = false;
1220 unsigned int i;
1221 unsigned int len = 0;
1222 unsigned int trb_size;
1223 unsigned int max_pkt;
1224 struct scatterlist *sg;
1225 struct scatterlist *tail_sg;
1226
1227 tail_sg = urb->sg;
1228 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1229
1230 if (!urb->num_sgs)
1231 return ret;
1232
1233 if (urb->dev->speed >= USB_SPEED_SUPER)
1234 trb_size = TRB_CACHE_SIZE_SS;
1235 else
1236 trb_size = TRB_CACHE_SIZE_HS;
1237
1238 if (urb->transfer_buffer_length != 0 &&
1239 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1240 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1241 len = len + sg->length;
1242 if (i > trb_size - 2) {
1243 len = len - tail_sg->length;
1244 if (len < max_pkt) {
1245 ret = true;
1246 break;
1247 }
1248
1249 tail_sg = sg_next(tail_sg);
1250 }
1251 }
1252 }
1253 return ret;
1254 }
1255
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1256 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1257 {
1258 unsigned int len;
1259 unsigned int buf_len;
1260 enum dma_data_direction dir;
1261
1262 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1263
1264 buf_len = urb->transfer_buffer_length;
1265
1266 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1267 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1268 dma_unmap_single(hcd->self.sysdev,
1269 urb->transfer_dma,
1270 urb->transfer_buffer_length,
1271 dir);
1272
1273 if (usb_urb_dir_in(urb)) {
1274 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1275 urb->transfer_buffer,
1276 buf_len,
1277 0);
1278 if (len != buf_len) {
1279 xhci_dbg(hcd_to_xhci(hcd),
1280 "Copy from tmp buf to urb sg list failed\n");
1281 urb->actual_length = len;
1282 }
1283 }
1284 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1285 kfree(urb->transfer_buffer);
1286 urb->transfer_buffer = NULL;
1287 }
1288
1289 /*
1290 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1291 * we'll copy the actual data into the TRB address register. This is limited to
1292 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1293 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1294 */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1295 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1296 gfp_t mem_flags)
1297 {
1298 struct xhci_hcd *xhci;
1299
1300 xhci = hcd_to_xhci(hcd);
1301
1302 if (xhci_urb_suitable_for_idt(urb))
1303 return 0;
1304
1305 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1306 if (xhci_urb_temp_buffer_required(hcd, urb))
1307 return xhci_map_temp_buffer(hcd, urb);
1308 }
1309 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1310 }
1311
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1312 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1313 {
1314 struct xhci_hcd *xhci;
1315 bool unmap_temp_buf = false;
1316
1317 xhci = hcd_to_xhci(hcd);
1318
1319 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1320 unmap_temp_buf = true;
1321
1322 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1323 xhci_unmap_temp_buf(hcd, urb);
1324 else
1325 usb_hcd_unmap_urb_for_dma(hcd, urb);
1326 }
1327
1328 /**
1329 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1330 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1331 * value to right shift 1 for the bitmask.
1332 *
1333 * Index = (epnum * 2) + direction - 1,
1334 * where direction = 0 for OUT, 1 for IN.
1335 * For control endpoints, the IN index is used (OUT index is unused), so
1336 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1337 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1338 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1339 {
1340 unsigned int index;
1341 if (usb_endpoint_xfer_control(desc))
1342 index = (unsigned int) (usb_endpoint_num(desc)*2);
1343 else
1344 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1345 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1346 return index;
1347 }
1348 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1349
1350 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1351 * address from the XHCI endpoint index.
1352 */
xhci_get_endpoint_address(unsigned int ep_index)1353 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1354 {
1355 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1356 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1357 return direction | number;
1358 }
1359
1360 /* Find the flag for this endpoint (for use in the control context). Use the
1361 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1362 * bit 1, etc.
1363 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1364 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1365 {
1366 return 1 << (xhci_get_endpoint_index(desc) + 1);
1367 }
1368
1369 /* Compute the last valid endpoint context index. Basically, this is the
1370 * endpoint index plus one. For slot contexts with more than valid endpoint,
1371 * we find the most significant bit set in the added contexts flags.
1372 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1373 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1374 */
xhci_last_valid_endpoint(u32 added_ctxs)1375 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1376 {
1377 return fls(added_ctxs) - 1;
1378 }
1379
1380 /* Returns 1 if the arguments are OK;
1381 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1382 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1383 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1384 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1385 const char *func) {
1386 struct xhci_hcd *xhci;
1387 struct xhci_virt_device *virt_dev;
1388
1389 if (!hcd || (check_ep && !ep) || !udev) {
1390 pr_debug("xHCI %s called with invalid args\n", func);
1391 return -EINVAL;
1392 }
1393 if (!udev->parent) {
1394 pr_debug("xHCI %s called for root hub\n", func);
1395 return 0;
1396 }
1397
1398 xhci = hcd_to_xhci(hcd);
1399 if (check_virt_dev) {
1400 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1401 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1402 func);
1403 return -EINVAL;
1404 }
1405
1406 virt_dev = xhci->devs[udev->slot_id];
1407 if (virt_dev->udev != udev) {
1408 xhci_dbg(xhci, "xHCI %s called with udev and "
1409 "virt_dev does not match\n", func);
1410 return -EINVAL;
1411 }
1412 }
1413
1414 if (xhci->xhc_state & XHCI_STATE_HALTED)
1415 return -ENODEV;
1416
1417 return 1;
1418 }
1419
1420 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1421 struct usb_device *udev, struct xhci_command *command,
1422 bool ctx_change, bool must_succeed);
1423
1424 /*
1425 * Full speed devices may have a max packet size greater than 8 bytes, but the
1426 * USB core doesn't know that until it reads the first 8 bytes of the
1427 * descriptor. If the usb_device's max packet size changes after that point,
1428 * we need to issue an evaluate context command and wait on it.
1429 */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb,gfp_t mem_flags)1430 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1431 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1432 {
1433 struct xhci_container_ctx *out_ctx;
1434 struct xhci_input_control_ctx *ctrl_ctx;
1435 struct xhci_ep_ctx *ep_ctx;
1436 struct xhci_command *command;
1437 int max_packet_size;
1438 int hw_max_packet_size;
1439 int ret = 0;
1440
1441 out_ctx = xhci->devs[slot_id]->out_ctx;
1442 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1443 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1444 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1445 if (hw_max_packet_size != max_packet_size) {
1446 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1447 "Max Packet Size for ep 0 changed.");
1448 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1449 "Max packet size in usb_device = %d",
1450 max_packet_size);
1451 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1452 "Max packet size in xHCI HW = %d",
1453 hw_max_packet_size);
1454 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1455 "Issuing evaluate context command.");
1456
1457 /* Set up the input context flags for the command */
1458 /* FIXME: This won't work if a non-default control endpoint
1459 * changes max packet sizes.
1460 */
1461
1462 command = xhci_alloc_command(xhci, true, mem_flags);
1463 if (!command)
1464 return -ENOMEM;
1465
1466 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1467 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1468 if (!ctrl_ctx) {
1469 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1470 __func__);
1471 ret = -ENOMEM;
1472 goto command_cleanup;
1473 }
1474 /* Set up the modified control endpoint 0 */
1475 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1476 xhci->devs[slot_id]->out_ctx, ep_index);
1477
1478 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1479 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1480 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1481 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1482
1483 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1484 ctrl_ctx->drop_flags = 0;
1485
1486 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1487 true, false);
1488
1489 /* Clean up the input context for later use by bandwidth
1490 * functions.
1491 */
1492 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1493 command_cleanup:
1494 kfree(command->completion);
1495 kfree(command);
1496 }
1497 return ret;
1498 }
1499
1500 /*
1501 * non-error returns are a promise to giveback() the urb later
1502 * we drop ownership so next owner (or urb unlink) can get it
1503 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1504 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1505 {
1506 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1507 unsigned long flags;
1508 int ret = 0;
1509 unsigned int slot_id, ep_index;
1510 unsigned int *ep_state;
1511 struct urb_priv *urb_priv;
1512 int num_tds;
1513
1514 if (!urb)
1515 return -EINVAL;
1516 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1517 true, true, __func__);
1518 if (ret <= 0)
1519 return ret ? ret : -EINVAL;
1520
1521 slot_id = urb->dev->slot_id;
1522 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1523 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1524
1525 if (!HCD_HW_ACCESSIBLE(hcd))
1526 return -ESHUTDOWN;
1527
1528 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1529 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1530 return -ENODEV;
1531 }
1532
1533 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1534 num_tds = urb->number_of_packets;
1535 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1536 urb->transfer_buffer_length > 0 &&
1537 urb->transfer_flags & URB_ZERO_PACKET &&
1538 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1539 num_tds = 2;
1540 else
1541 num_tds = 1;
1542
1543 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1544 if (!urb_priv)
1545 return -ENOMEM;
1546
1547 urb_priv->num_tds = num_tds;
1548 urb_priv->num_tds_done = 0;
1549 urb->hcpriv = urb_priv;
1550
1551 trace_xhci_urb_enqueue(urb);
1552
1553 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1554 /* Check to see if the max packet size for the default control
1555 * endpoint changed during FS device enumeration
1556 */
1557 if (urb->dev->speed == USB_SPEED_FULL) {
1558 ret = xhci_check_maxpacket(xhci, slot_id,
1559 ep_index, urb, mem_flags);
1560 if (ret < 0) {
1561 xhci_urb_free_priv(urb_priv);
1562 urb->hcpriv = NULL;
1563 return ret;
1564 }
1565 }
1566 }
1567
1568 spin_lock_irqsave(&xhci->lock, flags);
1569
1570 if (xhci->xhc_state & XHCI_STATE_DYING) {
1571 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1572 urb->ep->desc.bEndpointAddress, urb);
1573 ret = -ESHUTDOWN;
1574 goto free_priv;
1575 }
1576 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1577 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1578 *ep_state);
1579 ret = -EINVAL;
1580 goto free_priv;
1581 }
1582 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1583 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1584 ret = -EINVAL;
1585 goto free_priv;
1586 }
1587
1588 switch (usb_endpoint_type(&urb->ep->desc)) {
1589
1590 case USB_ENDPOINT_XFER_CONTROL:
1591 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1592 slot_id, ep_index);
1593 break;
1594 case USB_ENDPOINT_XFER_BULK:
1595 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1596 slot_id, ep_index);
1597 break;
1598 case USB_ENDPOINT_XFER_INT:
1599 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1600 slot_id, ep_index);
1601 break;
1602 case USB_ENDPOINT_XFER_ISOC:
1603 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1604 slot_id, ep_index);
1605 }
1606
1607 if (ret) {
1608 free_priv:
1609 xhci_urb_free_priv(urb_priv);
1610 urb->hcpriv = NULL;
1611 }
1612 spin_unlock_irqrestore(&xhci->lock, flags);
1613 return ret;
1614 }
1615
1616 /*
1617 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1618 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1619 * should pick up where it left off in the TD, unless a Set Transfer Ring
1620 * Dequeue Pointer is issued.
1621 *
1622 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1623 * the ring. Since the ring is a contiguous structure, they can't be physically
1624 * removed. Instead, there are two options:
1625 *
1626 * 1) If the HC is in the middle of processing the URB to be canceled, we
1627 * simply move the ring's dequeue pointer past those TRBs using the Set
1628 * Transfer Ring Dequeue Pointer command. This will be the common case,
1629 * when drivers timeout on the last submitted URB and attempt to cancel.
1630 *
1631 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1632 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1633 * HC will need to invalidate the any TRBs it has cached after the stop
1634 * endpoint command, as noted in the xHCI 0.95 errata.
1635 *
1636 * 3) The TD may have completed by the time the Stop Endpoint Command
1637 * completes, so software needs to handle that case too.
1638 *
1639 * This function should protect against the TD enqueueing code ringing the
1640 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1641 * It also needs to account for multiple cancellations on happening at the same
1642 * time for the same endpoint.
1643 *
1644 * Note that this function can be called in any context, or so says
1645 * usb_hcd_unlink_urb()
1646 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1647 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1648 {
1649 unsigned long flags;
1650 int ret, i;
1651 u32 temp;
1652 struct xhci_hcd *xhci;
1653 struct urb_priv *urb_priv;
1654 struct xhci_td *td;
1655 unsigned int ep_index;
1656 struct xhci_ring *ep_ring;
1657 struct xhci_virt_ep *ep;
1658 struct xhci_command *command;
1659 struct xhci_virt_device *vdev;
1660
1661 xhci = hcd_to_xhci(hcd);
1662 spin_lock_irqsave(&xhci->lock, flags);
1663
1664 trace_xhci_urb_dequeue(urb);
1665
1666 /* Make sure the URB hasn't completed or been unlinked already */
1667 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1668 if (ret)
1669 goto done;
1670
1671 /* give back URB now if we can't queue it for cancel */
1672 vdev = xhci->devs[urb->dev->slot_id];
1673 urb_priv = urb->hcpriv;
1674 if (!vdev || !urb_priv)
1675 goto err_giveback;
1676
1677 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1678 ep = &vdev->eps[ep_index];
1679 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1680 if (!ep || !ep_ring)
1681 goto err_giveback;
1682
1683 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1684 temp = readl(&xhci->op_regs->status);
1685 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1686 xhci_hc_died(xhci);
1687 goto done;
1688 }
1689
1690 /*
1691 * check ring is not re-allocated since URB was enqueued. If it is, then
1692 * make sure none of the ring related pointers in this URB private data
1693 * are touched, such as td_list, otherwise we overwrite freed data
1694 */
1695 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1696 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1697 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1698 td = &urb_priv->td[i];
1699 if (!list_empty(&td->cancelled_td_list))
1700 list_del_init(&td->cancelled_td_list);
1701 }
1702 goto err_giveback;
1703 }
1704
1705 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1706 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1707 "HC halted, freeing TD manually.");
1708 for (i = urb_priv->num_tds_done;
1709 i < urb_priv->num_tds;
1710 i++) {
1711 td = &urb_priv->td[i];
1712 if (!list_empty(&td->td_list))
1713 list_del_init(&td->td_list);
1714 if (!list_empty(&td->cancelled_td_list))
1715 list_del_init(&td->cancelled_td_list);
1716 }
1717 goto err_giveback;
1718 }
1719
1720 i = urb_priv->num_tds_done;
1721 if (i < urb_priv->num_tds)
1722 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1723 "Cancel URB %p, dev %s, ep 0x%x, "
1724 "starting at offset 0x%llx",
1725 urb, urb->dev->devpath,
1726 urb->ep->desc.bEndpointAddress,
1727 (unsigned long long) xhci_trb_virt_to_dma(
1728 urb_priv->td[i].start_seg,
1729 urb_priv->td[i].first_trb));
1730
1731 for (; i < urb_priv->num_tds; i++) {
1732 td = &urb_priv->td[i];
1733 /* TD can already be on cancelled list if ep halted on it */
1734 if (list_empty(&td->cancelled_td_list)) {
1735 td->cancel_status = TD_DIRTY;
1736 list_add_tail(&td->cancelled_td_list,
1737 &ep->cancelled_td_list);
1738 }
1739 }
1740
1741 /* These completion handlers will sort out cancelled TDs for us */
1742 if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) {
1743 xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n",
1744 urb->dev->slot_id, ep_index, ep->ep_state);
1745 goto done;
1746 }
1747
1748 /* In this case no commands are pending but the endpoint is stopped */
1749 if (ep->ep_state & EP_CLEARING_TT) {
1750 /* and cancelled TDs can be given back right away */
1751 xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n",
1752 urb->dev->slot_id, ep_index, ep->ep_state);
1753 xhci_process_cancelled_tds(ep);
1754 } else {
1755 /* Otherwise, queue a new Stop Endpoint command */
1756 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1757 if (!command) {
1758 ret = -ENOMEM;
1759 goto done;
1760 }
1761 ep->stop_time = jiffies;
1762 ep->ep_state |= EP_STOP_CMD_PENDING;
1763 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1764 ep_index, 0);
1765 xhci_ring_cmd_db(xhci);
1766 }
1767 done:
1768 spin_unlock_irqrestore(&xhci->lock, flags);
1769 return ret;
1770
1771 err_giveback:
1772 if (urb_priv)
1773 xhci_urb_free_priv(urb_priv);
1774 usb_hcd_unlink_urb_from_ep(hcd, urb);
1775 spin_unlock_irqrestore(&xhci->lock, flags);
1776 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1777 return ret;
1778 }
1779
1780 /* Drop an endpoint from a new bandwidth configuration for this device.
1781 * Only one call to this function is allowed per endpoint before
1782 * check_bandwidth() or reset_bandwidth() must be called.
1783 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1784 * add the endpoint to the schedule with possibly new parameters denoted by a
1785 * different endpoint descriptor in usb_host_endpoint.
1786 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1787 * not allowed.
1788 *
1789 * The USB core will not allow URBs to be queued to an endpoint that is being
1790 * disabled, so there's no need for mutual exclusion to protect
1791 * the xhci->devs[slot_id] structure.
1792 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1793 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1794 struct usb_host_endpoint *ep)
1795 {
1796 struct xhci_hcd *xhci;
1797 struct xhci_container_ctx *in_ctx, *out_ctx;
1798 struct xhci_input_control_ctx *ctrl_ctx;
1799 unsigned int ep_index;
1800 struct xhci_ep_ctx *ep_ctx;
1801 u32 drop_flag;
1802 u32 new_add_flags, new_drop_flags;
1803 int ret;
1804
1805 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1806 if (ret <= 0)
1807 return ret;
1808 xhci = hcd_to_xhci(hcd);
1809 if (xhci->xhc_state & XHCI_STATE_DYING)
1810 return -ENODEV;
1811
1812 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1813 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1814 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1815 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1816 __func__, drop_flag);
1817 return 0;
1818 }
1819
1820 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1821 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1822 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1823 if (!ctrl_ctx) {
1824 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1825 __func__);
1826 return 0;
1827 }
1828
1829 ep_index = xhci_get_endpoint_index(&ep->desc);
1830 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1831 /* If the HC already knows the endpoint is disabled,
1832 * or the HCD has noted it is disabled, ignore this request
1833 */
1834 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1835 le32_to_cpu(ctrl_ctx->drop_flags) &
1836 xhci_get_endpoint_flag(&ep->desc)) {
1837 /* Do not warn when called after a usb_device_reset */
1838 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1839 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1840 __func__, ep);
1841 return 0;
1842 }
1843
1844 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1845 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1846
1847 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1848 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1849
1850 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1851
1852 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1853
1854 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1855 (unsigned int) ep->desc.bEndpointAddress,
1856 udev->slot_id,
1857 (unsigned int) new_drop_flags,
1858 (unsigned int) new_add_flags);
1859 return 0;
1860 }
1861 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1862
1863 /* Add an endpoint to a new possible bandwidth configuration for this device.
1864 * Only one call to this function is allowed per endpoint before
1865 * check_bandwidth() or reset_bandwidth() must be called.
1866 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1867 * add the endpoint to the schedule with possibly new parameters denoted by a
1868 * different endpoint descriptor in usb_host_endpoint.
1869 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1870 * not allowed.
1871 *
1872 * The USB core will not allow URBs to be queued to an endpoint until the
1873 * configuration or alt setting is installed in the device, so there's no need
1874 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1875 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1876 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1877 struct usb_host_endpoint *ep)
1878 {
1879 struct xhci_hcd *xhci;
1880 struct xhci_container_ctx *in_ctx;
1881 unsigned int ep_index;
1882 struct xhci_input_control_ctx *ctrl_ctx;
1883 struct xhci_ep_ctx *ep_ctx;
1884 u32 added_ctxs;
1885 u32 new_add_flags, new_drop_flags;
1886 struct xhci_virt_device *virt_dev;
1887 int ret = 0;
1888
1889 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1890 if (ret <= 0) {
1891 /* So we won't queue a reset ep command for a root hub */
1892 ep->hcpriv = NULL;
1893 return ret;
1894 }
1895 xhci = hcd_to_xhci(hcd);
1896 if (xhci->xhc_state & XHCI_STATE_DYING)
1897 return -ENODEV;
1898
1899 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1900 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1901 /* FIXME when we have to issue an evaluate endpoint command to
1902 * deal with ep0 max packet size changing once we get the
1903 * descriptors
1904 */
1905 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1906 __func__, added_ctxs);
1907 return 0;
1908 }
1909
1910 virt_dev = xhci->devs[udev->slot_id];
1911 in_ctx = virt_dev->in_ctx;
1912 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1913 if (!ctrl_ctx) {
1914 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1915 __func__);
1916 return 0;
1917 }
1918
1919 ep_index = xhci_get_endpoint_index(&ep->desc);
1920 /* If this endpoint is already in use, and the upper layers are trying
1921 * to add it again without dropping it, reject the addition.
1922 */
1923 if (virt_dev->eps[ep_index].ring &&
1924 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1925 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1926 "without dropping it.\n",
1927 (unsigned int) ep->desc.bEndpointAddress);
1928 return -EINVAL;
1929 }
1930
1931 /* If the HCD has already noted the endpoint is enabled,
1932 * ignore this request.
1933 */
1934 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1935 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1936 __func__, ep);
1937 return 0;
1938 }
1939
1940 /*
1941 * Configuration and alternate setting changes must be done in
1942 * process context, not interrupt context (or so documenation
1943 * for usb_set_interface() and usb_set_configuration() claim).
1944 */
1945 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1946 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1947 __func__, ep->desc.bEndpointAddress);
1948 return -ENOMEM;
1949 }
1950
1951 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1952 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1953
1954 /* If xhci_endpoint_disable() was called for this endpoint, but the
1955 * xHC hasn't been notified yet through the check_bandwidth() call,
1956 * this re-adds a new state for the endpoint from the new endpoint
1957 * descriptors. We must drop and re-add this endpoint, so we leave the
1958 * drop flags alone.
1959 */
1960 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1961
1962 /* Store the usb_device pointer for later use */
1963 ep->hcpriv = udev;
1964
1965 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1966 trace_xhci_add_endpoint(ep_ctx);
1967
1968 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1969 (unsigned int) ep->desc.bEndpointAddress,
1970 udev->slot_id,
1971 (unsigned int) new_drop_flags,
1972 (unsigned int) new_add_flags);
1973 return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1976
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1977 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1978 {
1979 struct xhci_input_control_ctx *ctrl_ctx;
1980 struct xhci_ep_ctx *ep_ctx;
1981 struct xhci_slot_ctx *slot_ctx;
1982 int i;
1983
1984 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1985 if (!ctrl_ctx) {
1986 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1987 __func__);
1988 return;
1989 }
1990
1991 /* When a device's add flag and drop flag are zero, any subsequent
1992 * configure endpoint command will leave that endpoint's state
1993 * untouched. Make sure we don't leave any old state in the input
1994 * endpoint contexts.
1995 */
1996 ctrl_ctx->drop_flags = 0;
1997 ctrl_ctx->add_flags = 0;
1998 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1999 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2000 /* Endpoint 0 is always valid */
2001 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2002 for (i = 1; i < 31; i++) {
2003 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2004 ep_ctx->ep_info = 0;
2005 ep_ctx->ep_info2 = 0;
2006 ep_ctx->deq = 0;
2007 ep_ctx->tx_info = 0;
2008 }
2009 }
2010
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2011 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2012 struct usb_device *udev, u32 *cmd_status)
2013 {
2014 int ret;
2015
2016 switch (*cmd_status) {
2017 case COMP_COMMAND_ABORTED:
2018 case COMP_COMMAND_RING_STOPPED:
2019 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2020 ret = -ETIME;
2021 break;
2022 case COMP_RESOURCE_ERROR:
2023 dev_warn(&udev->dev,
2024 "Not enough host controller resources for new device state.\n");
2025 ret = -ENOMEM;
2026 /* FIXME: can we allocate more resources for the HC? */
2027 break;
2028 case COMP_BANDWIDTH_ERROR:
2029 case COMP_SECONDARY_BANDWIDTH_ERROR:
2030 dev_warn(&udev->dev,
2031 "Not enough bandwidth for new device state.\n");
2032 ret = -ENOSPC;
2033 /* FIXME: can we go back to the old state? */
2034 break;
2035 case COMP_TRB_ERROR:
2036 /* the HCD set up something wrong */
2037 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2038 "add flag = 1, "
2039 "and endpoint is not disabled.\n");
2040 ret = -EINVAL;
2041 break;
2042 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2043 dev_warn(&udev->dev,
2044 "ERROR: Incompatible device for endpoint configure command.\n");
2045 ret = -ENODEV;
2046 break;
2047 case COMP_SUCCESS:
2048 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2049 "Successful Endpoint Configure command");
2050 ret = 0;
2051 break;
2052 default:
2053 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2054 *cmd_status);
2055 ret = -EINVAL;
2056 break;
2057 }
2058 return ret;
2059 }
2060
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2061 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2062 struct usb_device *udev, u32 *cmd_status)
2063 {
2064 int ret;
2065
2066 switch (*cmd_status) {
2067 case COMP_COMMAND_ABORTED:
2068 case COMP_COMMAND_RING_STOPPED:
2069 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2070 ret = -ETIME;
2071 break;
2072 case COMP_PARAMETER_ERROR:
2073 dev_warn(&udev->dev,
2074 "WARN: xHCI driver setup invalid evaluate context command.\n");
2075 ret = -EINVAL;
2076 break;
2077 case COMP_SLOT_NOT_ENABLED_ERROR:
2078 dev_warn(&udev->dev,
2079 "WARN: slot not enabled for evaluate context command.\n");
2080 ret = -EINVAL;
2081 break;
2082 case COMP_CONTEXT_STATE_ERROR:
2083 dev_warn(&udev->dev,
2084 "WARN: invalid context state for evaluate context command.\n");
2085 ret = -EINVAL;
2086 break;
2087 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2088 dev_warn(&udev->dev,
2089 "ERROR: Incompatible device for evaluate context command.\n");
2090 ret = -ENODEV;
2091 break;
2092 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2093 /* Max Exit Latency too large error */
2094 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2095 ret = -EINVAL;
2096 break;
2097 case COMP_SUCCESS:
2098 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2099 "Successful evaluate context command");
2100 ret = 0;
2101 break;
2102 default:
2103 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2104 *cmd_status);
2105 ret = -EINVAL;
2106 break;
2107 }
2108 return ret;
2109 }
2110
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2111 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2112 struct xhci_input_control_ctx *ctrl_ctx)
2113 {
2114 u32 valid_add_flags;
2115 u32 valid_drop_flags;
2116
2117 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2118 * (bit 1). The default control endpoint is added during the Address
2119 * Device command and is never removed until the slot is disabled.
2120 */
2121 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2122 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2123
2124 /* Use hweight32 to count the number of ones in the add flags, or
2125 * number of endpoints added. Don't count endpoints that are changed
2126 * (both added and dropped).
2127 */
2128 return hweight32(valid_add_flags) -
2129 hweight32(valid_add_flags & valid_drop_flags);
2130 }
2131
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2132 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2133 struct xhci_input_control_ctx *ctrl_ctx)
2134 {
2135 u32 valid_add_flags;
2136 u32 valid_drop_flags;
2137
2138 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2139 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2140
2141 return hweight32(valid_drop_flags) -
2142 hweight32(valid_add_flags & valid_drop_flags);
2143 }
2144
2145 /*
2146 * We need to reserve the new number of endpoints before the configure endpoint
2147 * command completes. We can't subtract the dropped endpoints from the number
2148 * of active endpoints until the command completes because we can oversubscribe
2149 * the host in this case:
2150 *
2151 * - the first configure endpoint command drops more endpoints than it adds
2152 * - a second configure endpoint command that adds more endpoints is queued
2153 * - the first configure endpoint command fails, so the config is unchanged
2154 * - the second command may succeed, even though there isn't enough resources
2155 *
2156 * Must be called with xhci->lock held.
2157 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2158 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2159 struct xhci_input_control_ctx *ctrl_ctx)
2160 {
2161 u32 added_eps;
2162
2163 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2164 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2165 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2166 "Not enough ep ctxs: "
2167 "%u active, need to add %u, limit is %u.",
2168 xhci->num_active_eps, added_eps,
2169 xhci->limit_active_eps);
2170 return -ENOMEM;
2171 }
2172 xhci->num_active_eps += added_eps;
2173 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2174 "Adding %u ep ctxs, %u now active.", added_eps,
2175 xhci->num_active_eps);
2176 return 0;
2177 }
2178
2179 /*
2180 * The configure endpoint was failed by the xHC for some other reason, so we
2181 * need to revert the resources that failed configuration would have used.
2182 *
2183 * Must be called with xhci->lock held.
2184 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2185 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2186 struct xhci_input_control_ctx *ctrl_ctx)
2187 {
2188 u32 num_failed_eps;
2189
2190 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2191 xhci->num_active_eps -= num_failed_eps;
2192 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2193 "Removing %u failed ep ctxs, %u now active.",
2194 num_failed_eps,
2195 xhci->num_active_eps);
2196 }
2197
2198 /*
2199 * Now that the command has completed, clean up the active endpoint count by
2200 * subtracting out the endpoints that were dropped (but not changed).
2201 *
2202 * Must be called with xhci->lock held.
2203 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2204 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2205 struct xhci_input_control_ctx *ctrl_ctx)
2206 {
2207 u32 num_dropped_eps;
2208
2209 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2210 xhci->num_active_eps -= num_dropped_eps;
2211 if (num_dropped_eps)
2212 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2213 "Removing %u dropped ep ctxs, %u now active.",
2214 num_dropped_eps,
2215 xhci->num_active_eps);
2216 }
2217
xhci_get_block_size(struct usb_device * udev)2218 static unsigned int xhci_get_block_size(struct usb_device *udev)
2219 {
2220 switch (udev->speed) {
2221 case USB_SPEED_LOW:
2222 case USB_SPEED_FULL:
2223 return FS_BLOCK;
2224 case USB_SPEED_HIGH:
2225 return HS_BLOCK;
2226 case USB_SPEED_SUPER:
2227 case USB_SPEED_SUPER_PLUS:
2228 return SS_BLOCK;
2229 case USB_SPEED_UNKNOWN:
2230 default:
2231 /* Should never happen */
2232 return 1;
2233 }
2234 }
2235
2236 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2237 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2238 {
2239 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2240 return LS_OVERHEAD;
2241 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2242 return FS_OVERHEAD;
2243 return HS_OVERHEAD;
2244 }
2245
2246 /* If we are changing a LS/FS device under a HS hub,
2247 * make sure (if we are activating a new TT) that the HS bus has enough
2248 * bandwidth for this new TT.
2249 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2250 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2251 struct xhci_virt_device *virt_dev,
2252 int old_active_eps)
2253 {
2254 struct xhci_interval_bw_table *bw_table;
2255 struct xhci_tt_bw_info *tt_info;
2256
2257 /* Find the bandwidth table for the root port this TT is attached to. */
2258 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2259 tt_info = virt_dev->tt_info;
2260 /* If this TT already had active endpoints, the bandwidth for this TT
2261 * has already been added. Removing all periodic endpoints (and thus
2262 * making the TT enactive) will only decrease the bandwidth used.
2263 */
2264 if (old_active_eps)
2265 return 0;
2266 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2267 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2268 return -ENOMEM;
2269 return 0;
2270 }
2271 /* Not sure why we would have no new active endpoints...
2272 *
2273 * Maybe because of an Evaluate Context change for a hub update or a
2274 * control endpoint 0 max packet size change?
2275 * FIXME: skip the bandwidth calculation in that case.
2276 */
2277 return 0;
2278 }
2279
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2280 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2281 struct xhci_virt_device *virt_dev)
2282 {
2283 unsigned int bw_reserved;
2284
2285 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2286 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2287 return -ENOMEM;
2288
2289 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2290 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2291 return -ENOMEM;
2292
2293 return 0;
2294 }
2295
2296 /*
2297 * This algorithm is a very conservative estimate of the worst-case scheduling
2298 * scenario for any one interval. The hardware dynamically schedules the
2299 * packets, so we can't tell which microframe could be the limiting factor in
2300 * the bandwidth scheduling. This only takes into account periodic endpoints.
2301 *
2302 * Obviously, we can't solve an NP complete problem to find the minimum worst
2303 * case scenario. Instead, we come up with an estimate that is no less than
2304 * the worst case bandwidth used for any one microframe, but may be an
2305 * over-estimate.
2306 *
2307 * We walk the requirements for each endpoint by interval, starting with the
2308 * smallest interval, and place packets in the schedule where there is only one
2309 * possible way to schedule packets for that interval. In order to simplify
2310 * this algorithm, we record the largest max packet size for each interval, and
2311 * assume all packets will be that size.
2312 *
2313 * For interval 0, we obviously must schedule all packets for each interval.
2314 * The bandwidth for interval 0 is just the amount of data to be transmitted
2315 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2316 * the number of packets).
2317 *
2318 * For interval 1, we have two possible microframes to schedule those packets
2319 * in. For this algorithm, if we can schedule the same number of packets for
2320 * each possible scheduling opportunity (each microframe), we will do so. The
2321 * remaining number of packets will be saved to be transmitted in the gaps in
2322 * the next interval's scheduling sequence.
2323 *
2324 * As we move those remaining packets to be scheduled with interval 2 packets,
2325 * we have to double the number of remaining packets to transmit. This is
2326 * because the intervals are actually powers of 2, and we would be transmitting
2327 * the previous interval's packets twice in this interval. We also have to be
2328 * sure that when we look at the largest max packet size for this interval, we
2329 * also look at the largest max packet size for the remaining packets and take
2330 * the greater of the two.
2331 *
2332 * The algorithm continues to evenly distribute packets in each scheduling
2333 * opportunity, and push the remaining packets out, until we get to the last
2334 * interval. Then those packets and their associated overhead are just added
2335 * to the bandwidth used.
2336 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2337 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2338 struct xhci_virt_device *virt_dev,
2339 int old_active_eps)
2340 {
2341 unsigned int bw_reserved;
2342 unsigned int max_bandwidth;
2343 unsigned int bw_used;
2344 unsigned int block_size;
2345 struct xhci_interval_bw_table *bw_table;
2346 unsigned int packet_size = 0;
2347 unsigned int overhead = 0;
2348 unsigned int packets_transmitted = 0;
2349 unsigned int packets_remaining = 0;
2350 unsigned int i;
2351
2352 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2353 return xhci_check_ss_bw(xhci, virt_dev);
2354
2355 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2356 max_bandwidth = HS_BW_LIMIT;
2357 /* Convert percent of bus BW reserved to blocks reserved */
2358 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2359 } else {
2360 max_bandwidth = FS_BW_LIMIT;
2361 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2362 }
2363
2364 bw_table = virt_dev->bw_table;
2365 /* We need to translate the max packet size and max ESIT payloads into
2366 * the units the hardware uses.
2367 */
2368 block_size = xhci_get_block_size(virt_dev->udev);
2369
2370 /* If we are manipulating a LS/FS device under a HS hub, double check
2371 * that the HS bus has enough bandwidth if we are activing a new TT.
2372 */
2373 if (virt_dev->tt_info) {
2374 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2375 "Recalculating BW for rootport %u",
2376 virt_dev->real_port);
2377 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2378 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2379 "newly activated TT.\n");
2380 return -ENOMEM;
2381 }
2382 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2383 "Recalculating BW for TT slot %u port %u",
2384 virt_dev->tt_info->slot_id,
2385 virt_dev->tt_info->ttport);
2386 } else {
2387 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2388 "Recalculating BW for rootport %u",
2389 virt_dev->real_port);
2390 }
2391
2392 /* Add in how much bandwidth will be used for interval zero, or the
2393 * rounded max ESIT payload + number of packets * largest overhead.
2394 */
2395 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2396 bw_table->interval_bw[0].num_packets *
2397 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2398
2399 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2400 unsigned int bw_added;
2401 unsigned int largest_mps;
2402 unsigned int interval_overhead;
2403
2404 /*
2405 * How many packets could we transmit in this interval?
2406 * If packets didn't fit in the previous interval, we will need
2407 * to transmit that many packets twice within this interval.
2408 */
2409 packets_remaining = 2 * packets_remaining +
2410 bw_table->interval_bw[i].num_packets;
2411
2412 /* Find the largest max packet size of this or the previous
2413 * interval.
2414 */
2415 if (list_empty(&bw_table->interval_bw[i].endpoints))
2416 largest_mps = 0;
2417 else {
2418 struct xhci_virt_ep *virt_ep;
2419 struct list_head *ep_entry;
2420
2421 ep_entry = bw_table->interval_bw[i].endpoints.next;
2422 virt_ep = list_entry(ep_entry,
2423 struct xhci_virt_ep, bw_endpoint_list);
2424 /* Convert to blocks, rounding up */
2425 largest_mps = DIV_ROUND_UP(
2426 virt_ep->bw_info.max_packet_size,
2427 block_size);
2428 }
2429 if (largest_mps > packet_size)
2430 packet_size = largest_mps;
2431
2432 /* Use the larger overhead of this or the previous interval. */
2433 interval_overhead = xhci_get_largest_overhead(
2434 &bw_table->interval_bw[i]);
2435 if (interval_overhead > overhead)
2436 overhead = interval_overhead;
2437
2438 /* How many packets can we evenly distribute across
2439 * (1 << (i + 1)) possible scheduling opportunities?
2440 */
2441 packets_transmitted = packets_remaining >> (i + 1);
2442
2443 /* Add in the bandwidth used for those scheduled packets */
2444 bw_added = packets_transmitted * (overhead + packet_size);
2445
2446 /* How many packets do we have remaining to transmit? */
2447 packets_remaining = packets_remaining % (1 << (i + 1));
2448
2449 /* What largest max packet size should those packets have? */
2450 /* If we've transmitted all packets, don't carry over the
2451 * largest packet size.
2452 */
2453 if (packets_remaining == 0) {
2454 packet_size = 0;
2455 overhead = 0;
2456 } else if (packets_transmitted > 0) {
2457 /* Otherwise if we do have remaining packets, and we've
2458 * scheduled some packets in this interval, take the
2459 * largest max packet size from endpoints with this
2460 * interval.
2461 */
2462 packet_size = largest_mps;
2463 overhead = interval_overhead;
2464 }
2465 /* Otherwise carry over packet_size and overhead from the last
2466 * time we had a remainder.
2467 */
2468 bw_used += bw_added;
2469 if (bw_used > max_bandwidth) {
2470 xhci_warn(xhci, "Not enough bandwidth. "
2471 "Proposed: %u, Max: %u\n",
2472 bw_used, max_bandwidth);
2473 return -ENOMEM;
2474 }
2475 }
2476 /*
2477 * Ok, we know we have some packets left over after even-handedly
2478 * scheduling interval 15. We don't know which microframes they will
2479 * fit into, so we over-schedule and say they will be scheduled every
2480 * microframe.
2481 */
2482 if (packets_remaining > 0)
2483 bw_used += overhead + packet_size;
2484
2485 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2486 unsigned int port_index = virt_dev->real_port - 1;
2487
2488 /* OK, we're manipulating a HS device attached to a
2489 * root port bandwidth domain. Include the number of active TTs
2490 * in the bandwidth used.
2491 */
2492 bw_used += TT_HS_OVERHEAD *
2493 xhci->rh_bw[port_index].num_active_tts;
2494 }
2495
2496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2497 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2498 "Available: %u " "percent",
2499 bw_used, max_bandwidth, bw_reserved,
2500 (max_bandwidth - bw_used - bw_reserved) * 100 /
2501 max_bandwidth);
2502
2503 bw_used += bw_reserved;
2504 if (bw_used > max_bandwidth) {
2505 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2506 bw_used, max_bandwidth);
2507 return -ENOMEM;
2508 }
2509
2510 bw_table->bw_used = bw_used;
2511 return 0;
2512 }
2513
xhci_is_async_ep(unsigned int ep_type)2514 static bool xhci_is_async_ep(unsigned int ep_type)
2515 {
2516 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2517 ep_type != ISOC_IN_EP &&
2518 ep_type != INT_IN_EP);
2519 }
2520
xhci_is_sync_in_ep(unsigned int ep_type)2521 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2522 {
2523 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2524 }
2525
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2526 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2527 {
2528 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2529
2530 if (ep_bw->ep_interval == 0)
2531 return SS_OVERHEAD_BURST +
2532 (ep_bw->mult * ep_bw->num_packets *
2533 (SS_OVERHEAD + mps));
2534 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2535 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2536 1 << ep_bw->ep_interval);
2537
2538 }
2539
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2540 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2541 struct xhci_bw_info *ep_bw,
2542 struct xhci_interval_bw_table *bw_table,
2543 struct usb_device *udev,
2544 struct xhci_virt_ep *virt_ep,
2545 struct xhci_tt_bw_info *tt_info)
2546 {
2547 struct xhci_interval_bw *interval_bw;
2548 int normalized_interval;
2549
2550 if (xhci_is_async_ep(ep_bw->type))
2551 return;
2552
2553 if (udev->speed >= USB_SPEED_SUPER) {
2554 if (xhci_is_sync_in_ep(ep_bw->type))
2555 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2556 xhci_get_ss_bw_consumed(ep_bw);
2557 else
2558 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2559 xhci_get_ss_bw_consumed(ep_bw);
2560 return;
2561 }
2562
2563 /* SuperSpeed endpoints never get added to intervals in the table, so
2564 * this check is only valid for HS/FS/LS devices.
2565 */
2566 if (list_empty(&virt_ep->bw_endpoint_list))
2567 return;
2568 /* For LS/FS devices, we need to translate the interval expressed in
2569 * microframes to frames.
2570 */
2571 if (udev->speed == USB_SPEED_HIGH)
2572 normalized_interval = ep_bw->ep_interval;
2573 else
2574 normalized_interval = ep_bw->ep_interval - 3;
2575
2576 if (normalized_interval == 0)
2577 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2578 interval_bw = &bw_table->interval_bw[normalized_interval];
2579 interval_bw->num_packets -= ep_bw->num_packets;
2580 switch (udev->speed) {
2581 case USB_SPEED_LOW:
2582 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2583 break;
2584 case USB_SPEED_FULL:
2585 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2586 break;
2587 case USB_SPEED_HIGH:
2588 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2589 break;
2590 default:
2591 /* Should never happen because only LS/FS/HS endpoints will get
2592 * added to the endpoint list.
2593 */
2594 return;
2595 }
2596 if (tt_info)
2597 tt_info->active_eps -= 1;
2598 list_del_init(&virt_ep->bw_endpoint_list);
2599 }
2600
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2601 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2602 struct xhci_bw_info *ep_bw,
2603 struct xhci_interval_bw_table *bw_table,
2604 struct usb_device *udev,
2605 struct xhci_virt_ep *virt_ep,
2606 struct xhci_tt_bw_info *tt_info)
2607 {
2608 struct xhci_interval_bw *interval_bw;
2609 struct xhci_virt_ep *smaller_ep;
2610 int normalized_interval;
2611
2612 if (xhci_is_async_ep(ep_bw->type))
2613 return;
2614
2615 if (udev->speed == USB_SPEED_SUPER) {
2616 if (xhci_is_sync_in_ep(ep_bw->type))
2617 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2618 xhci_get_ss_bw_consumed(ep_bw);
2619 else
2620 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2621 xhci_get_ss_bw_consumed(ep_bw);
2622 return;
2623 }
2624
2625 /* For LS/FS devices, we need to translate the interval expressed in
2626 * microframes to frames.
2627 */
2628 if (udev->speed == USB_SPEED_HIGH)
2629 normalized_interval = ep_bw->ep_interval;
2630 else
2631 normalized_interval = ep_bw->ep_interval - 3;
2632
2633 if (normalized_interval == 0)
2634 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2635 interval_bw = &bw_table->interval_bw[normalized_interval];
2636 interval_bw->num_packets += ep_bw->num_packets;
2637 switch (udev->speed) {
2638 case USB_SPEED_LOW:
2639 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2640 break;
2641 case USB_SPEED_FULL:
2642 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2643 break;
2644 case USB_SPEED_HIGH:
2645 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2646 break;
2647 default:
2648 /* Should never happen because only LS/FS/HS endpoints will get
2649 * added to the endpoint list.
2650 */
2651 return;
2652 }
2653
2654 if (tt_info)
2655 tt_info->active_eps += 1;
2656 /* Insert the endpoint into the list, largest max packet size first. */
2657 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2658 bw_endpoint_list) {
2659 if (ep_bw->max_packet_size >=
2660 smaller_ep->bw_info.max_packet_size) {
2661 /* Add the new ep before the smaller endpoint */
2662 list_add_tail(&virt_ep->bw_endpoint_list,
2663 &smaller_ep->bw_endpoint_list);
2664 return;
2665 }
2666 }
2667 /* Add the new endpoint at the end of the list. */
2668 list_add_tail(&virt_ep->bw_endpoint_list,
2669 &interval_bw->endpoints);
2670 }
2671
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2672 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2673 struct xhci_virt_device *virt_dev,
2674 int old_active_eps)
2675 {
2676 struct xhci_root_port_bw_info *rh_bw_info;
2677 if (!virt_dev->tt_info)
2678 return;
2679
2680 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2681 if (old_active_eps == 0 &&
2682 virt_dev->tt_info->active_eps != 0) {
2683 rh_bw_info->num_active_tts += 1;
2684 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2685 } else if (old_active_eps != 0 &&
2686 virt_dev->tt_info->active_eps == 0) {
2687 rh_bw_info->num_active_tts -= 1;
2688 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2689 }
2690 }
2691
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2692 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2693 struct xhci_virt_device *virt_dev,
2694 struct xhci_container_ctx *in_ctx)
2695 {
2696 struct xhci_bw_info ep_bw_info[31];
2697 int i;
2698 struct xhci_input_control_ctx *ctrl_ctx;
2699 int old_active_eps = 0;
2700
2701 if (virt_dev->tt_info)
2702 old_active_eps = virt_dev->tt_info->active_eps;
2703
2704 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2705 if (!ctrl_ctx) {
2706 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2707 __func__);
2708 return -ENOMEM;
2709 }
2710
2711 for (i = 0; i < 31; i++) {
2712 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2713 continue;
2714
2715 /* Make a copy of the BW info in case we need to revert this */
2716 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2717 sizeof(ep_bw_info[i]));
2718 /* Drop the endpoint from the interval table if the endpoint is
2719 * being dropped or changed.
2720 */
2721 if (EP_IS_DROPPED(ctrl_ctx, i))
2722 xhci_drop_ep_from_interval_table(xhci,
2723 &virt_dev->eps[i].bw_info,
2724 virt_dev->bw_table,
2725 virt_dev->udev,
2726 &virt_dev->eps[i],
2727 virt_dev->tt_info);
2728 }
2729 /* Overwrite the information stored in the endpoints' bw_info */
2730 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2731 for (i = 0; i < 31; i++) {
2732 /* Add any changed or added endpoints to the interval table */
2733 if (EP_IS_ADDED(ctrl_ctx, i))
2734 xhci_add_ep_to_interval_table(xhci,
2735 &virt_dev->eps[i].bw_info,
2736 virt_dev->bw_table,
2737 virt_dev->udev,
2738 &virt_dev->eps[i],
2739 virt_dev->tt_info);
2740 }
2741
2742 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2743 /* Ok, this fits in the bandwidth we have.
2744 * Update the number of active TTs.
2745 */
2746 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2747 return 0;
2748 }
2749
2750 /* We don't have enough bandwidth for this, revert the stored info. */
2751 for (i = 0; i < 31; i++) {
2752 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2753 continue;
2754
2755 /* Drop the new copies of any added or changed endpoints from
2756 * the interval table.
2757 */
2758 if (EP_IS_ADDED(ctrl_ctx, i)) {
2759 xhci_drop_ep_from_interval_table(xhci,
2760 &virt_dev->eps[i].bw_info,
2761 virt_dev->bw_table,
2762 virt_dev->udev,
2763 &virt_dev->eps[i],
2764 virt_dev->tt_info);
2765 }
2766 /* Revert the endpoint back to its old information */
2767 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2768 sizeof(ep_bw_info[i]));
2769 /* Add any changed or dropped endpoints back into the table */
2770 if (EP_IS_DROPPED(ctrl_ctx, i))
2771 xhci_add_ep_to_interval_table(xhci,
2772 &virt_dev->eps[i].bw_info,
2773 virt_dev->bw_table,
2774 virt_dev->udev,
2775 &virt_dev->eps[i],
2776 virt_dev->tt_info);
2777 }
2778 return -ENOMEM;
2779 }
2780
2781
2782 /* Issue a configure endpoint command or evaluate context command
2783 * and wait for it to finish.
2784 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2785 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2786 struct usb_device *udev,
2787 struct xhci_command *command,
2788 bool ctx_change, bool must_succeed)
2789 {
2790 int ret;
2791 unsigned long flags;
2792 struct xhci_input_control_ctx *ctrl_ctx;
2793 struct xhci_virt_device *virt_dev;
2794 struct xhci_slot_ctx *slot_ctx;
2795
2796 if (!command)
2797 return -EINVAL;
2798
2799 spin_lock_irqsave(&xhci->lock, flags);
2800
2801 if (xhci->xhc_state & XHCI_STATE_DYING) {
2802 spin_unlock_irqrestore(&xhci->lock, flags);
2803 return -ESHUTDOWN;
2804 }
2805
2806 virt_dev = xhci->devs[udev->slot_id];
2807
2808 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2809 if (!ctrl_ctx) {
2810 spin_unlock_irqrestore(&xhci->lock, flags);
2811 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2812 __func__);
2813 return -ENOMEM;
2814 }
2815
2816 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2817 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2818 spin_unlock_irqrestore(&xhci->lock, flags);
2819 xhci_warn(xhci, "Not enough host resources, "
2820 "active endpoint contexts = %u\n",
2821 xhci->num_active_eps);
2822 return -ENOMEM;
2823 }
2824 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2825 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2826 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2827 xhci_free_host_resources(xhci, ctrl_ctx);
2828 spin_unlock_irqrestore(&xhci->lock, flags);
2829 xhci_warn(xhci, "Not enough bandwidth\n");
2830 return -ENOMEM;
2831 }
2832
2833 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2834
2835 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2836 trace_xhci_configure_endpoint(slot_ctx);
2837
2838 if (!ctx_change)
2839 ret = xhci_queue_configure_endpoint(xhci, command,
2840 command->in_ctx->dma,
2841 udev->slot_id, must_succeed);
2842 else
2843 ret = xhci_queue_evaluate_context(xhci, command,
2844 command->in_ctx->dma,
2845 udev->slot_id, must_succeed);
2846 if (ret < 0) {
2847 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2848 xhci_free_host_resources(xhci, ctrl_ctx);
2849 spin_unlock_irqrestore(&xhci->lock, flags);
2850 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2851 "FIXME allocate a new ring segment");
2852 return -ENOMEM;
2853 }
2854 xhci_ring_cmd_db(xhci);
2855 spin_unlock_irqrestore(&xhci->lock, flags);
2856
2857 /* Wait for the configure endpoint command to complete */
2858 wait_for_completion(command->completion);
2859
2860 if (!ctx_change)
2861 ret = xhci_configure_endpoint_result(xhci, udev,
2862 &command->status);
2863 else
2864 ret = xhci_evaluate_context_result(xhci, udev,
2865 &command->status);
2866
2867 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2868 spin_lock_irqsave(&xhci->lock, flags);
2869 /* If the command failed, remove the reserved resources.
2870 * Otherwise, clean up the estimate to include dropped eps.
2871 */
2872 if (ret)
2873 xhci_free_host_resources(xhci, ctrl_ctx);
2874 else
2875 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2876 spin_unlock_irqrestore(&xhci->lock, flags);
2877 }
2878 return ret;
2879 }
2880
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2881 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2882 struct xhci_virt_device *vdev, int i)
2883 {
2884 struct xhci_virt_ep *ep = &vdev->eps[i];
2885
2886 if (ep->ep_state & EP_HAS_STREAMS) {
2887 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2888 xhci_get_endpoint_address(i));
2889 xhci_free_stream_info(xhci, ep->stream_info);
2890 ep->stream_info = NULL;
2891 ep->ep_state &= ~EP_HAS_STREAMS;
2892 }
2893 }
2894
2895 /* Called after one or more calls to xhci_add_endpoint() or
2896 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2897 * to call xhci_reset_bandwidth().
2898 *
2899 * Since we are in the middle of changing either configuration or
2900 * installing a new alt setting, the USB core won't allow URBs to be
2901 * enqueued for any endpoint on the old config or interface. Nothing
2902 * else should be touching the xhci->devs[slot_id] structure, so we
2903 * don't need to take the xhci->lock for manipulating that.
2904 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2905 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2906 {
2907 int i;
2908 int ret = 0;
2909 struct xhci_hcd *xhci;
2910 struct xhci_virt_device *virt_dev;
2911 struct xhci_input_control_ctx *ctrl_ctx;
2912 struct xhci_slot_ctx *slot_ctx;
2913 struct xhci_command *command;
2914
2915 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2916 if (ret <= 0)
2917 return ret;
2918 xhci = hcd_to_xhci(hcd);
2919 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2920 (xhci->xhc_state & XHCI_STATE_REMOVING))
2921 return -ENODEV;
2922
2923 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2924 virt_dev = xhci->devs[udev->slot_id];
2925
2926 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2927 if (!command)
2928 return -ENOMEM;
2929
2930 command->in_ctx = virt_dev->in_ctx;
2931
2932 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2933 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2934 if (!ctrl_ctx) {
2935 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2936 __func__);
2937 ret = -ENOMEM;
2938 goto command_cleanup;
2939 }
2940 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2941 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2942 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2943
2944 /* Don't issue the command if there's no endpoints to update. */
2945 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2946 ctrl_ctx->drop_flags == 0) {
2947 ret = 0;
2948 goto command_cleanup;
2949 }
2950 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2951 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2952 for (i = 31; i >= 1; i--) {
2953 __le32 le32 = cpu_to_le32(BIT(i));
2954
2955 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2956 || (ctrl_ctx->add_flags & le32) || i == 1) {
2957 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2958 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2959 break;
2960 }
2961 }
2962
2963 ret = xhci_configure_endpoint(xhci, udev, command,
2964 false, false);
2965 if (ret)
2966 /* Callee should call reset_bandwidth() */
2967 goto command_cleanup;
2968
2969 /* Free any rings that were dropped, but not changed. */
2970 for (i = 1; i < 31; i++) {
2971 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2972 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2973 xhci_free_endpoint_ring(xhci, virt_dev, i);
2974 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2975 }
2976 }
2977 xhci_zero_in_ctx(xhci, virt_dev);
2978 /*
2979 * Install any rings for completely new endpoints or changed endpoints,
2980 * and free any old rings from changed endpoints.
2981 */
2982 for (i = 1; i < 31; i++) {
2983 if (!virt_dev->eps[i].new_ring)
2984 continue;
2985 /* Only free the old ring if it exists.
2986 * It may not if this is the first add of an endpoint.
2987 */
2988 if (virt_dev->eps[i].ring) {
2989 xhci_free_endpoint_ring(xhci, virt_dev, i);
2990 }
2991 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2992 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2993 virt_dev->eps[i].new_ring = NULL;
2994 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2995 }
2996 command_cleanup:
2997 kfree(command->completion);
2998 kfree(command);
2999
3000 return ret;
3001 }
3002 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3003
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3004 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3005 {
3006 struct xhci_hcd *xhci;
3007 struct xhci_virt_device *virt_dev;
3008 int i, ret;
3009
3010 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3011 if (ret <= 0)
3012 return;
3013 xhci = hcd_to_xhci(hcd);
3014
3015 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3016 virt_dev = xhci->devs[udev->slot_id];
3017 /* Free any rings allocated for added endpoints */
3018 for (i = 0; i < 31; i++) {
3019 if (virt_dev->eps[i].new_ring) {
3020 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3021 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3022 virt_dev->eps[i].new_ring = NULL;
3023 }
3024 }
3025 xhci_zero_in_ctx(xhci, virt_dev);
3026 }
3027 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3028
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3029 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3030 struct xhci_container_ctx *in_ctx,
3031 struct xhci_container_ctx *out_ctx,
3032 struct xhci_input_control_ctx *ctrl_ctx,
3033 u32 add_flags, u32 drop_flags)
3034 {
3035 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3036 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3037 xhci_slot_copy(xhci, in_ctx, out_ctx);
3038 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3039 }
3040
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3041 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3042 struct usb_host_endpoint *host_ep)
3043 {
3044 struct xhci_hcd *xhci;
3045 struct xhci_virt_device *vdev;
3046 struct xhci_virt_ep *ep;
3047 struct usb_device *udev;
3048 unsigned long flags;
3049 unsigned int ep_index;
3050
3051 xhci = hcd_to_xhci(hcd);
3052 rescan:
3053 spin_lock_irqsave(&xhci->lock, flags);
3054
3055 udev = (struct usb_device *)host_ep->hcpriv;
3056 if (!udev || !udev->slot_id)
3057 goto done;
3058
3059 vdev = xhci->devs[udev->slot_id];
3060 if (!vdev)
3061 goto done;
3062
3063 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3064 ep = &vdev->eps[ep_index];
3065
3066 /* wait for hub_tt_work to finish clearing hub TT */
3067 if (ep->ep_state & EP_CLEARING_TT) {
3068 spin_unlock_irqrestore(&xhci->lock, flags);
3069 schedule_timeout_uninterruptible(1);
3070 goto rescan;
3071 }
3072
3073 if (ep->ep_state)
3074 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3075 ep->ep_state);
3076 done:
3077 host_ep->hcpriv = NULL;
3078 spin_unlock_irqrestore(&xhci->lock, flags);
3079 }
3080
3081 /*
3082 * Called after usb core issues a clear halt control message.
3083 * The host side of the halt should already be cleared by a reset endpoint
3084 * command issued when the STALL event was received.
3085 *
3086 * The reset endpoint command may only be issued to endpoints in the halted
3087 * state. For software that wishes to reset the data toggle or sequence number
3088 * of an endpoint that isn't in the halted state this function will issue a
3089 * configure endpoint command with the Drop and Add bits set for the target
3090 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3091 */
3092
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3093 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3094 struct usb_host_endpoint *host_ep)
3095 {
3096 struct xhci_hcd *xhci;
3097 struct usb_device *udev;
3098 struct xhci_virt_device *vdev;
3099 struct xhci_virt_ep *ep;
3100 struct xhci_input_control_ctx *ctrl_ctx;
3101 struct xhci_command *stop_cmd, *cfg_cmd;
3102 unsigned int ep_index;
3103 unsigned long flags;
3104 u32 ep_flag;
3105 int err;
3106
3107 xhci = hcd_to_xhci(hcd);
3108 if (!host_ep->hcpriv)
3109 return;
3110 udev = (struct usb_device *) host_ep->hcpriv;
3111 vdev = xhci->devs[udev->slot_id];
3112
3113 /*
3114 * vdev may be lost due to xHC restore error and re-initialization
3115 * during S3/S4 resume. A new vdev will be allocated later by
3116 * xhci_discover_or_reset_device()
3117 */
3118 if (!udev->slot_id || !vdev)
3119 return;
3120 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3121 ep = &vdev->eps[ep_index];
3122
3123 /* Bail out if toggle is already being cleared by a endpoint reset */
3124 spin_lock_irqsave(&xhci->lock, flags);
3125 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3126 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3127 spin_unlock_irqrestore(&xhci->lock, flags);
3128 return;
3129 }
3130 spin_unlock_irqrestore(&xhci->lock, flags);
3131 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3132 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3133 usb_endpoint_xfer_isoc(&host_ep->desc))
3134 return;
3135
3136 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3137
3138 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3139 return;
3140
3141 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3142 if (!stop_cmd)
3143 return;
3144
3145 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3146 if (!cfg_cmd)
3147 goto cleanup;
3148
3149 spin_lock_irqsave(&xhci->lock, flags);
3150
3151 /* block queuing new trbs and ringing ep doorbell */
3152 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3153
3154 /*
3155 * Make sure endpoint ring is empty before resetting the toggle/seq.
3156 * Driver is required to synchronously cancel all transfer request.
3157 * Stop the endpoint to force xHC to update the output context
3158 */
3159
3160 if (!list_empty(&ep->ring->td_list)) {
3161 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3162 spin_unlock_irqrestore(&xhci->lock, flags);
3163 xhci_free_command(xhci, cfg_cmd);
3164 goto cleanup;
3165 }
3166
3167 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3168 ep_index, 0);
3169 if (err < 0) {
3170 spin_unlock_irqrestore(&xhci->lock, flags);
3171 xhci_free_command(xhci, cfg_cmd);
3172 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3173 __func__, err);
3174 goto cleanup;
3175 }
3176
3177 xhci_ring_cmd_db(xhci);
3178 spin_unlock_irqrestore(&xhci->lock, flags);
3179
3180 wait_for_completion(stop_cmd->completion);
3181
3182 spin_lock_irqsave(&xhci->lock, flags);
3183
3184 /* config ep command clears toggle if add and drop ep flags are set */
3185 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3186 if (!ctrl_ctx) {
3187 spin_unlock_irqrestore(&xhci->lock, flags);
3188 xhci_free_command(xhci, cfg_cmd);
3189 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3190 __func__);
3191 goto cleanup;
3192 }
3193
3194 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3195 ctrl_ctx, ep_flag, ep_flag);
3196 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3197
3198 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3199 udev->slot_id, false);
3200 if (err < 0) {
3201 spin_unlock_irqrestore(&xhci->lock, flags);
3202 xhci_free_command(xhci, cfg_cmd);
3203 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3204 __func__, err);
3205 goto cleanup;
3206 }
3207
3208 xhci_ring_cmd_db(xhci);
3209 spin_unlock_irqrestore(&xhci->lock, flags);
3210
3211 wait_for_completion(cfg_cmd->completion);
3212
3213 xhci_free_command(xhci, cfg_cmd);
3214 cleanup:
3215 xhci_free_command(xhci, stop_cmd);
3216 spin_lock_irqsave(&xhci->lock, flags);
3217 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3218 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3219 spin_unlock_irqrestore(&xhci->lock, flags);
3220 }
3221
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3222 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3223 struct usb_device *udev, struct usb_host_endpoint *ep,
3224 unsigned int slot_id)
3225 {
3226 int ret;
3227 unsigned int ep_index;
3228 unsigned int ep_state;
3229
3230 if (!ep)
3231 return -EINVAL;
3232 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3233 if (ret <= 0)
3234 return ret ? ret : -EINVAL;
3235 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3236 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3237 " descriptor for ep 0x%x does not support streams\n",
3238 ep->desc.bEndpointAddress);
3239 return -EINVAL;
3240 }
3241
3242 ep_index = xhci_get_endpoint_index(&ep->desc);
3243 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3244 if (ep_state & EP_HAS_STREAMS ||
3245 ep_state & EP_GETTING_STREAMS) {
3246 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3247 "already has streams set up.\n",
3248 ep->desc.bEndpointAddress);
3249 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3250 "dynamic stream context array reallocation.\n");
3251 return -EINVAL;
3252 }
3253 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3254 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3255 "endpoint 0x%x; URBs are pending.\n",
3256 ep->desc.bEndpointAddress);
3257 return -EINVAL;
3258 }
3259 return 0;
3260 }
3261
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3262 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3263 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3264 {
3265 unsigned int max_streams;
3266
3267 /* The stream context array size must be a power of two */
3268 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3269 /*
3270 * Find out how many primary stream array entries the host controller
3271 * supports. Later we may use secondary stream arrays (similar to 2nd
3272 * level page entries), but that's an optional feature for xHCI host
3273 * controllers. xHCs must support at least 4 stream IDs.
3274 */
3275 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3276 if (*num_stream_ctxs > max_streams) {
3277 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3278 max_streams);
3279 *num_stream_ctxs = max_streams;
3280 *num_streams = max_streams;
3281 }
3282 }
3283
3284 /* Returns an error code if one of the endpoint already has streams.
3285 * This does not change any data structures, it only checks and gathers
3286 * information.
3287 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3288 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3289 struct usb_device *udev,
3290 struct usb_host_endpoint **eps, unsigned int num_eps,
3291 unsigned int *num_streams, u32 *changed_ep_bitmask)
3292 {
3293 unsigned int max_streams;
3294 unsigned int endpoint_flag;
3295 int i;
3296 int ret;
3297
3298 for (i = 0; i < num_eps; i++) {
3299 ret = xhci_check_streams_endpoint(xhci, udev,
3300 eps[i], udev->slot_id);
3301 if (ret < 0)
3302 return ret;
3303
3304 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3305 if (max_streams < (*num_streams - 1)) {
3306 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3307 eps[i]->desc.bEndpointAddress,
3308 max_streams);
3309 *num_streams = max_streams+1;
3310 }
3311
3312 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3313 if (*changed_ep_bitmask & endpoint_flag)
3314 return -EINVAL;
3315 *changed_ep_bitmask |= endpoint_flag;
3316 }
3317 return 0;
3318 }
3319
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3320 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3321 struct usb_device *udev,
3322 struct usb_host_endpoint **eps, unsigned int num_eps)
3323 {
3324 u32 changed_ep_bitmask = 0;
3325 unsigned int slot_id;
3326 unsigned int ep_index;
3327 unsigned int ep_state;
3328 int i;
3329
3330 slot_id = udev->slot_id;
3331 if (!xhci->devs[slot_id])
3332 return 0;
3333
3334 for (i = 0; i < num_eps; i++) {
3335 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3336 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3337 /* Are streams already being freed for the endpoint? */
3338 if (ep_state & EP_GETTING_NO_STREAMS) {
3339 xhci_warn(xhci, "WARN Can't disable streams for "
3340 "endpoint 0x%x, "
3341 "streams are being disabled already\n",
3342 eps[i]->desc.bEndpointAddress);
3343 return 0;
3344 }
3345 /* Are there actually any streams to free? */
3346 if (!(ep_state & EP_HAS_STREAMS) &&
3347 !(ep_state & EP_GETTING_STREAMS)) {
3348 xhci_warn(xhci, "WARN Can't disable streams for "
3349 "endpoint 0x%x, "
3350 "streams are already disabled!\n",
3351 eps[i]->desc.bEndpointAddress);
3352 xhci_warn(xhci, "WARN xhci_free_streams() called "
3353 "with non-streams endpoint\n");
3354 return 0;
3355 }
3356 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3357 }
3358 return changed_ep_bitmask;
3359 }
3360
3361 /*
3362 * The USB device drivers use this function (through the HCD interface in USB
3363 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3364 * coordinate mass storage command queueing across multiple endpoints (basically
3365 * a stream ID == a task ID).
3366 *
3367 * Setting up streams involves allocating the same size stream context array
3368 * for each endpoint and issuing a configure endpoint command for all endpoints.
3369 *
3370 * Don't allow the call to succeed if one endpoint only supports one stream
3371 * (which means it doesn't support streams at all).
3372 *
3373 * Drivers may get less stream IDs than they asked for, if the host controller
3374 * hardware or endpoints claim they can't support the number of requested
3375 * stream IDs.
3376 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3377 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3378 struct usb_host_endpoint **eps, unsigned int num_eps,
3379 unsigned int num_streams, gfp_t mem_flags)
3380 {
3381 int i, ret;
3382 struct xhci_hcd *xhci;
3383 struct xhci_virt_device *vdev;
3384 struct xhci_command *config_cmd;
3385 struct xhci_input_control_ctx *ctrl_ctx;
3386 unsigned int ep_index;
3387 unsigned int num_stream_ctxs;
3388 unsigned int max_packet;
3389 unsigned long flags;
3390 u32 changed_ep_bitmask = 0;
3391
3392 if (!eps)
3393 return -EINVAL;
3394
3395 /* Add one to the number of streams requested to account for
3396 * stream 0 that is reserved for xHCI usage.
3397 */
3398 num_streams += 1;
3399 xhci = hcd_to_xhci(hcd);
3400 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3401 num_streams);
3402
3403 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3404 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3405 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3406 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3407 return -ENOSYS;
3408 }
3409
3410 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3411 if (!config_cmd)
3412 return -ENOMEM;
3413
3414 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3415 if (!ctrl_ctx) {
3416 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3417 __func__);
3418 xhci_free_command(xhci, config_cmd);
3419 return -ENOMEM;
3420 }
3421
3422 /* Check to make sure all endpoints are not already configured for
3423 * streams. While we're at it, find the maximum number of streams that
3424 * all the endpoints will support and check for duplicate endpoints.
3425 */
3426 spin_lock_irqsave(&xhci->lock, flags);
3427 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3428 num_eps, &num_streams, &changed_ep_bitmask);
3429 if (ret < 0) {
3430 xhci_free_command(xhci, config_cmd);
3431 spin_unlock_irqrestore(&xhci->lock, flags);
3432 return ret;
3433 }
3434 if (num_streams <= 1) {
3435 xhci_warn(xhci, "WARN: endpoints can't handle "
3436 "more than one stream.\n");
3437 xhci_free_command(xhci, config_cmd);
3438 spin_unlock_irqrestore(&xhci->lock, flags);
3439 return -EINVAL;
3440 }
3441 vdev = xhci->devs[udev->slot_id];
3442 /* Mark each endpoint as being in transition, so
3443 * xhci_urb_enqueue() will reject all URBs.
3444 */
3445 for (i = 0; i < num_eps; i++) {
3446 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3447 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3448 }
3449 spin_unlock_irqrestore(&xhci->lock, flags);
3450
3451 /* Setup internal data structures and allocate HW data structures for
3452 * streams (but don't install the HW structures in the input context
3453 * until we're sure all memory allocation succeeded).
3454 */
3455 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3456 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3457 num_stream_ctxs, num_streams);
3458
3459 for (i = 0; i < num_eps; i++) {
3460 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3461 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3462 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3463 num_stream_ctxs,
3464 num_streams,
3465 max_packet, mem_flags);
3466 if (!vdev->eps[ep_index].stream_info)
3467 goto cleanup;
3468 /* Set maxPstreams in endpoint context and update deq ptr to
3469 * point to stream context array. FIXME
3470 */
3471 }
3472
3473 /* Set up the input context for a configure endpoint command. */
3474 for (i = 0; i < num_eps; i++) {
3475 struct xhci_ep_ctx *ep_ctx;
3476
3477 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3478 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3479
3480 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3481 vdev->out_ctx, ep_index);
3482 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3483 vdev->eps[ep_index].stream_info);
3484 }
3485 /* Tell the HW to drop its old copy of the endpoint context info
3486 * and add the updated copy from the input context.
3487 */
3488 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3489 vdev->out_ctx, ctrl_ctx,
3490 changed_ep_bitmask, changed_ep_bitmask);
3491
3492 /* Issue and wait for the configure endpoint command */
3493 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3494 false, false);
3495
3496 /* xHC rejected the configure endpoint command for some reason, so we
3497 * leave the old ring intact and free our internal streams data
3498 * structure.
3499 */
3500 if (ret < 0)
3501 goto cleanup;
3502
3503 spin_lock_irqsave(&xhci->lock, flags);
3504 for (i = 0; i < num_eps; i++) {
3505 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3506 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3507 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3508 udev->slot_id, ep_index);
3509 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3510 }
3511 xhci_free_command(xhci, config_cmd);
3512 spin_unlock_irqrestore(&xhci->lock, flags);
3513
3514 for (i = 0; i < num_eps; i++) {
3515 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3516 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3517 }
3518 /* Subtract 1 for stream 0, which drivers can't use */
3519 return num_streams - 1;
3520
3521 cleanup:
3522 /* If it didn't work, free the streams! */
3523 for (i = 0; i < num_eps; i++) {
3524 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3525 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3526 vdev->eps[ep_index].stream_info = NULL;
3527 /* FIXME Unset maxPstreams in endpoint context and
3528 * update deq ptr to point to normal string ring.
3529 */
3530 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3531 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3532 xhci_endpoint_zero(xhci, vdev, eps[i]);
3533 }
3534 xhci_free_command(xhci, config_cmd);
3535 return -ENOMEM;
3536 }
3537
3538 /* Transition the endpoint from using streams to being a "normal" endpoint
3539 * without streams.
3540 *
3541 * Modify the endpoint context state, submit a configure endpoint command,
3542 * and free all endpoint rings for streams if that completes successfully.
3543 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3544 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3545 struct usb_host_endpoint **eps, unsigned int num_eps,
3546 gfp_t mem_flags)
3547 {
3548 int i, ret;
3549 struct xhci_hcd *xhci;
3550 struct xhci_virt_device *vdev;
3551 struct xhci_command *command;
3552 struct xhci_input_control_ctx *ctrl_ctx;
3553 unsigned int ep_index;
3554 unsigned long flags;
3555 u32 changed_ep_bitmask;
3556
3557 xhci = hcd_to_xhci(hcd);
3558 vdev = xhci->devs[udev->slot_id];
3559
3560 /* Set up a configure endpoint command to remove the streams rings */
3561 spin_lock_irqsave(&xhci->lock, flags);
3562 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3563 udev, eps, num_eps);
3564 if (changed_ep_bitmask == 0) {
3565 spin_unlock_irqrestore(&xhci->lock, flags);
3566 return -EINVAL;
3567 }
3568
3569 /* Use the xhci_command structure from the first endpoint. We may have
3570 * allocated too many, but the driver may call xhci_free_streams() for
3571 * each endpoint it grouped into one call to xhci_alloc_streams().
3572 */
3573 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3574 command = vdev->eps[ep_index].stream_info->free_streams_command;
3575 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3576 if (!ctrl_ctx) {
3577 spin_unlock_irqrestore(&xhci->lock, flags);
3578 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3579 __func__);
3580 return -EINVAL;
3581 }
3582
3583 for (i = 0; i < num_eps; i++) {
3584 struct xhci_ep_ctx *ep_ctx;
3585
3586 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3587 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3588 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3589 EP_GETTING_NO_STREAMS;
3590
3591 xhci_endpoint_copy(xhci, command->in_ctx,
3592 vdev->out_ctx, ep_index);
3593 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3594 &vdev->eps[ep_index]);
3595 }
3596 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3597 vdev->out_ctx, ctrl_ctx,
3598 changed_ep_bitmask, changed_ep_bitmask);
3599 spin_unlock_irqrestore(&xhci->lock, flags);
3600
3601 /* Issue and wait for the configure endpoint command,
3602 * which must succeed.
3603 */
3604 ret = xhci_configure_endpoint(xhci, udev, command,
3605 false, true);
3606
3607 /* xHC rejected the configure endpoint command for some reason, so we
3608 * leave the streams rings intact.
3609 */
3610 if (ret < 0)
3611 return ret;
3612
3613 spin_lock_irqsave(&xhci->lock, flags);
3614 for (i = 0; i < num_eps; i++) {
3615 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3616 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3617 vdev->eps[ep_index].stream_info = NULL;
3618 /* FIXME Unset maxPstreams in endpoint context and
3619 * update deq ptr to point to normal string ring.
3620 */
3621 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3622 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3623 }
3624 spin_unlock_irqrestore(&xhci->lock, flags);
3625
3626 return 0;
3627 }
3628
3629 /*
3630 * Deletes endpoint resources for endpoints that were active before a Reset
3631 * Device command, or a Disable Slot command. The Reset Device command leaves
3632 * the control endpoint intact, whereas the Disable Slot command deletes it.
3633 *
3634 * Must be called with xhci->lock held.
3635 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3636 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3637 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3638 {
3639 int i;
3640 unsigned int num_dropped_eps = 0;
3641 unsigned int drop_flags = 0;
3642
3643 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3644 if (virt_dev->eps[i].ring) {
3645 drop_flags |= 1 << i;
3646 num_dropped_eps++;
3647 }
3648 }
3649 xhci->num_active_eps -= num_dropped_eps;
3650 if (num_dropped_eps)
3651 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3652 "Dropped %u ep ctxs, flags = 0x%x, "
3653 "%u now active.",
3654 num_dropped_eps, drop_flags,
3655 xhci->num_active_eps);
3656 }
3657
3658 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
3659
3660 /*
3661 * This submits a Reset Device Command, which will set the device state to 0,
3662 * set the device address to 0, and disable all the endpoints except the default
3663 * control endpoint. The USB core should come back and call
3664 * xhci_address_device(), and then re-set up the configuration. If this is
3665 * called because of a usb_reset_and_verify_device(), then the old alternate
3666 * settings will be re-installed through the normal bandwidth allocation
3667 * functions.
3668 *
3669 * Wait for the Reset Device command to finish. Remove all structures
3670 * associated with the endpoints that were disabled. Clear the input device
3671 * structure? Reset the control endpoint 0 max packet size?
3672 *
3673 * If the virt_dev to be reset does not exist or does not match the udev,
3674 * it means the device is lost, possibly due to the xHC restore error and
3675 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3676 * re-allocate the device.
3677 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3678 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3679 struct usb_device *udev)
3680 {
3681 int ret, i;
3682 unsigned long flags;
3683 struct xhci_hcd *xhci;
3684 unsigned int slot_id;
3685 struct xhci_virt_device *virt_dev;
3686 struct xhci_command *reset_device_cmd;
3687 struct xhci_slot_ctx *slot_ctx;
3688 int old_active_eps = 0;
3689
3690 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3691 if (ret <= 0)
3692 return ret;
3693 xhci = hcd_to_xhci(hcd);
3694 slot_id = udev->slot_id;
3695 virt_dev = xhci->devs[slot_id];
3696 if (!virt_dev) {
3697 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3698 "not exist. Re-allocate the device\n", slot_id);
3699 ret = xhci_alloc_dev(hcd, udev);
3700 if (ret == 1)
3701 return 0;
3702 else
3703 return -EINVAL;
3704 }
3705
3706 if (virt_dev->tt_info)
3707 old_active_eps = virt_dev->tt_info->active_eps;
3708
3709 if (virt_dev->udev != udev) {
3710 /* If the virt_dev and the udev does not match, this virt_dev
3711 * may belong to another udev.
3712 * Re-allocate the device.
3713 */
3714 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3715 "not match the udev. Re-allocate the device\n",
3716 slot_id);
3717 ret = xhci_alloc_dev(hcd, udev);
3718 if (ret == 1)
3719 return 0;
3720 else
3721 return -EINVAL;
3722 }
3723
3724 /* If device is not setup, there is no point in resetting it */
3725 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3726 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3727 SLOT_STATE_DISABLED)
3728 return 0;
3729
3730 if (xhci->quirks & XHCI_ETRON_HOST) {
3731 /*
3732 * Obtaining a new device slot to inform the xHCI host that
3733 * the USB device has been reset.
3734 */
3735 ret = xhci_disable_slot(xhci, udev->slot_id);
3736 xhci_free_virt_device(xhci, udev->slot_id);
3737 if (!ret) {
3738 ret = xhci_alloc_dev(hcd, udev);
3739 if (ret == 1)
3740 ret = 0;
3741 else
3742 ret = -EINVAL;
3743 }
3744 return ret;
3745 }
3746
3747 trace_xhci_discover_or_reset_device(slot_ctx);
3748
3749 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3750 /* Allocate the command structure that holds the struct completion.
3751 * Assume we're in process context, since the normal device reset
3752 * process has to wait for the device anyway. Storage devices are
3753 * reset as part of error handling, so use GFP_NOIO instead of
3754 * GFP_KERNEL.
3755 */
3756 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3757 if (!reset_device_cmd) {
3758 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3759 return -ENOMEM;
3760 }
3761
3762 /* Attempt to submit the Reset Device command to the command ring */
3763 spin_lock_irqsave(&xhci->lock, flags);
3764
3765 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3766 if (ret) {
3767 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3768 spin_unlock_irqrestore(&xhci->lock, flags);
3769 goto command_cleanup;
3770 }
3771 xhci_ring_cmd_db(xhci);
3772 spin_unlock_irqrestore(&xhci->lock, flags);
3773
3774 /* Wait for the Reset Device command to finish */
3775 wait_for_completion(reset_device_cmd->completion);
3776
3777 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3778 * unless we tried to reset a slot ID that wasn't enabled,
3779 * or the device wasn't in the addressed or configured state.
3780 */
3781 ret = reset_device_cmd->status;
3782 switch (ret) {
3783 case COMP_COMMAND_ABORTED:
3784 case COMP_COMMAND_RING_STOPPED:
3785 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3786 ret = -ETIME;
3787 goto command_cleanup;
3788 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3789 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3790 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3791 slot_id,
3792 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3793 xhci_dbg(xhci, "Not freeing device rings.\n");
3794 /* Don't treat this as an error. May change my mind later. */
3795 ret = 0;
3796 goto command_cleanup;
3797 case COMP_SUCCESS:
3798 xhci_dbg(xhci, "Successful reset device command.\n");
3799 break;
3800 default:
3801 if (xhci_is_vendor_info_code(xhci, ret))
3802 break;
3803 xhci_warn(xhci, "Unknown completion code %u for "
3804 "reset device command.\n", ret);
3805 ret = -EINVAL;
3806 goto command_cleanup;
3807 }
3808
3809 /* Free up host controller endpoint resources */
3810 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3811 spin_lock_irqsave(&xhci->lock, flags);
3812 /* Don't delete the default control endpoint resources */
3813 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3814 spin_unlock_irqrestore(&xhci->lock, flags);
3815 }
3816
3817 /* Everything but endpoint 0 is disabled, so free the rings. */
3818 for (i = 1; i < 31; i++) {
3819 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3820
3821 if (ep->ep_state & EP_HAS_STREAMS) {
3822 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3823 xhci_get_endpoint_address(i));
3824 xhci_free_stream_info(xhci, ep->stream_info);
3825 ep->stream_info = NULL;
3826 ep->ep_state &= ~EP_HAS_STREAMS;
3827 }
3828
3829 if (ep->ring) {
3830 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3831 xhci_free_endpoint_ring(xhci, virt_dev, i);
3832 }
3833 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3834 xhci_drop_ep_from_interval_table(xhci,
3835 &virt_dev->eps[i].bw_info,
3836 virt_dev->bw_table,
3837 udev,
3838 &virt_dev->eps[i],
3839 virt_dev->tt_info);
3840 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3841 }
3842 /* If necessary, update the number of active TTs on this root port */
3843 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3844 virt_dev->flags = 0;
3845 ret = 0;
3846
3847 command_cleanup:
3848 xhci_free_command(xhci, reset_device_cmd);
3849 return ret;
3850 }
3851
3852 /*
3853 * At this point, the struct usb_device is about to go away, the device has
3854 * disconnected, and all traffic has been stopped and the endpoints have been
3855 * disabled. Free any HC data structures associated with that device.
3856 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3857 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3858 {
3859 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3860 struct xhci_virt_device *virt_dev;
3861 struct xhci_slot_ctx *slot_ctx;
3862 unsigned long flags;
3863 int i, ret;
3864
3865 /*
3866 * We called pm_runtime_get_noresume when the device was attached.
3867 * Decrement the counter here to allow controller to runtime suspend
3868 * if no devices remain.
3869 */
3870 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3871 pm_runtime_put_noidle(hcd->self.controller);
3872
3873 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3874 /* If the host is halted due to driver unload, we still need to free the
3875 * device.
3876 */
3877 if (ret <= 0 && ret != -ENODEV)
3878 return;
3879
3880 virt_dev = xhci->devs[udev->slot_id];
3881 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3882 trace_xhci_free_dev(slot_ctx);
3883
3884 /* Stop any wayward timer functions (which may grab the lock) */
3885 for (i = 0; i < 31; i++)
3886 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3887 virt_dev->udev = NULL;
3888 xhci_disable_slot(xhci, udev->slot_id);
3889
3890 spin_lock_irqsave(&xhci->lock, flags);
3891 xhci_free_virt_device(xhci, udev->slot_id);
3892 spin_unlock_irqrestore(&xhci->lock, flags);
3893
3894 }
3895
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3896 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3897 {
3898 struct xhci_command *command;
3899 unsigned long flags;
3900 u32 state;
3901 int ret;
3902
3903 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3904 if (!command)
3905 return -ENOMEM;
3906
3907 xhci_debugfs_remove_slot(xhci, slot_id);
3908
3909 spin_lock_irqsave(&xhci->lock, flags);
3910 /* Don't disable the slot if the host controller is dead. */
3911 state = readl(&xhci->op_regs->status);
3912 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3913 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3914 spin_unlock_irqrestore(&xhci->lock, flags);
3915 kfree(command);
3916 return -ENODEV;
3917 }
3918
3919 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3920 slot_id);
3921 if (ret) {
3922 spin_unlock_irqrestore(&xhci->lock, flags);
3923 kfree(command);
3924 return ret;
3925 }
3926 xhci_ring_cmd_db(xhci);
3927 spin_unlock_irqrestore(&xhci->lock, flags);
3928
3929 wait_for_completion(command->completion);
3930
3931 if (command->status != COMP_SUCCESS)
3932 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3933 slot_id, command->status);
3934
3935 xhci_free_command(xhci, command);
3936
3937 return 0;
3938 }
3939
3940 /*
3941 * Checks if we have enough host controller resources for the default control
3942 * endpoint.
3943 *
3944 * Must be called with xhci->lock held.
3945 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3946 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3947 {
3948 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3949 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3950 "Not enough ep ctxs: "
3951 "%u active, need to add 1, limit is %u.",
3952 xhci->num_active_eps, xhci->limit_active_eps);
3953 return -ENOMEM;
3954 }
3955 xhci->num_active_eps += 1;
3956 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3957 "Adding 1 ep ctx, %u now active.",
3958 xhci->num_active_eps);
3959 return 0;
3960 }
3961
3962
3963 /*
3964 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3965 * timed out, or allocating memory failed. Returns 1 on success.
3966 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3967 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3968 {
3969 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3970 struct xhci_virt_device *vdev;
3971 struct xhci_slot_ctx *slot_ctx;
3972 unsigned long flags;
3973 int ret, slot_id;
3974 struct xhci_command *command;
3975
3976 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3977 if (!command)
3978 return 0;
3979
3980 spin_lock_irqsave(&xhci->lock, flags);
3981 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3982 if (ret) {
3983 spin_unlock_irqrestore(&xhci->lock, flags);
3984 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3985 xhci_free_command(xhci, command);
3986 return 0;
3987 }
3988 xhci_ring_cmd_db(xhci);
3989 spin_unlock_irqrestore(&xhci->lock, flags);
3990
3991 wait_for_completion(command->completion);
3992 slot_id = command->slot_id;
3993
3994 if (!slot_id || command->status != COMP_SUCCESS) {
3995 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
3996 xhci_trb_comp_code_string(command->status));
3997 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3998 HCS_MAX_SLOTS(
3999 readl(&xhci->cap_regs->hcs_params1)));
4000 xhci_free_command(xhci, command);
4001 return 0;
4002 }
4003
4004 xhci_free_command(xhci, command);
4005
4006 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4007 spin_lock_irqsave(&xhci->lock, flags);
4008 ret = xhci_reserve_host_control_ep_resources(xhci);
4009 if (ret) {
4010 spin_unlock_irqrestore(&xhci->lock, flags);
4011 xhci_warn(xhci, "Not enough host resources, "
4012 "active endpoint contexts = %u\n",
4013 xhci->num_active_eps);
4014 goto disable_slot;
4015 }
4016 spin_unlock_irqrestore(&xhci->lock, flags);
4017 }
4018 /* Use GFP_NOIO, since this function can be called from
4019 * xhci_discover_or_reset_device(), which may be called as part of
4020 * mass storage driver error handling.
4021 */
4022 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4023 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4024 goto disable_slot;
4025 }
4026 vdev = xhci->devs[slot_id];
4027 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4028 trace_xhci_alloc_dev(slot_ctx);
4029
4030 udev->slot_id = slot_id;
4031
4032 xhci_debugfs_create_slot(xhci, slot_id);
4033
4034 /*
4035 * If resetting upon resume, we can't put the controller into runtime
4036 * suspend if there is a device attached.
4037 */
4038 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4039 pm_runtime_get_noresume(hcd->self.controller);
4040
4041 /* Is this a LS or FS device under a HS hub? */
4042 /* Hub or peripherial? */
4043 return 1;
4044
4045 disable_slot:
4046 xhci_disable_slot(xhci, udev->slot_id);
4047 xhci_free_virt_device(xhci, udev->slot_id);
4048
4049 return 0;
4050 }
4051
4052 /**
4053 * xhci_setup_device - issues an Address Device command to assign a unique
4054 * USB bus address.
4055 * @hcd: USB host controller data structure.
4056 * @udev: USB dev structure representing the connected device.
4057 * @setup: Enum specifying setup mode: address only or with context.
4058 * @timeout_ms: Max wait time (ms) for the command operation to complete.
4059 *
4060 * Return: 0 if successful; otherwise, negative error code.
4061 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4062 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4063 enum xhci_setup_dev setup, unsigned int timeout_ms)
4064 {
4065 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4066 unsigned long flags;
4067 struct xhci_virt_device *virt_dev;
4068 int ret = 0;
4069 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4070 struct xhci_slot_ctx *slot_ctx;
4071 struct xhci_input_control_ctx *ctrl_ctx;
4072 u64 temp_64;
4073 struct xhci_command *command = NULL;
4074
4075 mutex_lock(&xhci->mutex);
4076
4077 if (xhci->xhc_state) { /* dying, removing or halted */
4078 ret = -ESHUTDOWN;
4079 goto out;
4080 }
4081
4082 if (!udev->slot_id) {
4083 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4084 "Bad Slot ID %d", udev->slot_id);
4085 ret = -EINVAL;
4086 goto out;
4087 }
4088
4089 virt_dev = xhci->devs[udev->slot_id];
4090
4091 if (WARN_ON(!virt_dev)) {
4092 /*
4093 * In plug/unplug torture test with an NEC controller,
4094 * a zero-dereference was observed once due to virt_dev = 0.
4095 * Print useful debug rather than crash if it is observed again!
4096 */
4097 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4098 udev->slot_id);
4099 ret = -EINVAL;
4100 goto out;
4101 }
4102 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4103 trace_xhci_setup_device_slot(slot_ctx);
4104
4105 if (setup == SETUP_CONTEXT_ONLY) {
4106 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4107 SLOT_STATE_DEFAULT) {
4108 xhci_dbg(xhci, "Slot already in default state\n");
4109 goto out;
4110 }
4111 }
4112
4113 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4114 if (!command) {
4115 ret = -ENOMEM;
4116 goto out;
4117 }
4118
4119 command->in_ctx = virt_dev->in_ctx;
4120 command->timeout_ms = timeout_ms;
4121
4122 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4123 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4124 if (!ctrl_ctx) {
4125 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4126 __func__);
4127 ret = -EINVAL;
4128 goto out;
4129 }
4130 /*
4131 * If this is the first Set Address since device plug-in or
4132 * virt_device realloaction after a resume with an xHCI power loss,
4133 * then set up the slot context.
4134 */
4135 if (!slot_ctx->dev_info)
4136 xhci_setup_addressable_virt_dev(xhci, udev);
4137 /* Otherwise, update the control endpoint ring enqueue pointer. */
4138 else
4139 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4140 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4141 ctrl_ctx->drop_flags = 0;
4142
4143 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4144 le32_to_cpu(slot_ctx->dev_info) >> 27);
4145
4146 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4147 spin_lock_irqsave(&xhci->lock, flags);
4148 trace_xhci_setup_device(virt_dev);
4149 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4150 udev->slot_id, setup);
4151 if (ret) {
4152 spin_unlock_irqrestore(&xhci->lock, flags);
4153 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4154 "FIXME: allocate a command ring segment");
4155 goto out;
4156 }
4157 xhci_ring_cmd_db(xhci);
4158 spin_unlock_irqrestore(&xhci->lock, flags);
4159
4160 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4161 wait_for_completion(command->completion);
4162
4163 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4164 * the SetAddress() "recovery interval" required by USB and aborting the
4165 * command on a timeout.
4166 */
4167 switch (command->status) {
4168 case COMP_COMMAND_ABORTED:
4169 case COMP_COMMAND_RING_STOPPED:
4170 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4171 ret = -ETIME;
4172 break;
4173 case COMP_CONTEXT_STATE_ERROR:
4174 case COMP_SLOT_NOT_ENABLED_ERROR:
4175 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4176 act, udev->slot_id);
4177 ret = -EINVAL;
4178 break;
4179 case COMP_USB_TRANSACTION_ERROR:
4180 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4181
4182 mutex_unlock(&xhci->mutex);
4183 ret = xhci_disable_slot(xhci, udev->slot_id);
4184 xhci_free_virt_device(xhci, udev->slot_id);
4185 if (!ret) {
4186 if (xhci_alloc_dev(hcd, udev) == 1)
4187 xhci_setup_addressable_virt_dev(xhci, udev);
4188 }
4189 kfree(command->completion);
4190 kfree(command);
4191 return -EPROTO;
4192 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4193 dev_warn(&udev->dev,
4194 "ERROR: Incompatible device for setup %s command\n", act);
4195 ret = -ENODEV;
4196 break;
4197 case COMP_SUCCESS:
4198 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4199 "Successful setup %s command", act);
4200 break;
4201 default:
4202 xhci_err(xhci,
4203 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4204 act, command->status);
4205 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4206 ret = -EINVAL;
4207 break;
4208 }
4209 if (ret)
4210 goto out;
4211 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4212 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4213 "Op regs DCBAA ptr = %#016llx", temp_64);
4214 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4215 "Slot ID %d dcbaa entry @%p = %#016llx",
4216 udev->slot_id,
4217 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4218 (unsigned long long)
4219 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4220 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4221 "Output Context DMA address = %#08llx",
4222 (unsigned long long)virt_dev->out_ctx->dma);
4223 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4224 le32_to_cpu(slot_ctx->dev_info) >> 27);
4225 /*
4226 * USB core uses address 1 for the roothubs, so we add one to the
4227 * address given back to us by the HC.
4228 */
4229 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4230 le32_to_cpu(slot_ctx->dev_info) >> 27);
4231 /* Zero the input context control for later use */
4232 ctrl_ctx->add_flags = 0;
4233 ctrl_ctx->drop_flags = 0;
4234 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4235 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4236
4237 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4238 "Internal device address = %d",
4239 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4240 out:
4241 mutex_unlock(&xhci->mutex);
4242 if (command) {
4243 kfree(command->completion);
4244 kfree(command);
4245 }
4246 return ret;
4247 }
4248
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4249 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4250 unsigned int timeout_ms)
4251 {
4252 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4253 }
4254
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4255 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4256 {
4257 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4258 XHCI_CMD_DEFAULT_TIMEOUT);
4259 }
4260
4261 /*
4262 * Transfer the port index into real index in the HW port status
4263 * registers. Caculate offset between the port's PORTSC register
4264 * and port status base. Divide the number of per port register
4265 * to get the real index. The raw port number bases 1.
4266 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4267 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4268 {
4269 struct xhci_hub *rhub;
4270
4271 rhub = xhci_get_rhub(hcd);
4272 return rhub->ports[port1 - 1]->hw_portnum + 1;
4273 }
4274
4275 /*
4276 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4277 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4278 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4279 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4280 struct usb_device *udev, u16 max_exit_latency)
4281 {
4282 struct xhci_virt_device *virt_dev;
4283 struct xhci_command *command;
4284 struct xhci_input_control_ctx *ctrl_ctx;
4285 struct xhci_slot_ctx *slot_ctx;
4286 unsigned long flags;
4287 int ret;
4288
4289 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4290 if (!command)
4291 return -ENOMEM;
4292
4293 spin_lock_irqsave(&xhci->lock, flags);
4294
4295 virt_dev = xhci->devs[udev->slot_id];
4296
4297 /*
4298 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4299 * xHC was re-initialized. Exit latency will be set later after
4300 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4301 */
4302
4303 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4304 spin_unlock_irqrestore(&xhci->lock, flags);
4305 xhci_free_command(xhci, command);
4306 return 0;
4307 }
4308
4309 /* Attempt to issue an Evaluate Context command to change the MEL. */
4310 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4311 if (!ctrl_ctx) {
4312 spin_unlock_irqrestore(&xhci->lock, flags);
4313 xhci_free_command(xhci, command);
4314 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4315 __func__);
4316 return -ENOMEM;
4317 }
4318
4319 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4320 spin_unlock_irqrestore(&xhci->lock, flags);
4321
4322 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4323 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4324 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4325 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4326 slot_ctx->dev_state = 0;
4327
4328 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4329 "Set up evaluate context for LPM MEL change.");
4330
4331 /* Issue and wait for the evaluate context command. */
4332 ret = xhci_configure_endpoint(xhci, udev, command,
4333 true, true);
4334
4335 if (!ret) {
4336 spin_lock_irqsave(&xhci->lock, flags);
4337 virt_dev->current_mel = max_exit_latency;
4338 spin_unlock_irqrestore(&xhci->lock, flags);
4339 }
4340
4341 xhci_free_command(xhci, command);
4342
4343 return ret;
4344 }
4345
4346 #ifdef CONFIG_PM
4347
4348 /* BESL to HIRD Encoding array for USB2 LPM */
4349 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4350 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4351
4352 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4353 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4354 struct usb_device *udev)
4355 {
4356 int u2del, besl, besl_host;
4357 int besl_device = 0;
4358 u32 field;
4359
4360 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4361 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4362
4363 if (field & USB_BESL_SUPPORT) {
4364 for (besl_host = 0; besl_host < 16; besl_host++) {
4365 if (xhci_besl_encoding[besl_host] >= u2del)
4366 break;
4367 }
4368 /* Use baseline BESL value as default */
4369 if (field & USB_BESL_BASELINE_VALID)
4370 besl_device = USB_GET_BESL_BASELINE(field);
4371 else if (field & USB_BESL_DEEP_VALID)
4372 besl_device = USB_GET_BESL_DEEP(field);
4373 } else {
4374 if (u2del <= 50)
4375 besl_host = 0;
4376 else
4377 besl_host = (u2del - 51) / 75 + 1;
4378 }
4379
4380 besl = besl_host + besl_device;
4381 if (besl > 15)
4382 besl = 15;
4383
4384 return besl;
4385 }
4386
4387 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4388 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4389 {
4390 u32 field;
4391 int l1;
4392 int besld = 0;
4393 int hirdm = 0;
4394
4395 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4396
4397 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4398 l1 = udev->l1_params.timeout / 256;
4399
4400 /* device has preferred BESLD */
4401 if (field & USB_BESL_DEEP_VALID) {
4402 besld = USB_GET_BESL_DEEP(field);
4403 hirdm = 1;
4404 }
4405
4406 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4407 }
4408
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4409 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4410 struct usb_device *udev, int enable)
4411 {
4412 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4413 struct xhci_port **ports;
4414 __le32 __iomem *pm_addr, *hlpm_addr;
4415 u32 pm_val, hlpm_val, field;
4416 unsigned int port_num;
4417 unsigned long flags;
4418 int hird, exit_latency;
4419 int ret;
4420
4421 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4422 return -EPERM;
4423
4424 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4425 !udev->lpm_capable)
4426 return -EPERM;
4427
4428 if (!udev->parent || udev->parent->parent ||
4429 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4430 return -EPERM;
4431
4432 if (udev->usb2_hw_lpm_capable != 1)
4433 return -EPERM;
4434
4435 spin_lock_irqsave(&xhci->lock, flags);
4436
4437 ports = xhci->usb2_rhub.ports;
4438 port_num = udev->portnum - 1;
4439 pm_addr = ports[port_num]->addr + PORTPMSC;
4440 pm_val = readl(pm_addr);
4441 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4442
4443 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4444 enable ? "enable" : "disable", port_num + 1);
4445
4446 if (enable) {
4447 /* Host supports BESL timeout instead of HIRD */
4448 if (udev->usb2_hw_lpm_besl_capable) {
4449 /* if device doesn't have a preferred BESL value use a
4450 * default one which works with mixed HIRD and BESL
4451 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4452 */
4453 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4454 if ((field & USB_BESL_SUPPORT) &&
4455 (field & USB_BESL_BASELINE_VALID))
4456 hird = USB_GET_BESL_BASELINE(field);
4457 else
4458 hird = udev->l1_params.besl;
4459
4460 exit_latency = xhci_besl_encoding[hird];
4461 spin_unlock_irqrestore(&xhci->lock, flags);
4462
4463 ret = xhci_change_max_exit_latency(xhci, udev,
4464 exit_latency);
4465 if (ret < 0)
4466 return ret;
4467 spin_lock_irqsave(&xhci->lock, flags);
4468
4469 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4470 writel(hlpm_val, hlpm_addr);
4471 /* flush write */
4472 readl(hlpm_addr);
4473 } else {
4474 hird = xhci_calculate_hird_besl(xhci, udev);
4475 }
4476
4477 pm_val &= ~PORT_HIRD_MASK;
4478 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4479 writel(pm_val, pm_addr);
4480 pm_val = readl(pm_addr);
4481 pm_val |= PORT_HLE;
4482 writel(pm_val, pm_addr);
4483 /* flush write */
4484 readl(pm_addr);
4485 } else {
4486 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4487 writel(pm_val, pm_addr);
4488 /* flush write */
4489 readl(pm_addr);
4490 if (udev->usb2_hw_lpm_besl_capable) {
4491 spin_unlock_irqrestore(&xhci->lock, flags);
4492 xhci_change_max_exit_latency(xhci, udev, 0);
4493 readl_poll_timeout(ports[port_num]->addr, pm_val,
4494 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4495 100, 10000);
4496 return 0;
4497 }
4498 }
4499
4500 spin_unlock_irqrestore(&xhci->lock, flags);
4501 return 0;
4502 }
4503
4504 /* check if a usb2 port supports a given extened capability protocol
4505 * only USB2 ports extended protocol capability values are cached.
4506 * Return 1 if capability is supported
4507 */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4508 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4509 unsigned capability)
4510 {
4511 u32 port_offset, port_count;
4512 int i;
4513
4514 for (i = 0; i < xhci->num_ext_caps; i++) {
4515 if (xhci->ext_caps[i] & capability) {
4516 /* port offsets starts at 1 */
4517 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4518 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4519 if (port >= port_offset &&
4520 port < port_offset + port_count)
4521 return 1;
4522 }
4523 }
4524 return 0;
4525 }
4526
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4527 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4528 {
4529 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4530 int portnum = udev->portnum - 1;
4531
4532 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4533 return 0;
4534
4535 /* we only support lpm for non-hub device connected to root hub yet */
4536 if (!udev->parent || udev->parent->parent ||
4537 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4538 return 0;
4539
4540 if (xhci->hw_lpm_support == 1 &&
4541 xhci_check_usb2_port_capability(
4542 xhci, portnum, XHCI_HLC)) {
4543 udev->usb2_hw_lpm_capable = 1;
4544 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4545 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4546 if (xhci_check_usb2_port_capability(xhci, portnum,
4547 XHCI_BLC))
4548 udev->usb2_hw_lpm_besl_capable = 1;
4549 }
4550
4551 return 0;
4552 }
4553
4554 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4555
4556 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4557 static unsigned long long xhci_service_interval_to_ns(
4558 struct usb_endpoint_descriptor *desc)
4559 {
4560 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4561 }
4562
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4563 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4564 enum usb3_link_state state)
4565 {
4566 unsigned long long sel;
4567 unsigned long long pel;
4568 unsigned int max_sel_pel;
4569 char *state_name;
4570
4571 switch (state) {
4572 case USB3_LPM_U1:
4573 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4574 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4575 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4576 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4577 state_name = "U1";
4578 break;
4579 case USB3_LPM_U2:
4580 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4581 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4582 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4583 state_name = "U2";
4584 break;
4585 default:
4586 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4587 __func__);
4588 return USB3_LPM_DISABLED;
4589 }
4590
4591 if (sel <= max_sel_pel && pel <= max_sel_pel)
4592 return USB3_LPM_DEVICE_INITIATED;
4593
4594 if (sel > max_sel_pel)
4595 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4596 "due to long SEL %llu ms\n",
4597 state_name, sel);
4598 else
4599 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4600 "due to long PEL %llu ms\n",
4601 state_name, pel);
4602 return USB3_LPM_DISABLED;
4603 }
4604
4605 /* The U1 timeout should be the maximum of the following values:
4606 * - For control endpoints, U1 system exit latency (SEL) * 3
4607 * - For bulk endpoints, U1 SEL * 5
4608 * - For interrupt endpoints:
4609 * - Notification EPs, U1 SEL * 3
4610 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4611 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4612 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4613 static unsigned long long xhci_calculate_intel_u1_timeout(
4614 struct usb_device *udev,
4615 struct usb_endpoint_descriptor *desc)
4616 {
4617 unsigned long long timeout_ns;
4618 int ep_type;
4619 int intr_type;
4620
4621 ep_type = usb_endpoint_type(desc);
4622 switch (ep_type) {
4623 case USB_ENDPOINT_XFER_CONTROL:
4624 timeout_ns = udev->u1_params.sel * 3;
4625 break;
4626 case USB_ENDPOINT_XFER_BULK:
4627 timeout_ns = udev->u1_params.sel * 5;
4628 break;
4629 case USB_ENDPOINT_XFER_INT:
4630 intr_type = usb_endpoint_interrupt_type(desc);
4631 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4632 timeout_ns = udev->u1_params.sel * 3;
4633 break;
4634 }
4635 /* Otherwise the calculation is the same as isoc eps */
4636 fallthrough;
4637 case USB_ENDPOINT_XFER_ISOC:
4638 timeout_ns = xhci_service_interval_to_ns(desc);
4639 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4640 if (timeout_ns < udev->u1_params.sel * 2)
4641 timeout_ns = udev->u1_params.sel * 2;
4642 break;
4643 default:
4644 return 0;
4645 }
4646
4647 return timeout_ns;
4648 }
4649
4650 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4651 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4652 struct usb_device *udev,
4653 struct usb_endpoint_descriptor *desc)
4654 {
4655 unsigned long long timeout_ns;
4656
4657 /* Prevent U1 if service interval is shorter than U1 exit latency */
4658 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4659 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4660 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4661 return USB3_LPM_DISABLED;
4662 }
4663 }
4664
4665 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4666 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4667 else
4668 timeout_ns = udev->u1_params.sel;
4669
4670 /* The U1 timeout is encoded in 1us intervals.
4671 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4672 */
4673 if (timeout_ns == USB3_LPM_DISABLED)
4674 timeout_ns = 1;
4675 else
4676 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4677
4678 /* If the necessary timeout value is bigger than what we can set in the
4679 * USB 3.0 hub, we have to disable hub-initiated U1.
4680 */
4681 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4682 return timeout_ns;
4683 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4684 "due to long timeout %llu ms\n", timeout_ns);
4685 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4686 }
4687
4688 /* The U2 timeout should be the maximum of:
4689 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4690 * - largest bInterval of any active periodic endpoint (to avoid going
4691 * into lower power link states between intervals).
4692 * - the U2 Exit Latency of the device
4693 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4694 static unsigned long long xhci_calculate_intel_u2_timeout(
4695 struct usb_device *udev,
4696 struct usb_endpoint_descriptor *desc)
4697 {
4698 unsigned long long timeout_ns;
4699 unsigned long long u2_del_ns;
4700
4701 timeout_ns = 10 * 1000 * 1000;
4702
4703 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4704 (xhci_service_interval_to_ns(desc) > timeout_ns))
4705 timeout_ns = xhci_service_interval_to_ns(desc);
4706
4707 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4708 if (u2_del_ns > timeout_ns)
4709 timeout_ns = u2_del_ns;
4710
4711 return timeout_ns;
4712 }
4713
4714 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4715 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4716 struct usb_device *udev,
4717 struct usb_endpoint_descriptor *desc)
4718 {
4719 unsigned long long timeout_ns;
4720
4721 /* Prevent U2 if service interval is shorter than U2 exit latency */
4722 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4723 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4724 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4725 return USB3_LPM_DISABLED;
4726 }
4727 }
4728
4729 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4730 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4731 else
4732 timeout_ns = udev->u2_params.sel;
4733
4734 /* The U2 timeout is encoded in 256us intervals */
4735 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4736 /* If the necessary timeout value is bigger than what we can set in the
4737 * USB 3.0 hub, we have to disable hub-initiated U2.
4738 */
4739 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4740 return timeout_ns;
4741 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4742 "due to long timeout %llu ms\n", timeout_ns);
4743 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4744 }
4745
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4746 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4747 struct usb_device *udev,
4748 struct usb_endpoint_descriptor *desc,
4749 enum usb3_link_state state,
4750 u16 *timeout)
4751 {
4752 if (state == USB3_LPM_U1)
4753 return xhci_calculate_u1_timeout(xhci, udev, desc);
4754 else if (state == USB3_LPM_U2)
4755 return xhci_calculate_u2_timeout(xhci, udev, desc);
4756
4757 return USB3_LPM_DISABLED;
4758 }
4759
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4760 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4761 struct usb_device *udev,
4762 struct usb_endpoint_descriptor *desc,
4763 enum usb3_link_state state,
4764 u16 *timeout)
4765 {
4766 u16 alt_timeout;
4767
4768 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4769 desc, state, timeout);
4770
4771 /* If we found we can't enable hub-initiated LPM, and
4772 * the U1 or U2 exit latency was too high to allow
4773 * device-initiated LPM as well, then we will disable LPM
4774 * for this device, so stop searching any further.
4775 */
4776 if (alt_timeout == USB3_LPM_DISABLED) {
4777 *timeout = alt_timeout;
4778 return -E2BIG;
4779 }
4780 if (alt_timeout > *timeout)
4781 *timeout = alt_timeout;
4782 return 0;
4783 }
4784
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4785 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4786 struct usb_device *udev,
4787 struct usb_host_interface *alt,
4788 enum usb3_link_state state,
4789 u16 *timeout)
4790 {
4791 int j;
4792
4793 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4794 if (xhci_update_timeout_for_endpoint(xhci, udev,
4795 &alt->endpoint[j].desc, state, timeout))
4796 return -E2BIG;
4797 }
4798 return 0;
4799 }
4800
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4801 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4802 struct usb_device *udev,
4803 enum usb3_link_state state)
4804 {
4805 struct usb_device *parent = udev->parent;
4806 int tier = 1; /* roothub is tier1 */
4807
4808 while (parent) {
4809 parent = parent->parent;
4810 tier++;
4811 }
4812
4813 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4814 goto fail;
4815 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4816 goto fail;
4817
4818 return 0;
4819 fail:
4820 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4821 tier);
4822 return -E2BIG;
4823 }
4824
4825 /* Returns the U1 or U2 timeout that should be enabled.
4826 * If the tier check or timeout setting functions return with a non-zero exit
4827 * code, that means the timeout value has been finalized and we shouldn't look
4828 * at any more endpoints.
4829 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4830 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4831 struct usb_device *udev, enum usb3_link_state state)
4832 {
4833 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4834 struct usb_host_config *config;
4835 char *state_name;
4836 int i;
4837 u16 timeout = USB3_LPM_DISABLED;
4838
4839 if (state == USB3_LPM_U1)
4840 state_name = "U1";
4841 else if (state == USB3_LPM_U2)
4842 state_name = "U2";
4843 else {
4844 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4845 state);
4846 return timeout;
4847 }
4848
4849 /* Gather some information about the currently installed configuration
4850 * and alternate interface settings.
4851 */
4852 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4853 state, &timeout))
4854 return timeout;
4855
4856 config = udev->actconfig;
4857 if (!config)
4858 return timeout;
4859
4860 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4861 struct usb_driver *driver;
4862 struct usb_interface *intf = config->interface[i];
4863
4864 if (!intf)
4865 continue;
4866
4867 /* Check if any currently bound drivers want hub-initiated LPM
4868 * disabled.
4869 */
4870 if (intf->dev.driver) {
4871 driver = to_usb_driver(intf->dev.driver);
4872 if (driver && driver->disable_hub_initiated_lpm) {
4873 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4874 state_name, driver->name);
4875 timeout = xhci_get_timeout_no_hub_lpm(udev,
4876 state);
4877 if (timeout == USB3_LPM_DISABLED)
4878 return timeout;
4879 }
4880 }
4881
4882 /* Not sure how this could happen... */
4883 if (!intf->cur_altsetting)
4884 continue;
4885
4886 if (xhci_update_timeout_for_interface(xhci, udev,
4887 intf->cur_altsetting,
4888 state, &timeout))
4889 return timeout;
4890 }
4891 return timeout;
4892 }
4893
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4894 static int calculate_max_exit_latency(struct usb_device *udev,
4895 enum usb3_link_state state_changed,
4896 u16 hub_encoded_timeout)
4897 {
4898 unsigned long long u1_mel_us = 0;
4899 unsigned long long u2_mel_us = 0;
4900 unsigned long long mel_us = 0;
4901 bool disabling_u1;
4902 bool disabling_u2;
4903 bool enabling_u1;
4904 bool enabling_u2;
4905
4906 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4907 hub_encoded_timeout == USB3_LPM_DISABLED);
4908 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4909 hub_encoded_timeout == USB3_LPM_DISABLED);
4910
4911 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4912 hub_encoded_timeout != USB3_LPM_DISABLED);
4913 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4914 hub_encoded_timeout != USB3_LPM_DISABLED);
4915
4916 /* If U1 was already enabled and we're not disabling it,
4917 * or we're going to enable U1, account for the U1 max exit latency.
4918 */
4919 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4920 enabling_u1)
4921 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4922 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4923 enabling_u2)
4924 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4925
4926 mel_us = max(u1_mel_us, u2_mel_us);
4927
4928 /* xHCI host controller max exit latency field is only 16 bits wide. */
4929 if (mel_us > MAX_EXIT) {
4930 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4931 "is too big.\n", mel_us);
4932 return -E2BIG;
4933 }
4934 return mel_us;
4935 }
4936
4937 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4938 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4939 struct usb_device *udev, enum usb3_link_state state)
4940 {
4941 struct xhci_hcd *xhci;
4942 struct xhci_port *port;
4943 u16 hub_encoded_timeout;
4944 int mel;
4945 int ret;
4946
4947 xhci = hcd_to_xhci(hcd);
4948 /* The LPM timeout values are pretty host-controller specific, so don't
4949 * enable hub-initiated timeouts unless the vendor has provided
4950 * information about their timeout algorithm.
4951 */
4952 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4953 !xhci->devs[udev->slot_id])
4954 return USB3_LPM_DISABLED;
4955
4956 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4957 return USB3_LPM_DISABLED;
4958
4959 /* If connected to root port then check port can handle lpm */
4960 if (udev->parent && !udev->parent->parent) {
4961 port = xhci->usb3_rhub.ports[udev->portnum - 1];
4962 if (port->lpm_incapable)
4963 return USB3_LPM_DISABLED;
4964 }
4965
4966 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4967 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4968 if (mel < 0) {
4969 /* Max Exit Latency is too big, disable LPM. */
4970 hub_encoded_timeout = USB3_LPM_DISABLED;
4971 mel = 0;
4972 }
4973
4974 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4975 if (ret)
4976 return ret;
4977 return hub_encoded_timeout;
4978 }
4979
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4980 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4981 struct usb_device *udev, enum usb3_link_state state)
4982 {
4983 struct xhci_hcd *xhci;
4984 u16 mel;
4985
4986 xhci = hcd_to_xhci(hcd);
4987 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4988 !xhci->devs[udev->slot_id])
4989 return 0;
4990
4991 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4992 return xhci_change_max_exit_latency(xhci, udev, mel);
4993 }
4994 #else /* CONFIG_PM */
4995
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4996 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4997 struct usb_device *udev, int enable)
4998 {
4999 return 0;
5000 }
5001
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5002 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5003 {
5004 return 0;
5005 }
5006
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5007 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5008 struct usb_device *udev, enum usb3_link_state state)
5009 {
5010 return USB3_LPM_DISABLED;
5011 }
5012
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5013 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5014 struct usb_device *udev, enum usb3_link_state state)
5015 {
5016 return 0;
5017 }
5018 #endif /* CONFIG_PM */
5019
5020 /*-------------------------------------------------------------------------*/
5021
5022 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5023 * internal data structures for the device.
5024 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5025 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5026 struct usb_tt *tt, gfp_t mem_flags)
5027 {
5028 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5029 struct xhci_virt_device *vdev;
5030 struct xhci_command *config_cmd;
5031 struct xhci_input_control_ctx *ctrl_ctx;
5032 struct xhci_slot_ctx *slot_ctx;
5033 unsigned long flags;
5034 unsigned think_time;
5035 int ret;
5036
5037 /* Ignore root hubs */
5038 if (!hdev->parent)
5039 return 0;
5040
5041 vdev = xhci->devs[hdev->slot_id];
5042 if (!vdev) {
5043 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5044 return -EINVAL;
5045 }
5046
5047 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5048 if (!config_cmd)
5049 return -ENOMEM;
5050
5051 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5052 if (!ctrl_ctx) {
5053 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5054 __func__);
5055 xhci_free_command(xhci, config_cmd);
5056 return -ENOMEM;
5057 }
5058
5059 spin_lock_irqsave(&xhci->lock, flags);
5060 if (hdev->speed == USB_SPEED_HIGH &&
5061 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5062 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5063 xhci_free_command(xhci, config_cmd);
5064 spin_unlock_irqrestore(&xhci->lock, flags);
5065 return -ENOMEM;
5066 }
5067
5068 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5069 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5070 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5071 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5072 /*
5073 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5074 * but it may be already set to 1 when setup an xHCI virtual
5075 * device, so clear it anyway.
5076 */
5077 if (tt->multi)
5078 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5079 else if (hdev->speed == USB_SPEED_FULL)
5080 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5081
5082 if (xhci->hci_version > 0x95) {
5083 xhci_dbg(xhci, "xHCI version %x needs hub "
5084 "TT think time and number of ports\n",
5085 (unsigned int) xhci->hci_version);
5086 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5087 /* Set TT think time - convert from ns to FS bit times.
5088 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5089 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5090 *
5091 * xHCI 1.0: this field shall be 0 if the device is not a
5092 * High-spped hub.
5093 */
5094 think_time = tt->think_time;
5095 if (think_time != 0)
5096 think_time = (think_time / 666) - 1;
5097 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5098 slot_ctx->tt_info |=
5099 cpu_to_le32(TT_THINK_TIME(think_time));
5100 } else {
5101 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5102 "TT think time or number of ports\n",
5103 (unsigned int) xhci->hci_version);
5104 }
5105 slot_ctx->dev_state = 0;
5106 spin_unlock_irqrestore(&xhci->lock, flags);
5107
5108 xhci_dbg(xhci, "Set up %s for hub device.\n",
5109 (xhci->hci_version > 0x95) ?
5110 "configure endpoint" : "evaluate context");
5111
5112 /* Issue and wait for the configure endpoint or
5113 * evaluate context command.
5114 */
5115 if (xhci->hci_version > 0x95)
5116 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5117 false, false);
5118 else
5119 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5120 true, false);
5121
5122 xhci_free_command(xhci, config_cmd);
5123 return ret;
5124 }
5125 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5126
xhci_get_frame(struct usb_hcd * hcd)5127 static int xhci_get_frame(struct usb_hcd *hcd)
5128 {
5129 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5130 /* EHCI mods by the periodic size. Why? */
5131 return readl(&xhci->run_regs->microframe_index) >> 3;
5132 }
5133
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5134 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5135 {
5136 xhci->usb2_rhub.hcd = hcd;
5137 hcd->speed = HCD_USB2;
5138 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5139 /*
5140 * USB 2.0 roothub under xHCI has an integrated TT,
5141 * (rate matching hub) as opposed to having an OHCI/UHCI
5142 * companion controller.
5143 */
5144 hcd->has_tt = 1;
5145 }
5146
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5147 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5148 {
5149 unsigned int minor_rev;
5150
5151 /*
5152 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5153 * should return 0x31 for sbrn, or that the minor revision
5154 * is a two digit BCD containig minor and sub-minor numbers.
5155 * This was later clarified in xHCI 1.2.
5156 *
5157 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5158 * minor revision set to 0x1 instead of 0x10.
5159 */
5160 if (xhci->usb3_rhub.min_rev == 0x1)
5161 minor_rev = 1;
5162 else
5163 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5164
5165 switch (minor_rev) {
5166 case 2:
5167 hcd->speed = HCD_USB32;
5168 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5169 hcd->self.root_hub->rx_lanes = 2;
5170 hcd->self.root_hub->tx_lanes = 2;
5171 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5172 break;
5173 case 1:
5174 hcd->speed = HCD_USB31;
5175 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5176 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5177 break;
5178 }
5179 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5180 minor_rev, minor_rev ? "Enhanced " : "");
5181
5182 xhci->usb3_rhub.hcd = hcd;
5183 }
5184
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5185 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5186 {
5187 struct xhci_hcd *xhci;
5188 /*
5189 * TODO: Check with DWC3 clients for sysdev according to
5190 * quirks
5191 */
5192 struct device *dev = hcd->self.sysdev;
5193 int retval;
5194
5195 /* Accept arbitrarily long scatter-gather lists */
5196 hcd->self.sg_tablesize = ~0;
5197
5198 /* support to build packet from discontinuous buffers */
5199 hcd->self.no_sg_constraint = 1;
5200
5201 /* XHCI controllers don't stop the ep queue on short packets :| */
5202 hcd->self.no_stop_on_short = 1;
5203
5204 xhci = hcd_to_xhci(hcd);
5205
5206 if (!usb_hcd_is_primary_hcd(hcd)) {
5207 xhci_hcd_init_usb3_data(xhci, hcd);
5208 return 0;
5209 }
5210
5211 mutex_init(&xhci->mutex);
5212 xhci->main_hcd = hcd;
5213 xhci->cap_regs = hcd->regs;
5214 xhci->op_regs = hcd->regs +
5215 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5216 xhci->run_regs = hcd->regs +
5217 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5218 /* Cache read-only capability registers */
5219 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5220 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5221 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5222 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5223 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5224 if (xhci->hci_version > 0x100)
5225 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5226
5227 /* xhci-plat or xhci-pci might have set max_interrupters already */
5228 if ((!xhci->max_interrupters) ||
5229 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5230 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5231
5232 xhci->quirks |= quirks;
5233
5234 if (get_quirks)
5235 get_quirks(dev, xhci);
5236
5237 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5238 * success event after a short transfer. This quirk will ignore such
5239 * spurious event.
5240 */
5241 if (xhci->hci_version > 0x96)
5242 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5243
5244 /* Make sure the HC is halted. */
5245 retval = xhci_halt(xhci);
5246 if (retval)
5247 return retval;
5248
5249 xhci_zero_64b_regs(xhci);
5250
5251 xhci_dbg(xhci, "Resetting HCD\n");
5252 /* Reset the internal HC memory state and registers. */
5253 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5254 if (retval)
5255 return retval;
5256 xhci_dbg(xhci, "Reset complete\n");
5257
5258 /*
5259 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5260 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5261 * address memory pointers actually. So, this driver clears the AC64
5262 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5263 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5264 */
5265 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5266 xhci->hcc_params &= ~BIT(0);
5267
5268 /* Set dma_mask and coherent_dma_mask to 64-bits,
5269 * if xHC supports 64-bit addressing */
5270 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5271 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5272 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5273 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5274 } else {
5275 /*
5276 * This is to avoid error in cases where a 32-bit USB
5277 * controller is used on a 64-bit capable system.
5278 */
5279 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5280 if (retval)
5281 return retval;
5282 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5283 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5284 }
5285
5286 xhci_dbg(xhci, "Calling HCD init\n");
5287 /* Initialize HCD and host controller data structures. */
5288 retval = xhci_init(hcd);
5289 if (retval)
5290 return retval;
5291 xhci_dbg(xhci, "Called HCD init\n");
5292
5293 if (xhci_hcd_is_usb3(hcd))
5294 xhci_hcd_init_usb3_data(xhci, hcd);
5295 else
5296 xhci_hcd_init_usb2_data(xhci, hcd);
5297
5298 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5299 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5300
5301 return 0;
5302 }
5303 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5304
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5305 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5306 struct usb_host_endpoint *ep)
5307 {
5308 struct xhci_hcd *xhci;
5309 struct usb_device *udev;
5310 unsigned int slot_id;
5311 unsigned int ep_index;
5312 unsigned long flags;
5313
5314 xhci = hcd_to_xhci(hcd);
5315
5316 spin_lock_irqsave(&xhci->lock, flags);
5317 udev = (struct usb_device *)ep->hcpriv;
5318 slot_id = udev->slot_id;
5319 ep_index = xhci_get_endpoint_index(&ep->desc);
5320
5321 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5322 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5323 spin_unlock_irqrestore(&xhci->lock, flags);
5324 }
5325
5326 static const struct hc_driver xhci_hc_driver = {
5327 .description = "xhci-hcd",
5328 .product_desc = "xHCI Host Controller",
5329 .hcd_priv_size = sizeof(struct xhci_hcd),
5330
5331 /*
5332 * generic hardware linkage
5333 */
5334 .irq = xhci_irq,
5335 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5336 HCD_BH,
5337
5338 /*
5339 * basic lifecycle operations
5340 */
5341 .reset = NULL, /* set in xhci_init_driver() */
5342 .start = xhci_run,
5343 .stop = xhci_stop,
5344 .shutdown = xhci_shutdown,
5345
5346 /*
5347 * managing i/o requests and associated device resources
5348 */
5349 .map_urb_for_dma = xhci_map_urb_for_dma,
5350 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5351 .urb_enqueue = xhci_urb_enqueue,
5352 .urb_dequeue = xhci_urb_dequeue,
5353 .alloc_dev = xhci_alloc_dev,
5354 .free_dev = xhci_free_dev,
5355 .alloc_streams = xhci_alloc_streams,
5356 .free_streams = xhci_free_streams,
5357 .add_endpoint = xhci_add_endpoint,
5358 .drop_endpoint = xhci_drop_endpoint,
5359 .endpoint_disable = xhci_endpoint_disable,
5360 .endpoint_reset = xhci_endpoint_reset,
5361 .check_bandwidth = xhci_check_bandwidth,
5362 .reset_bandwidth = xhci_reset_bandwidth,
5363 .address_device = xhci_address_device,
5364 .enable_device = xhci_enable_device,
5365 .update_hub_device = xhci_update_hub_device,
5366 .reset_device = xhci_discover_or_reset_device,
5367
5368 /*
5369 * scheduling support
5370 */
5371 .get_frame_number = xhci_get_frame,
5372
5373 /*
5374 * root hub support
5375 */
5376 .hub_control = xhci_hub_control,
5377 .hub_status_data = xhci_hub_status_data,
5378 .bus_suspend = xhci_bus_suspend,
5379 .bus_resume = xhci_bus_resume,
5380 .get_resuming_ports = xhci_get_resuming_ports,
5381
5382 /*
5383 * call back when device connected and addressed
5384 */
5385 .update_device = xhci_update_device,
5386 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5387 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5388 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5389 .find_raw_port_number = xhci_find_raw_port_number,
5390 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5391 };
5392
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5393 void xhci_init_driver(struct hc_driver *drv,
5394 const struct xhci_driver_overrides *over)
5395 {
5396 BUG_ON(!over);
5397
5398 /* Copy the generic table to drv then apply the overrides */
5399 *drv = xhci_hc_driver;
5400
5401 if (over) {
5402 drv->hcd_priv_size += over->extra_priv_size;
5403 if (over->reset)
5404 drv->reset = over->reset;
5405 if (over->start)
5406 drv->start = over->start;
5407 if (over->add_endpoint)
5408 drv->add_endpoint = over->add_endpoint;
5409 if (over->drop_endpoint)
5410 drv->drop_endpoint = over->drop_endpoint;
5411 if (over->check_bandwidth)
5412 drv->check_bandwidth = over->check_bandwidth;
5413 if (over->reset_bandwidth)
5414 drv->reset_bandwidth = over->reset_bandwidth;
5415 if (over->update_hub_device)
5416 drv->update_hub_device = over->update_hub_device;
5417 if (over->hub_control)
5418 drv->hub_control = over->hub_control;
5419 }
5420 }
5421 EXPORT_SYMBOL_GPL(xhci_init_driver);
5422
5423 MODULE_DESCRIPTION(DRIVER_DESC);
5424 MODULE_AUTHOR(DRIVER_AUTHOR);
5425 MODULE_LICENSE("GPL");
5426
xhci_hcd_init(void)5427 static int __init xhci_hcd_init(void)
5428 {
5429 /*
5430 * Check the compiler generated sizes of structures that must be laid
5431 * out in specific ways for hardware access.
5432 */
5433 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5434 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5435 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5436 /* xhci_device_control has eight fields, and also
5437 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5438 */
5439 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5440 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5441 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5442 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5443 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5444 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5445 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5446
5447 if (usb_disabled())
5448 return -ENODEV;
5449
5450 xhci_debugfs_create_root();
5451 xhci_dbc_init();
5452
5453 return 0;
5454 }
5455
5456 /*
5457 * If an init function is provided, an exit function must also be provided
5458 * to allow module unload.
5459 */
xhci_hcd_fini(void)5460 static void __exit xhci_hcd_fini(void)
5461 {
5462 xhci_debugfs_remove_root();
5463 xhci_dbc_exit();
5464 }
5465
5466 module_init(xhci_hcd_init);
5467 module_exit(xhci_hcd_fini);
5468