1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_acl.h"
15 #include "xfs_quota.h"
16 #include "xfs_da_format.h"
17 #include "xfs_da_btree.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans.h"
20 #include "xfs_trace.h"
21 #include "xfs_icache.h"
22 #include "xfs_symlink.h"
23 #include "xfs_dir2.h"
24 #include "xfs_iomap.h"
25 #include "xfs_error.h"
26 #include "xfs_ioctl.h"
27 #include "xfs_xattr.h"
28 #include "xfs_file.h"
29
30 #include <linux/posix_acl.h>
31 #include <linux/security.h>
32 #include <linux/iversion.h>
33 #include <linux/fiemap.h>
34
35 /*
36 * Directories have different lock order w.r.t. mmap_lock compared to regular
37 * files. This is due to readdir potentially triggering page faults on a user
38 * buffer inside filldir(), and this happens with the ilock on the directory
39 * held. For regular files, the lock order is the other way around - the
40 * mmap_lock is taken during the page fault, and then we lock the ilock to do
41 * block mapping. Hence we need a different class for the directory ilock so
42 * that lockdep can tell them apart.
43 */
44 static struct lock_class_key xfs_nondir_ilock_class;
45 static struct lock_class_key xfs_dir_ilock_class;
46
47 static int
xfs_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)48 xfs_initxattrs(
49 struct inode *inode,
50 const struct xattr *xattr_array,
51 void *fs_info)
52 {
53 const struct xattr *xattr;
54 struct xfs_inode *ip = XFS_I(inode);
55 int error = 0;
56
57 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
58 struct xfs_da_args args = {
59 .dp = ip,
60 .attr_filter = XFS_ATTR_SECURE,
61 .name = xattr->name,
62 .namelen = strlen(xattr->name),
63 .value = xattr->value,
64 .valuelen = xattr->value_len,
65 };
66 error = xfs_attr_change(&args);
67 if (error < 0)
68 break;
69 }
70 return error;
71 }
72
73 /*
74 * Hook in SELinux. This is not quite correct yet, what we really need
75 * here (as we do for default ACLs) is a mechanism by which creation of
76 * these attrs can be journalled at inode creation time (along with the
77 * inode, of course, such that log replay can't cause these to be lost).
78 */
79 int
xfs_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr)80 xfs_inode_init_security(
81 struct inode *inode,
82 struct inode *dir,
83 const struct qstr *qstr)
84 {
85 return security_inode_init_security(inode, dir, qstr,
86 &xfs_initxattrs, NULL);
87 }
88
89 static void
xfs_dentry_to_name(struct xfs_name * namep,struct dentry * dentry)90 xfs_dentry_to_name(
91 struct xfs_name *namep,
92 struct dentry *dentry)
93 {
94 namep->name = dentry->d_name.name;
95 namep->len = dentry->d_name.len;
96 namep->type = XFS_DIR3_FT_UNKNOWN;
97 }
98
99 static int
xfs_dentry_mode_to_name(struct xfs_name * namep,struct dentry * dentry,int mode)100 xfs_dentry_mode_to_name(
101 struct xfs_name *namep,
102 struct dentry *dentry,
103 int mode)
104 {
105 namep->name = dentry->d_name.name;
106 namep->len = dentry->d_name.len;
107 namep->type = xfs_mode_to_ftype(mode);
108
109 if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN))
110 return -EFSCORRUPTED;
111
112 return 0;
113 }
114
115 STATIC void
xfs_cleanup_inode(struct inode * dir,struct inode * inode,struct dentry * dentry)116 xfs_cleanup_inode(
117 struct inode *dir,
118 struct inode *inode,
119 struct dentry *dentry)
120 {
121 struct xfs_name teardown;
122
123 /* Oh, the horror.
124 * If we can't add the ACL or we fail in
125 * xfs_inode_init_security we must back out.
126 * ENOSPC can hit here, among other things.
127 */
128 xfs_dentry_to_name(&teardown, dentry);
129
130 xfs_remove(XFS_I(dir), &teardown, XFS_I(inode));
131 }
132
133 /*
134 * Check to see if we are likely to need an extended attribute to be added to
135 * the inode we are about to allocate. This allows the attribute fork to be
136 * created during the inode allocation, reducing the number of transactions we
137 * need to do in this fast path.
138 *
139 * The security checks are optimistic, but not guaranteed. The two LSMs that
140 * require xattrs to be added here (selinux and smack) are also the only two
141 * LSMs that add a sb->s_security structure to the superblock. Hence if security
142 * is enabled and sb->s_security is set, we have a pretty good idea that we are
143 * going to be asked to add a security xattr immediately after allocating the
144 * xfs inode and instantiating the VFS inode.
145 */
146 static inline bool
xfs_create_need_xattr(struct inode * dir,struct posix_acl * default_acl,struct posix_acl * acl)147 xfs_create_need_xattr(
148 struct inode *dir,
149 struct posix_acl *default_acl,
150 struct posix_acl *acl)
151 {
152 if (acl)
153 return true;
154 if (default_acl)
155 return true;
156 #if IS_ENABLED(CONFIG_SECURITY)
157 if (dir->i_sb->s_security)
158 return true;
159 #endif
160 return false;
161 }
162
163
164 STATIC int
xfs_generic_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev,struct file * tmpfile)165 xfs_generic_create(
166 struct mnt_idmap *idmap,
167 struct inode *dir,
168 struct dentry *dentry,
169 umode_t mode,
170 dev_t rdev,
171 struct file *tmpfile) /* unnamed file */
172 {
173 struct inode *inode;
174 struct xfs_inode *ip = NULL;
175 struct posix_acl *default_acl, *acl;
176 struct xfs_name name;
177 int error;
178
179 /*
180 * Irix uses Missed'em'V split, but doesn't want to see
181 * the upper 5 bits of (14bit) major.
182 */
183 if (S_ISCHR(mode) || S_ISBLK(mode)) {
184 if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff))
185 return -EINVAL;
186 } else {
187 rdev = 0;
188 }
189
190 error = posix_acl_create(dir, &mode, &default_acl, &acl);
191 if (error)
192 return error;
193
194 /* Verify mode is valid also for tmpfile case */
195 error = xfs_dentry_mode_to_name(&name, dentry, mode);
196 if (unlikely(error))
197 goto out_free_acl;
198
199 if (!tmpfile) {
200 error = xfs_create(idmap, XFS_I(dir), &name, mode, rdev,
201 xfs_create_need_xattr(dir, default_acl, acl),
202 &ip);
203 } else {
204 error = xfs_create_tmpfile(idmap, XFS_I(dir), mode, &ip);
205 }
206 if (unlikely(error))
207 goto out_free_acl;
208
209 inode = VFS_I(ip);
210
211 error = xfs_inode_init_security(inode, dir, &dentry->d_name);
212 if (unlikely(error))
213 goto out_cleanup_inode;
214
215 if (default_acl) {
216 error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT);
217 if (error)
218 goto out_cleanup_inode;
219 }
220 if (acl) {
221 error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS);
222 if (error)
223 goto out_cleanup_inode;
224 }
225
226 xfs_setup_iops(ip);
227
228 if (tmpfile) {
229 /*
230 * The VFS requires that any inode fed to d_tmpfile must have
231 * nlink == 1 so that it can decrement the nlink in d_tmpfile.
232 * However, we created the temp file with nlink == 0 because
233 * we're not allowed to put an inode with nlink > 0 on the
234 * unlinked list. Therefore we have to set nlink to 1 so that
235 * d_tmpfile can immediately set it back to zero.
236 */
237 set_nlink(inode, 1);
238 d_tmpfile(tmpfile, inode);
239 } else
240 d_instantiate(dentry, inode);
241
242 xfs_finish_inode_setup(ip);
243
244 out_free_acl:
245 posix_acl_release(default_acl);
246 posix_acl_release(acl);
247 return error;
248
249 out_cleanup_inode:
250 xfs_finish_inode_setup(ip);
251 if (!tmpfile)
252 xfs_cleanup_inode(dir, inode, dentry);
253 xfs_irele(ip);
254 goto out_free_acl;
255 }
256
257 STATIC int
xfs_vn_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)258 xfs_vn_mknod(
259 struct mnt_idmap *idmap,
260 struct inode *dir,
261 struct dentry *dentry,
262 umode_t mode,
263 dev_t rdev)
264 {
265 return xfs_generic_create(idmap, dir, dentry, mode, rdev, NULL);
266 }
267
268 STATIC int
xfs_vn_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool flags)269 xfs_vn_create(
270 struct mnt_idmap *idmap,
271 struct inode *dir,
272 struct dentry *dentry,
273 umode_t mode,
274 bool flags)
275 {
276 return xfs_generic_create(idmap, dir, dentry, mode, 0, NULL);
277 }
278
279 STATIC int
xfs_vn_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)280 xfs_vn_mkdir(
281 struct mnt_idmap *idmap,
282 struct inode *dir,
283 struct dentry *dentry,
284 umode_t mode)
285 {
286 return xfs_generic_create(idmap, dir, dentry, mode | S_IFDIR, 0, NULL);
287 }
288
289 STATIC struct dentry *
xfs_vn_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)290 xfs_vn_lookup(
291 struct inode *dir,
292 struct dentry *dentry,
293 unsigned int flags)
294 {
295 struct inode *inode;
296 struct xfs_inode *cip;
297 struct xfs_name name;
298 int error;
299
300 if (dentry->d_name.len >= MAXNAMELEN)
301 return ERR_PTR(-ENAMETOOLONG);
302
303 xfs_dentry_to_name(&name, dentry);
304 error = xfs_lookup(XFS_I(dir), &name, &cip, NULL);
305 if (likely(!error))
306 inode = VFS_I(cip);
307 else if (likely(error == -ENOENT))
308 inode = NULL;
309 else
310 inode = ERR_PTR(error);
311 return d_splice_alias(inode, dentry);
312 }
313
314 STATIC struct dentry *
xfs_vn_ci_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)315 xfs_vn_ci_lookup(
316 struct inode *dir,
317 struct dentry *dentry,
318 unsigned int flags)
319 {
320 struct xfs_inode *ip;
321 struct xfs_name xname;
322 struct xfs_name ci_name;
323 struct qstr dname;
324 int error;
325
326 if (dentry->d_name.len >= MAXNAMELEN)
327 return ERR_PTR(-ENAMETOOLONG);
328
329 xfs_dentry_to_name(&xname, dentry);
330 error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name);
331 if (unlikely(error)) {
332 if (unlikely(error != -ENOENT))
333 return ERR_PTR(error);
334 /*
335 * call d_add(dentry, NULL) here when d_drop_negative_children
336 * is called in xfs_vn_mknod (ie. allow negative dentries
337 * with CI filesystems).
338 */
339 return NULL;
340 }
341
342 /* if exact match, just splice and exit */
343 if (!ci_name.name)
344 return d_splice_alias(VFS_I(ip), dentry);
345
346 /* else case-insensitive match... */
347 dname.name = ci_name.name;
348 dname.len = ci_name.len;
349 dentry = d_add_ci(dentry, VFS_I(ip), &dname);
350 kmem_free(ci_name.name);
351 return dentry;
352 }
353
354 STATIC int
xfs_vn_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)355 xfs_vn_link(
356 struct dentry *old_dentry,
357 struct inode *dir,
358 struct dentry *dentry)
359 {
360 struct inode *inode = d_inode(old_dentry);
361 struct xfs_name name;
362 int error;
363
364 error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode);
365 if (unlikely(error))
366 return error;
367
368 error = xfs_link(XFS_I(dir), XFS_I(inode), &name);
369 if (unlikely(error))
370 return error;
371
372 ihold(inode);
373 d_instantiate(dentry, inode);
374 return 0;
375 }
376
377 STATIC int
xfs_vn_unlink(struct inode * dir,struct dentry * dentry)378 xfs_vn_unlink(
379 struct inode *dir,
380 struct dentry *dentry)
381 {
382 struct xfs_name name;
383 int error;
384
385 xfs_dentry_to_name(&name, dentry);
386
387 error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry)));
388 if (error)
389 return error;
390
391 /*
392 * With unlink, the VFS makes the dentry "negative": no inode,
393 * but still hashed. This is incompatible with case-insensitive
394 * mode, so invalidate (unhash) the dentry in CI-mode.
395 */
396 if (xfs_has_asciici(XFS_M(dir->i_sb)))
397 d_invalidate(dentry);
398 return 0;
399 }
400
401 STATIC int
xfs_vn_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)402 xfs_vn_symlink(
403 struct mnt_idmap *idmap,
404 struct inode *dir,
405 struct dentry *dentry,
406 const char *symname)
407 {
408 struct inode *inode;
409 struct xfs_inode *cip = NULL;
410 struct xfs_name name;
411 int error;
412 umode_t mode;
413
414 mode = S_IFLNK |
415 (irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO);
416 error = xfs_dentry_mode_to_name(&name, dentry, mode);
417 if (unlikely(error))
418 goto out;
419
420 error = xfs_symlink(idmap, XFS_I(dir), &name, symname, mode, &cip);
421 if (unlikely(error))
422 goto out;
423
424 inode = VFS_I(cip);
425
426 error = xfs_inode_init_security(inode, dir, &dentry->d_name);
427 if (unlikely(error))
428 goto out_cleanup_inode;
429
430 xfs_setup_iops(cip);
431
432 d_instantiate(dentry, inode);
433 xfs_finish_inode_setup(cip);
434 return 0;
435
436 out_cleanup_inode:
437 xfs_finish_inode_setup(cip);
438 xfs_cleanup_inode(dir, inode, dentry);
439 xfs_irele(cip);
440 out:
441 return error;
442 }
443
444 STATIC int
xfs_vn_rename(struct mnt_idmap * idmap,struct inode * odir,struct dentry * odentry,struct inode * ndir,struct dentry * ndentry,unsigned int flags)445 xfs_vn_rename(
446 struct mnt_idmap *idmap,
447 struct inode *odir,
448 struct dentry *odentry,
449 struct inode *ndir,
450 struct dentry *ndentry,
451 unsigned int flags)
452 {
453 struct inode *new_inode = d_inode(ndentry);
454 int omode = 0;
455 int error;
456 struct xfs_name oname;
457 struct xfs_name nname;
458
459 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
460 return -EINVAL;
461
462 /* if we are exchanging files, we need to set i_mode of both files */
463 if (flags & RENAME_EXCHANGE)
464 omode = d_inode(ndentry)->i_mode;
465
466 error = xfs_dentry_mode_to_name(&oname, odentry, omode);
467 if (omode && unlikely(error))
468 return error;
469
470 error = xfs_dentry_mode_to_name(&nname, ndentry,
471 d_inode(odentry)->i_mode);
472 if (unlikely(error))
473 return error;
474
475 return xfs_rename(idmap, XFS_I(odir), &oname,
476 XFS_I(d_inode(odentry)), XFS_I(ndir), &nname,
477 new_inode ? XFS_I(new_inode) : NULL, flags);
478 }
479
480 /*
481 * careful here - this function can get called recursively, so
482 * we need to be very careful about how much stack we use.
483 * uio is kmalloced for this reason...
484 */
485 STATIC const char *
xfs_vn_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)486 xfs_vn_get_link(
487 struct dentry *dentry,
488 struct inode *inode,
489 struct delayed_call *done)
490 {
491 char *link;
492 int error = -ENOMEM;
493
494 if (!dentry)
495 return ERR_PTR(-ECHILD);
496
497 link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL);
498 if (!link)
499 goto out_err;
500
501 error = xfs_readlink(XFS_I(d_inode(dentry)), link);
502 if (unlikely(error))
503 goto out_kfree;
504
505 set_delayed_call(done, kfree_link, link);
506 return link;
507
508 out_kfree:
509 kfree(link);
510 out_err:
511 return ERR_PTR(error);
512 }
513
514 static uint32_t
xfs_stat_blksize(struct xfs_inode * ip)515 xfs_stat_blksize(
516 struct xfs_inode *ip)
517 {
518 struct xfs_mount *mp = ip->i_mount;
519
520 /*
521 * If the file blocks are being allocated from a realtime volume, then
522 * always return the realtime extent size.
523 */
524 if (XFS_IS_REALTIME_INODE(ip))
525 return XFS_FSB_TO_B(mp, xfs_get_extsz_hint(ip));
526
527 /*
528 * Allow large block sizes to be reported to userspace programs if the
529 * "largeio" mount option is used.
530 *
531 * If compatibility mode is specified, simply return the basic unit of
532 * caching so that we don't get inefficient read/modify/write I/O from
533 * user apps. Otherwise....
534 *
535 * If the underlying volume is a stripe, then return the stripe width in
536 * bytes as the recommended I/O size. It is not a stripe and we've set a
537 * default buffered I/O size, return that, otherwise return the compat
538 * default.
539 */
540 if (xfs_has_large_iosize(mp)) {
541 if (mp->m_swidth)
542 return XFS_FSB_TO_B(mp, mp->m_swidth);
543 if (xfs_has_allocsize(mp))
544 return 1U << mp->m_allocsize_log;
545 }
546
547 return PAGE_SIZE;
548 }
549
550 STATIC int
xfs_vn_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)551 xfs_vn_getattr(
552 struct mnt_idmap *idmap,
553 const struct path *path,
554 struct kstat *stat,
555 u32 request_mask,
556 unsigned int query_flags)
557 {
558 struct inode *inode = d_inode(path->dentry);
559 struct xfs_inode *ip = XFS_I(inode);
560 struct xfs_mount *mp = ip->i_mount;
561 vfsuid_t vfsuid = i_uid_into_vfsuid(idmap, inode);
562 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
563
564 trace_xfs_getattr(ip);
565
566 if (xfs_is_shutdown(mp))
567 return -EIO;
568
569 stat->size = XFS_ISIZE(ip);
570 stat->dev = inode->i_sb->s_dev;
571 stat->mode = inode->i_mode;
572 stat->nlink = inode->i_nlink;
573 stat->uid = vfsuid_into_kuid(vfsuid);
574 stat->gid = vfsgid_into_kgid(vfsgid);
575 stat->ino = ip->i_ino;
576 stat->atime = inode->i_atime;
577 stat->mtime = inode->i_mtime;
578 stat->ctime = inode_get_ctime(inode);
579 stat->blocks = XFS_FSB_TO_BB(mp, ip->i_nblocks + ip->i_delayed_blks);
580
581 if (xfs_has_v3inodes(mp)) {
582 if (request_mask & STATX_BTIME) {
583 stat->result_mask |= STATX_BTIME;
584 stat->btime = ip->i_crtime;
585 }
586 }
587
588 if ((request_mask & STATX_CHANGE_COOKIE) && IS_I_VERSION(inode)) {
589 stat->change_cookie = inode_query_iversion(inode);
590 stat->result_mask |= STATX_CHANGE_COOKIE;
591 }
592
593 /*
594 * Note: If you add another clause to set an attribute flag, please
595 * update attributes_mask below.
596 */
597 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
598 stat->attributes |= STATX_ATTR_IMMUTABLE;
599 if (ip->i_diflags & XFS_DIFLAG_APPEND)
600 stat->attributes |= STATX_ATTR_APPEND;
601 if (ip->i_diflags & XFS_DIFLAG_NODUMP)
602 stat->attributes |= STATX_ATTR_NODUMP;
603
604 stat->attributes_mask |= (STATX_ATTR_IMMUTABLE |
605 STATX_ATTR_APPEND |
606 STATX_ATTR_NODUMP);
607
608 switch (inode->i_mode & S_IFMT) {
609 case S_IFBLK:
610 case S_IFCHR:
611 stat->blksize = BLKDEV_IOSIZE;
612 stat->rdev = inode->i_rdev;
613 break;
614 case S_IFREG:
615 if (request_mask & STATX_DIOALIGN) {
616 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
617 struct block_device *bdev = target->bt_bdev;
618
619 stat->result_mask |= STATX_DIOALIGN;
620 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
621 stat->dio_offset_align = bdev_logical_block_size(bdev);
622 }
623 fallthrough;
624 default:
625 stat->blksize = xfs_stat_blksize(ip);
626 stat->rdev = 0;
627 break;
628 }
629
630 return 0;
631 }
632
633 static int
xfs_vn_change_ok(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)634 xfs_vn_change_ok(
635 struct mnt_idmap *idmap,
636 struct dentry *dentry,
637 struct iattr *iattr)
638 {
639 struct xfs_mount *mp = XFS_I(d_inode(dentry))->i_mount;
640
641 if (xfs_is_readonly(mp))
642 return -EROFS;
643
644 if (xfs_is_shutdown(mp))
645 return -EIO;
646
647 return setattr_prepare(idmap, dentry, iattr);
648 }
649
650 /*
651 * Set non-size attributes of an inode.
652 *
653 * Caution: The caller of this function is responsible for calling
654 * setattr_prepare() or otherwise verifying the change is fine.
655 */
656 static int
xfs_setattr_nonsize(struct mnt_idmap * idmap,struct dentry * dentry,struct xfs_inode * ip,struct iattr * iattr)657 xfs_setattr_nonsize(
658 struct mnt_idmap *idmap,
659 struct dentry *dentry,
660 struct xfs_inode *ip,
661 struct iattr *iattr)
662 {
663 xfs_mount_t *mp = ip->i_mount;
664 struct inode *inode = VFS_I(ip);
665 int mask = iattr->ia_valid;
666 xfs_trans_t *tp;
667 int error;
668 kuid_t uid = GLOBAL_ROOT_UID;
669 kgid_t gid = GLOBAL_ROOT_GID;
670 struct xfs_dquot *udqp = NULL, *gdqp = NULL;
671 struct xfs_dquot *old_udqp = NULL, *old_gdqp = NULL;
672
673 ASSERT((mask & ATTR_SIZE) == 0);
674
675 /*
676 * If disk quotas is on, we make sure that the dquots do exist on disk,
677 * before we start any other transactions. Trying to do this later
678 * is messy. We don't care to take a readlock to look at the ids
679 * in inode here, because we can't hold it across the trans_reserve.
680 * If the IDs do change before we take the ilock, we're covered
681 * because the i_*dquot fields will get updated anyway.
682 */
683 if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) {
684 uint qflags = 0;
685
686 if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) {
687 uid = from_vfsuid(idmap, i_user_ns(inode),
688 iattr->ia_vfsuid);
689 qflags |= XFS_QMOPT_UQUOTA;
690 } else {
691 uid = inode->i_uid;
692 }
693 if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) {
694 gid = from_vfsgid(idmap, i_user_ns(inode),
695 iattr->ia_vfsgid);
696 qflags |= XFS_QMOPT_GQUOTA;
697 } else {
698 gid = inode->i_gid;
699 }
700
701 /*
702 * We take a reference when we initialize udqp and gdqp,
703 * so it is important that we never blindly double trip on
704 * the same variable. See xfs_create() for an example.
705 */
706 ASSERT(udqp == NULL);
707 ASSERT(gdqp == NULL);
708 error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_projid,
709 qflags, &udqp, &gdqp, NULL);
710 if (error)
711 return error;
712 }
713
714 error = xfs_trans_alloc_ichange(ip, udqp, gdqp, NULL,
715 has_capability_noaudit(current, CAP_FOWNER), &tp);
716 if (error)
717 goto out_dqrele;
718
719 /*
720 * Register quota modifications in the transaction. Must be the owner
721 * or privileged. These IDs could have changed since we last looked at
722 * them. But, we're assured that if the ownership did change while we
723 * didn't have the inode locked, inode's dquot(s) would have changed
724 * also.
725 */
726 if (XFS_IS_UQUOTA_ON(mp) &&
727 i_uid_needs_update(idmap, iattr, inode)) {
728 ASSERT(udqp);
729 old_udqp = xfs_qm_vop_chown(tp, ip, &ip->i_udquot, udqp);
730 }
731 if (XFS_IS_GQUOTA_ON(mp) &&
732 i_gid_needs_update(idmap, iattr, inode)) {
733 ASSERT(xfs_has_pquotino(mp) || !XFS_IS_PQUOTA_ON(mp));
734 ASSERT(gdqp);
735 old_gdqp = xfs_qm_vop_chown(tp, ip, &ip->i_gdquot, gdqp);
736 }
737
738 setattr_copy(idmap, inode, iattr);
739 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
740
741 XFS_STATS_INC(mp, xs_ig_attrchg);
742
743 if (xfs_has_wsync(mp))
744 xfs_trans_set_sync(tp);
745 error = xfs_trans_commit(tp);
746
747 /*
748 * Release any dquot(s) the inode had kept before chown.
749 */
750 xfs_qm_dqrele(old_udqp);
751 xfs_qm_dqrele(old_gdqp);
752 xfs_qm_dqrele(udqp);
753 xfs_qm_dqrele(gdqp);
754
755 if (error)
756 return error;
757
758 /*
759 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode
760 * update. We could avoid this with linked transactions
761 * and passing down the transaction pointer all the way
762 * to attr_set. No previous user of the generic
763 * Posix ACL code seems to care about this issue either.
764 */
765 if (mask & ATTR_MODE) {
766 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
767 if (error)
768 return error;
769 }
770
771 return 0;
772
773 out_dqrele:
774 xfs_qm_dqrele(udqp);
775 xfs_qm_dqrele(gdqp);
776 return error;
777 }
778
779 /*
780 * Truncate file. Must have write permission and not be a directory.
781 *
782 * Caution: The caller of this function is responsible for calling
783 * setattr_prepare() or otherwise verifying the change is fine.
784 */
785 STATIC int
xfs_setattr_size(struct mnt_idmap * idmap,struct dentry * dentry,struct xfs_inode * ip,struct iattr * iattr)786 xfs_setattr_size(
787 struct mnt_idmap *idmap,
788 struct dentry *dentry,
789 struct xfs_inode *ip,
790 struct iattr *iattr)
791 {
792 struct xfs_mount *mp = ip->i_mount;
793 struct inode *inode = VFS_I(ip);
794 xfs_off_t oldsize, newsize;
795 struct xfs_trans *tp;
796 int error;
797 uint lock_flags = 0;
798 bool did_zeroing = false;
799
800 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
801 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
802 ASSERT(S_ISREG(inode->i_mode));
803 ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET|
804 ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0);
805
806 oldsize = inode->i_size;
807 newsize = iattr->ia_size;
808
809 /*
810 * Short circuit the truncate case for zero length files.
811 */
812 if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) {
813 if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME)))
814 return 0;
815
816 /*
817 * Use the regular setattr path to update the timestamps.
818 */
819 iattr->ia_valid &= ~ATTR_SIZE;
820 return xfs_setattr_nonsize(idmap, dentry, ip, iattr);
821 }
822
823 /*
824 * Make sure that the dquots are attached to the inode.
825 */
826 error = xfs_qm_dqattach(ip);
827 if (error)
828 return error;
829
830 /*
831 * Wait for all direct I/O to complete.
832 */
833 inode_dio_wait(inode);
834
835 /*
836 * File data changes must be complete before we start the transaction to
837 * modify the inode. This needs to be done before joining the inode to
838 * the transaction because the inode cannot be unlocked once it is a
839 * part of the transaction.
840 *
841 * Start with zeroing any data beyond EOF that we may expose on file
842 * extension, or zeroing out the rest of the block on a downward
843 * truncate.
844 */
845 if (newsize > oldsize) {
846 trace_xfs_zero_eof(ip, oldsize, newsize - oldsize);
847 error = xfs_zero_range(ip, oldsize, newsize - oldsize,
848 &did_zeroing);
849 } else {
850 /*
851 * iomap won't detect a dirty page over an unwritten block (or a
852 * cow block over a hole) and subsequently skips zeroing the
853 * newly post-EOF portion of the page. Flush the new EOF to
854 * convert the block before the pagecache truncate.
855 */
856 error = filemap_write_and_wait_range(inode->i_mapping, newsize,
857 newsize);
858 if (error)
859 return error;
860 error = xfs_truncate_page(ip, newsize, &did_zeroing);
861 }
862
863 if (error)
864 return error;
865
866 /*
867 * We've already locked out new page faults, so now we can safely remove
868 * pages from the page cache knowing they won't get refaulted until we
869 * drop the XFS_MMAP_EXCL lock after the extent manipulations are
870 * complete. The truncate_setsize() call also cleans partial EOF page
871 * PTEs on extending truncates and hence ensures sub-page block size
872 * filesystems are correctly handled, too.
873 *
874 * We have to do all the page cache truncate work outside the
875 * transaction context as the "lock" order is page lock->log space
876 * reservation as defined by extent allocation in the writeback path.
877 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but
878 * having already truncated the in-memory version of the file (i.e. made
879 * user visible changes). There's not much we can do about this, except
880 * to hope that the caller sees ENOMEM and retries the truncate
881 * operation.
882 *
883 * And we update in-core i_size and truncate page cache beyond newsize
884 * before writeback the [i_disk_size, newsize] range, so we're
885 * guaranteed not to write stale data past the new EOF on truncate down.
886 */
887 truncate_setsize(inode, newsize);
888
889 /*
890 * We are going to log the inode size change in this transaction so
891 * any previous writes that are beyond the on disk EOF and the new
892 * EOF that have not been written out need to be written here. If we
893 * do not write the data out, we expose ourselves to the null files
894 * problem. Note that this includes any block zeroing we did above;
895 * otherwise those blocks may not be zeroed after a crash.
896 */
897 if (did_zeroing ||
898 (newsize > ip->i_disk_size && oldsize != ip->i_disk_size)) {
899 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
900 ip->i_disk_size, newsize - 1);
901 if (error)
902 return error;
903 }
904
905 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
906 if (error)
907 return error;
908
909 lock_flags |= XFS_ILOCK_EXCL;
910 xfs_ilock(ip, XFS_ILOCK_EXCL);
911 xfs_trans_ijoin(tp, ip, 0);
912
913 /*
914 * Only change the c/mtime if we are changing the size or we are
915 * explicitly asked to change it. This handles the semantic difference
916 * between truncate() and ftruncate() as implemented in the VFS.
917 *
918 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
919 * special case where we need to update the times despite not having
920 * these flags set. For all other operations the VFS set these flags
921 * explicitly if it wants a timestamp update.
922 */
923 if (newsize != oldsize &&
924 !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) {
925 iattr->ia_ctime = iattr->ia_mtime =
926 current_time(inode);
927 iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME;
928 }
929
930 /*
931 * The first thing we do is set the size to new_size permanently on
932 * disk. This way we don't have to worry about anyone ever being able
933 * to look at the data being freed even in the face of a crash.
934 * What we're getting around here is the case where we free a block, it
935 * is allocated to another file, it is written to, and then we crash.
936 * If the new data gets written to the file but the log buffers
937 * containing the free and reallocation don't, then we'd end up with
938 * garbage in the blocks being freed. As long as we make the new size
939 * permanent before actually freeing any blocks it doesn't matter if
940 * they get written to.
941 */
942 ip->i_disk_size = newsize;
943 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
944
945 if (newsize <= oldsize) {
946 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize);
947 if (error)
948 goto out_trans_cancel;
949
950 /*
951 * Truncated "down", so we're removing references to old data
952 * here - if we delay flushing for a long time, we expose
953 * ourselves unduly to the notorious NULL files problem. So,
954 * we mark this inode and flush it when the file is closed,
955 * and do not wait the usual (long) time for writeout.
956 */
957 xfs_iflags_set(ip, XFS_ITRUNCATED);
958
959 /* A truncate down always removes post-EOF blocks. */
960 xfs_inode_clear_eofblocks_tag(ip);
961 }
962
963 ASSERT(!(iattr->ia_valid & (ATTR_UID | ATTR_GID)));
964 setattr_copy(idmap, inode, iattr);
965 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
966
967 XFS_STATS_INC(mp, xs_ig_attrchg);
968
969 if (xfs_has_wsync(mp))
970 xfs_trans_set_sync(tp);
971
972 error = xfs_trans_commit(tp);
973 out_unlock:
974 if (lock_flags)
975 xfs_iunlock(ip, lock_flags);
976 return error;
977
978 out_trans_cancel:
979 xfs_trans_cancel(tp);
980 goto out_unlock;
981 }
982
983 int
xfs_vn_setattr_size(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)984 xfs_vn_setattr_size(
985 struct mnt_idmap *idmap,
986 struct dentry *dentry,
987 struct iattr *iattr)
988 {
989 struct xfs_inode *ip = XFS_I(d_inode(dentry));
990 int error;
991
992 trace_xfs_setattr(ip);
993
994 error = xfs_vn_change_ok(idmap, dentry, iattr);
995 if (error)
996 return error;
997 return xfs_setattr_size(idmap, dentry, ip, iattr);
998 }
999
1000 STATIC int
xfs_vn_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)1001 xfs_vn_setattr(
1002 struct mnt_idmap *idmap,
1003 struct dentry *dentry,
1004 struct iattr *iattr)
1005 {
1006 struct inode *inode = d_inode(dentry);
1007 struct xfs_inode *ip = XFS_I(inode);
1008 int error;
1009
1010 if (iattr->ia_valid & ATTR_SIZE) {
1011 uint iolock;
1012
1013 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1014 iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1015
1016 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
1017 if (error) {
1018 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1019 return error;
1020 }
1021
1022 error = xfs_vn_setattr_size(idmap, dentry, iattr);
1023 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1024 } else {
1025 trace_xfs_setattr(ip);
1026
1027 error = xfs_vn_change_ok(idmap, dentry, iattr);
1028 if (!error)
1029 error = xfs_setattr_nonsize(idmap, dentry, ip, iattr);
1030 }
1031
1032 return error;
1033 }
1034
1035 STATIC int
xfs_vn_update_time(struct inode * inode,int flags)1036 xfs_vn_update_time(
1037 struct inode *inode,
1038 int flags)
1039 {
1040 struct xfs_inode *ip = XFS_I(inode);
1041 struct xfs_mount *mp = ip->i_mount;
1042 int log_flags = XFS_ILOG_TIMESTAMP;
1043 struct xfs_trans *tp;
1044 int error;
1045 struct timespec64 now;
1046
1047 trace_xfs_update_time(ip);
1048
1049 if (inode->i_sb->s_flags & SB_LAZYTIME) {
1050 if (!((flags & S_VERSION) &&
1051 inode_maybe_inc_iversion(inode, false))) {
1052 generic_update_time(inode, flags);
1053 return 0;
1054 }
1055
1056 /* Capture the iversion update that just occurred */
1057 log_flags |= XFS_ILOG_CORE;
1058 }
1059
1060 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
1061 if (error)
1062 return error;
1063
1064 xfs_ilock(ip, XFS_ILOCK_EXCL);
1065 if (flags & (S_CTIME|S_MTIME))
1066 now = inode_set_ctime_current(inode);
1067 else
1068 now = current_time(inode);
1069
1070 if (flags & S_MTIME)
1071 inode->i_mtime = now;
1072 if (flags & S_ATIME)
1073 inode->i_atime = now;
1074
1075 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1076 xfs_trans_log_inode(tp, ip, log_flags);
1077 return xfs_trans_commit(tp);
1078 }
1079
1080 STATIC int
xfs_vn_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 length)1081 xfs_vn_fiemap(
1082 struct inode *inode,
1083 struct fiemap_extent_info *fieinfo,
1084 u64 start,
1085 u64 length)
1086 {
1087 int error;
1088
1089 xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED);
1090 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1091 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR;
1092 error = iomap_fiemap(inode, fieinfo, start, length,
1093 &xfs_xattr_iomap_ops);
1094 } else {
1095 error = iomap_fiemap(inode, fieinfo, start, length,
1096 &xfs_read_iomap_ops);
1097 }
1098 xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED);
1099
1100 return error;
1101 }
1102
1103 STATIC int
xfs_vn_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)1104 xfs_vn_tmpfile(
1105 struct mnt_idmap *idmap,
1106 struct inode *dir,
1107 struct file *file,
1108 umode_t mode)
1109 {
1110 int err = xfs_generic_create(idmap, dir, file->f_path.dentry, mode, 0, file);
1111
1112 return finish_open_simple(file, err);
1113 }
1114
1115 static const struct inode_operations xfs_inode_operations = {
1116 .get_inode_acl = xfs_get_acl,
1117 .set_acl = xfs_set_acl,
1118 .getattr = xfs_vn_getattr,
1119 .setattr = xfs_vn_setattr,
1120 .listxattr = xfs_vn_listxattr,
1121 .fiemap = xfs_vn_fiemap,
1122 .update_time = xfs_vn_update_time,
1123 .fileattr_get = xfs_fileattr_get,
1124 .fileattr_set = xfs_fileattr_set,
1125 };
1126
1127 static const struct inode_operations xfs_dir_inode_operations = {
1128 .create = xfs_vn_create,
1129 .lookup = xfs_vn_lookup,
1130 .link = xfs_vn_link,
1131 .unlink = xfs_vn_unlink,
1132 .symlink = xfs_vn_symlink,
1133 .mkdir = xfs_vn_mkdir,
1134 /*
1135 * Yes, XFS uses the same method for rmdir and unlink.
1136 *
1137 * There are some subtile differences deeper in the code,
1138 * but we use S_ISDIR to check for those.
1139 */
1140 .rmdir = xfs_vn_unlink,
1141 .mknod = xfs_vn_mknod,
1142 .rename = xfs_vn_rename,
1143 .get_inode_acl = xfs_get_acl,
1144 .set_acl = xfs_set_acl,
1145 .getattr = xfs_vn_getattr,
1146 .setattr = xfs_vn_setattr,
1147 .listxattr = xfs_vn_listxattr,
1148 .update_time = xfs_vn_update_time,
1149 .tmpfile = xfs_vn_tmpfile,
1150 .fileattr_get = xfs_fileattr_get,
1151 .fileattr_set = xfs_fileattr_set,
1152 };
1153
1154 static const struct inode_operations xfs_dir_ci_inode_operations = {
1155 .create = xfs_vn_create,
1156 .lookup = xfs_vn_ci_lookup,
1157 .link = xfs_vn_link,
1158 .unlink = xfs_vn_unlink,
1159 .symlink = xfs_vn_symlink,
1160 .mkdir = xfs_vn_mkdir,
1161 /*
1162 * Yes, XFS uses the same method for rmdir and unlink.
1163 *
1164 * There are some subtile differences deeper in the code,
1165 * but we use S_ISDIR to check for those.
1166 */
1167 .rmdir = xfs_vn_unlink,
1168 .mknod = xfs_vn_mknod,
1169 .rename = xfs_vn_rename,
1170 .get_inode_acl = xfs_get_acl,
1171 .set_acl = xfs_set_acl,
1172 .getattr = xfs_vn_getattr,
1173 .setattr = xfs_vn_setattr,
1174 .listxattr = xfs_vn_listxattr,
1175 .update_time = xfs_vn_update_time,
1176 .tmpfile = xfs_vn_tmpfile,
1177 .fileattr_get = xfs_fileattr_get,
1178 .fileattr_set = xfs_fileattr_set,
1179 };
1180
1181 static const struct inode_operations xfs_symlink_inode_operations = {
1182 .get_link = xfs_vn_get_link,
1183 .getattr = xfs_vn_getattr,
1184 .setattr = xfs_vn_setattr,
1185 .listxattr = xfs_vn_listxattr,
1186 .update_time = xfs_vn_update_time,
1187 };
1188
1189 /* Figure out if this file actually supports DAX. */
1190 static bool
xfs_inode_supports_dax(struct xfs_inode * ip)1191 xfs_inode_supports_dax(
1192 struct xfs_inode *ip)
1193 {
1194 struct xfs_mount *mp = ip->i_mount;
1195
1196 /* Only supported on regular files. */
1197 if (!S_ISREG(VFS_I(ip)->i_mode))
1198 return false;
1199
1200 /* Block size must match page size */
1201 if (mp->m_sb.sb_blocksize != PAGE_SIZE)
1202 return false;
1203
1204 /* Device has to support DAX too. */
1205 return xfs_inode_buftarg(ip)->bt_daxdev != NULL;
1206 }
1207
1208 static bool
xfs_inode_should_enable_dax(struct xfs_inode * ip)1209 xfs_inode_should_enable_dax(
1210 struct xfs_inode *ip)
1211 {
1212 if (!IS_ENABLED(CONFIG_FS_DAX))
1213 return false;
1214 if (xfs_has_dax_never(ip->i_mount))
1215 return false;
1216 if (!xfs_inode_supports_dax(ip))
1217 return false;
1218 if (xfs_has_dax_always(ip->i_mount))
1219 return true;
1220 if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
1221 return true;
1222 return false;
1223 }
1224
1225 void
xfs_diflags_to_iflags(struct xfs_inode * ip,bool init)1226 xfs_diflags_to_iflags(
1227 struct xfs_inode *ip,
1228 bool init)
1229 {
1230 struct inode *inode = VFS_I(ip);
1231 unsigned int xflags = xfs_ip2xflags(ip);
1232 unsigned int flags = 0;
1233
1234 ASSERT(!(IS_DAX(inode) && init));
1235
1236 if (xflags & FS_XFLAG_IMMUTABLE)
1237 flags |= S_IMMUTABLE;
1238 if (xflags & FS_XFLAG_APPEND)
1239 flags |= S_APPEND;
1240 if (xflags & FS_XFLAG_SYNC)
1241 flags |= S_SYNC;
1242 if (xflags & FS_XFLAG_NOATIME)
1243 flags |= S_NOATIME;
1244 if (init && xfs_inode_should_enable_dax(ip))
1245 flags |= S_DAX;
1246
1247 /*
1248 * S_DAX can only be set during inode initialization and is never set by
1249 * the VFS, so we cannot mask off S_DAX in i_flags.
1250 */
1251 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME);
1252 inode->i_flags |= flags;
1253 }
1254
1255 /*
1256 * Initialize the Linux inode.
1257 *
1258 * When reading existing inodes from disk this is called directly from xfs_iget,
1259 * when creating a new inode it is called from xfs_init_new_inode after setting
1260 * up the inode. These callers have different criteria for clearing XFS_INEW, so
1261 * leave it up to the caller to deal with unlocking the inode appropriately.
1262 */
1263 void
xfs_setup_inode(struct xfs_inode * ip)1264 xfs_setup_inode(
1265 struct xfs_inode *ip)
1266 {
1267 struct inode *inode = &ip->i_vnode;
1268 gfp_t gfp_mask;
1269
1270 inode->i_ino = ip->i_ino;
1271 inode->i_state |= I_NEW;
1272
1273 inode_sb_list_add(inode);
1274 /* make the inode look hashed for the writeback code */
1275 inode_fake_hash(inode);
1276
1277 i_size_write(inode, ip->i_disk_size);
1278 xfs_diflags_to_iflags(ip, true);
1279
1280 if (S_ISDIR(inode->i_mode)) {
1281 /*
1282 * We set the i_rwsem class here to avoid potential races with
1283 * lockdep_annotate_inode_mutex_key() reinitialising the lock
1284 * after a filehandle lookup has already found the inode in
1285 * cache before it has been unlocked via unlock_new_inode().
1286 */
1287 lockdep_set_class(&inode->i_rwsem,
1288 &inode->i_sb->s_type->i_mutex_dir_key);
1289 lockdep_set_class(&ip->i_lock.mr_lock, &xfs_dir_ilock_class);
1290 } else {
1291 lockdep_set_class(&ip->i_lock.mr_lock, &xfs_nondir_ilock_class);
1292 }
1293
1294 /*
1295 * Ensure all page cache allocations are done from GFP_NOFS context to
1296 * prevent direct reclaim recursion back into the filesystem and blowing
1297 * stacks or deadlocking.
1298 */
1299 gfp_mask = mapping_gfp_mask(inode->i_mapping);
1300 mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS)));
1301
1302 /*
1303 * For real-time inodes update the stable write flags to that of the RT
1304 * device instead of the data device.
1305 */
1306 if (S_ISREG(inode->i_mode) && XFS_IS_REALTIME_INODE(ip))
1307 xfs_update_stable_writes(ip);
1308
1309 /*
1310 * If there is no attribute fork no ACL can exist on this inode,
1311 * and it can't have any file capabilities attached to it either.
1312 */
1313 if (!xfs_inode_has_attr_fork(ip)) {
1314 inode_has_no_xattr(inode);
1315 cache_no_acl(inode);
1316 }
1317 }
1318
1319 void
xfs_setup_iops(struct xfs_inode * ip)1320 xfs_setup_iops(
1321 struct xfs_inode *ip)
1322 {
1323 struct inode *inode = &ip->i_vnode;
1324
1325 switch (inode->i_mode & S_IFMT) {
1326 case S_IFREG:
1327 inode->i_op = &xfs_inode_operations;
1328 inode->i_fop = &xfs_file_operations;
1329 if (IS_DAX(inode))
1330 inode->i_mapping->a_ops = &xfs_dax_aops;
1331 else
1332 inode->i_mapping->a_ops = &xfs_address_space_operations;
1333 break;
1334 case S_IFDIR:
1335 if (xfs_has_asciici(XFS_M(inode->i_sb)))
1336 inode->i_op = &xfs_dir_ci_inode_operations;
1337 else
1338 inode->i_op = &xfs_dir_inode_operations;
1339 inode->i_fop = &xfs_dir_file_operations;
1340 break;
1341 case S_IFLNK:
1342 inode->i_op = &xfs_symlink_inode_operations;
1343 break;
1344 default:
1345 inode->i_op = &xfs_inode_operations;
1346 init_special_inode(inode, inode->i_mode, inode->i_rdev);
1347 break;
1348 }
1349 }
1350