1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2017-2023 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <djwong@kernel.org>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode.h"
16 #include "xfs_icache.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_rmap.h"
23 #include "xfs_rmap_btree.h"
24 #include "xfs_log.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_da_format.h"
27 #include "xfs_da_btree.h"
28 #include "xfs_attr.h"
29 #include "xfs_reflink.h"
30 #include "xfs_ag.h"
31 #include "scrub/scrub.h"
32 #include "scrub/common.h"
33 #include "scrub/trace.h"
34 #include "scrub/repair.h"
35 #include "scrub/health.h"
36
37 /* Common code for the metadata scrubbers. */
38
39 /*
40 * Handling operational errors.
41 *
42 * The *_process_error() family of functions are used to process error return
43 * codes from functions called as part of a scrub operation.
44 *
45 * If there's no error, we return true to tell the caller that it's ok
46 * to move on to the next check in its list.
47 *
48 * For non-verifier errors (e.g. ENOMEM) we return false to tell the
49 * caller that something bad happened, and we preserve *error so that
50 * the caller can return the *error up the stack to userspace.
51 *
52 * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting
53 * OFLAG_CORRUPT in sm_flags and the *error is cleared. In other words,
54 * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT,
55 * not via return codes. We return false to tell the caller that
56 * something bad happened. Since the error has been cleared, the caller
57 * will (presumably) return that zero and scrubbing will move on to
58 * whatever's next.
59 *
60 * ftrace can be used to record the precise metadata location and the
61 * approximate code location of the failed operation.
62 */
63
64 /* Check for operational errors. */
65 static bool
__xchk_process_error(struct xfs_scrub * sc,xfs_agnumber_t agno,xfs_agblock_t bno,int * error,__u32 errflag,void * ret_ip)66 __xchk_process_error(
67 struct xfs_scrub *sc,
68 xfs_agnumber_t agno,
69 xfs_agblock_t bno,
70 int *error,
71 __u32 errflag,
72 void *ret_ip)
73 {
74 switch (*error) {
75 case 0:
76 return true;
77 case -EDEADLOCK:
78 case -ECHRNG:
79 /* Used to restart an op with deadlock avoidance. */
80 trace_xchk_deadlock_retry(
81 sc->ip ? sc->ip : XFS_I(file_inode(sc->file)),
82 sc->sm, *error);
83 break;
84 case -EFSBADCRC:
85 case -EFSCORRUPTED:
86 /* Note the badness but don't abort. */
87 sc->sm->sm_flags |= errflag;
88 *error = 0;
89 fallthrough;
90 default:
91 trace_xchk_op_error(sc, agno, bno, *error,
92 ret_ip);
93 break;
94 }
95 return false;
96 }
97
98 bool
xchk_process_error(struct xfs_scrub * sc,xfs_agnumber_t agno,xfs_agblock_t bno,int * error)99 xchk_process_error(
100 struct xfs_scrub *sc,
101 xfs_agnumber_t agno,
102 xfs_agblock_t bno,
103 int *error)
104 {
105 return __xchk_process_error(sc, agno, bno, error,
106 XFS_SCRUB_OFLAG_CORRUPT, __return_address);
107 }
108
109 bool
xchk_xref_process_error(struct xfs_scrub * sc,xfs_agnumber_t agno,xfs_agblock_t bno,int * error)110 xchk_xref_process_error(
111 struct xfs_scrub *sc,
112 xfs_agnumber_t agno,
113 xfs_agblock_t bno,
114 int *error)
115 {
116 return __xchk_process_error(sc, agno, bno, error,
117 XFS_SCRUB_OFLAG_XFAIL, __return_address);
118 }
119
120 /* Check for operational errors for a file offset. */
121 static bool
__xchk_fblock_process_error(struct xfs_scrub * sc,int whichfork,xfs_fileoff_t offset,int * error,__u32 errflag,void * ret_ip)122 __xchk_fblock_process_error(
123 struct xfs_scrub *sc,
124 int whichfork,
125 xfs_fileoff_t offset,
126 int *error,
127 __u32 errflag,
128 void *ret_ip)
129 {
130 switch (*error) {
131 case 0:
132 return true;
133 case -EDEADLOCK:
134 case -ECHRNG:
135 /* Used to restart an op with deadlock avoidance. */
136 trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
137 break;
138 case -EFSBADCRC:
139 case -EFSCORRUPTED:
140 /* Note the badness but don't abort. */
141 sc->sm->sm_flags |= errflag;
142 *error = 0;
143 fallthrough;
144 default:
145 trace_xchk_file_op_error(sc, whichfork, offset, *error,
146 ret_ip);
147 break;
148 }
149 return false;
150 }
151
152 bool
xchk_fblock_process_error(struct xfs_scrub * sc,int whichfork,xfs_fileoff_t offset,int * error)153 xchk_fblock_process_error(
154 struct xfs_scrub *sc,
155 int whichfork,
156 xfs_fileoff_t offset,
157 int *error)
158 {
159 return __xchk_fblock_process_error(sc, whichfork, offset, error,
160 XFS_SCRUB_OFLAG_CORRUPT, __return_address);
161 }
162
163 bool
xchk_fblock_xref_process_error(struct xfs_scrub * sc,int whichfork,xfs_fileoff_t offset,int * error)164 xchk_fblock_xref_process_error(
165 struct xfs_scrub *sc,
166 int whichfork,
167 xfs_fileoff_t offset,
168 int *error)
169 {
170 return __xchk_fblock_process_error(sc, whichfork, offset, error,
171 XFS_SCRUB_OFLAG_XFAIL, __return_address);
172 }
173
174 /*
175 * Handling scrub corruption/optimization/warning checks.
176 *
177 * The *_set_{corrupt,preen,warning}() family of functions are used to
178 * record the presence of metadata that is incorrect (corrupt), could be
179 * optimized somehow (preen), or should be flagged for administrative
180 * review but is not incorrect (warn).
181 *
182 * ftrace can be used to record the precise metadata location and
183 * approximate code location of the failed check.
184 */
185
186 /* Record a block which could be optimized. */
187 void
xchk_block_set_preen(struct xfs_scrub * sc,struct xfs_buf * bp)188 xchk_block_set_preen(
189 struct xfs_scrub *sc,
190 struct xfs_buf *bp)
191 {
192 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
193 trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address);
194 }
195
196 /*
197 * Record an inode which could be optimized. The trace data will
198 * include the block given by bp if bp is given; otherwise it will use
199 * the block location of the inode record itself.
200 */
201 void
xchk_ino_set_preen(struct xfs_scrub * sc,xfs_ino_t ino)202 xchk_ino_set_preen(
203 struct xfs_scrub *sc,
204 xfs_ino_t ino)
205 {
206 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
207 trace_xchk_ino_preen(sc, ino, __return_address);
208 }
209
210 /* Record something being wrong with the filesystem primary superblock. */
211 void
xchk_set_corrupt(struct xfs_scrub * sc)212 xchk_set_corrupt(
213 struct xfs_scrub *sc)
214 {
215 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
216 trace_xchk_fs_error(sc, 0, __return_address);
217 }
218
219 /* Record a corrupt block. */
220 void
xchk_block_set_corrupt(struct xfs_scrub * sc,struct xfs_buf * bp)221 xchk_block_set_corrupt(
222 struct xfs_scrub *sc,
223 struct xfs_buf *bp)
224 {
225 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
226 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
227 }
228
229 /* Record a corruption while cross-referencing. */
230 void
xchk_block_xref_set_corrupt(struct xfs_scrub * sc,struct xfs_buf * bp)231 xchk_block_xref_set_corrupt(
232 struct xfs_scrub *sc,
233 struct xfs_buf *bp)
234 {
235 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
236 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
237 }
238
239 /*
240 * Record a corrupt inode. The trace data will include the block given
241 * by bp if bp is given; otherwise it will use the block location of the
242 * inode record itself.
243 */
244 void
xchk_ino_set_corrupt(struct xfs_scrub * sc,xfs_ino_t ino)245 xchk_ino_set_corrupt(
246 struct xfs_scrub *sc,
247 xfs_ino_t ino)
248 {
249 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
250 trace_xchk_ino_error(sc, ino, __return_address);
251 }
252
253 /* Record a corruption while cross-referencing with an inode. */
254 void
xchk_ino_xref_set_corrupt(struct xfs_scrub * sc,xfs_ino_t ino)255 xchk_ino_xref_set_corrupt(
256 struct xfs_scrub *sc,
257 xfs_ino_t ino)
258 {
259 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
260 trace_xchk_ino_error(sc, ino, __return_address);
261 }
262
263 /* Record corruption in a block indexed by a file fork. */
264 void
xchk_fblock_set_corrupt(struct xfs_scrub * sc,int whichfork,xfs_fileoff_t offset)265 xchk_fblock_set_corrupt(
266 struct xfs_scrub *sc,
267 int whichfork,
268 xfs_fileoff_t offset)
269 {
270 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
271 trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
272 }
273
274 /* Record a corruption while cross-referencing a fork block. */
275 void
xchk_fblock_xref_set_corrupt(struct xfs_scrub * sc,int whichfork,xfs_fileoff_t offset)276 xchk_fblock_xref_set_corrupt(
277 struct xfs_scrub *sc,
278 int whichfork,
279 xfs_fileoff_t offset)
280 {
281 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
282 trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
283 }
284
285 /*
286 * Warn about inodes that need administrative review but is not
287 * incorrect.
288 */
289 void
xchk_ino_set_warning(struct xfs_scrub * sc,xfs_ino_t ino)290 xchk_ino_set_warning(
291 struct xfs_scrub *sc,
292 xfs_ino_t ino)
293 {
294 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
295 trace_xchk_ino_warning(sc, ino, __return_address);
296 }
297
298 /* Warn about a block indexed by a file fork that needs review. */
299 void
xchk_fblock_set_warning(struct xfs_scrub * sc,int whichfork,xfs_fileoff_t offset)300 xchk_fblock_set_warning(
301 struct xfs_scrub *sc,
302 int whichfork,
303 xfs_fileoff_t offset)
304 {
305 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
306 trace_xchk_fblock_warning(sc, whichfork, offset, __return_address);
307 }
308
309 /* Signal an incomplete scrub. */
310 void
xchk_set_incomplete(struct xfs_scrub * sc)311 xchk_set_incomplete(
312 struct xfs_scrub *sc)
313 {
314 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE;
315 trace_xchk_incomplete(sc, __return_address);
316 }
317
318 /*
319 * rmap scrubbing -- compute the number of blocks with a given owner,
320 * at least according to the reverse mapping data.
321 */
322
323 struct xchk_rmap_ownedby_info {
324 const struct xfs_owner_info *oinfo;
325 xfs_filblks_t *blocks;
326 };
327
328 STATIC int
xchk_count_rmap_ownedby_irec(struct xfs_btree_cur * cur,const struct xfs_rmap_irec * rec,void * priv)329 xchk_count_rmap_ownedby_irec(
330 struct xfs_btree_cur *cur,
331 const struct xfs_rmap_irec *rec,
332 void *priv)
333 {
334 struct xchk_rmap_ownedby_info *sroi = priv;
335 bool irec_attr;
336 bool oinfo_attr;
337
338 irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK;
339 oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK;
340
341 if (rec->rm_owner != sroi->oinfo->oi_owner)
342 return 0;
343
344 if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr)
345 (*sroi->blocks) += rec->rm_blockcount;
346
347 return 0;
348 }
349
350 /*
351 * Calculate the number of blocks the rmap thinks are owned by something.
352 * The caller should pass us an rmapbt cursor.
353 */
354 int
xchk_count_rmap_ownedby_ag(struct xfs_scrub * sc,struct xfs_btree_cur * cur,const struct xfs_owner_info * oinfo,xfs_filblks_t * blocks)355 xchk_count_rmap_ownedby_ag(
356 struct xfs_scrub *sc,
357 struct xfs_btree_cur *cur,
358 const struct xfs_owner_info *oinfo,
359 xfs_filblks_t *blocks)
360 {
361 struct xchk_rmap_ownedby_info sroi = {
362 .oinfo = oinfo,
363 .blocks = blocks,
364 };
365
366 *blocks = 0;
367 return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec,
368 &sroi);
369 }
370
371 /*
372 * AG scrubbing
373 *
374 * These helpers facilitate locking an allocation group's header
375 * buffers, setting up cursors for all btrees that are present, and
376 * cleaning everything up once we're through.
377 */
378
379 /* Decide if we want to return an AG header read failure. */
380 static inline bool
want_ag_read_header_failure(struct xfs_scrub * sc,unsigned int type)381 want_ag_read_header_failure(
382 struct xfs_scrub *sc,
383 unsigned int type)
384 {
385 /* Return all AG header read failures when scanning btrees. */
386 if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF &&
387 sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL &&
388 sc->sm->sm_type != XFS_SCRUB_TYPE_AGI)
389 return true;
390 /*
391 * If we're scanning a given type of AG header, we only want to
392 * see read failures from that specific header. We'd like the
393 * other headers to cross-check them, but this isn't required.
394 */
395 if (sc->sm->sm_type == type)
396 return true;
397 return false;
398 }
399
400 /*
401 * Grab the AG header buffers for the attached perag structure.
402 *
403 * The headers should be released by xchk_ag_free, but as a fail safe we attach
404 * all the buffers we grab to the scrub transaction so they'll all be freed
405 * when we cancel it.
406 */
407 static inline int
xchk_perag_read_headers(struct xfs_scrub * sc,struct xchk_ag * sa)408 xchk_perag_read_headers(
409 struct xfs_scrub *sc,
410 struct xchk_ag *sa)
411 {
412 int error;
413
414 error = xfs_ialloc_read_agi(sa->pag, sc->tp, &sa->agi_bp);
415 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI))
416 return error;
417
418 error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp);
419 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF))
420 return error;
421
422 return 0;
423 }
424
425 /*
426 * Grab the AG headers for the attached perag structure and wait for pending
427 * intents to drain.
428 */
429 static int
xchk_perag_drain_and_lock(struct xfs_scrub * sc)430 xchk_perag_drain_and_lock(
431 struct xfs_scrub *sc)
432 {
433 struct xchk_ag *sa = &sc->sa;
434 int error = 0;
435
436 ASSERT(sa->pag != NULL);
437 ASSERT(sa->agi_bp == NULL);
438 ASSERT(sa->agf_bp == NULL);
439
440 do {
441 if (xchk_should_terminate(sc, &error))
442 return error;
443
444 error = xchk_perag_read_headers(sc, sa);
445 if (error)
446 return error;
447
448 /*
449 * If we've grabbed an inode for scrubbing then we assume that
450 * holding its ILOCK will suffice to coordinate with any intent
451 * chains involving this inode.
452 */
453 if (sc->ip)
454 return 0;
455
456 /*
457 * Decide if this AG is quiet enough for all metadata to be
458 * consistent with each other. XFS allows the AG header buffer
459 * locks to cycle across transaction rolls while processing
460 * chains of deferred ops, which means that there could be
461 * other threads in the middle of processing a chain of
462 * deferred ops. For regular operations we are careful about
463 * ordering operations to prevent collisions between threads
464 * (which is why we don't need a per-AG lock), but scrub and
465 * repair have to serialize against chained operations.
466 *
467 * We just locked all the AG headers buffers; now take a look
468 * to see if there are any intents in progress. If there are,
469 * drop the AG headers and wait for the intents to drain.
470 * Since we hold all the AG header locks for the duration of
471 * the scrub, this is the only time we have to sample the
472 * intents counter; any threads increasing it after this point
473 * can't possibly be in the middle of a chain of AG metadata
474 * updates.
475 *
476 * Obviously, this should be slanted against scrub and in favor
477 * of runtime threads.
478 */
479 if (!xfs_perag_intent_busy(sa->pag))
480 return 0;
481
482 if (sa->agf_bp) {
483 xfs_trans_brelse(sc->tp, sa->agf_bp);
484 sa->agf_bp = NULL;
485 }
486
487 if (sa->agi_bp) {
488 xfs_trans_brelse(sc->tp, sa->agi_bp);
489 sa->agi_bp = NULL;
490 }
491
492 if (!(sc->flags & XCHK_FSGATES_DRAIN))
493 return -ECHRNG;
494 error = xfs_perag_intent_drain(sa->pag);
495 if (error == -ERESTARTSYS)
496 error = -EINTR;
497 } while (!error);
498
499 return error;
500 }
501
502 /*
503 * Grab the per-AG structure, grab all AG header buffers, and wait until there
504 * aren't any pending intents. Returns -ENOENT if we can't grab the perag
505 * structure.
506 */
507 int
xchk_ag_read_headers(struct xfs_scrub * sc,xfs_agnumber_t agno,struct xchk_ag * sa)508 xchk_ag_read_headers(
509 struct xfs_scrub *sc,
510 xfs_agnumber_t agno,
511 struct xchk_ag *sa)
512 {
513 struct xfs_mount *mp = sc->mp;
514
515 ASSERT(!sa->pag);
516 sa->pag = xfs_perag_get(mp, agno);
517 if (!sa->pag)
518 return -ENOENT;
519
520 return xchk_perag_drain_and_lock(sc);
521 }
522
523 /* Release all the AG btree cursors. */
524 void
xchk_ag_btcur_free(struct xchk_ag * sa)525 xchk_ag_btcur_free(
526 struct xchk_ag *sa)
527 {
528 if (sa->refc_cur)
529 xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR);
530 if (sa->rmap_cur)
531 xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR);
532 if (sa->fino_cur)
533 xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR);
534 if (sa->ino_cur)
535 xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR);
536 if (sa->cnt_cur)
537 xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR);
538 if (sa->bno_cur)
539 xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR);
540
541 sa->refc_cur = NULL;
542 sa->rmap_cur = NULL;
543 sa->fino_cur = NULL;
544 sa->ino_cur = NULL;
545 sa->bno_cur = NULL;
546 sa->cnt_cur = NULL;
547 }
548
549 /* Initialize all the btree cursors for an AG. */
550 void
xchk_ag_btcur_init(struct xfs_scrub * sc,struct xchk_ag * sa)551 xchk_ag_btcur_init(
552 struct xfs_scrub *sc,
553 struct xchk_ag *sa)
554 {
555 struct xfs_mount *mp = sc->mp;
556
557 if (sa->agf_bp &&
558 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_BNO)) {
559 /* Set up a bnobt cursor for cross-referencing. */
560 sa->bno_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
561 sa->pag, XFS_BTNUM_BNO);
562 }
563
564 if (sa->agf_bp &&
565 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_CNT)) {
566 /* Set up a cntbt cursor for cross-referencing. */
567 sa->cnt_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
568 sa->pag, XFS_BTNUM_CNT);
569 }
570
571 /* Set up a inobt cursor for cross-referencing. */
572 if (sa->agi_bp &&
573 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_INO)) {
574 sa->ino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp, sa->agi_bp,
575 XFS_BTNUM_INO);
576 }
577
578 /* Set up a finobt cursor for cross-referencing. */
579 if (sa->agi_bp && xfs_has_finobt(mp) &&
580 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_FINO)) {
581 sa->fino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp, sa->agi_bp,
582 XFS_BTNUM_FINO);
583 }
584
585 /* Set up a rmapbt cursor for cross-referencing. */
586 if (sa->agf_bp && xfs_has_rmapbt(mp) &&
587 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_RMAP)) {
588 sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp,
589 sa->pag);
590 }
591
592 /* Set up a refcountbt cursor for cross-referencing. */
593 if (sa->agf_bp && xfs_has_reflink(mp) &&
594 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_REFC)) {
595 sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
596 sa->agf_bp, sa->pag);
597 }
598 }
599
600 /* Release the AG header context and btree cursors. */
601 void
xchk_ag_free(struct xfs_scrub * sc,struct xchk_ag * sa)602 xchk_ag_free(
603 struct xfs_scrub *sc,
604 struct xchk_ag *sa)
605 {
606 xchk_ag_btcur_free(sa);
607 if (sa->agf_bp) {
608 xfs_trans_brelse(sc->tp, sa->agf_bp);
609 sa->agf_bp = NULL;
610 }
611 if (sa->agi_bp) {
612 xfs_trans_brelse(sc->tp, sa->agi_bp);
613 sa->agi_bp = NULL;
614 }
615 if (sa->pag) {
616 xfs_perag_put(sa->pag);
617 sa->pag = NULL;
618 }
619 }
620
621 /*
622 * For scrub, grab the perag structure, the AGI, and the AGF headers, in that
623 * order. Locking order requires us to get the AGI before the AGF. We use the
624 * transaction to avoid deadlocking on crosslinked metadata buffers; either the
625 * caller passes one in (bmap scrub) or we have to create a transaction
626 * ourselves. Returns ENOENT if the perag struct cannot be grabbed.
627 */
628 int
xchk_ag_init(struct xfs_scrub * sc,xfs_agnumber_t agno,struct xchk_ag * sa)629 xchk_ag_init(
630 struct xfs_scrub *sc,
631 xfs_agnumber_t agno,
632 struct xchk_ag *sa)
633 {
634 int error;
635
636 error = xchk_ag_read_headers(sc, agno, sa);
637 if (error)
638 return error;
639
640 xchk_ag_btcur_init(sc, sa);
641 return 0;
642 }
643
644 /* Per-scrubber setup functions */
645
646 void
xchk_trans_cancel(struct xfs_scrub * sc)647 xchk_trans_cancel(
648 struct xfs_scrub *sc)
649 {
650 xfs_trans_cancel(sc->tp);
651 sc->tp = NULL;
652 }
653
654 /*
655 * Grab an empty transaction so that we can re-grab locked buffers if
656 * one of our btrees turns out to be cyclic.
657 *
658 * If we're going to repair something, we need to ask for the largest possible
659 * log reservation so that we can handle the worst case scenario for metadata
660 * updates while rebuilding a metadata item. We also need to reserve as many
661 * blocks in the head transaction as we think we're going to need to rebuild
662 * the metadata object.
663 */
664 int
xchk_trans_alloc(struct xfs_scrub * sc,uint resblks)665 xchk_trans_alloc(
666 struct xfs_scrub *sc,
667 uint resblks)
668 {
669 if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
670 return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate,
671 resblks, 0, 0, &sc->tp);
672
673 return xfs_trans_alloc_empty(sc->mp, &sc->tp);
674 }
675
676 /* Set us up with a transaction and an empty context. */
677 int
xchk_setup_fs(struct xfs_scrub * sc)678 xchk_setup_fs(
679 struct xfs_scrub *sc)
680 {
681 uint resblks;
682
683 resblks = xrep_calc_ag_resblks(sc);
684 return xchk_trans_alloc(sc, resblks);
685 }
686
687 /* Set us up with AG headers and btree cursors. */
688 int
xchk_setup_ag_btree(struct xfs_scrub * sc,bool force_log)689 xchk_setup_ag_btree(
690 struct xfs_scrub *sc,
691 bool force_log)
692 {
693 struct xfs_mount *mp = sc->mp;
694 int error;
695
696 /*
697 * If the caller asks us to checkpont the log, do so. This
698 * expensive operation should be performed infrequently and only
699 * as a last resort. Any caller that sets force_log should
700 * document why they need to do so.
701 */
702 if (force_log) {
703 error = xchk_checkpoint_log(mp);
704 if (error)
705 return error;
706 }
707
708 error = xchk_setup_fs(sc);
709 if (error)
710 return error;
711
712 return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa);
713 }
714
715 /* Push everything out of the log onto disk. */
716 int
xchk_checkpoint_log(struct xfs_mount * mp)717 xchk_checkpoint_log(
718 struct xfs_mount *mp)
719 {
720 int error;
721
722 error = xfs_log_force(mp, XFS_LOG_SYNC);
723 if (error)
724 return error;
725 xfs_ail_push_all_sync(mp->m_ail);
726 return 0;
727 }
728
729 /* Verify that an inode is allocated ondisk, then return its cached inode. */
730 int
xchk_iget(struct xfs_scrub * sc,xfs_ino_t inum,struct xfs_inode ** ipp)731 xchk_iget(
732 struct xfs_scrub *sc,
733 xfs_ino_t inum,
734 struct xfs_inode **ipp)
735 {
736 ASSERT(sc->tp != NULL);
737
738 return xfs_iget(sc->mp, sc->tp, inum, XCHK_IGET_FLAGS, 0, ipp);
739 }
740
741 /*
742 * Try to grab an inode in a manner that avoids races with physical inode
743 * allocation. If we can't, return the locked AGI buffer so that the caller
744 * can single-step the loading process to see where things went wrong.
745 * Callers must have a valid scrub transaction.
746 *
747 * If the iget succeeds, return 0, a NULL AGI, and the inode.
748 *
749 * If the iget fails, return the error, the locked AGI, and a NULL inode. This
750 * can include -EINVAL and -ENOENT for invalid inode numbers or inodes that are
751 * no longer allocated; or any other corruption or runtime error.
752 *
753 * If the AGI read fails, return the error, a NULL AGI, and NULL inode.
754 *
755 * If a fatal signal is pending, return -EINTR, a NULL AGI, and a NULL inode.
756 */
757 int
xchk_iget_agi(struct xfs_scrub * sc,xfs_ino_t inum,struct xfs_buf ** agi_bpp,struct xfs_inode ** ipp)758 xchk_iget_agi(
759 struct xfs_scrub *sc,
760 xfs_ino_t inum,
761 struct xfs_buf **agi_bpp,
762 struct xfs_inode **ipp)
763 {
764 struct xfs_mount *mp = sc->mp;
765 struct xfs_trans *tp = sc->tp;
766 struct xfs_perag *pag;
767 int error;
768
769 ASSERT(sc->tp != NULL);
770
771 again:
772 *agi_bpp = NULL;
773 *ipp = NULL;
774 error = 0;
775
776 if (xchk_should_terminate(sc, &error))
777 return error;
778
779 /*
780 * Attach the AGI buffer to the scrub transaction to avoid deadlocks
781 * in the iget cache miss path.
782 */
783 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
784 error = xfs_ialloc_read_agi(pag, tp, agi_bpp);
785 xfs_perag_put(pag);
786 if (error)
787 return error;
788
789 error = xfs_iget(mp, tp, inum, XFS_IGET_NORETRY | XCHK_IGET_FLAGS, 0,
790 ipp);
791 if (error == -EAGAIN) {
792 /*
793 * The inode may be in core but temporarily unavailable and may
794 * require the AGI buffer before it can be returned. Drop the
795 * AGI buffer and retry the lookup.
796 *
797 * Incore lookup will fail with EAGAIN on a cache hit if the
798 * inode is queued to the inactivation list. The inactivation
799 * worker may remove the inode from the unlinked list and hence
800 * needs the AGI.
801 *
802 * Hence xchk_iget_agi() needs to drop the AGI lock on EAGAIN
803 * to allow inodegc to make progress and move the inode to
804 * IRECLAIMABLE state where xfs_iget will be able to return it
805 * again if it can lock the inode.
806 */
807 xfs_trans_brelse(tp, *agi_bpp);
808 delay(1);
809 goto again;
810 }
811 if (error)
812 return error;
813
814 /* We got the inode, so we can release the AGI. */
815 ASSERT(*ipp != NULL);
816 xfs_trans_brelse(tp, *agi_bpp);
817 *agi_bpp = NULL;
818 return 0;
819 }
820
821 /* Install an inode that we opened by handle for scrubbing. */
822 int
xchk_install_handle_inode(struct xfs_scrub * sc,struct xfs_inode * ip)823 xchk_install_handle_inode(
824 struct xfs_scrub *sc,
825 struct xfs_inode *ip)
826 {
827 if (VFS_I(ip)->i_generation != sc->sm->sm_gen) {
828 xchk_irele(sc, ip);
829 return -ENOENT;
830 }
831
832 sc->ip = ip;
833 return 0;
834 }
835
836 /*
837 * Install an already-referenced inode for scrubbing. Get our own reference to
838 * the inode to make disposal simpler. The inode must not be in I_FREEING or
839 * I_WILL_FREE state!
840 */
841 int
xchk_install_live_inode(struct xfs_scrub * sc,struct xfs_inode * ip)842 xchk_install_live_inode(
843 struct xfs_scrub *sc,
844 struct xfs_inode *ip)
845 {
846 if (!igrab(VFS_I(ip))) {
847 xchk_ino_set_corrupt(sc, ip->i_ino);
848 return -EFSCORRUPTED;
849 }
850
851 sc->ip = ip;
852 return 0;
853 }
854
855 /*
856 * In preparation to scrub metadata structures that hang off of an inode,
857 * grab either the inode referenced in the scrub control structure or the
858 * inode passed in. If the inumber does not reference an allocated inode
859 * record, the function returns ENOENT to end the scrub early. The inode
860 * is not locked.
861 */
862 int
xchk_iget_for_scrubbing(struct xfs_scrub * sc)863 xchk_iget_for_scrubbing(
864 struct xfs_scrub *sc)
865 {
866 struct xfs_imap imap;
867 struct xfs_mount *mp = sc->mp;
868 struct xfs_perag *pag;
869 struct xfs_buf *agi_bp;
870 struct xfs_inode *ip_in = XFS_I(file_inode(sc->file));
871 struct xfs_inode *ip = NULL;
872 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, sc->sm->sm_ino);
873 int error;
874
875 ASSERT(sc->tp == NULL);
876
877 /* We want to scan the inode we already had opened. */
878 if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino)
879 return xchk_install_live_inode(sc, ip_in);
880
881 /* Reject internal metadata files and obviously bad inode numbers. */
882 if (xfs_internal_inum(mp, sc->sm->sm_ino))
883 return -ENOENT;
884 if (!xfs_verify_ino(sc->mp, sc->sm->sm_ino))
885 return -ENOENT;
886
887 /* Try a safe untrusted iget. */
888 error = xchk_iget_safe(sc, sc->sm->sm_ino, &ip);
889 if (!error)
890 return xchk_install_handle_inode(sc, ip);
891 if (error == -ENOENT)
892 return error;
893 if (error != -EINVAL)
894 goto out_error;
895
896 /*
897 * EINVAL with IGET_UNTRUSTED probably means one of several things:
898 * userspace gave us an inode number that doesn't correspond to fs
899 * space; the inode btree lacks a record for this inode; or there is a
900 * record, and it says this inode is free.
901 *
902 * We want to look up this inode in the inobt to distinguish two
903 * scenarios: (1) the inobt says the inode is free, in which case
904 * there's nothing to do; and (2) the inobt says the inode is
905 * allocated, but loading it failed due to corruption.
906 *
907 * Allocate a transaction and grab the AGI to prevent inobt activity
908 * in this AG. Retry the iget in case someone allocated a new inode
909 * after the first iget failed.
910 */
911 error = xchk_trans_alloc(sc, 0);
912 if (error)
913 goto out_error;
914
915 error = xchk_iget_agi(sc, sc->sm->sm_ino, &agi_bp, &ip);
916 if (error == 0) {
917 /* Actually got the inode, so install it. */
918 xchk_trans_cancel(sc);
919 return xchk_install_handle_inode(sc, ip);
920 }
921 if (error == -ENOENT)
922 goto out_gone;
923 if (error != -EINVAL)
924 goto out_cancel;
925
926 /* Ensure that we have protected against inode allocation/freeing. */
927 if (agi_bp == NULL) {
928 ASSERT(agi_bp != NULL);
929 error = -ECANCELED;
930 goto out_cancel;
931 }
932
933 /*
934 * Untrusted iget failed a second time. Let's try an inobt lookup.
935 * If the inobt thinks this the inode neither can exist inside the
936 * filesystem nor is allocated, return ENOENT to signal that the check
937 * can be skipped.
938 *
939 * If the lookup returns corruption, we'll mark this inode corrupt and
940 * exit to userspace. There's little chance of fixing anything until
941 * the inobt is straightened out, but there's nothing we can do here.
942 *
943 * If the lookup encounters any other error, exit to userspace.
944 *
945 * If the lookup succeeds, something else must be very wrong in the fs
946 * such that setting up the incore inode failed in some strange way.
947 * Treat those as corruptions.
948 */
949 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sc->sm->sm_ino));
950 if (!pag) {
951 error = -EFSCORRUPTED;
952 goto out_cancel;
953 }
954
955 error = xfs_imap(pag, sc->tp, sc->sm->sm_ino, &imap,
956 XFS_IGET_UNTRUSTED);
957 xfs_perag_put(pag);
958 if (error == -EINVAL || error == -ENOENT)
959 goto out_gone;
960 if (!error)
961 error = -EFSCORRUPTED;
962
963 out_cancel:
964 xchk_trans_cancel(sc);
965 out_error:
966 trace_xchk_op_error(sc, agno, XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino),
967 error, __return_address);
968 return error;
969 out_gone:
970 /* The file is gone, so there's nothing to check. */
971 xchk_trans_cancel(sc);
972 return -ENOENT;
973 }
974
975 /* Release an inode, possibly dropping it in the process. */
976 void
xchk_irele(struct xfs_scrub * sc,struct xfs_inode * ip)977 xchk_irele(
978 struct xfs_scrub *sc,
979 struct xfs_inode *ip)
980 {
981 if (sc->tp) {
982 /*
983 * If we are in a transaction, we /cannot/ drop the inode
984 * ourselves, because the VFS will trigger writeback, which
985 * can require a transaction. Clear DONTCACHE to force the
986 * inode to the LRU, where someone else can take care of
987 * dropping it.
988 *
989 * Note that when we grabbed our reference to the inode, it
990 * could have had an active ref and DONTCACHE set if a sysadmin
991 * is trying to coerce a change in file access mode. icache
992 * hits do not clear DONTCACHE, so we must do it here.
993 */
994 spin_lock(&VFS_I(ip)->i_lock);
995 VFS_I(ip)->i_state &= ~I_DONTCACHE;
996 spin_unlock(&VFS_I(ip)->i_lock);
997 }
998
999 xfs_irele(ip);
1000 }
1001
1002 /*
1003 * Set us up to scrub metadata mapped by a file's fork. Callers must not use
1004 * this to operate on user-accessible regular file data because the MMAPLOCK is
1005 * not taken.
1006 */
1007 int
xchk_setup_inode_contents(struct xfs_scrub * sc,unsigned int resblks)1008 xchk_setup_inode_contents(
1009 struct xfs_scrub *sc,
1010 unsigned int resblks)
1011 {
1012 int error;
1013
1014 error = xchk_iget_for_scrubbing(sc);
1015 if (error)
1016 return error;
1017
1018 /* Lock the inode so the VFS cannot touch this file. */
1019 xchk_ilock(sc, XFS_IOLOCK_EXCL);
1020
1021 error = xchk_trans_alloc(sc, resblks);
1022 if (error)
1023 goto out;
1024 xchk_ilock(sc, XFS_ILOCK_EXCL);
1025 out:
1026 /* scrub teardown will unlock and release the inode for us */
1027 return error;
1028 }
1029
1030 void
xchk_ilock(struct xfs_scrub * sc,unsigned int ilock_flags)1031 xchk_ilock(
1032 struct xfs_scrub *sc,
1033 unsigned int ilock_flags)
1034 {
1035 xfs_ilock(sc->ip, ilock_flags);
1036 sc->ilock_flags |= ilock_flags;
1037 }
1038
1039 bool
xchk_ilock_nowait(struct xfs_scrub * sc,unsigned int ilock_flags)1040 xchk_ilock_nowait(
1041 struct xfs_scrub *sc,
1042 unsigned int ilock_flags)
1043 {
1044 if (xfs_ilock_nowait(sc->ip, ilock_flags)) {
1045 sc->ilock_flags |= ilock_flags;
1046 return true;
1047 }
1048
1049 return false;
1050 }
1051
1052 void
xchk_iunlock(struct xfs_scrub * sc,unsigned int ilock_flags)1053 xchk_iunlock(
1054 struct xfs_scrub *sc,
1055 unsigned int ilock_flags)
1056 {
1057 sc->ilock_flags &= ~ilock_flags;
1058 xfs_iunlock(sc->ip, ilock_flags);
1059 }
1060
1061 /*
1062 * Predicate that decides if we need to evaluate the cross-reference check.
1063 * If there was an error accessing the cross-reference btree, just delete
1064 * the cursor and skip the check.
1065 */
1066 bool
xchk_should_check_xref(struct xfs_scrub * sc,int * error,struct xfs_btree_cur ** curpp)1067 xchk_should_check_xref(
1068 struct xfs_scrub *sc,
1069 int *error,
1070 struct xfs_btree_cur **curpp)
1071 {
1072 /* No point in xref if we already know we're corrupt. */
1073 if (xchk_skip_xref(sc->sm))
1074 return false;
1075
1076 if (*error == 0)
1077 return true;
1078
1079 if (curpp) {
1080 /* If we've already given up on xref, just bail out. */
1081 if (!*curpp)
1082 return false;
1083
1084 /* xref error, delete cursor and bail out. */
1085 xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR);
1086 *curpp = NULL;
1087 }
1088
1089 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
1090 trace_xchk_xref_error(sc, *error, __return_address);
1091
1092 /*
1093 * Errors encountered during cross-referencing with another
1094 * data structure should not cause this scrubber to abort.
1095 */
1096 *error = 0;
1097 return false;
1098 }
1099
1100 /* Run the structure verifiers on in-memory buffers to detect bad memory. */
1101 void
xchk_buffer_recheck(struct xfs_scrub * sc,struct xfs_buf * bp)1102 xchk_buffer_recheck(
1103 struct xfs_scrub *sc,
1104 struct xfs_buf *bp)
1105 {
1106 xfs_failaddr_t fa;
1107
1108 if (bp->b_ops == NULL) {
1109 xchk_block_set_corrupt(sc, bp);
1110 return;
1111 }
1112 if (bp->b_ops->verify_struct == NULL) {
1113 xchk_set_incomplete(sc);
1114 return;
1115 }
1116 fa = bp->b_ops->verify_struct(bp);
1117 if (!fa)
1118 return;
1119 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
1120 trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa);
1121 }
1122
1123 static inline int
xchk_metadata_inode_subtype(struct xfs_scrub * sc,unsigned int scrub_type)1124 xchk_metadata_inode_subtype(
1125 struct xfs_scrub *sc,
1126 unsigned int scrub_type)
1127 {
1128 __u32 smtype = sc->sm->sm_type;
1129 int error;
1130
1131 sc->sm->sm_type = scrub_type;
1132
1133 switch (scrub_type) {
1134 case XFS_SCRUB_TYPE_INODE:
1135 error = xchk_inode(sc);
1136 break;
1137 case XFS_SCRUB_TYPE_BMBTD:
1138 error = xchk_bmap_data(sc);
1139 break;
1140 default:
1141 ASSERT(0);
1142 error = -EFSCORRUPTED;
1143 break;
1144 }
1145
1146 sc->sm->sm_type = smtype;
1147 return error;
1148 }
1149
1150 /*
1151 * Scrub the attr/data forks of a metadata inode. The metadata inode must be
1152 * pointed to by sc->ip and the ILOCK must be held.
1153 */
1154 int
xchk_metadata_inode_forks(struct xfs_scrub * sc)1155 xchk_metadata_inode_forks(
1156 struct xfs_scrub *sc)
1157 {
1158 bool shared;
1159 int error;
1160
1161 if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
1162 return 0;
1163
1164 /* Check the inode record. */
1165 error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
1166 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1167 return error;
1168
1169 /* Metadata inodes don't live on the rt device. */
1170 if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) {
1171 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1172 return 0;
1173 }
1174
1175 /* They should never participate in reflink. */
1176 if (xfs_is_reflink_inode(sc->ip)) {
1177 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1178 return 0;
1179 }
1180
1181 /* They also should never have extended attributes. */
1182 if (xfs_inode_hasattr(sc->ip)) {
1183 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1184 return 0;
1185 }
1186
1187 /* Invoke the data fork scrubber. */
1188 error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
1189 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1190 return error;
1191
1192 /* Look for incorrect shared blocks. */
1193 if (xfs_has_reflink(sc->mp)) {
1194 error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip,
1195 &shared);
1196 if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0,
1197 &error))
1198 return error;
1199 if (shared)
1200 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1201 }
1202
1203 return 0;
1204 }
1205
1206 /*
1207 * Enable filesystem hooks (i.e. runtime code patching) before starting a scrub
1208 * operation. Callers must not hold any locks that intersect with the CPU
1209 * hotplug lock (e.g. writeback locks) because code patching must halt the CPUs
1210 * to change kernel code.
1211 */
1212 void
xchk_fsgates_enable(struct xfs_scrub * sc,unsigned int scrub_fsgates)1213 xchk_fsgates_enable(
1214 struct xfs_scrub *sc,
1215 unsigned int scrub_fsgates)
1216 {
1217 ASSERT(!(scrub_fsgates & ~XCHK_FSGATES_ALL));
1218 ASSERT(!(sc->flags & scrub_fsgates));
1219
1220 trace_xchk_fsgates_enable(sc, scrub_fsgates);
1221
1222 if (scrub_fsgates & XCHK_FSGATES_DRAIN)
1223 xfs_drain_wait_enable();
1224
1225 sc->flags |= scrub_fsgates;
1226 }
1227
1228 /*
1229 * Decide if this is this a cached inode that's also allocated. The caller
1230 * must hold a reference to an AG and the AGI buffer lock to prevent inodes
1231 * from being allocated or freed.
1232 *
1233 * Look up an inode by number in the given file system. If the inode number
1234 * is invalid, return -EINVAL. If the inode is not in cache, return -ENODATA.
1235 * If the inode is being reclaimed, return -ENODATA because we know the inode
1236 * cache cannot be updating the ondisk metadata.
1237 *
1238 * Otherwise, the incore inode is the one we want, and it is either live,
1239 * somewhere in the inactivation machinery, or reclaimable. The inode is
1240 * allocated if i_mode is nonzero. In all three cases, the cached inode will
1241 * be more up to date than the ondisk inode buffer, so we must use the incore
1242 * i_mode.
1243 */
1244 int
xchk_inode_is_allocated(struct xfs_scrub * sc,xfs_agino_t agino,bool * inuse)1245 xchk_inode_is_allocated(
1246 struct xfs_scrub *sc,
1247 xfs_agino_t agino,
1248 bool *inuse)
1249 {
1250 struct xfs_mount *mp = sc->mp;
1251 struct xfs_perag *pag = sc->sa.pag;
1252 xfs_ino_t ino;
1253 struct xfs_inode *ip;
1254 int error;
1255
1256 /* caller must hold perag reference */
1257 if (pag == NULL) {
1258 ASSERT(pag != NULL);
1259 return -EINVAL;
1260 }
1261
1262 /* caller must have AGI buffer */
1263 if (sc->sa.agi_bp == NULL) {
1264 ASSERT(sc->sa.agi_bp != NULL);
1265 return -EINVAL;
1266 }
1267
1268 /* reject inode numbers outside existing AGs */
1269 ino = XFS_AGINO_TO_INO(sc->mp, pag->pag_agno, agino);
1270 if (!xfs_verify_ino(mp, ino))
1271 return -EINVAL;
1272
1273 error = -ENODATA;
1274 rcu_read_lock();
1275 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1276 if (!ip) {
1277 /* cache miss */
1278 goto out_rcu;
1279 }
1280
1281 /*
1282 * If the inode number doesn't match, the incore inode got reused
1283 * during an RCU grace period and the radix tree hasn't been updated.
1284 * This isn't the inode we want.
1285 */
1286 spin_lock(&ip->i_flags_lock);
1287 if (ip->i_ino != ino)
1288 goto out_skip;
1289
1290 trace_xchk_inode_is_allocated(ip);
1291
1292 /*
1293 * We have an incore inode that matches the inode we want, and the
1294 * caller holds the perag structure and the AGI buffer. Let's check
1295 * our assumptions below:
1296 */
1297
1298 #ifdef DEBUG
1299 /*
1300 * (1) If the incore inode is live (i.e. referenced from the dcache),
1301 * it will not be INEW, nor will it be in the inactivation or reclaim
1302 * machinery. The ondisk inode had better be allocated. This is the
1303 * most trivial case.
1304 */
1305 if (!(ip->i_flags & (XFS_NEED_INACTIVE | XFS_INEW | XFS_IRECLAIMABLE |
1306 XFS_INACTIVATING))) {
1307 /* live inode */
1308 ASSERT(VFS_I(ip)->i_mode != 0);
1309 }
1310
1311 /*
1312 * If the incore inode is INEW, there are several possibilities:
1313 *
1314 * (2) For a file that is being created, note that we allocate the
1315 * ondisk inode before allocating, initializing, and adding the incore
1316 * inode to the radix tree.
1317 *
1318 * (3) If the incore inode is being recycled, the inode has to be
1319 * allocated because we don't allow freed inodes to be recycled.
1320 * Recycling doesn't touch i_mode.
1321 */
1322 if (ip->i_flags & XFS_INEW) {
1323 /* created on disk already or recycling */
1324 ASSERT(VFS_I(ip)->i_mode != 0);
1325 }
1326
1327 /*
1328 * (4) If the inode is queued for inactivation (NEED_INACTIVE) but
1329 * inactivation has not started (!INACTIVATING), it is still allocated.
1330 */
1331 if ((ip->i_flags & XFS_NEED_INACTIVE) &&
1332 !(ip->i_flags & XFS_INACTIVATING)) {
1333 /* definitely before difree */
1334 ASSERT(VFS_I(ip)->i_mode != 0);
1335 }
1336 #endif
1337
1338 /*
1339 * If the incore inode is undergoing inactivation (INACTIVATING), there
1340 * are two possibilities:
1341 *
1342 * (5) It is before the point where it would get freed ondisk, in which
1343 * case i_mode is still nonzero.
1344 *
1345 * (6) It has already been freed, in which case i_mode is zero.
1346 *
1347 * We don't take the ILOCK here, but difree and dialloc update the AGI,
1348 * and we've taken the AGI buffer lock, which prevents that from
1349 * happening.
1350 */
1351
1352 /*
1353 * (7) Inodes undergoing inactivation (INACTIVATING) or queued for
1354 * reclaim (IRECLAIMABLE) could be allocated or free. i_mode still
1355 * reflects the ondisk state.
1356 */
1357
1358 /*
1359 * (8) If the inode is in IFLUSHING, it's safe to query i_mode because
1360 * the flush code uses i_mode to format the ondisk inode.
1361 */
1362
1363 /*
1364 * (9) If the inode is in IRECLAIM and was reachable via the radix
1365 * tree, it still has the same i_mode as it did before it entered
1366 * reclaim. The inode object is still alive because we hold the RCU
1367 * read lock.
1368 */
1369
1370 *inuse = VFS_I(ip)->i_mode != 0;
1371 error = 0;
1372
1373 out_skip:
1374 spin_unlock(&ip->i_flags_lock);
1375 out_rcu:
1376 rcu_read_unlock();
1377 return error;
1378 }
1379