1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */
3
4 #include <linux/etherdevice.h>
5 #include <linux/netdevice.h>
6 #include <linux/if_ether.h>
7 #include <linux/if_vlan.h>
8 #include <linux/iopoll.h>
9 #include <linux/pci.h>
10
11 #include "wx_type.h"
12 #include "wx_lib.h"
13 #include "wx_hw.h"
14
wx_intr_disable(struct wx * wx,u64 qmask)15 static void wx_intr_disable(struct wx *wx, u64 qmask)
16 {
17 u32 mask;
18
19 mask = (qmask & U32_MAX);
20 if (mask)
21 wr32(wx, WX_PX_IMS(0), mask);
22
23 if (wx->mac.type == wx_mac_sp) {
24 mask = (qmask >> 32);
25 if (mask)
26 wr32(wx, WX_PX_IMS(1), mask);
27 }
28 }
29
wx_intr_enable(struct wx * wx,u64 qmask)30 void wx_intr_enable(struct wx *wx, u64 qmask)
31 {
32 u32 mask;
33
34 mask = (qmask & U32_MAX);
35 if (mask)
36 wr32(wx, WX_PX_IMC(0), mask);
37 if (wx->mac.type == wx_mac_sp) {
38 mask = (qmask >> 32);
39 if (mask)
40 wr32(wx, WX_PX_IMC(1), mask);
41 }
42 }
43 EXPORT_SYMBOL(wx_intr_enable);
44
45 /**
46 * wx_irq_disable - Mask off interrupt generation on the NIC
47 * @wx: board private structure
48 **/
wx_irq_disable(struct wx * wx)49 void wx_irq_disable(struct wx *wx)
50 {
51 struct pci_dev *pdev = wx->pdev;
52
53 wr32(wx, WX_PX_MISC_IEN, 0);
54 wx_intr_disable(wx, WX_INTR_ALL);
55
56 if (pdev->msix_enabled) {
57 int vector;
58
59 for (vector = 0; vector < wx->num_q_vectors; vector++)
60 synchronize_irq(wx->msix_entries[vector].vector);
61
62 synchronize_irq(wx->msix_entries[vector].vector);
63 } else {
64 synchronize_irq(pdev->irq);
65 }
66 }
67 EXPORT_SYMBOL(wx_irq_disable);
68
69 /* cmd_addr is used for some special command:
70 * 1. to be sector address, when implemented erase sector command
71 * 2. to be flash address when implemented read, write flash address
72 */
wx_fmgr_cmd_op(struct wx * wx,u32 cmd,u32 cmd_addr)73 static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr)
74 {
75 u32 cmd_val = 0, val = 0;
76
77 cmd_val = WX_SPI_CMD_CMD(cmd) |
78 WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) |
79 cmd_addr;
80 wr32(wx, WX_SPI_CMD, cmd_val);
81
82 return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000,
83 false, wx, WX_SPI_STATUS);
84 }
85
wx_flash_read_dword(struct wx * wx,u32 addr,u32 * data)86 static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data)
87 {
88 int ret = 0;
89
90 ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr);
91 if (ret < 0)
92 return ret;
93
94 *data = rd32(wx, WX_SPI_DATA);
95
96 return ret;
97 }
98
wx_check_flash_load(struct wx * hw,u32 check_bit)99 int wx_check_flash_load(struct wx *hw, u32 check_bit)
100 {
101 u32 reg = 0;
102 int err = 0;
103
104 /* if there's flash existing */
105 if (!(rd32(hw, WX_SPI_STATUS) &
106 WX_SPI_STATUS_FLASH_BYPASS)) {
107 /* wait hw load flash done */
108 err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000,
109 false, hw, WX_SPI_ILDR_STATUS);
110 if (err < 0)
111 wx_err(hw, "Check flash load timeout.\n");
112 }
113
114 return err;
115 }
116 EXPORT_SYMBOL(wx_check_flash_load);
117
wx_control_hw(struct wx * wx,bool drv)118 void wx_control_hw(struct wx *wx, bool drv)
119 {
120 /* True : Let firmware know the driver has taken over
121 * False : Let firmware take over control of hw
122 */
123 wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD,
124 drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0);
125 }
126 EXPORT_SYMBOL(wx_control_hw);
127
128 /**
129 * wx_mng_present - returns 0 when management capability is present
130 * @wx: pointer to hardware structure
131 */
wx_mng_present(struct wx * wx)132 int wx_mng_present(struct wx *wx)
133 {
134 u32 fwsm;
135
136 fwsm = rd32(wx, WX_MIS_ST);
137 if (fwsm & WX_MIS_ST_MNG_INIT_DN)
138 return 0;
139 else
140 return -EACCES;
141 }
142 EXPORT_SYMBOL(wx_mng_present);
143
144 /* Software lock to be held while software semaphore is being accessed. */
145 static DEFINE_MUTEX(wx_sw_sync_lock);
146
147 /**
148 * wx_release_sw_sync - Release SW semaphore
149 * @wx: pointer to hardware structure
150 * @mask: Mask to specify which semaphore to release
151 *
152 * Releases the SW semaphore for the specified
153 * function (CSR, PHY0, PHY1, EEPROM, Flash)
154 **/
wx_release_sw_sync(struct wx * wx,u32 mask)155 static void wx_release_sw_sync(struct wx *wx, u32 mask)
156 {
157 mutex_lock(&wx_sw_sync_lock);
158 wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0);
159 mutex_unlock(&wx_sw_sync_lock);
160 }
161
162 /**
163 * wx_acquire_sw_sync - Acquire SW semaphore
164 * @wx: pointer to hardware structure
165 * @mask: Mask to specify which semaphore to acquire
166 *
167 * Acquires the SW semaphore for the specified
168 * function (CSR, PHY0, PHY1, EEPROM, Flash)
169 **/
wx_acquire_sw_sync(struct wx * wx,u32 mask)170 static int wx_acquire_sw_sync(struct wx *wx, u32 mask)
171 {
172 u32 sem = 0;
173 int ret = 0;
174
175 mutex_lock(&wx_sw_sync_lock);
176 ret = read_poll_timeout(rd32, sem, !(sem & mask),
177 5000, 2000000, false, wx, WX_MNG_SWFW_SYNC);
178 if (!ret) {
179 sem |= mask;
180 wr32(wx, WX_MNG_SWFW_SYNC, sem);
181 } else {
182 wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem);
183 }
184 mutex_unlock(&wx_sw_sync_lock);
185
186 return ret;
187 }
188
189 /**
190 * wx_host_interface_command - Issue command to manageability block
191 * @wx: pointer to the HW structure
192 * @buffer: contains the command to write and where the return status will
193 * be placed
194 * @length: length of buffer, must be multiple of 4 bytes
195 * @timeout: time in ms to wait for command completion
196 * @return_data: read and return data from the buffer (true) or not (false)
197 * Needed because FW structures are big endian and decoding of
198 * these fields can be 8 bit or 16 bit based on command. Decoding
199 * is not easily understood without making a table of commands.
200 * So we will leave this up to the caller to read back the data
201 * in these cases.
202 **/
wx_host_interface_command(struct wx * wx,u32 * buffer,u32 length,u32 timeout,bool return_data)203 int wx_host_interface_command(struct wx *wx, u32 *buffer,
204 u32 length, u32 timeout, bool return_data)
205 {
206 u32 hdr_size = sizeof(struct wx_hic_hdr);
207 u32 hicr, i, bi, buf[64] = {};
208 int status = 0;
209 u32 dword_len;
210 u16 buf_len;
211
212 if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) {
213 wx_err(wx, "Buffer length failure buffersize=%d.\n", length);
214 return -EINVAL;
215 }
216
217 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
218 if (status != 0)
219 return status;
220
221 /* Calculate length in DWORDs. We must be DWORD aligned */
222 if ((length % (sizeof(u32))) != 0) {
223 wx_err(wx, "Buffer length failure, not aligned to dword");
224 status = -EINVAL;
225 goto rel_out;
226 }
227
228 dword_len = length >> 2;
229
230 /* The device driver writes the relevant command block
231 * into the ram area.
232 */
233 for (i = 0; i < dword_len; i++) {
234 wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i]));
235 /* write flush */
236 buf[i] = rd32a(wx, WX_MNG_MBOX, i);
237 }
238 /* Setting this bit tells the ARC that a new command is pending. */
239 wr32m(wx, WX_MNG_MBOX_CTL,
240 WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY);
241
242 status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000,
243 timeout * 1000, false, wx, WX_MNG_MBOX_CTL);
244
245 buf[0] = rd32(wx, WX_MNG_MBOX);
246 if ((buf[0] & 0xff0000) >> 16 == 0x80) {
247 wx_err(wx, "Unknown FW command: 0x%x\n", buffer[0] & 0xff);
248 status = -EINVAL;
249 goto rel_out;
250 }
251
252 /* Check command completion */
253 if (status) {
254 wx_err(wx, "Command has failed with no status valid.\n");
255 wx_dbg(wx, "write value:\n");
256 for (i = 0; i < dword_len; i++)
257 wx_dbg(wx, "%x ", buffer[i]);
258 wx_dbg(wx, "read value:\n");
259 for (i = 0; i < dword_len; i++)
260 wx_dbg(wx, "%x ", buf[i]);
261 wx_dbg(wx, "\ncheck: %x %x\n", buffer[0] & 0xff, ~buf[0] >> 24);
262
263 goto rel_out;
264 }
265
266 if (!return_data)
267 goto rel_out;
268
269 /* Calculate length in DWORDs */
270 dword_len = hdr_size >> 2;
271
272 /* first pull in the header so we know the buffer length */
273 for (bi = 0; bi < dword_len; bi++) {
274 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
275 le32_to_cpus(&buffer[bi]);
276 }
277
278 /* If there is any thing in data position pull it in */
279 buf_len = ((struct wx_hic_hdr *)buffer)->buf_len;
280 if (buf_len == 0)
281 goto rel_out;
282
283 if (length < buf_len + hdr_size) {
284 wx_err(wx, "Buffer not large enough for reply message.\n");
285 status = -EFAULT;
286 goto rel_out;
287 }
288
289 /* Calculate length in DWORDs, add 3 for odd lengths */
290 dword_len = (buf_len + 3) >> 2;
291
292 /* Pull in the rest of the buffer (bi is where we left off) */
293 for (; bi <= dword_len; bi++) {
294 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
295 le32_to_cpus(&buffer[bi]);
296 }
297
298 rel_out:
299 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
300 return status;
301 }
302 EXPORT_SYMBOL(wx_host_interface_command);
303
304 /**
305 * wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd
306 * assuming that the semaphore is already obtained.
307 * @wx: pointer to hardware structure
308 * @offset: offset of word in the EEPROM to read
309 * @data: word read from the EEPROM
310 *
311 * Reads a 16 bit word from the EEPROM using the hostif.
312 **/
wx_read_ee_hostif_data(struct wx * wx,u16 offset,u16 * data)313 static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data)
314 {
315 struct wx_hic_read_shadow_ram buffer;
316 int status;
317
318 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
319 buffer.hdr.req.buf_lenh = 0;
320 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
321 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
322
323 /* convert offset from words to bytes */
324 buffer.address = (__force u32)cpu_to_be32(offset * 2);
325 /* one word */
326 buffer.length = (__force u16)cpu_to_be16(sizeof(u16));
327
328 status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer),
329 WX_HI_COMMAND_TIMEOUT, false);
330
331 if (status != 0)
332 return status;
333
334 *data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET);
335
336 return status;
337 }
338
339 /**
340 * wx_read_ee_hostif - Read EEPROM word using a host interface cmd
341 * @wx: pointer to hardware structure
342 * @offset: offset of word in the EEPROM to read
343 * @data: word read from the EEPROM
344 *
345 * Reads a 16 bit word from the EEPROM using the hostif.
346 **/
wx_read_ee_hostif(struct wx * wx,u16 offset,u16 * data)347 int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data)
348 {
349 int status = 0;
350
351 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
352 if (status == 0) {
353 status = wx_read_ee_hostif_data(wx, offset, data);
354 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
355 }
356
357 return status;
358 }
359 EXPORT_SYMBOL(wx_read_ee_hostif);
360
361 /**
362 * wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif
363 * @wx: pointer to hardware structure
364 * @offset: offset of word in the EEPROM to read
365 * @words: number of words
366 * @data: word(s) read from the EEPROM
367 *
368 * Reads a 16 bit word(s) from the EEPROM using the hostif.
369 **/
wx_read_ee_hostif_buffer(struct wx * wx,u16 offset,u16 words,u16 * data)370 int wx_read_ee_hostif_buffer(struct wx *wx,
371 u16 offset, u16 words, u16 *data)
372 {
373 struct wx_hic_read_shadow_ram buffer;
374 u32 current_word = 0;
375 u16 words_to_read;
376 u32 value = 0;
377 int status;
378 u32 i;
379
380 /* Take semaphore for the entire operation. */
381 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
382 if (status != 0)
383 return status;
384
385 while (words) {
386 if (words > FW_MAX_READ_BUFFER_SIZE / 2)
387 words_to_read = FW_MAX_READ_BUFFER_SIZE / 2;
388 else
389 words_to_read = words;
390
391 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
392 buffer.hdr.req.buf_lenh = 0;
393 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
394 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
395
396 /* convert offset from words to bytes */
397 buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2);
398 buffer.length = (__force u16)cpu_to_be16(words_to_read * 2);
399
400 status = wx_host_interface_command(wx, (u32 *)&buffer,
401 sizeof(buffer),
402 WX_HI_COMMAND_TIMEOUT,
403 false);
404
405 if (status != 0) {
406 wx_err(wx, "Host interface command failed\n");
407 goto out;
408 }
409
410 for (i = 0; i < words_to_read; i++) {
411 u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i;
412
413 value = rd32(wx, reg);
414 data[current_word] = (u16)(value & 0xffff);
415 current_word++;
416 i++;
417 if (i < words_to_read) {
418 value >>= 16;
419 data[current_word] = (u16)(value & 0xffff);
420 current_word++;
421 }
422 }
423 words -= words_to_read;
424 }
425
426 out:
427 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
428 return status;
429 }
430 EXPORT_SYMBOL(wx_read_ee_hostif_buffer);
431
432 /**
433 * wx_init_eeprom_params - Initialize EEPROM params
434 * @wx: pointer to hardware structure
435 *
436 * Initializes the EEPROM parameters wx_eeprom_info within the
437 * wx_hw struct in order to set up EEPROM access.
438 **/
wx_init_eeprom_params(struct wx * wx)439 void wx_init_eeprom_params(struct wx *wx)
440 {
441 struct wx_eeprom_info *eeprom = &wx->eeprom;
442 u16 eeprom_size;
443 u16 data = 0x80;
444
445 if (eeprom->type == wx_eeprom_uninitialized) {
446 eeprom->semaphore_delay = 10;
447 eeprom->type = wx_eeprom_none;
448
449 if (!(rd32(wx, WX_SPI_STATUS) &
450 WX_SPI_STATUS_FLASH_BYPASS)) {
451 eeprom->type = wx_flash;
452
453 eeprom_size = 4096;
454 eeprom->word_size = eeprom_size >> 1;
455
456 wx_dbg(wx, "Eeprom params: type = %d, size = %d\n",
457 eeprom->type, eeprom->word_size);
458 }
459 }
460
461 if (wx->mac.type == wx_mac_sp) {
462 if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) {
463 wx_err(wx, "NVM Read Error\n");
464 return;
465 }
466 data = data >> 1;
467 }
468
469 eeprom->sw_region_offset = data;
470 }
471 EXPORT_SYMBOL(wx_init_eeprom_params);
472
473 /**
474 * wx_get_mac_addr - Generic get MAC address
475 * @wx: pointer to hardware structure
476 * @mac_addr: Adapter MAC address
477 *
478 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
479 * A reset of the adapter must be performed prior to calling this function
480 * in order for the MAC address to have been loaded from the EEPROM into RAR0
481 **/
wx_get_mac_addr(struct wx * wx,u8 * mac_addr)482 void wx_get_mac_addr(struct wx *wx, u8 *mac_addr)
483 {
484 u32 rar_high;
485 u32 rar_low;
486 u16 i;
487
488 wr32(wx, WX_PSR_MAC_SWC_IDX, 0);
489 rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H);
490 rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L);
491
492 for (i = 0; i < 2; i++)
493 mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
494
495 for (i = 0; i < 4; i++)
496 mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
497 }
498 EXPORT_SYMBOL(wx_get_mac_addr);
499
500 /**
501 * wx_set_rar - Set Rx address register
502 * @wx: pointer to hardware structure
503 * @index: Receive address register to write
504 * @addr: Address to put into receive address register
505 * @pools: VMDq "set" or "pool" index
506 * @enable_addr: set flag that address is active
507 *
508 * Puts an ethernet address into a receive address register.
509 **/
wx_set_rar(struct wx * wx,u32 index,u8 * addr,u64 pools,u32 enable_addr)510 static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools,
511 u32 enable_addr)
512 {
513 u32 rar_entries = wx->mac.num_rar_entries;
514 u32 rar_low, rar_high;
515
516 /* Make sure we are using a valid rar index range */
517 if (index >= rar_entries) {
518 wx_err(wx, "RAR index %d is out of range.\n", index);
519 return -EINVAL;
520 }
521
522 /* select the MAC address */
523 wr32(wx, WX_PSR_MAC_SWC_IDX, index);
524
525 /* setup VMDq pool mapping */
526 wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF);
527 if (wx->mac.type == wx_mac_sp)
528 wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32);
529
530 /* HW expects these in little endian so we reverse the byte
531 * order from network order (big endian) to little endian
532 *
533 * Some parts put the VMDq setting in the extra RAH bits,
534 * so save everything except the lower 16 bits that hold part
535 * of the address and the address valid bit.
536 */
537 rar_low = ((u32)addr[5] |
538 ((u32)addr[4] << 8) |
539 ((u32)addr[3] << 16) |
540 ((u32)addr[2] << 24));
541 rar_high = ((u32)addr[1] |
542 ((u32)addr[0] << 8));
543 if (enable_addr != 0)
544 rar_high |= WX_PSR_MAC_SWC_AD_H_AV;
545
546 wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low);
547 wr32m(wx, WX_PSR_MAC_SWC_AD_H,
548 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
549 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
550 WX_PSR_MAC_SWC_AD_H_AV),
551 rar_high);
552
553 return 0;
554 }
555
556 /**
557 * wx_clear_rar - Remove Rx address register
558 * @wx: pointer to hardware structure
559 * @index: Receive address register to write
560 *
561 * Clears an ethernet address from a receive address register.
562 **/
wx_clear_rar(struct wx * wx,u32 index)563 static int wx_clear_rar(struct wx *wx, u32 index)
564 {
565 u32 rar_entries = wx->mac.num_rar_entries;
566
567 /* Make sure we are using a valid rar index range */
568 if (index >= rar_entries) {
569 wx_err(wx, "RAR index %d is out of range.\n", index);
570 return -EINVAL;
571 }
572
573 /* Some parts put the VMDq setting in the extra RAH bits,
574 * so save everything except the lower 16 bits that hold part
575 * of the address and the address valid bit.
576 */
577 wr32(wx, WX_PSR_MAC_SWC_IDX, index);
578
579 wr32(wx, WX_PSR_MAC_SWC_VM_L, 0);
580 wr32(wx, WX_PSR_MAC_SWC_VM_H, 0);
581
582 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
583 wr32m(wx, WX_PSR_MAC_SWC_AD_H,
584 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
585 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
586 WX_PSR_MAC_SWC_AD_H_AV),
587 0);
588
589 return 0;
590 }
591
592 /**
593 * wx_clear_vmdq - Disassociate a VMDq pool index from a rx address
594 * @wx: pointer to hardware struct
595 * @rar: receive address register index to disassociate
596 * @vmdq: VMDq pool index to remove from the rar
597 **/
wx_clear_vmdq(struct wx * wx,u32 rar,u32 __maybe_unused vmdq)598 static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq)
599 {
600 u32 rar_entries = wx->mac.num_rar_entries;
601 u32 mpsar_lo, mpsar_hi;
602
603 /* Make sure we are using a valid rar index range */
604 if (rar >= rar_entries) {
605 wx_err(wx, "RAR index %d is out of range.\n", rar);
606 return -EINVAL;
607 }
608
609 wr32(wx, WX_PSR_MAC_SWC_IDX, rar);
610 mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L);
611 mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H);
612
613 if (!mpsar_lo && !mpsar_hi)
614 return 0;
615
616 /* was that the last pool using this rar? */
617 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
618 wx_clear_rar(wx, rar);
619
620 return 0;
621 }
622
623 /**
624 * wx_init_uta_tables - Initialize the Unicast Table Array
625 * @wx: pointer to hardware structure
626 **/
wx_init_uta_tables(struct wx * wx)627 static void wx_init_uta_tables(struct wx *wx)
628 {
629 int i;
630
631 wx_dbg(wx, " Clearing UTA\n");
632
633 for (i = 0; i < 128; i++)
634 wr32(wx, WX_PSR_UC_TBL(i), 0);
635 }
636
637 /**
638 * wx_init_rx_addrs - Initializes receive address filters.
639 * @wx: pointer to hardware structure
640 *
641 * Places the MAC address in receive address register 0 and clears the rest
642 * of the receive address registers. Clears the multicast table. Assumes
643 * the receiver is in reset when the routine is called.
644 **/
wx_init_rx_addrs(struct wx * wx)645 void wx_init_rx_addrs(struct wx *wx)
646 {
647 u32 rar_entries = wx->mac.num_rar_entries;
648 u32 psrctl;
649 int i;
650
651 /* If the current mac address is valid, assume it is a software override
652 * to the permanent address.
653 * Otherwise, use the permanent address from the eeprom.
654 */
655 if (!is_valid_ether_addr(wx->mac.addr)) {
656 /* Get the MAC address from the RAR0 for later reference */
657 wx_get_mac_addr(wx, wx->mac.addr);
658 wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr);
659 } else {
660 /* Setup the receive address. */
661 wx_dbg(wx, "Overriding MAC Address in RAR[0]\n");
662 wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr);
663
664 wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV);
665
666 if (wx->mac.type == wx_mac_sp) {
667 /* clear VMDq pool/queue selection for RAR 0 */
668 wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL);
669 }
670 }
671
672 /* Zero out the other receive addresses. */
673 wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1);
674 for (i = 1; i < rar_entries; i++) {
675 wr32(wx, WX_PSR_MAC_SWC_IDX, i);
676 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
677 wr32(wx, WX_PSR_MAC_SWC_AD_H, 0);
678 }
679
680 /* Clear the MTA */
681 wx->addr_ctrl.mta_in_use = 0;
682 psrctl = rd32(wx, WX_PSR_CTL);
683 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
684 psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT;
685 wr32(wx, WX_PSR_CTL, psrctl);
686 wx_dbg(wx, " Clearing MTA\n");
687 for (i = 0; i < wx->mac.mcft_size; i++)
688 wr32(wx, WX_PSR_MC_TBL(i), 0);
689
690 wx_init_uta_tables(wx);
691 }
692 EXPORT_SYMBOL(wx_init_rx_addrs);
693
wx_sync_mac_table(struct wx * wx)694 static void wx_sync_mac_table(struct wx *wx)
695 {
696 int i;
697
698 for (i = 0; i < wx->mac.num_rar_entries; i++) {
699 if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) {
700 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
701 wx_set_rar(wx, i,
702 wx->mac_table[i].addr,
703 wx->mac_table[i].pools,
704 WX_PSR_MAC_SWC_AD_H_AV);
705 } else {
706 wx_clear_rar(wx, i);
707 }
708 wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED);
709 }
710 }
711 }
712
713 /* this function destroys the first RAR entry */
wx_mac_set_default_filter(struct wx * wx,u8 * addr)714 void wx_mac_set_default_filter(struct wx *wx, u8 *addr)
715 {
716 memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN);
717 wx->mac_table[0].pools = 1ULL;
718 wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE);
719 wx_set_rar(wx, 0, wx->mac_table[0].addr,
720 wx->mac_table[0].pools,
721 WX_PSR_MAC_SWC_AD_H_AV);
722 }
723 EXPORT_SYMBOL(wx_mac_set_default_filter);
724
wx_flush_sw_mac_table(struct wx * wx)725 void wx_flush_sw_mac_table(struct wx *wx)
726 {
727 u32 i;
728
729 for (i = 0; i < wx->mac.num_rar_entries; i++) {
730 if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE))
731 continue;
732
733 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
734 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
735 memset(wx->mac_table[i].addr, 0, ETH_ALEN);
736 wx->mac_table[i].pools = 0;
737 }
738 wx_sync_mac_table(wx);
739 }
740 EXPORT_SYMBOL(wx_flush_sw_mac_table);
741
wx_add_mac_filter(struct wx * wx,u8 * addr,u16 pool)742 static int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool)
743 {
744 u32 i;
745
746 if (is_zero_ether_addr(addr))
747 return -EINVAL;
748
749 for (i = 0; i < wx->mac.num_rar_entries; i++) {
750 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
751 if (ether_addr_equal(addr, wx->mac_table[i].addr)) {
752 if (wx->mac_table[i].pools != (1ULL << pool)) {
753 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
754 wx->mac_table[i].pools |= (1ULL << pool);
755 wx_sync_mac_table(wx);
756 return i;
757 }
758 }
759 }
760
761 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE)
762 continue;
763 wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED |
764 WX_MAC_STATE_IN_USE);
765 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
766 wx->mac_table[i].pools |= (1ULL << pool);
767 wx_sync_mac_table(wx);
768 return i;
769 }
770 return -ENOMEM;
771 }
772
wx_del_mac_filter(struct wx * wx,u8 * addr,u16 pool)773 static int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool)
774 {
775 u32 i;
776
777 if (is_zero_ether_addr(addr))
778 return -EINVAL;
779
780 /* search table for addr, if found, set to 0 and sync */
781 for (i = 0; i < wx->mac.num_rar_entries; i++) {
782 if (!ether_addr_equal(addr, wx->mac_table[i].addr))
783 continue;
784
785 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
786 wx->mac_table[i].pools &= ~(1ULL << pool);
787 if (!wx->mac_table[i].pools) {
788 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
789 memset(wx->mac_table[i].addr, 0, ETH_ALEN);
790 }
791 wx_sync_mac_table(wx);
792 return 0;
793 }
794 return -ENOMEM;
795 }
796
wx_available_rars(struct wx * wx)797 static int wx_available_rars(struct wx *wx)
798 {
799 u32 i, count = 0;
800
801 for (i = 0; i < wx->mac.num_rar_entries; i++) {
802 if (wx->mac_table[i].state == 0)
803 count++;
804 }
805
806 return count;
807 }
808
809 /**
810 * wx_write_uc_addr_list - write unicast addresses to RAR table
811 * @netdev: network interface device structure
812 * @pool: index for mac table
813 *
814 * Writes unicast address list to the RAR table.
815 * Returns: -ENOMEM on failure/insufficient address space
816 * 0 on no addresses written
817 * X on writing X addresses to the RAR table
818 **/
wx_write_uc_addr_list(struct net_device * netdev,int pool)819 static int wx_write_uc_addr_list(struct net_device *netdev, int pool)
820 {
821 struct wx *wx = netdev_priv(netdev);
822 int count = 0;
823
824 /* return ENOMEM indicating insufficient memory for addresses */
825 if (netdev_uc_count(netdev) > wx_available_rars(wx))
826 return -ENOMEM;
827
828 if (!netdev_uc_empty(netdev)) {
829 struct netdev_hw_addr *ha;
830
831 netdev_for_each_uc_addr(ha, netdev) {
832 wx_del_mac_filter(wx, ha->addr, pool);
833 wx_add_mac_filter(wx, ha->addr, pool);
834 count++;
835 }
836 }
837 return count;
838 }
839
840 /**
841 * wx_mta_vector - Determines bit-vector in multicast table to set
842 * @wx: pointer to private structure
843 * @mc_addr: the multicast address
844 *
845 * Extracts the 12 bits, from a multicast address, to determine which
846 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
847 * incoming rx multicast addresses, to determine the bit-vector to check in
848 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
849 * by the MO field of the MCSTCTRL. The MO field is set during initialization
850 * to mc_filter_type.
851 **/
wx_mta_vector(struct wx * wx,u8 * mc_addr)852 static u32 wx_mta_vector(struct wx *wx, u8 *mc_addr)
853 {
854 u32 vector = 0;
855
856 switch (wx->mac.mc_filter_type) {
857 case 0: /* use bits [47:36] of the address */
858 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
859 break;
860 case 1: /* use bits [46:35] of the address */
861 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
862 break;
863 case 2: /* use bits [45:34] of the address */
864 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
865 break;
866 case 3: /* use bits [43:32] of the address */
867 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
868 break;
869 default: /* Invalid mc_filter_type */
870 wx_err(wx, "MC filter type param set incorrectly\n");
871 break;
872 }
873
874 /* vector can only be 12-bits or boundary will be exceeded */
875 vector &= 0xFFF;
876 return vector;
877 }
878
879 /**
880 * wx_set_mta - Set bit-vector in multicast table
881 * @wx: pointer to private structure
882 * @mc_addr: Multicast address
883 *
884 * Sets the bit-vector in the multicast table.
885 **/
wx_set_mta(struct wx * wx,u8 * mc_addr)886 static void wx_set_mta(struct wx *wx, u8 *mc_addr)
887 {
888 u32 vector, vector_bit, vector_reg;
889
890 wx->addr_ctrl.mta_in_use++;
891
892 vector = wx_mta_vector(wx, mc_addr);
893 wx_dbg(wx, " bit-vector = 0x%03X\n", vector);
894
895 /* The MTA is a register array of 128 32-bit registers. It is treated
896 * like an array of 4096 bits. We want to set bit
897 * BitArray[vector_value]. So we figure out what register the bit is
898 * in, read it, OR in the new bit, then write back the new value. The
899 * register is determined by the upper 7 bits of the vector value and
900 * the bit within that register are determined by the lower 5 bits of
901 * the value.
902 */
903 vector_reg = (vector >> 5) & 0x7F;
904 vector_bit = vector & 0x1F;
905 wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
906 }
907
908 /**
909 * wx_update_mc_addr_list - Updates MAC list of multicast addresses
910 * @wx: pointer to private structure
911 * @netdev: pointer to net device structure
912 *
913 * The given list replaces any existing list. Clears the MC addrs from receive
914 * address registers and the multicast table. Uses unused receive address
915 * registers for the first multicast addresses, and hashes the rest into the
916 * multicast table.
917 **/
wx_update_mc_addr_list(struct wx * wx,struct net_device * netdev)918 static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev)
919 {
920 struct netdev_hw_addr *ha;
921 u32 i, psrctl;
922
923 /* Set the new number of MC addresses that we are being requested to
924 * use.
925 */
926 wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
927 wx->addr_ctrl.mta_in_use = 0;
928
929 /* Clear mta_shadow */
930 wx_dbg(wx, " Clearing MTA\n");
931 memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow));
932
933 /* Update mta_shadow */
934 netdev_for_each_mc_addr(ha, netdev) {
935 wx_dbg(wx, " Adding the multicast addresses:\n");
936 wx_set_mta(wx, ha->addr);
937 }
938
939 /* Enable mta */
940 for (i = 0; i < wx->mac.mcft_size; i++)
941 wr32a(wx, WX_PSR_MC_TBL(0), i,
942 wx->mac.mta_shadow[i]);
943
944 if (wx->addr_ctrl.mta_in_use > 0) {
945 psrctl = rd32(wx, WX_PSR_CTL);
946 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
947 psrctl |= WX_PSR_CTL_MFE |
948 (wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT);
949 wr32(wx, WX_PSR_CTL, psrctl);
950 }
951
952 wx_dbg(wx, "Update mc addr list Complete\n");
953 }
954
955 /**
956 * wx_write_mc_addr_list - write multicast addresses to MTA
957 * @netdev: network interface device structure
958 *
959 * Writes multicast address list to the MTA hash table.
960 * Returns: 0 on no addresses written
961 * X on writing X addresses to MTA
962 **/
wx_write_mc_addr_list(struct net_device * netdev)963 static int wx_write_mc_addr_list(struct net_device *netdev)
964 {
965 struct wx *wx = netdev_priv(netdev);
966
967 if (!netif_running(netdev))
968 return 0;
969
970 wx_update_mc_addr_list(wx, netdev);
971
972 return netdev_mc_count(netdev);
973 }
974
975 /**
976 * wx_set_mac - Change the Ethernet Address of the NIC
977 * @netdev: network interface device structure
978 * @p: pointer to an address structure
979 *
980 * Returns 0 on success, negative on failure
981 **/
wx_set_mac(struct net_device * netdev,void * p)982 int wx_set_mac(struct net_device *netdev, void *p)
983 {
984 struct wx *wx = netdev_priv(netdev);
985 struct sockaddr *addr = p;
986 int retval;
987
988 retval = eth_prepare_mac_addr_change(netdev, addr);
989 if (retval)
990 return retval;
991
992 wx_del_mac_filter(wx, wx->mac.addr, 0);
993 eth_hw_addr_set(netdev, addr->sa_data);
994 memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len);
995
996 wx_mac_set_default_filter(wx, wx->mac.addr);
997
998 return 0;
999 }
1000 EXPORT_SYMBOL(wx_set_mac);
1001
wx_disable_rx(struct wx * wx)1002 void wx_disable_rx(struct wx *wx)
1003 {
1004 u32 pfdtxgswc;
1005 u32 rxctrl;
1006
1007 rxctrl = rd32(wx, WX_RDB_PB_CTL);
1008 if (rxctrl & WX_RDB_PB_CTL_RXEN) {
1009 pfdtxgswc = rd32(wx, WX_PSR_CTL);
1010 if (pfdtxgswc & WX_PSR_CTL_SW_EN) {
1011 pfdtxgswc &= ~WX_PSR_CTL_SW_EN;
1012 wr32(wx, WX_PSR_CTL, pfdtxgswc);
1013 wx->mac.set_lben = true;
1014 } else {
1015 wx->mac.set_lben = false;
1016 }
1017 rxctrl &= ~WX_RDB_PB_CTL_RXEN;
1018 wr32(wx, WX_RDB_PB_CTL, rxctrl);
1019
1020 if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) ||
1021 ((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) {
1022 /* disable mac receiver */
1023 wr32m(wx, WX_MAC_RX_CFG,
1024 WX_MAC_RX_CFG_RE, 0);
1025 }
1026 }
1027 }
1028 EXPORT_SYMBOL(wx_disable_rx);
1029
wx_enable_rx(struct wx * wx)1030 static void wx_enable_rx(struct wx *wx)
1031 {
1032 u32 psrctl;
1033
1034 /* enable mac receiver */
1035 wr32m(wx, WX_MAC_RX_CFG,
1036 WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE);
1037
1038 wr32m(wx, WX_RDB_PB_CTL,
1039 WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN);
1040
1041 if (wx->mac.set_lben) {
1042 psrctl = rd32(wx, WX_PSR_CTL);
1043 psrctl |= WX_PSR_CTL_SW_EN;
1044 wr32(wx, WX_PSR_CTL, psrctl);
1045 wx->mac.set_lben = false;
1046 }
1047 }
1048
1049 /**
1050 * wx_set_rxpba - Initialize Rx packet buffer
1051 * @wx: pointer to private structure
1052 **/
wx_set_rxpba(struct wx * wx)1053 static void wx_set_rxpba(struct wx *wx)
1054 {
1055 u32 rxpktsize, txpktsize, txpbthresh;
1056
1057 rxpktsize = wx->mac.rx_pb_size << WX_RDB_PB_SZ_SHIFT;
1058 wr32(wx, WX_RDB_PB_SZ(0), rxpktsize);
1059
1060 /* Only support an equally distributed Tx packet buffer strategy. */
1061 txpktsize = wx->mac.tx_pb_size;
1062 txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX;
1063 wr32(wx, WX_TDB_PB_SZ(0), txpktsize);
1064 wr32(wx, WX_TDM_PB_THRE(0), txpbthresh);
1065 }
1066
wx_configure_port(struct wx * wx)1067 static void wx_configure_port(struct wx *wx)
1068 {
1069 u32 value, i;
1070
1071 value = WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ;
1072 wr32m(wx, WX_CFG_PORT_CTL,
1073 WX_CFG_PORT_CTL_D_VLAN |
1074 WX_CFG_PORT_CTL_QINQ,
1075 value);
1076
1077 wr32(wx, WX_CFG_TAG_TPID(0),
1078 ETH_P_8021Q | ETH_P_8021AD << 16);
1079 wx->tpid[0] = ETH_P_8021Q;
1080 wx->tpid[1] = ETH_P_8021AD;
1081 for (i = 1; i < 4; i++)
1082 wr32(wx, WX_CFG_TAG_TPID(i),
1083 ETH_P_8021Q | ETH_P_8021Q << 16);
1084 for (i = 2; i < 8; i++)
1085 wx->tpid[i] = ETH_P_8021Q;
1086 }
1087
1088 /**
1089 * wx_disable_sec_rx_path - Stops the receive data path
1090 * @wx: pointer to private structure
1091 *
1092 * Stops the receive data path and waits for the HW to internally empty
1093 * the Rx security block
1094 **/
wx_disable_sec_rx_path(struct wx * wx)1095 static int wx_disable_sec_rx_path(struct wx *wx)
1096 {
1097 u32 secrx;
1098
1099 wr32m(wx, WX_RSC_CTL,
1100 WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS);
1101
1102 return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY,
1103 1000, 40000, false, wx, WX_RSC_ST);
1104 }
1105
1106 /**
1107 * wx_enable_sec_rx_path - Enables the receive data path
1108 * @wx: pointer to private structure
1109 *
1110 * Enables the receive data path.
1111 **/
wx_enable_sec_rx_path(struct wx * wx)1112 static void wx_enable_sec_rx_path(struct wx *wx)
1113 {
1114 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0);
1115 WX_WRITE_FLUSH(wx);
1116 }
1117
wx_vlan_strip_control(struct wx * wx,bool enable)1118 static void wx_vlan_strip_control(struct wx *wx, bool enable)
1119 {
1120 int i, j;
1121
1122 for (i = 0; i < wx->num_rx_queues; i++) {
1123 struct wx_ring *ring = wx->rx_ring[i];
1124
1125 j = ring->reg_idx;
1126 wr32m(wx, WX_PX_RR_CFG(j), WX_PX_RR_CFG_VLAN,
1127 enable ? WX_PX_RR_CFG_VLAN : 0);
1128 }
1129 }
1130
wx_set_rx_mode(struct net_device * netdev)1131 void wx_set_rx_mode(struct net_device *netdev)
1132 {
1133 struct wx *wx = netdev_priv(netdev);
1134 netdev_features_t features;
1135 u32 fctrl, vmolr, vlnctrl;
1136 int count;
1137
1138 features = netdev->features;
1139
1140 /* Check for Promiscuous and All Multicast modes */
1141 fctrl = rd32(wx, WX_PSR_CTL);
1142 fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE);
1143 vmolr = rd32(wx, WX_PSR_VM_L2CTL(0));
1144 vmolr &= ~(WX_PSR_VM_L2CTL_UPE |
1145 WX_PSR_VM_L2CTL_MPE |
1146 WX_PSR_VM_L2CTL_ROPE |
1147 WX_PSR_VM_L2CTL_ROMPE);
1148 vlnctrl = rd32(wx, WX_PSR_VLAN_CTL);
1149 vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN);
1150
1151 /* set all bits that we expect to always be set */
1152 fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE;
1153 vmolr |= WX_PSR_VM_L2CTL_BAM |
1154 WX_PSR_VM_L2CTL_AUPE |
1155 WX_PSR_VM_L2CTL_VACC;
1156 vlnctrl |= WX_PSR_VLAN_CTL_VFE;
1157
1158 wx->addr_ctrl.user_set_promisc = false;
1159 if (netdev->flags & IFF_PROMISC) {
1160 wx->addr_ctrl.user_set_promisc = true;
1161 fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE;
1162 /* pf don't want packets routing to vf, so clear UPE */
1163 vmolr |= WX_PSR_VM_L2CTL_MPE;
1164 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1165 }
1166
1167 if (netdev->flags & IFF_ALLMULTI) {
1168 fctrl |= WX_PSR_CTL_MPE;
1169 vmolr |= WX_PSR_VM_L2CTL_MPE;
1170 }
1171
1172 if (netdev->features & NETIF_F_RXALL) {
1173 vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE);
1174 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1175 /* receive bad packets */
1176 wr32m(wx, WX_RSC_CTL,
1177 WX_RSC_CTL_SAVE_MAC_ERR,
1178 WX_RSC_CTL_SAVE_MAC_ERR);
1179 } else {
1180 vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE;
1181 }
1182
1183 /* Write addresses to available RAR registers, if there is not
1184 * sufficient space to store all the addresses then enable
1185 * unicast promiscuous mode
1186 */
1187 count = wx_write_uc_addr_list(netdev, 0);
1188 if (count < 0) {
1189 vmolr &= ~WX_PSR_VM_L2CTL_ROPE;
1190 vmolr |= WX_PSR_VM_L2CTL_UPE;
1191 }
1192
1193 /* Write addresses to the MTA, if the attempt fails
1194 * then we should just turn on promiscuous mode so
1195 * that we can at least receive multicast traffic
1196 */
1197 count = wx_write_mc_addr_list(netdev);
1198 if (count < 0) {
1199 vmolr &= ~WX_PSR_VM_L2CTL_ROMPE;
1200 vmolr |= WX_PSR_VM_L2CTL_MPE;
1201 }
1202
1203 wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
1204 wr32(wx, WX_PSR_CTL, fctrl);
1205 wr32(wx, WX_PSR_VM_L2CTL(0), vmolr);
1206
1207 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1208 (features & NETIF_F_HW_VLAN_STAG_RX))
1209 wx_vlan_strip_control(wx, true);
1210 else
1211 wx_vlan_strip_control(wx, false);
1212
1213 }
1214 EXPORT_SYMBOL(wx_set_rx_mode);
1215
wx_set_rx_buffer_len(struct wx * wx)1216 static void wx_set_rx_buffer_len(struct wx *wx)
1217 {
1218 struct net_device *netdev = wx->netdev;
1219 u32 mhadd, max_frame;
1220
1221 max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1222 /* adjust max frame to be at least the size of a standard frame */
1223 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
1224 max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN);
1225
1226 mhadd = rd32(wx, WX_PSR_MAX_SZ);
1227 if (max_frame != mhadd)
1228 wr32(wx, WX_PSR_MAX_SZ, max_frame);
1229 }
1230
1231 /**
1232 * wx_change_mtu - Change the Maximum Transfer Unit
1233 * @netdev: network interface device structure
1234 * @new_mtu: new value for maximum frame size
1235 *
1236 * Returns 0 on success, negative on failure
1237 **/
wx_change_mtu(struct net_device * netdev,int new_mtu)1238 int wx_change_mtu(struct net_device *netdev, int new_mtu)
1239 {
1240 struct wx *wx = netdev_priv(netdev);
1241
1242 netdev->mtu = new_mtu;
1243 wx_set_rx_buffer_len(wx);
1244
1245 return 0;
1246 }
1247 EXPORT_SYMBOL(wx_change_mtu);
1248
1249 /* Disable the specified rx queue */
wx_disable_rx_queue(struct wx * wx,struct wx_ring * ring)1250 void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring)
1251 {
1252 u8 reg_idx = ring->reg_idx;
1253 u32 rxdctl;
1254 int ret;
1255
1256 /* write value back with RRCFG.EN bit cleared */
1257 wr32m(wx, WX_PX_RR_CFG(reg_idx),
1258 WX_PX_RR_CFG_RR_EN, 0);
1259
1260 /* the hardware may take up to 100us to really disable the rx queue */
1261 ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN),
1262 10, 100, true, wx, WX_PX_RR_CFG(reg_idx));
1263
1264 if (ret == -ETIMEDOUT) {
1265 /* Just for information */
1266 wx_err(wx,
1267 "RRCFG.EN on Rx queue %d not cleared within the polling period\n",
1268 reg_idx);
1269 }
1270 }
1271 EXPORT_SYMBOL(wx_disable_rx_queue);
1272
wx_enable_rx_queue(struct wx * wx,struct wx_ring * ring)1273 static void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring)
1274 {
1275 u8 reg_idx = ring->reg_idx;
1276 u32 rxdctl;
1277 int ret;
1278
1279 ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN,
1280 1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx));
1281
1282 if (ret == -ETIMEDOUT) {
1283 /* Just for information */
1284 wx_err(wx,
1285 "RRCFG.EN on Rx queue %d not set within the polling period\n",
1286 reg_idx);
1287 }
1288 }
1289
wx_configure_srrctl(struct wx * wx,struct wx_ring * rx_ring)1290 static void wx_configure_srrctl(struct wx *wx,
1291 struct wx_ring *rx_ring)
1292 {
1293 u16 reg_idx = rx_ring->reg_idx;
1294 u32 srrctl;
1295
1296 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1297 srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ |
1298 WX_PX_RR_CFG_RR_BUF_SZ |
1299 WX_PX_RR_CFG_SPLIT_MODE);
1300 /* configure header buffer length, needed for RSC */
1301 srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT;
1302
1303 /* configure the packet buffer length */
1304 srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT;
1305
1306 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
1307 }
1308
wx_configure_tx_ring(struct wx * wx,struct wx_ring * ring)1309 static void wx_configure_tx_ring(struct wx *wx,
1310 struct wx_ring *ring)
1311 {
1312 u32 txdctl = WX_PX_TR_CFG_ENABLE;
1313 u8 reg_idx = ring->reg_idx;
1314 u64 tdba = ring->dma;
1315 int ret;
1316
1317 /* disable queue to avoid issues while updating state */
1318 wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH);
1319 WX_WRITE_FLUSH(wx);
1320
1321 wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32));
1322 wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba));
1323
1324 /* reset head and tail pointers */
1325 wr32(wx, WX_PX_TR_RP(reg_idx), 0);
1326 wr32(wx, WX_PX_TR_WP(reg_idx), 0);
1327 ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx);
1328
1329 if (ring->count < WX_MAX_TXD)
1330 txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT;
1331 txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT;
1332
1333 /* reinitialize tx_buffer_info */
1334 memset(ring->tx_buffer_info, 0,
1335 sizeof(struct wx_tx_buffer) * ring->count);
1336
1337 /* enable queue */
1338 wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl);
1339
1340 /* poll to verify queue is enabled */
1341 ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE,
1342 1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx));
1343 if (ret == -ETIMEDOUT)
1344 wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx);
1345 }
1346
wx_configure_rx_ring(struct wx * wx,struct wx_ring * ring)1347 static void wx_configure_rx_ring(struct wx *wx,
1348 struct wx_ring *ring)
1349 {
1350 u16 reg_idx = ring->reg_idx;
1351 union wx_rx_desc *rx_desc;
1352 u64 rdba = ring->dma;
1353 u32 rxdctl;
1354
1355 /* disable queue to avoid issues while updating state */
1356 rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1357 wx_disable_rx_queue(wx, ring);
1358
1359 wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32));
1360 wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba));
1361
1362 if (ring->count == WX_MAX_RXD)
1363 rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1364 else
1365 rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1366
1367 rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT;
1368 wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl);
1369
1370 /* reset head and tail pointers */
1371 wr32(wx, WX_PX_RR_RP(reg_idx), 0);
1372 wr32(wx, WX_PX_RR_WP(reg_idx), 0);
1373 ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx);
1374
1375 wx_configure_srrctl(wx, ring);
1376
1377 /* initialize rx_buffer_info */
1378 memset(ring->rx_buffer_info, 0,
1379 sizeof(struct wx_rx_buffer) * ring->count);
1380
1381 /* initialize Rx descriptor 0 */
1382 rx_desc = WX_RX_DESC(ring, 0);
1383 rx_desc->wb.upper.length = 0;
1384
1385 /* enable receive descriptor ring */
1386 wr32m(wx, WX_PX_RR_CFG(reg_idx),
1387 WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN);
1388
1389 wx_enable_rx_queue(wx, ring);
1390 wx_alloc_rx_buffers(ring, wx_desc_unused(ring));
1391 }
1392
1393 /**
1394 * wx_configure_tx - Configure Transmit Unit after Reset
1395 * @wx: pointer to private structure
1396 *
1397 * Configure the Tx unit of the MAC after a reset.
1398 **/
wx_configure_tx(struct wx * wx)1399 static void wx_configure_tx(struct wx *wx)
1400 {
1401 u32 i;
1402
1403 /* TDM_CTL.TE must be before Tx queues are enabled */
1404 wr32m(wx, WX_TDM_CTL,
1405 WX_TDM_CTL_TE, WX_TDM_CTL_TE);
1406
1407 /* Setup the HW Tx Head and Tail descriptor pointers */
1408 for (i = 0; i < wx->num_tx_queues; i++)
1409 wx_configure_tx_ring(wx, wx->tx_ring[i]);
1410
1411 wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10);
1412
1413 if (wx->mac.type == wx_mac_em)
1414 wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1);
1415
1416 /* enable mac transmitter */
1417 wr32m(wx, WX_MAC_TX_CFG,
1418 WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE);
1419 }
1420
wx_restore_vlan(struct wx * wx)1421 static void wx_restore_vlan(struct wx *wx)
1422 {
1423 u16 vid = 1;
1424
1425 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), 0);
1426
1427 for_each_set_bit_from(vid, wx->active_vlans, VLAN_N_VID)
1428 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), vid);
1429 }
1430
1431 /**
1432 * wx_configure_rx - Configure Receive Unit after Reset
1433 * @wx: pointer to private structure
1434 *
1435 * Configure the Rx unit of the MAC after a reset.
1436 **/
wx_configure_rx(struct wx * wx)1437 void wx_configure_rx(struct wx *wx)
1438 {
1439 u32 psrtype, i;
1440 int ret;
1441
1442 wx_disable_rx(wx);
1443
1444 psrtype = WX_RDB_PL_CFG_L4HDR |
1445 WX_RDB_PL_CFG_L3HDR |
1446 WX_RDB_PL_CFG_L2HDR |
1447 WX_RDB_PL_CFG_TUN_TUNHDR;
1448 wr32(wx, WX_RDB_PL_CFG(0), psrtype);
1449
1450 /* enable hw crc stripping */
1451 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP);
1452
1453 if (wx->mac.type == wx_mac_sp) {
1454 u32 psrctl;
1455
1456 /* RSC Setup */
1457 psrctl = rd32(wx, WX_PSR_CTL);
1458 psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */
1459 psrctl |= WX_PSR_CTL_RSC_DIS;
1460 wr32(wx, WX_PSR_CTL, psrctl);
1461 }
1462
1463 /* set_rx_buffer_len must be called before ring initialization */
1464 wx_set_rx_buffer_len(wx);
1465
1466 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1467 * the Base and Length of the Rx Descriptor Ring
1468 */
1469 for (i = 0; i < wx->num_rx_queues; i++)
1470 wx_configure_rx_ring(wx, wx->rx_ring[i]);
1471
1472 /* Enable all receives, disable security engine prior to block traffic */
1473 ret = wx_disable_sec_rx_path(wx);
1474 if (ret < 0)
1475 wx_err(wx, "The register status is abnormal, please check device.");
1476
1477 wx_enable_rx(wx);
1478 wx_enable_sec_rx_path(wx);
1479 }
1480 EXPORT_SYMBOL(wx_configure_rx);
1481
wx_configure_isb(struct wx * wx)1482 static void wx_configure_isb(struct wx *wx)
1483 {
1484 /* set ISB Address */
1485 wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32));
1486 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
1487 wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma));
1488 }
1489
wx_configure(struct wx * wx)1490 void wx_configure(struct wx *wx)
1491 {
1492 wx_set_rxpba(wx);
1493 wx_configure_port(wx);
1494
1495 wx_set_rx_mode(wx->netdev);
1496 wx_restore_vlan(wx);
1497 wx_enable_sec_rx_path(wx);
1498
1499 wx_configure_tx(wx);
1500 wx_configure_rx(wx);
1501 wx_configure_isb(wx);
1502 }
1503 EXPORT_SYMBOL(wx_configure);
1504
1505 /**
1506 * wx_disable_pcie_master - Disable PCI-express master access
1507 * @wx: pointer to hardware structure
1508 *
1509 * Disables PCI-Express master access and verifies there are no pending
1510 * requests.
1511 **/
wx_disable_pcie_master(struct wx * wx)1512 int wx_disable_pcie_master(struct wx *wx)
1513 {
1514 int status = 0;
1515 u32 val;
1516
1517 /* Always set this bit to ensure any future transactions are blocked */
1518 pci_clear_master(wx->pdev);
1519
1520 /* Exit if master requests are blocked */
1521 if (!(rd32(wx, WX_PX_TRANSACTION_PENDING)))
1522 return 0;
1523
1524 /* Poll for master request bit to clear */
1525 status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT,
1526 false, wx, WX_PX_TRANSACTION_PENDING);
1527 if (status < 0)
1528 wx_err(wx, "PCIe transaction pending bit did not clear.\n");
1529
1530 return status;
1531 }
1532 EXPORT_SYMBOL(wx_disable_pcie_master);
1533
1534 /**
1535 * wx_stop_adapter - Generic stop Tx/Rx units
1536 * @wx: pointer to hardware structure
1537 *
1538 * Sets the adapter_stopped flag within wx_hw struct. Clears interrupts,
1539 * disables transmit and receive units. The adapter_stopped flag is used by
1540 * the shared code and drivers to determine if the adapter is in a stopped
1541 * state and should not touch the hardware.
1542 **/
wx_stop_adapter(struct wx * wx)1543 int wx_stop_adapter(struct wx *wx)
1544 {
1545 u16 i;
1546
1547 /* Set the adapter_stopped flag so other driver functions stop touching
1548 * the hardware
1549 */
1550 wx->adapter_stopped = true;
1551
1552 /* Disable the receive unit */
1553 wx_disable_rx(wx);
1554
1555 /* Set interrupt mask to stop interrupts from being generated */
1556 wx_intr_disable(wx, WX_INTR_ALL);
1557
1558 /* Clear any pending interrupts, flush previous writes */
1559 wr32(wx, WX_PX_MISC_IC, 0xffffffff);
1560 wr32(wx, WX_BME_CTL, 0x3);
1561
1562 /* Disable the transmit unit. Each queue must be disabled. */
1563 for (i = 0; i < wx->mac.max_tx_queues; i++) {
1564 wr32m(wx, WX_PX_TR_CFG(i),
1565 WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE,
1566 WX_PX_TR_CFG_SWFLSH);
1567 }
1568
1569 /* Disable the receive unit by stopping each queue */
1570 for (i = 0; i < wx->mac.max_rx_queues; i++) {
1571 wr32m(wx, WX_PX_RR_CFG(i),
1572 WX_PX_RR_CFG_RR_EN, 0);
1573 }
1574
1575 /* flush all queues disables */
1576 WX_WRITE_FLUSH(wx);
1577
1578 /* Prevent the PCI-E bus from hanging by disabling PCI-E master
1579 * access and verify no pending requests
1580 */
1581 return wx_disable_pcie_master(wx);
1582 }
1583 EXPORT_SYMBOL(wx_stop_adapter);
1584
wx_reset_misc(struct wx * wx)1585 void wx_reset_misc(struct wx *wx)
1586 {
1587 int i;
1588
1589 /* receive packets that size > 2048 */
1590 wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE);
1591
1592 /* clear counters on read */
1593 wr32m(wx, WX_MMC_CONTROL,
1594 WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD);
1595
1596 wr32m(wx, WX_MAC_RX_FLOW_CTRL,
1597 WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE);
1598
1599 wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR);
1600
1601 wr32m(wx, WX_MIS_RST_ST,
1602 WX_MIS_RST_ST_RST_INIT, 0x1E00);
1603
1604 /* errata 4: initialize mng flex tbl and wakeup flex tbl*/
1605 wr32(wx, WX_PSR_MNG_FLEX_SEL, 0);
1606 for (i = 0; i < 16; i++) {
1607 wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0);
1608 wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0);
1609 wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0);
1610 }
1611 wr32(wx, WX_PSR_LAN_FLEX_SEL, 0);
1612 for (i = 0; i < 16; i++) {
1613 wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0);
1614 wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0);
1615 wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0);
1616 }
1617
1618 /* set pause frame dst mac addr */
1619 wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001);
1620 wr32(wx, WX_RDB_PFCMACDAH, 0x0180);
1621 }
1622 EXPORT_SYMBOL(wx_reset_misc);
1623
1624 /**
1625 * wx_get_pcie_msix_counts - Gets MSI-X vector count
1626 * @wx: pointer to hardware structure
1627 * @msix_count: number of MSI interrupts that can be obtained
1628 * @max_msix_count: number of MSI interrupts that mac need
1629 *
1630 * Read PCIe configuration space, and get the MSI-X vector count from
1631 * the capabilities table.
1632 **/
wx_get_pcie_msix_counts(struct wx * wx,u16 * msix_count,u16 max_msix_count)1633 int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count)
1634 {
1635 struct pci_dev *pdev = wx->pdev;
1636 struct device *dev = &pdev->dev;
1637 int pos;
1638
1639 *msix_count = 1;
1640 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
1641 if (!pos) {
1642 dev_err(dev, "Unable to find MSI-X Capabilities\n");
1643 return -EINVAL;
1644 }
1645 pci_read_config_word(pdev,
1646 pos + PCI_MSIX_FLAGS,
1647 msix_count);
1648 *msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK;
1649 /* MSI-X count is zero-based in HW */
1650 *msix_count += 1;
1651
1652 if (*msix_count > max_msix_count)
1653 *msix_count = max_msix_count;
1654
1655 return 0;
1656 }
1657 EXPORT_SYMBOL(wx_get_pcie_msix_counts);
1658
wx_sw_init(struct wx * wx)1659 int wx_sw_init(struct wx *wx)
1660 {
1661 struct pci_dev *pdev = wx->pdev;
1662 u32 ssid = 0;
1663 int err = 0;
1664
1665 wx->vendor_id = pdev->vendor;
1666 wx->device_id = pdev->device;
1667 wx->revision_id = pdev->revision;
1668 wx->oem_svid = pdev->subsystem_vendor;
1669 wx->oem_ssid = pdev->subsystem_device;
1670 wx->bus.device = PCI_SLOT(pdev->devfn);
1671 wx->bus.func = PCI_FUNC(pdev->devfn);
1672
1673 if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN) {
1674 wx->subsystem_vendor_id = pdev->subsystem_vendor;
1675 wx->subsystem_device_id = pdev->subsystem_device;
1676 } else {
1677 err = wx_flash_read_dword(wx, 0xfffdc, &ssid);
1678 if (err < 0) {
1679 wx_err(wx, "read of internal subsystem device id failed\n");
1680 return err;
1681 }
1682
1683 wx->subsystem_device_id = swab16((u16)ssid);
1684 }
1685
1686 wx->mac_table = kcalloc(wx->mac.num_rar_entries,
1687 sizeof(struct wx_mac_addr),
1688 GFP_KERNEL);
1689 if (!wx->mac_table) {
1690 wx_err(wx, "mac_table allocation failed\n");
1691 return -ENOMEM;
1692 }
1693
1694 return 0;
1695 }
1696 EXPORT_SYMBOL(wx_sw_init);
1697
1698 /**
1699 * wx_find_vlvf_slot - find the vlanid or the first empty slot
1700 * @wx: pointer to hardware structure
1701 * @vlan: VLAN id to write to VLAN filter
1702 *
1703 * return the VLVF index where this VLAN id should be placed
1704 *
1705 **/
wx_find_vlvf_slot(struct wx * wx,u32 vlan)1706 static int wx_find_vlvf_slot(struct wx *wx, u32 vlan)
1707 {
1708 u32 bits = 0, first_empty_slot = 0;
1709 int regindex;
1710
1711 /* short cut the special case */
1712 if (vlan == 0)
1713 return 0;
1714
1715 /* Search for the vlan id in the VLVF entries. Save off the first empty
1716 * slot found along the way
1717 */
1718 for (regindex = 1; regindex < WX_PSR_VLAN_SWC_ENTRIES; regindex++) {
1719 wr32(wx, WX_PSR_VLAN_SWC_IDX, regindex);
1720 bits = rd32(wx, WX_PSR_VLAN_SWC);
1721 if (!bits && !(first_empty_slot))
1722 first_empty_slot = regindex;
1723 else if ((bits & 0x0FFF) == vlan)
1724 break;
1725 }
1726
1727 if (regindex >= WX_PSR_VLAN_SWC_ENTRIES) {
1728 if (first_empty_slot)
1729 regindex = first_empty_slot;
1730 else
1731 regindex = -ENOMEM;
1732 }
1733
1734 return regindex;
1735 }
1736
1737 /**
1738 * wx_set_vlvf - Set VLAN Pool Filter
1739 * @wx: pointer to hardware structure
1740 * @vlan: VLAN id to write to VLAN filter
1741 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
1742 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
1743 * @vfta_changed: pointer to boolean flag which indicates whether VFTA
1744 * should be changed
1745 *
1746 * Turn on/off specified bit in VLVF table.
1747 **/
wx_set_vlvf(struct wx * wx,u32 vlan,u32 vind,bool vlan_on,bool * vfta_changed)1748 static int wx_set_vlvf(struct wx *wx, u32 vlan, u32 vind, bool vlan_on,
1749 bool *vfta_changed)
1750 {
1751 int vlvf_index;
1752 u32 vt, bits;
1753
1754 /* If VT Mode is set
1755 * Either vlan_on
1756 * make sure the vlan is in VLVF
1757 * set the vind bit in the matching VLVFB
1758 * Or !vlan_on
1759 * clear the pool bit and possibly the vind
1760 */
1761 vt = rd32(wx, WX_CFG_PORT_CTL);
1762 if (!(vt & WX_CFG_PORT_CTL_NUM_VT_MASK))
1763 return 0;
1764
1765 vlvf_index = wx_find_vlvf_slot(wx, vlan);
1766 if (vlvf_index < 0)
1767 return vlvf_index;
1768
1769 wr32(wx, WX_PSR_VLAN_SWC_IDX, vlvf_index);
1770 if (vlan_on) {
1771 /* set the pool bit */
1772 if (vind < 32) {
1773 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
1774 bits |= (1 << vind);
1775 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
1776 } else {
1777 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
1778 bits |= (1 << (vind - 32));
1779 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
1780 }
1781 } else {
1782 /* clear the pool bit */
1783 if (vind < 32) {
1784 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
1785 bits &= ~(1 << vind);
1786 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
1787 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_H);
1788 } else {
1789 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
1790 bits &= ~(1 << (vind - 32));
1791 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
1792 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_L);
1793 }
1794 }
1795
1796 if (bits) {
1797 wr32(wx, WX_PSR_VLAN_SWC, (WX_PSR_VLAN_SWC_VIEN | vlan));
1798 if (!vlan_on && vfta_changed)
1799 *vfta_changed = false;
1800 } else {
1801 wr32(wx, WX_PSR_VLAN_SWC, 0);
1802 }
1803
1804 return 0;
1805 }
1806
1807 /**
1808 * wx_set_vfta - Set VLAN filter table
1809 * @wx: pointer to hardware structure
1810 * @vlan: VLAN id to write to VLAN filter
1811 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
1812 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
1813 *
1814 * Turn on/off specified VLAN in the VLAN filter table.
1815 **/
wx_set_vfta(struct wx * wx,u32 vlan,u32 vind,bool vlan_on)1816 static int wx_set_vfta(struct wx *wx, u32 vlan, u32 vind, bool vlan_on)
1817 {
1818 u32 bitindex, vfta, targetbit;
1819 bool vfta_changed = false;
1820 int regindex, ret;
1821
1822 /* this is a 2 part operation - first the VFTA, then the
1823 * VLVF and VLVFB if VT Mode is set
1824 * We don't write the VFTA until we know the VLVF part succeeded.
1825 */
1826
1827 /* Part 1
1828 * The VFTA is a bitstring made up of 128 32-bit registers
1829 * that enable the particular VLAN id, much like the MTA:
1830 * bits[11-5]: which register
1831 * bits[4-0]: which bit in the register
1832 */
1833 regindex = (vlan >> 5) & 0x7F;
1834 bitindex = vlan & 0x1F;
1835 targetbit = (1 << bitindex);
1836 /* errata 5 */
1837 vfta = wx->mac.vft_shadow[regindex];
1838 if (vlan_on) {
1839 if (!(vfta & targetbit)) {
1840 vfta |= targetbit;
1841 vfta_changed = true;
1842 }
1843 } else {
1844 if ((vfta & targetbit)) {
1845 vfta &= ~targetbit;
1846 vfta_changed = true;
1847 }
1848 }
1849 /* Part 2
1850 * Call wx_set_vlvf to set VLVFB and VLVF
1851 */
1852 ret = wx_set_vlvf(wx, vlan, vind, vlan_on, &vfta_changed);
1853 if (ret != 0)
1854 return ret;
1855
1856 if (vfta_changed)
1857 wr32(wx, WX_PSR_VLAN_TBL(regindex), vfta);
1858 wx->mac.vft_shadow[regindex] = vfta;
1859
1860 return 0;
1861 }
1862
1863 /**
1864 * wx_clear_vfta - Clear VLAN filter table
1865 * @wx: pointer to hardware structure
1866 *
1867 * Clears the VLAN filer table, and the VMDq index associated with the filter
1868 **/
wx_clear_vfta(struct wx * wx)1869 static void wx_clear_vfta(struct wx *wx)
1870 {
1871 u32 offset;
1872
1873 for (offset = 0; offset < wx->mac.vft_size; offset++) {
1874 wr32(wx, WX_PSR_VLAN_TBL(offset), 0);
1875 wx->mac.vft_shadow[offset] = 0;
1876 }
1877
1878 for (offset = 0; offset < WX_PSR_VLAN_SWC_ENTRIES; offset++) {
1879 wr32(wx, WX_PSR_VLAN_SWC_IDX, offset);
1880 wr32(wx, WX_PSR_VLAN_SWC, 0);
1881 wr32(wx, WX_PSR_VLAN_SWC_VM_L, 0);
1882 wr32(wx, WX_PSR_VLAN_SWC_VM_H, 0);
1883 }
1884 }
1885
wx_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)1886 int wx_vlan_rx_add_vid(struct net_device *netdev,
1887 __be16 proto, u16 vid)
1888 {
1889 struct wx *wx = netdev_priv(netdev);
1890
1891 /* add VID to filter table */
1892 wx_set_vfta(wx, vid, VMDQ_P(0), true);
1893 set_bit(vid, wx->active_vlans);
1894
1895 return 0;
1896 }
1897 EXPORT_SYMBOL(wx_vlan_rx_add_vid);
1898
wx_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)1899 int wx_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
1900 {
1901 struct wx *wx = netdev_priv(netdev);
1902
1903 /* remove VID from filter table */
1904 if (vid)
1905 wx_set_vfta(wx, vid, VMDQ_P(0), false);
1906 clear_bit(vid, wx->active_vlans);
1907
1908 return 0;
1909 }
1910 EXPORT_SYMBOL(wx_vlan_rx_kill_vid);
1911
1912 /**
1913 * wx_start_hw - Prepare hardware for Tx/Rx
1914 * @wx: pointer to hardware structure
1915 *
1916 * Starts the hardware using the generic start_hw function
1917 * and the generation start_hw function.
1918 * Then performs revision-specific operations, if any.
1919 **/
wx_start_hw(struct wx * wx)1920 void wx_start_hw(struct wx *wx)
1921 {
1922 int i;
1923
1924 /* Clear the VLAN filter table */
1925 wx_clear_vfta(wx);
1926 WX_WRITE_FLUSH(wx);
1927 /* Clear the rate limiters */
1928 for (i = 0; i < wx->mac.max_tx_queues; i++) {
1929 wr32(wx, WX_TDM_RP_IDX, i);
1930 wr32(wx, WX_TDM_RP_RATE, 0);
1931 }
1932 }
1933 EXPORT_SYMBOL(wx_start_hw);
1934
1935 MODULE_LICENSE("GPL");
1936