xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision 09138ba68c1487a42c400485e999386a74911dbc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_iomap.h"
16 #include "xfs_trace.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_reflink.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22 
23 struct xfs_writepage_ctx {
24 	struct iomap_writepage_ctx ctx;
25 	unsigned int		data_seq;
26 	unsigned int		cow_seq;
27 };
28 
29 static inline struct xfs_writepage_ctx *
XFS_WPC(struct iomap_writepage_ctx * ctx)30 XFS_WPC(struct iomap_writepage_ctx *ctx)
31 {
32 	return container_of(ctx, struct xfs_writepage_ctx, ctx);
33 }
34 
35 /*
36  * Fast and loose check if this write could update the on-disk inode size.
37  */
xfs_ioend_is_append(struct iomap_ioend * ioend)38 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
39 {
40 	return ioend->io_offset + ioend->io_size >
41 		XFS_I(ioend->io_inode)->i_disk_size;
42 }
43 
44 /*
45  * Update on-disk file size now that data has been written to disk.
46  */
47 int
xfs_setfilesize(struct xfs_inode * ip,xfs_off_t offset,size_t size)48 xfs_setfilesize(
49 	struct xfs_inode	*ip,
50 	xfs_off_t		offset,
51 	size_t			size)
52 {
53 	struct xfs_mount	*mp = ip->i_mount;
54 	struct xfs_trans	*tp;
55 	xfs_fsize_t		isize;
56 	int			error;
57 
58 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
59 	if (error)
60 		return error;
61 
62 	xfs_ilock(ip, XFS_ILOCK_EXCL);
63 	isize = xfs_new_eof(ip, offset + size);
64 	if (!isize) {
65 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
66 		xfs_trans_cancel(tp);
67 		return 0;
68 	}
69 
70 	trace_xfs_setfilesize(ip, offset, size);
71 
72 	ip->i_disk_size = isize;
73 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
74 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
75 
76 	return xfs_trans_commit(tp);
77 }
78 
79 /*
80  * IO write completion.
81  */
82 STATIC void
xfs_end_ioend(struct iomap_ioend * ioend)83 xfs_end_ioend(
84 	struct iomap_ioend	*ioend)
85 {
86 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
87 	struct xfs_mount	*mp = ip->i_mount;
88 	xfs_off_t		offset = ioend->io_offset;
89 	size_t			size = ioend->io_size;
90 	unsigned int		nofs_flag;
91 	int			error;
92 
93 	/*
94 	 * We can allocate memory here while doing writeback on behalf of
95 	 * memory reclaim.  To avoid memory allocation deadlocks set the
96 	 * task-wide nofs context for the following operations.
97 	 */
98 	nofs_flag = memalloc_nofs_save();
99 
100 	/*
101 	 * Just clean up the in-memory structures if the fs has been shut down.
102 	 */
103 	if (xfs_is_shutdown(mp)) {
104 		error = -EIO;
105 		goto done;
106 	}
107 
108 	/*
109 	 * Clean up all COW blocks and underlying data fork delalloc blocks on
110 	 * I/O error. The delalloc punch is required because this ioend was
111 	 * mapped to blocks in the COW fork and the associated pages are no
112 	 * longer dirty. If we don't remove delalloc blocks here, they become
113 	 * stale and can corrupt free space accounting on unmount.
114 	 */
115 	error = blk_status_to_errno(ioend->io_bio->bi_status);
116 	if (unlikely(error)) {
117 		if (ioend->io_flags & IOMAP_F_SHARED) {
118 			xfs_reflink_cancel_cow_range(ip, offset, size, true);
119 			xfs_bmap_punch_delalloc_range(ip, offset,
120 					offset + size);
121 		}
122 		goto done;
123 	}
124 
125 	/*
126 	 * Success: commit the COW or unwritten blocks if needed.
127 	 */
128 	if (ioend->io_flags & IOMAP_F_SHARED)
129 		error = xfs_reflink_end_cow(ip, offset, size);
130 	else if (ioend->io_type == IOMAP_UNWRITTEN)
131 		error = xfs_iomap_write_unwritten(ip, offset, size, false);
132 
133 	if (!error && xfs_ioend_is_append(ioend))
134 		error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
135 done:
136 	iomap_finish_ioends(ioend, error);
137 	memalloc_nofs_restore(nofs_flag);
138 }
139 
140 /*
141  * Finish all pending IO completions that require transactional modifications.
142  *
143  * We try to merge physical and logically contiguous ioends before completion to
144  * minimise the number of transactions we need to perform during IO completion.
145  * Both unwritten extent conversion and COW remapping need to iterate and modify
146  * one physical extent at a time, so we gain nothing by merging physically
147  * discontiguous extents here.
148  *
149  * The ioend chain length that we can be processing here is largely unbound in
150  * length and we may have to perform significant amounts of work on each ioend
151  * to complete it. Hence we have to be careful about holding the CPU for too
152  * long in this loop.
153  */
154 void
xfs_end_io(struct work_struct * work)155 xfs_end_io(
156 	struct work_struct	*work)
157 {
158 	struct xfs_inode	*ip =
159 		container_of(work, struct xfs_inode, i_ioend_work);
160 	struct iomap_ioend	*ioend;
161 	struct list_head	tmp;
162 	unsigned long		flags;
163 
164 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
165 	list_replace_init(&ip->i_ioend_list, &tmp);
166 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
167 
168 	iomap_sort_ioends(&tmp);
169 	while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
170 			io_list))) {
171 		list_del_init(&ioend->io_list);
172 		iomap_ioend_try_merge(ioend, &tmp);
173 		xfs_end_ioend(ioend);
174 		cond_resched();
175 	}
176 }
177 
178 STATIC void
xfs_end_bio(struct bio * bio)179 xfs_end_bio(
180 	struct bio		*bio)
181 {
182 	struct iomap_ioend	*ioend = bio->bi_private;
183 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
184 	unsigned long		flags;
185 
186 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
187 	if (list_empty(&ip->i_ioend_list))
188 		WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
189 					 &ip->i_ioend_work));
190 	list_add_tail(&ioend->io_list, &ip->i_ioend_list);
191 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
192 }
193 
194 /*
195  * Fast revalidation of the cached writeback mapping. Return true if the current
196  * mapping is valid, false otherwise.
197  */
198 static bool
xfs_imap_valid(struct iomap_writepage_ctx * wpc,struct xfs_inode * ip,loff_t offset)199 xfs_imap_valid(
200 	struct iomap_writepage_ctx	*wpc,
201 	struct xfs_inode		*ip,
202 	loff_t				offset)
203 {
204 	if (offset < wpc->iomap.offset ||
205 	    offset >= wpc->iomap.offset + wpc->iomap.length)
206 		return false;
207 	/*
208 	 * If this is a COW mapping, it is sufficient to check that the mapping
209 	 * covers the offset. Be careful to check this first because the caller
210 	 * can revalidate a COW mapping without updating the data seqno.
211 	 */
212 	if (wpc->iomap.flags & IOMAP_F_SHARED)
213 		return true;
214 
215 	/*
216 	 * This is not a COW mapping. Check the sequence number of the data fork
217 	 * because concurrent changes could have invalidated the extent. Check
218 	 * the COW fork because concurrent changes since the last time we
219 	 * checked (and found nothing at this offset) could have added
220 	 * overlapping blocks.
221 	 */
222 	if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) {
223 		trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap,
224 				XFS_WPC(wpc)->data_seq, XFS_DATA_FORK);
225 		return false;
226 	}
227 	if (xfs_inode_has_cow_data(ip) &&
228 	    XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) {
229 		trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap,
230 				XFS_WPC(wpc)->cow_seq, XFS_COW_FORK);
231 		return false;
232 	}
233 	return true;
234 }
235 
236 static int
xfs_map_blocks(struct iomap_writepage_ctx * wpc,struct inode * inode,loff_t offset)237 xfs_map_blocks(
238 	struct iomap_writepage_ctx *wpc,
239 	struct inode		*inode,
240 	loff_t			offset)
241 {
242 	struct xfs_inode	*ip = XFS_I(inode);
243 	struct xfs_mount	*mp = ip->i_mount;
244 	ssize_t			count = i_blocksize(inode);
245 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
246 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
247 	xfs_fileoff_t		cow_fsb;
248 	int			whichfork;
249 	struct xfs_bmbt_irec	imap;
250 	struct xfs_iext_cursor	icur;
251 	int			retries = 0;
252 	int			error = 0;
253 	unsigned int		*seq;
254 
255 	if (xfs_is_shutdown(mp))
256 		return -EIO;
257 
258 	XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS);
259 
260 	/*
261 	 * COW fork blocks can overlap data fork blocks even if the blocks
262 	 * aren't shared.  COW I/O always takes precedent, so we must always
263 	 * check for overlap on reflink inodes unless the mapping is already a
264 	 * COW one, or the COW fork hasn't changed from the last time we looked
265 	 * at it.
266 	 *
267 	 * It's safe to check the COW fork if_seq here without the ILOCK because
268 	 * we've indirectly protected against concurrent updates: writeback has
269 	 * the page locked, which prevents concurrent invalidations by reflink
270 	 * and directio and prevents concurrent buffered writes to the same
271 	 * page.  Changes to if_seq always happen under i_lock, which protects
272 	 * against concurrent updates and provides a memory barrier on the way
273 	 * out that ensures that we always see the current value.
274 	 */
275 	if (xfs_imap_valid(wpc, ip, offset))
276 		return 0;
277 
278 	/*
279 	 * If we don't have a valid map, now it's time to get a new one for this
280 	 * offset.  This will convert delayed allocations (including COW ones)
281 	 * into real extents.  If we return without a valid map, it means we
282 	 * landed in a hole and we skip the block.
283 	 */
284 retry:
285 	cow_fsb = NULLFILEOFF;
286 	whichfork = XFS_DATA_FORK;
287 	xfs_ilock(ip, XFS_ILOCK_SHARED);
288 	ASSERT(!xfs_need_iread_extents(&ip->i_df));
289 
290 	/*
291 	 * Check if this is offset is covered by a COW extents, and if yes use
292 	 * it directly instead of looking up anything in the data fork.
293 	 */
294 	if (xfs_inode_has_cow_data(ip) &&
295 	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
296 		cow_fsb = imap.br_startoff;
297 	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
298 		XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
299 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
300 
301 		whichfork = XFS_COW_FORK;
302 		goto allocate_blocks;
303 	}
304 
305 	/*
306 	 * No COW extent overlap. Revalidate now that we may have updated
307 	 * ->cow_seq. If the data mapping is still valid, we're done.
308 	 */
309 	if (xfs_imap_valid(wpc, ip, offset)) {
310 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
311 		return 0;
312 	}
313 
314 	/*
315 	 * If we don't have a valid map, now it's time to get a new one for this
316 	 * offset.  This will convert delayed allocations (including COW ones)
317 	 * into real extents.
318 	 */
319 	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
320 		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
321 	XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
322 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
323 
324 	/* landed in a hole or beyond EOF? */
325 	if (imap.br_startoff > offset_fsb) {
326 		imap.br_blockcount = imap.br_startoff - offset_fsb;
327 		imap.br_startoff = offset_fsb;
328 		imap.br_startblock = HOLESTARTBLOCK;
329 		imap.br_state = XFS_EXT_NORM;
330 	}
331 
332 	/*
333 	 * Truncate to the next COW extent if there is one.  This is the only
334 	 * opportunity to do this because we can skip COW fork lookups for the
335 	 * subsequent blocks in the mapping; however, the requirement to treat
336 	 * the COW range separately remains.
337 	 */
338 	if (cow_fsb != NULLFILEOFF &&
339 	    cow_fsb < imap.br_startoff + imap.br_blockcount)
340 		imap.br_blockcount = cow_fsb - imap.br_startoff;
341 
342 	/* got a delalloc extent? */
343 	if (imap.br_startblock != HOLESTARTBLOCK &&
344 	    isnullstartblock(imap.br_startblock))
345 		goto allocate_blocks;
346 
347 	xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq);
348 	trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
349 	return 0;
350 allocate_blocks:
351 	/*
352 	 * Convert a dellalloc extent to a real one. The current page is held
353 	 * locked so nothing could have removed the block backing offset_fsb,
354 	 * although it could have moved from the COW to the data fork by another
355 	 * thread.
356 	 */
357 	if (whichfork == XFS_COW_FORK)
358 		seq = &XFS_WPC(wpc)->cow_seq;
359 	else
360 		seq = &XFS_WPC(wpc)->data_seq;
361 
362 	error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
363 				&wpc->iomap, seq);
364 	if (error) {
365 		/*
366 		 * If we failed to find the extent in the COW fork we might have
367 		 * raced with a COW to data fork conversion or truncate.
368 		 * Restart the lookup to catch the extent in the data fork for
369 		 * the former case, but prevent additional retries to avoid
370 		 * looping forever for the latter case.
371 		 */
372 		if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
373 			goto retry;
374 		ASSERT(error != -EAGAIN);
375 		return error;
376 	}
377 
378 	/*
379 	 * Due to merging the return real extent might be larger than the
380 	 * original delalloc one.  Trim the return extent to the next COW
381 	 * boundary again to force a re-lookup.
382 	 */
383 	if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
384 		loff_t		cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
385 
386 		if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
387 			wpc->iomap.length = cow_offset - wpc->iomap.offset;
388 	}
389 
390 	ASSERT(wpc->iomap.offset <= offset);
391 	ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
392 	trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
393 	return 0;
394 }
395 
396 static int
xfs_prepare_ioend(struct iomap_ioend * ioend,int status)397 xfs_prepare_ioend(
398 	struct iomap_ioend	*ioend,
399 	int			status)
400 {
401 	unsigned int		nofs_flag;
402 
403 	/*
404 	 * We can allocate memory here while doing writeback on behalf of
405 	 * memory reclaim.  To avoid memory allocation deadlocks set the
406 	 * task-wide nofs context for the following operations.
407 	 */
408 	nofs_flag = memalloc_nofs_save();
409 
410 	/* Convert CoW extents to regular */
411 	if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
412 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
413 				ioend->io_offset, ioend->io_size);
414 	}
415 
416 	memalloc_nofs_restore(nofs_flag);
417 
418 	/* send ioends that might require a transaction to the completion wq */
419 	if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN ||
420 	    (ioend->io_flags & IOMAP_F_SHARED))
421 		ioend->io_bio->bi_end_io = xfs_end_bio;
422 	return status;
423 }
424 
425 /*
426  * If the folio has delalloc blocks on it, the caller is asking us to punch them
427  * out. If we don't, we can leave a stale delalloc mapping covered by a clean
428  * page that needs to be dirtied again before the delalloc mapping can be
429  * converted. This stale delalloc mapping can trip up a later direct I/O read
430  * operation on the same region.
431  *
432  * We prevent this by truncating away the delalloc regions on the folio. Because
433  * they are delalloc, we can do this without needing a transaction. Indeed - if
434  * we get ENOSPC errors, we have to be able to do this truncation without a
435  * transaction as there is no space left for block reservation (typically why
436  * we see a ENOSPC in writeback).
437  */
438 static void
xfs_discard_folio(struct folio * folio,loff_t pos)439 xfs_discard_folio(
440 	struct folio		*folio,
441 	loff_t			pos)
442 {
443 	struct xfs_inode	*ip = XFS_I(folio->mapping->host);
444 	struct xfs_mount	*mp = ip->i_mount;
445 	int			error;
446 
447 	if (xfs_is_shutdown(mp))
448 		return;
449 
450 	xfs_alert_ratelimited(mp,
451 		"page discard on page "PTR_FMT", inode 0x%llx, pos %llu.",
452 			folio, ip->i_ino, pos);
453 
454 	/*
455 	 * The end of the punch range is always the offset of the first
456 	 * byte of the next folio. Hence the end offset is only dependent on the
457 	 * folio itself and not the start offset that is passed in.
458 	 */
459 	error = xfs_bmap_punch_delalloc_range(ip, pos,
460 				folio_pos(folio) + folio_size(folio));
461 
462 	if (error && !xfs_is_shutdown(mp))
463 		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
464 }
465 
466 static const struct iomap_writeback_ops xfs_writeback_ops = {
467 	.map_blocks		= xfs_map_blocks,
468 	.prepare_ioend		= xfs_prepare_ioend,
469 	.discard_folio		= xfs_discard_folio,
470 };
471 
472 STATIC int
xfs_vm_writepages(struct address_space * mapping,struct writeback_control * wbc)473 xfs_vm_writepages(
474 	struct address_space	*mapping,
475 	struct writeback_control *wbc)
476 {
477 	struct xfs_writepage_ctx wpc = { };
478 
479 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
480 	return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
481 }
482 
483 STATIC int
xfs_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)484 xfs_dax_writepages(
485 	struct address_space	*mapping,
486 	struct writeback_control *wbc)
487 {
488 	struct xfs_inode	*ip = XFS_I(mapping->host);
489 
490 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
491 	return dax_writeback_mapping_range(mapping,
492 			xfs_inode_buftarg(ip)->bt_daxdev, wbc);
493 }
494 
495 STATIC sector_t
xfs_vm_bmap(struct address_space * mapping,sector_t block)496 xfs_vm_bmap(
497 	struct address_space	*mapping,
498 	sector_t		block)
499 {
500 	struct xfs_inode	*ip = XFS_I(mapping->host);
501 
502 	trace_xfs_vm_bmap(ip);
503 
504 	/*
505 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
506 	 * bypasses the file system for actual I/O.  We really can't allow
507 	 * that on reflinks inodes, so we have to skip out here.  And yes,
508 	 * 0 is the magic code for a bmap error.
509 	 *
510 	 * Since we don't pass back blockdev info, we can't return bmap
511 	 * information for rt files either.
512 	 */
513 	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
514 		return 0;
515 	return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
516 }
517 
518 STATIC int
xfs_vm_read_folio(struct file * unused,struct folio * folio)519 xfs_vm_read_folio(
520 	struct file		*unused,
521 	struct folio		*folio)
522 {
523 	return iomap_read_folio(folio, &xfs_read_iomap_ops);
524 }
525 
526 STATIC void
xfs_vm_readahead(struct readahead_control * rac)527 xfs_vm_readahead(
528 	struct readahead_control	*rac)
529 {
530 	iomap_readahead(rac, &xfs_read_iomap_ops);
531 }
532 
533 static int
xfs_iomap_swapfile_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)534 xfs_iomap_swapfile_activate(
535 	struct swap_info_struct		*sis,
536 	struct file			*swap_file,
537 	sector_t			*span)
538 {
539 	sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev;
540 	return iomap_swapfile_activate(sis, swap_file, span,
541 			&xfs_read_iomap_ops);
542 }
543 
544 const struct address_space_operations xfs_address_space_operations = {
545 	.read_folio		= xfs_vm_read_folio,
546 	.readahead		= xfs_vm_readahead,
547 	.writepages		= xfs_vm_writepages,
548 	.dirty_folio		= iomap_dirty_folio,
549 	.release_folio		= iomap_release_folio,
550 	.invalidate_folio	= iomap_invalidate_folio,
551 	.bmap			= xfs_vm_bmap,
552 	.migrate_folio		= filemap_migrate_folio,
553 	.is_partially_uptodate  = iomap_is_partially_uptodate,
554 	.error_remove_page	= generic_error_remove_page,
555 	.swap_activate		= xfs_iomap_swapfile_activate,
556 };
557 
558 const struct address_space_operations xfs_dax_aops = {
559 	.writepages		= xfs_dax_writepages,
560 	.dirty_folio		= noop_dirty_folio,
561 	.swap_activate		= xfs_iomap_swapfile_activate,
562 };
563