xref: /openbmc/linux/kernel/time/clocksource.c (revision fd5e9fccbd504c5179ab57ff695c610bca8809d6)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file contains the functions which manage clocksource drivers.
4  *
5  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17 #include <linux/prandom.h>
18 #include <linux/cpu.h>
19 
20 #include "tick-internal.h"
21 #include "timekeeping_internal.h"
22 
cycles_to_nsec_safe(struct clocksource * cs,u64 start,u64 end)23 static noinline u64 cycles_to_nsec_safe(struct clocksource *cs, u64 start, u64 end)
24 {
25 	u64 delta = clocksource_delta(end, start, cs->mask);
26 
27 	if (likely(delta < cs->max_cycles))
28 		return clocksource_cyc2ns(delta, cs->mult, cs->shift);
29 
30 	return mul_u64_u32_shr(delta, cs->mult, cs->shift);
31 }
32 
33 /**
34  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
35  * @mult:	pointer to mult variable
36  * @shift:	pointer to shift variable
37  * @from:	frequency to convert from
38  * @to:		frequency to convert to
39  * @maxsec:	guaranteed runtime conversion range in seconds
40  *
41  * The function evaluates the shift/mult pair for the scaled math
42  * operations of clocksources and clockevents.
43  *
44  * @to and @from are frequency values in HZ. For clock sources @to is
45  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
46  * event @to is the counter frequency and @from is NSEC_PER_SEC.
47  *
48  * The @maxsec conversion range argument controls the time frame in
49  * seconds which must be covered by the runtime conversion with the
50  * calculated mult and shift factors. This guarantees that no 64bit
51  * overflow happens when the input value of the conversion is
52  * multiplied with the calculated mult factor. Larger ranges may
53  * reduce the conversion accuracy by choosing smaller mult and shift
54  * factors.
55  */
56 void
clocks_calc_mult_shift(u32 * mult,u32 * shift,u32 from,u32 to,u32 maxsec)57 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
58 {
59 	u64 tmp;
60 	u32 sft, sftacc= 32;
61 
62 	/*
63 	 * Calculate the shift factor which is limiting the conversion
64 	 * range:
65 	 */
66 	tmp = ((u64)maxsec * from) >> 32;
67 	while (tmp) {
68 		tmp >>=1;
69 		sftacc--;
70 	}
71 
72 	/*
73 	 * Find the conversion shift/mult pair which has the best
74 	 * accuracy and fits the maxsec conversion range:
75 	 */
76 	for (sft = 32; sft > 0; sft--) {
77 		tmp = (u64) to << sft;
78 		tmp += from / 2;
79 		do_div(tmp, from);
80 		if ((tmp >> sftacc) == 0)
81 			break;
82 	}
83 	*mult = tmp;
84 	*shift = sft;
85 }
86 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
87 
88 /*[Clocksource internal variables]---------
89  * curr_clocksource:
90  *	currently selected clocksource.
91  * suspend_clocksource:
92  *	used to calculate the suspend time.
93  * clocksource_list:
94  *	linked list with the registered clocksources
95  * clocksource_mutex:
96  *	protects manipulations to curr_clocksource and the clocksource_list
97  * override_name:
98  *	Name of the user-specified clocksource.
99  */
100 static struct clocksource *curr_clocksource;
101 static struct clocksource *suspend_clocksource;
102 static LIST_HEAD(clocksource_list);
103 static DEFINE_MUTEX(clocksource_mutex);
104 static char override_name[CS_NAME_LEN];
105 static int finished_booting;
106 static u64 suspend_start;
107 
108 /*
109  * Interval: 0.5sec.
110  */
111 #define WATCHDOG_INTERVAL (HZ >> 1)
112 #define WATCHDOG_INTERVAL_MAX_NS ((2 * WATCHDOG_INTERVAL) * (NSEC_PER_SEC / HZ))
113 
114 /*
115  * Threshold: 0.0312s, when doubled: 0.0625s.
116  * Also a default for cs->uncertainty_margin when registering clocks.
117  */
118 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
119 
120 /*
121  * Maximum permissible delay between two readouts of the watchdog
122  * clocksource surrounding a read of the clocksource being validated.
123  * This delay could be due to SMIs, NMIs, or to VCPU preemptions.  Used as
124  * a lower bound for cs->uncertainty_margin values when registering clocks.
125  *
126  * The default of 500 parts per million is based on NTP's limits.
127  * If a clocksource is good enough for NTP, it is good enough for us!
128  */
129 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
130 #define MAX_SKEW_USEC	CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
131 #else
132 #define MAX_SKEW_USEC	(125 * WATCHDOG_INTERVAL / HZ)
133 #endif
134 
135 #define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC)
136 
137 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
138 static void clocksource_watchdog_work(struct work_struct *work);
139 static void clocksource_select(void);
140 
141 static LIST_HEAD(watchdog_list);
142 static struct clocksource *watchdog;
143 static struct timer_list watchdog_timer;
144 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
145 static DEFINE_SPINLOCK(watchdog_lock);
146 static int watchdog_running;
147 static atomic_t watchdog_reset_pending;
148 static int64_t watchdog_max_interval;
149 
clocksource_watchdog_lock(unsigned long * flags)150 static inline void clocksource_watchdog_lock(unsigned long *flags)
151 {
152 	spin_lock_irqsave(&watchdog_lock, *flags);
153 }
154 
clocksource_watchdog_unlock(unsigned long * flags)155 static inline void clocksource_watchdog_unlock(unsigned long *flags)
156 {
157 	spin_unlock_irqrestore(&watchdog_lock, *flags);
158 }
159 
160 static int clocksource_watchdog_kthread(void *data);
161 static void __clocksource_change_rating(struct clocksource *cs, int rating);
162 
clocksource_watchdog_work(struct work_struct * work)163 static void clocksource_watchdog_work(struct work_struct *work)
164 {
165 	/*
166 	 * We cannot directly run clocksource_watchdog_kthread() here, because
167 	 * clocksource_select() calls timekeeping_notify() which uses
168 	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
169 	 * lock inversions wrt CPU hotplug.
170 	 *
171 	 * Also, we only ever run this work once or twice during the lifetime
172 	 * of the kernel, so there is no point in creating a more permanent
173 	 * kthread for this.
174 	 *
175 	 * If kthread_run fails the next watchdog scan over the
176 	 * watchdog_list will find the unstable clock again.
177 	 */
178 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
179 }
180 
__clocksource_unstable(struct clocksource * cs)181 static void __clocksource_unstable(struct clocksource *cs)
182 {
183 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
184 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
185 
186 	/*
187 	 * If the clocksource is registered clocksource_watchdog_kthread() will
188 	 * re-rate and re-select.
189 	 */
190 	if (list_empty(&cs->list)) {
191 		cs->rating = 0;
192 		return;
193 	}
194 
195 	if (cs->mark_unstable)
196 		cs->mark_unstable(cs);
197 
198 	/* kick clocksource_watchdog_kthread() */
199 	if (finished_booting)
200 		schedule_work(&watchdog_work);
201 }
202 
203 /**
204  * clocksource_mark_unstable - mark clocksource unstable via watchdog
205  * @cs:		clocksource to be marked unstable
206  *
207  * This function is called by the x86 TSC code to mark clocksources as unstable;
208  * it defers demotion and re-selection to a kthread.
209  */
clocksource_mark_unstable(struct clocksource * cs)210 void clocksource_mark_unstable(struct clocksource *cs)
211 {
212 	unsigned long flags;
213 
214 	spin_lock_irqsave(&watchdog_lock, flags);
215 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
216 		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
217 			list_add(&cs->wd_list, &watchdog_list);
218 		__clocksource_unstable(cs);
219 	}
220 	spin_unlock_irqrestore(&watchdog_lock, flags);
221 }
222 
223 static int verify_n_cpus = 8;
224 module_param(verify_n_cpus, int, 0644);
225 
226 enum wd_read_status {
227 	WD_READ_SUCCESS,
228 	WD_READ_UNSTABLE,
229 	WD_READ_SKIP
230 };
231 
cs_watchdog_read(struct clocksource * cs,u64 * csnow,u64 * wdnow)232 static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
233 {
234 	unsigned int nretries, max_retries;
235 	int64_t wd_delay, wd_seq_delay;
236 	u64 wd_end, wd_end2;
237 
238 	max_retries = clocksource_get_max_watchdog_retry();
239 	for (nretries = 0; nretries <= max_retries; nretries++) {
240 		local_irq_disable();
241 		*wdnow = watchdog->read(watchdog);
242 		*csnow = cs->read(cs);
243 		wd_end = watchdog->read(watchdog);
244 		wd_end2 = watchdog->read(watchdog);
245 		local_irq_enable();
246 
247 		wd_delay = cycles_to_nsec_safe(watchdog, *wdnow, wd_end);
248 		if (wd_delay <= WATCHDOG_MAX_SKEW) {
249 			if (nretries > 1 && nretries >= max_retries) {
250 				pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
251 					smp_processor_id(), watchdog->name, nretries);
252 			}
253 			return WD_READ_SUCCESS;
254 		}
255 
256 		/*
257 		 * Now compute delay in consecutive watchdog read to see if
258 		 * there is too much external interferences that cause
259 		 * significant delay in reading both clocksource and watchdog.
260 		 *
261 		 * If consecutive WD read-back delay > WATCHDOG_MAX_SKEW/2,
262 		 * report system busy, reinit the watchdog and skip the current
263 		 * watchdog test.
264 		 */
265 		wd_seq_delay = cycles_to_nsec_safe(watchdog, wd_end, wd_end2);
266 		if (wd_seq_delay > WATCHDOG_MAX_SKEW/2)
267 			goto skip_test;
268 	}
269 
270 	pr_warn("timekeeping watchdog on CPU%d: wd-%s-wd excessive read-back delay of %lldns vs. limit of %ldns, wd-wd read-back delay only %lldns, attempt %d, marking %s unstable\n",
271 		smp_processor_id(), cs->name, wd_delay, WATCHDOG_MAX_SKEW, wd_seq_delay, nretries, cs->name);
272 	return WD_READ_UNSTABLE;
273 
274 skip_test:
275 	pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
276 		smp_processor_id(), watchdog->name, wd_seq_delay);
277 	pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
278 		cs->name, wd_delay);
279 	return WD_READ_SKIP;
280 }
281 
282 static u64 csnow_mid;
283 static cpumask_t cpus_ahead;
284 static cpumask_t cpus_behind;
285 static cpumask_t cpus_chosen;
286 
clocksource_verify_choose_cpus(void)287 static void clocksource_verify_choose_cpus(void)
288 {
289 	int cpu, i, n = verify_n_cpus;
290 
291 	if (n < 0) {
292 		/* Check all of the CPUs. */
293 		cpumask_copy(&cpus_chosen, cpu_online_mask);
294 		cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
295 		return;
296 	}
297 
298 	/* If no checking desired, or no other CPU to check, leave. */
299 	cpumask_clear(&cpus_chosen);
300 	if (n == 0 || num_online_cpus() <= 1)
301 		return;
302 
303 	/* Make sure to select at least one CPU other than the current CPU. */
304 	cpu = cpumask_first(cpu_online_mask);
305 	if (cpu == smp_processor_id())
306 		cpu = cpumask_next(cpu, cpu_online_mask);
307 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
308 		return;
309 	cpumask_set_cpu(cpu, &cpus_chosen);
310 
311 	/* Force a sane value for the boot parameter. */
312 	if (n > nr_cpu_ids)
313 		n = nr_cpu_ids;
314 
315 	/*
316 	 * Randomly select the specified number of CPUs.  If the same
317 	 * CPU is selected multiple times, that CPU is checked only once,
318 	 * and no replacement CPU is selected.  This gracefully handles
319 	 * situations where verify_n_cpus is greater than the number of
320 	 * CPUs that are currently online.
321 	 */
322 	for (i = 1; i < n; i++) {
323 		cpu = get_random_u32_below(nr_cpu_ids);
324 		cpu = cpumask_next(cpu - 1, cpu_online_mask);
325 		if (cpu >= nr_cpu_ids)
326 			cpu = cpumask_first(cpu_online_mask);
327 		if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
328 			cpumask_set_cpu(cpu, &cpus_chosen);
329 	}
330 
331 	/* Don't verify ourselves. */
332 	cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
333 }
334 
clocksource_verify_one_cpu(void * csin)335 static void clocksource_verify_one_cpu(void *csin)
336 {
337 	struct clocksource *cs = (struct clocksource *)csin;
338 
339 	csnow_mid = cs->read(cs);
340 }
341 
clocksource_verify_percpu(struct clocksource * cs)342 void clocksource_verify_percpu(struct clocksource *cs)
343 {
344 	int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
345 	u64 csnow_begin, csnow_end;
346 	int cpu, testcpu;
347 	s64 delta;
348 
349 	if (verify_n_cpus == 0)
350 		return;
351 	cpumask_clear(&cpus_ahead);
352 	cpumask_clear(&cpus_behind);
353 	cpus_read_lock();
354 	migrate_disable();
355 	clocksource_verify_choose_cpus();
356 	if (cpumask_empty(&cpus_chosen)) {
357 		migrate_enable();
358 		cpus_read_unlock();
359 		pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
360 		return;
361 	}
362 	testcpu = smp_processor_id();
363 	pr_info("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n",
364 		cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
365 	preempt_disable();
366 	for_each_cpu(cpu, &cpus_chosen) {
367 		if (cpu == testcpu)
368 			continue;
369 		csnow_begin = cs->read(cs);
370 		smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
371 		csnow_end = cs->read(cs);
372 		delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
373 		if (delta < 0)
374 			cpumask_set_cpu(cpu, &cpus_behind);
375 		delta = (csnow_end - csnow_mid) & cs->mask;
376 		if (delta < 0)
377 			cpumask_set_cpu(cpu, &cpus_ahead);
378 		cs_nsec = cycles_to_nsec_safe(cs, csnow_begin, csnow_end);
379 		if (cs_nsec > cs_nsec_max)
380 			cs_nsec_max = cs_nsec;
381 		if (cs_nsec < cs_nsec_min)
382 			cs_nsec_min = cs_nsec;
383 	}
384 	preempt_enable();
385 	migrate_enable();
386 	cpus_read_unlock();
387 	if (!cpumask_empty(&cpus_ahead))
388 		pr_warn("        CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
389 			cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
390 	if (!cpumask_empty(&cpus_behind))
391 		pr_warn("        CPUs %*pbl behind CPU %d for clocksource %s.\n",
392 			cpumask_pr_args(&cpus_behind), testcpu, cs->name);
393 	if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
394 		pr_warn("        CPU %d check durations %lldns - %lldns for clocksource %s.\n",
395 			testcpu, cs_nsec_min, cs_nsec_max, cs->name);
396 }
397 EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
398 
clocksource_reset_watchdog(void)399 static inline void clocksource_reset_watchdog(void)
400 {
401 	struct clocksource *cs;
402 
403 	list_for_each_entry(cs, &watchdog_list, wd_list)
404 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
405 }
406 
407 
clocksource_watchdog(struct timer_list * unused)408 static void clocksource_watchdog(struct timer_list *unused)
409 {
410 	int64_t wd_nsec, cs_nsec, interval;
411 	u64 csnow, wdnow, cslast, wdlast;
412 	int next_cpu, reset_pending;
413 	struct clocksource *cs;
414 	enum wd_read_status read_ret;
415 	unsigned long extra_wait = 0;
416 	u32 md;
417 
418 	spin_lock(&watchdog_lock);
419 	if (!watchdog_running)
420 		goto out;
421 
422 	reset_pending = atomic_read(&watchdog_reset_pending);
423 
424 	list_for_each_entry(cs, &watchdog_list, wd_list) {
425 
426 		/* Clocksource already marked unstable? */
427 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
428 			if (finished_booting)
429 				schedule_work(&watchdog_work);
430 			continue;
431 		}
432 
433 		read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
434 
435 		if (read_ret == WD_READ_UNSTABLE) {
436 			/* Clock readout unreliable, so give it up. */
437 			__clocksource_unstable(cs);
438 			continue;
439 		}
440 
441 		/*
442 		 * When WD_READ_SKIP is returned, it means the system is likely
443 		 * under very heavy load, where the latency of reading
444 		 * watchdog/clocksource is very big, and affect the accuracy of
445 		 * watchdog check. So give system some space and suspend the
446 		 * watchdog check for 5 minutes.
447 		 */
448 		if (read_ret == WD_READ_SKIP) {
449 			/*
450 			 * As the watchdog timer will be suspended, and
451 			 * cs->last could keep unchanged for 5 minutes, reset
452 			 * the counters.
453 			 */
454 			clocksource_reset_watchdog();
455 			extra_wait = HZ * 300;
456 			break;
457 		}
458 
459 		/* Clocksource initialized ? */
460 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
461 		    atomic_read(&watchdog_reset_pending)) {
462 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
463 			cs->wd_last = wdnow;
464 			cs->cs_last = csnow;
465 			continue;
466 		}
467 
468 		wd_nsec = cycles_to_nsec_safe(watchdog, cs->wd_last, wdnow);
469 		cs_nsec = cycles_to_nsec_safe(cs, cs->cs_last, csnow);
470 		wdlast = cs->wd_last; /* save these in case we print them */
471 		cslast = cs->cs_last;
472 		cs->cs_last = csnow;
473 		cs->wd_last = wdnow;
474 
475 		if (atomic_read(&watchdog_reset_pending))
476 			continue;
477 
478 		/*
479 		 * The processing of timer softirqs can get delayed (usually
480 		 * on account of ksoftirqd not getting to run in a timely
481 		 * manner), which causes the watchdog interval to stretch.
482 		 * Skew detection may fail for longer watchdog intervals
483 		 * on account of fixed margins being used.
484 		 * Some clocksources, e.g. acpi_pm, cannot tolerate
485 		 * watchdog intervals longer than a few seconds.
486 		 */
487 		interval = max(cs_nsec, wd_nsec);
488 		if (unlikely(interval > WATCHDOG_INTERVAL_MAX_NS)) {
489 			if (system_state > SYSTEM_SCHEDULING &&
490 			    interval > 2 * watchdog_max_interval) {
491 				watchdog_max_interval = interval;
492 				pr_warn("Long readout interval, skipping watchdog check: cs_nsec: %lld wd_nsec: %lld\n",
493 					cs_nsec, wd_nsec);
494 			}
495 			watchdog_timer.expires = jiffies;
496 			continue;
497 		}
498 
499 		/* Check the deviation from the watchdog clocksource. */
500 		md = cs->uncertainty_margin + watchdog->uncertainty_margin;
501 		if (abs(cs_nsec - wd_nsec) > md) {
502 			s64 cs_wd_msec;
503 			s64 wd_msec;
504 			u32 wd_rem;
505 
506 			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
507 				smp_processor_id(), cs->name);
508 			pr_warn("                      '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
509 				watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
510 			pr_warn("                      '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
511 				cs->name, cs_nsec, csnow, cslast, cs->mask);
512 			cs_wd_msec = div_s64_rem(cs_nsec - wd_nsec, 1000 * 1000, &wd_rem);
513 			wd_msec = div_s64_rem(wd_nsec, 1000 * 1000, &wd_rem);
514 			pr_warn("                      Clocksource '%s' skewed %lld ns (%lld ms) over watchdog '%s' interval of %lld ns (%lld ms)\n",
515 				cs->name, cs_nsec - wd_nsec, cs_wd_msec, watchdog->name, wd_nsec, wd_msec);
516 			if (curr_clocksource == cs)
517 				pr_warn("                      '%s' is current clocksource.\n", cs->name);
518 			else if (curr_clocksource)
519 				pr_warn("                      '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
520 			else
521 				pr_warn("                      No current clocksource.\n");
522 			__clocksource_unstable(cs);
523 			continue;
524 		}
525 
526 		if (cs == curr_clocksource && cs->tick_stable)
527 			cs->tick_stable(cs);
528 
529 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
530 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
531 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
532 			/* Mark it valid for high-res. */
533 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
534 
535 			/*
536 			 * clocksource_done_booting() will sort it if
537 			 * finished_booting is not set yet.
538 			 */
539 			if (!finished_booting)
540 				continue;
541 
542 			/*
543 			 * If this is not the current clocksource let
544 			 * the watchdog thread reselect it. Due to the
545 			 * change to high res this clocksource might
546 			 * be preferred now. If it is the current
547 			 * clocksource let the tick code know about
548 			 * that change.
549 			 */
550 			if (cs != curr_clocksource) {
551 				cs->flags |= CLOCK_SOURCE_RESELECT;
552 				schedule_work(&watchdog_work);
553 			} else {
554 				tick_clock_notify();
555 			}
556 		}
557 	}
558 
559 	/*
560 	 * We only clear the watchdog_reset_pending, when we did a
561 	 * full cycle through all clocksources.
562 	 */
563 	if (reset_pending)
564 		atomic_dec(&watchdog_reset_pending);
565 
566 	/*
567 	 * Cycle through CPUs to check if the CPUs stay synchronized
568 	 * to each other.
569 	 */
570 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
571 	if (next_cpu >= nr_cpu_ids)
572 		next_cpu = cpumask_first(cpu_online_mask);
573 
574 	/*
575 	 * Arm timer if not already pending: could race with concurrent
576 	 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
577 	 */
578 	if (!timer_pending(&watchdog_timer)) {
579 		watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait;
580 		add_timer_on(&watchdog_timer, next_cpu);
581 	}
582 out:
583 	spin_unlock(&watchdog_lock);
584 }
585 
clocksource_start_watchdog(void)586 static inline void clocksource_start_watchdog(void)
587 {
588 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
589 		return;
590 	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
591 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
592 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
593 	watchdog_running = 1;
594 }
595 
clocksource_stop_watchdog(void)596 static inline void clocksource_stop_watchdog(void)
597 {
598 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
599 		return;
600 	del_timer(&watchdog_timer);
601 	watchdog_running = 0;
602 }
603 
clocksource_resume_watchdog(void)604 static void clocksource_resume_watchdog(void)
605 {
606 	atomic_inc(&watchdog_reset_pending);
607 }
608 
clocksource_enqueue_watchdog(struct clocksource * cs)609 static void clocksource_enqueue_watchdog(struct clocksource *cs)
610 {
611 	INIT_LIST_HEAD(&cs->wd_list);
612 
613 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
614 		/* cs is a clocksource to be watched. */
615 		list_add(&cs->wd_list, &watchdog_list);
616 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
617 	} else {
618 		/* cs is a watchdog. */
619 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
620 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
621 	}
622 }
623 
clocksource_select_watchdog(bool fallback)624 static void clocksource_select_watchdog(bool fallback)
625 {
626 	struct clocksource *cs, *old_wd;
627 	unsigned long flags;
628 
629 	spin_lock_irqsave(&watchdog_lock, flags);
630 	/* save current watchdog */
631 	old_wd = watchdog;
632 	if (fallback)
633 		watchdog = NULL;
634 
635 	list_for_each_entry(cs, &clocksource_list, list) {
636 		/* cs is a clocksource to be watched. */
637 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
638 			continue;
639 
640 		/* Skip current if we were requested for a fallback. */
641 		if (fallback && cs == old_wd)
642 			continue;
643 
644 		/* Pick the best watchdog. */
645 		if (!watchdog || cs->rating > watchdog->rating)
646 			watchdog = cs;
647 	}
648 	/* If we failed to find a fallback restore the old one. */
649 	if (!watchdog)
650 		watchdog = old_wd;
651 
652 	/* If we changed the watchdog we need to reset cycles. */
653 	if (watchdog != old_wd)
654 		clocksource_reset_watchdog();
655 
656 	/* Check if the watchdog timer needs to be started. */
657 	clocksource_start_watchdog();
658 	spin_unlock_irqrestore(&watchdog_lock, flags);
659 }
660 
clocksource_dequeue_watchdog(struct clocksource * cs)661 static void clocksource_dequeue_watchdog(struct clocksource *cs)
662 {
663 	if (cs != watchdog) {
664 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
665 			/* cs is a watched clocksource. */
666 			list_del_init(&cs->wd_list);
667 			/* Check if the watchdog timer needs to be stopped. */
668 			clocksource_stop_watchdog();
669 		}
670 	}
671 }
672 
__clocksource_watchdog_kthread(void)673 static int __clocksource_watchdog_kthread(void)
674 {
675 	struct clocksource *cs, *tmp;
676 	unsigned long flags;
677 	int select = 0;
678 
679 	/* Do any required per-CPU skew verification. */
680 	if (curr_clocksource &&
681 	    curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
682 	    curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
683 		clocksource_verify_percpu(curr_clocksource);
684 
685 	spin_lock_irqsave(&watchdog_lock, flags);
686 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
687 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
688 			list_del_init(&cs->wd_list);
689 			__clocksource_change_rating(cs, 0);
690 			select = 1;
691 		}
692 		if (cs->flags & CLOCK_SOURCE_RESELECT) {
693 			cs->flags &= ~CLOCK_SOURCE_RESELECT;
694 			select = 1;
695 		}
696 	}
697 	/* Check if the watchdog timer needs to be stopped. */
698 	clocksource_stop_watchdog();
699 	spin_unlock_irqrestore(&watchdog_lock, flags);
700 
701 	return select;
702 }
703 
clocksource_watchdog_kthread(void * data)704 static int clocksource_watchdog_kthread(void *data)
705 {
706 	mutex_lock(&clocksource_mutex);
707 	if (__clocksource_watchdog_kthread())
708 		clocksource_select();
709 	mutex_unlock(&clocksource_mutex);
710 	return 0;
711 }
712 
clocksource_is_watchdog(struct clocksource * cs)713 static bool clocksource_is_watchdog(struct clocksource *cs)
714 {
715 	return cs == watchdog;
716 }
717 
718 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
719 
clocksource_enqueue_watchdog(struct clocksource * cs)720 static void clocksource_enqueue_watchdog(struct clocksource *cs)
721 {
722 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
723 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
724 }
725 
clocksource_select_watchdog(bool fallback)726 static void clocksource_select_watchdog(bool fallback) { }
clocksource_dequeue_watchdog(struct clocksource * cs)727 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
clocksource_resume_watchdog(void)728 static inline void clocksource_resume_watchdog(void) { }
__clocksource_watchdog_kthread(void)729 static inline int __clocksource_watchdog_kthread(void) { return 0; }
clocksource_is_watchdog(struct clocksource * cs)730 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
clocksource_mark_unstable(struct clocksource * cs)731 void clocksource_mark_unstable(struct clocksource *cs) { }
732 
clocksource_watchdog_lock(unsigned long * flags)733 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
clocksource_watchdog_unlock(unsigned long * flags)734 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
735 
736 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
737 
clocksource_is_suspend(struct clocksource * cs)738 static bool clocksource_is_suspend(struct clocksource *cs)
739 {
740 	return cs == suspend_clocksource;
741 }
742 
__clocksource_suspend_select(struct clocksource * cs)743 static void __clocksource_suspend_select(struct clocksource *cs)
744 {
745 	/*
746 	 * Skip the clocksource which will be stopped in suspend state.
747 	 */
748 	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
749 		return;
750 
751 	/*
752 	 * The nonstop clocksource can be selected as the suspend clocksource to
753 	 * calculate the suspend time, so it should not supply suspend/resume
754 	 * interfaces to suspend the nonstop clocksource when system suspends.
755 	 */
756 	if (cs->suspend || cs->resume) {
757 		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
758 			cs->name);
759 	}
760 
761 	/* Pick the best rating. */
762 	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
763 		suspend_clocksource = cs;
764 }
765 
766 /**
767  * clocksource_suspend_select - Select the best clocksource for suspend timing
768  * @fallback:	if select a fallback clocksource
769  */
clocksource_suspend_select(bool fallback)770 static void clocksource_suspend_select(bool fallback)
771 {
772 	struct clocksource *cs, *old_suspend;
773 
774 	old_suspend = suspend_clocksource;
775 	if (fallback)
776 		suspend_clocksource = NULL;
777 
778 	list_for_each_entry(cs, &clocksource_list, list) {
779 		/* Skip current if we were requested for a fallback. */
780 		if (fallback && cs == old_suspend)
781 			continue;
782 
783 		__clocksource_suspend_select(cs);
784 	}
785 }
786 
787 /**
788  * clocksource_start_suspend_timing - Start measuring the suspend timing
789  * @cs:			current clocksource from timekeeping
790  * @start_cycles:	current cycles from timekeeping
791  *
792  * This function will save the start cycle values of suspend timer to calculate
793  * the suspend time when resuming system.
794  *
795  * This function is called late in the suspend process from timekeeping_suspend(),
796  * that means processes are frozen, non-boot cpus and interrupts are disabled
797  * now. It is therefore possible to start the suspend timer without taking the
798  * clocksource mutex.
799  */
clocksource_start_suspend_timing(struct clocksource * cs,u64 start_cycles)800 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
801 {
802 	if (!suspend_clocksource)
803 		return;
804 
805 	/*
806 	 * If current clocksource is the suspend timer, we should use the
807 	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
808 	 * from suspend timer.
809 	 */
810 	if (clocksource_is_suspend(cs)) {
811 		suspend_start = start_cycles;
812 		return;
813 	}
814 
815 	if (suspend_clocksource->enable &&
816 	    suspend_clocksource->enable(suspend_clocksource)) {
817 		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
818 		return;
819 	}
820 
821 	suspend_start = suspend_clocksource->read(suspend_clocksource);
822 }
823 
824 /**
825  * clocksource_stop_suspend_timing - Stop measuring the suspend timing
826  * @cs:		current clocksource from timekeeping
827  * @cycle_now:	current cycles from timekeeping
828  *
829  * This function will calculate the suspend time from suspend timer.
830  *
831  * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
832  *
833  * This function is called early in the resume process from timekeeping_resume(),
834  * that means there is only one cpu, no processes are running and the interrupts
835  * are disabled. It is therefore possible to stop the suspend timer without
836  * taking the clocksource mutex.
837  */
clocksource_stop_suspend_timing(struct clocksource * cs,u64 cycle_now)838 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
839 {
840 	u64 now, nsec = 0;
841 
842 	if (!suspend_clocksource)
843 		return 0;
844 
845 	/*
846 	 * If current clocksource is the suspend timer, we should use the
847 	 * tkr_mono.cycle_last value from timekeeping as current cycle to
848 	 * avoid same reading from suspend timer.
849 	 */
850 	if (clocksource_is_suspend(cs))
851 		now = cycle_now;
852 	else
853 		now = suspend_clocksource->read(suspend_clocksource);
854 
855 	if (now > suspend_start)
856 		nsec = cycles_to_nsec_safe(suspend_clocksource, suspend_start, now);
857 
858 	/*
859 	 * Disable the suspend timer to save power if current clocksource is
860 	 * not the suspend timer.
861 	 */
862 	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
863 		suspend_clocksource->disable(suspend_clocksource);
864 
865 	return nsec;
866 }
867 
868 /**
869  * clocksource_suspend - suspend the clocksource(s)
870  */
clocksource_suspend(void)871 void clocksource_suspend(void)
872 {
873 	struct clocksource *cs;
874 
875 	list_for_each_entry_reverse(cs, &clocksource_list, list)
876 		if (cs->suspend)
877 			cs->suspend(cs);
878 }
879 
880 /**
881  * clocksource_resume - resume the clocksource(s)
882  */
clocksource_resume(void)883 void clocksource_resume(void)
884 {
885 	struct clocksource *cs;
886 
887 	list_for_each_entry(cs, &clocksource_list, list)
888 		if (cs->resume)
889 			cs->resume(cs);
890 
891 	clocksource_resume_watchdog();
892 }
893 
894 /**
895  * clocksource_touch_watchdog - Update watchdog
896  *
897  * Update the watchdog after exception contexts such as kgdb so as not
898  * to incorrectly trip the watchdog. This might fail when the kernel
899  * was stopped in code which holds watchdog_lock.
900  */
clocksource_touch_watchdog(void)901 void clocksource_touch_watchdog(void)
902 {
903 	clocksource_resume_watchdog();
904 }
905 
906 /**
907  * clocksource_max_adjustment- Returns max adjustment amount
908  * @cs:         Pointer to clocksource
909  *
910  */
clocksource_max_adjustment(struct clocksource * cs)911 static u32 clocksource_max_adjustment(struct clocksource *cs)
912 {
913 	u64 ret;
914 	/*
915 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
916 	 */
917 	ret = (u64)cs->mult * 11;
918 	do_div(ret,100);
919 	return (u32)ret;
920 }
921 
922 /**
923  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
924  * @mult:	cycle to nanosecond multiplier
925  * @shift:	cycle to nanosecond divisor (power of two)
926  * @maxadj:	maximum adjustment value to mult (~11%)
927  * @mask:	bitmask for two's complement subtraction of non 64 bit counters
928  * @max_cyc:	maximum cycle value before potential overflow (does not include
929  *		any safety margin)
930  *
931  * NOTE: This function includes a safety margin of 50%, in other words, we
932  * return half the number of nanoseconds the hardware counter can technically
933  * cover. This is done so that we can potentially detect problems caused by
934  * delayed timers or bad hardware, which might result in time intervals that
935  * are larger than what the math used can handle without overflows.
936  */
clocks_calc_max_nsecs(u32 mult,u32 shift,u32 maxadj,u64 mask,u64 * max_cyc)937 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
938 {
939 	u64 max_nsecs, max_cycles;
940 
941 	/*
942 	 * Calculate the maximum number of cycles that we can pass to the
943 	 * cyc2ns() function without overflowing a 64-bit result.
944 	 */
945 	max_cycles = ULLONG_MAX;
946 	do_div(max_cycles, mult+maxadj);
947 
948 	/*
949 	 * The actual maximum number of cycles we can defer the clocksource is
950 	 * determined by the minimum of max_cycles and mask.
951 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
952 	 * too long if there's a large negative adjustment.
953 	 */
954 	max_cycles = min(max_cycles, mask);
955 	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
956 
957 	/* return the max_cycles value as well if requested */
958 	if (max_cyc)
959 		*max_cyc = max_cycles;
960 
961 	/* Return 50% of the actual maximum, so we can detect bad values */
962 	max_nsecs >>= 1;
963 
964 	return max_nsecs;
965 }
966 
967 /**
968  * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
969  * @cs:         Pointer to clocksource to be updated
970  *
971  */
clocksource_update_max_deferment(struct clocksource * cs)972 static inline void clocksource_update_max_deferment(struct clocksource *cs)
973 {
974 	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
975 						cs->maxadj, cs->mask,
976 						&cs->max_cycles);
977 }
978 
clocksource_find_best(bool oneshot,bool skipcur)979 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
980 {
981 	struct clocksource *cs;
982 
983 	if (!finished_booting || list_empty(&clocksource_list))
984 		return NULL;
985 
986 	/*
987 	 * We pick the clocksource with the highest rating. If oneshot
988 	 * mode is active, we pick the highres valid clocksource with
989 	 * the best rating.
990 	 */
991 	list_for_each_entry(cs, &clocksource_list, list) {
992 		if (skipcur && cs == curr_clocksource)
993 			continue;
994 		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
995 			continue;
996 		return cs;
997 	}
998 	return NULL;
999 }
1000 
__clocksource_select(bool skipcur)1001 static void __clocksource_select(bool skipcur)
1002 {
1003 	bool oneshot = tick_oneshot_mode_active();
1004 	struct clocksource *best, *cs;
1005 
1006 	/* Find the best suitable clocksource */
1007 	best = clocksource_find_best(oneshot, skipcur);
1008 	if (!best)
1009 		return;
1010 
1011 	if (!strlen(override_name))
1012 		goto found;
1013 
1014 	/* Check for the override clocksource. */
1015 	list_for_each_entry(cs, &clocksource_list, list) {
1016 		if (skipcur && cs == curr_clocksource)
1017 			continue;
1018 		if (strcmp(cs->name, override_name) != 0)
1019 			continue;
1020 		/*
1021 		 * Check to make sure we don't switch to a non-highres
1022 		 * capable clocksource if the tick code is in oneshot
1023 		 * mode (highres or nohz)
1024 		 */
1025 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
1026 			/* Override clocksource cannot be used. */
1027 			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
1028 				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
1029 					cs->name);
1030 				override_name[0] = 0;
1031 			} else {
1032 				/*
1033 				 * The override cannot be currently verified.
1034 				 * Deferring to let the watchdog check.
1035 				 */
1036 				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
1037 					cs->name);
1038 			}
1039 		} else
1040 			/* Override clocksource can be used. */
1041 			best = cs;
1042 		break;
1043 	}
1044 
1045 found:
1046 	if (curr_clocksource != best && !timekeeping_notify(best)) {
1047 		pr_info("Switched to clocksource %s\n", best->name);
1048 		curr_clocksource = best;
1049 	}
1050 }
1051 
1052 /**
1053  * clocksource_select - Select the best clocksource available
1054  *
1055  * Private function. Must hold clocksource_mutex when called.
1056  *
1057  * Select the clocksource with the best rating, or the clocksource,
1058  * which is selected by userspace override.
1059  */
clocksource_select(void)1060 static void clocksource_select(void)
1061 {
1062 	__clocksource_select(false);
1063 }
1064 
clocksource_select_fallback(void)1065 static void clocksource_select_fallback(void)
1066 {
1067 	__clocksource_select(true);
1068 }
1069 
1070 /*
1071  * clocksource_done_booting - Called near the end of core bootup
1072  *
1073  * Hack to avoid lots of clocksource churn at boot time.
1074  * We use fs_initcall because we want this to start before
1075  * device_initcall but after subsys_initcall.
1076  */
clocksource_done_booting(void)1077 static int __init clocksource_done_booting(void)
1078 {
1079 	mutex_lock(&clocksource_mutex);
1080 	curr_clocksource = clocksource_default_clock();
1081 	finished_booting = 1;
1082 	/*
1083 	 * Run the watchdog first to eliminate unstable clock sources
1084 	 */
1085 	__clocksource_watchdog_kthread();
1086 	clocksource_select();
1087 	mutex_unlock(&clocksource_mutex);
1088 	return 0;
1089 }
1090 fs_initcall(clocksource_done_booting);
1091 
1092 /*
1093  * Enqueue the clocksource sorted by rating
1094  */
clocksource_enqueue(struct clocksource * cs)1095 static void clocksource_enqueue(struct clocksource *cs)
1096 {
1097 	struct list_head *entry = &clocksource_list;
1098 	struct clocksource *tmp;
1099 
1100 	list_for_each_entry(tmp, &clocksource_list, list) {
1101 		/* Keep track of the place, where to insert */
1102 		if (tmp->rating < cs->rating)
1103 			break;
1104 		entry = &tmp->list;
1105 	}
1106 	list_add(&cs->list, entry);
1107 }
1108 
1109 /**
1110  * __clocksource_update_freq_scale - Used update clocksource with new freq
1111  * @cs:		clocksource to be registered
1112  * @scale:	Scale factor multiplied against freq to get clocksource hz
1113  * @freq:	clocksource frequency (cycles per second) divided by scale
1114  *
1115  * This should only be called from the clocksource->enable() method.
1116  *
1117  * This *SHOULD NOT* be called directly! Please use the
1118  * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1119  * functions.
1120  */
__clocksource_update_freq_scale(struct clocksource * cs,u32 scale,u32 freq)1121 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1122 {
1123 	u64 sec;
1124 
1125 	/*
1126 	 * Default clocksources are *special* and self-define their mult/shift.
1127 	 * But, you're not special, so you should specify a freq value.
1128 	 */
1129 	if (freq) {
1130 		/*
1131 		 * Calc the maximum number of seconds which we can run before
1132 		 * wrapping around. For clocksources which have a mask > 32-bit
1133 		 * we need to limit the max sleep time to have a good
1134 		 * conversion precision. 10 minutes is still a reasonable
1135 		 * amount. That results in a shift value of 24 for a
1136 		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1137 		 * ~ 0.06ppm granularity for NTP.
1138 		 */
1139 		sec = cs->mask;
1140 		do_div(sec, freq);
1141 		do_div(sec, scale);
1142 		if (!sec)
1143 			sec = 1;
1144 		else if (sec > 600 && cs->mask > UINT_MAX)
1145 			sec = 600;
1146 
1147 		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1148 				       NSEC_PER_SEC / scale, sec * scale);
1149 	}
1150 
1151 	/*
1152 	 * If the uncertainty margin is not specified, calculate it.
1153 	 * If both scale and freq are non-zero, calculate the clock
1154 	 * period, but bound below at 2*WATCHDOG_MAX_SKEW.  However,
1155 	 * if either of scale or freq is zero, be very conservative and
1156 	 * take the tens-of-milliseconds WATCHDOG_THRESHOLD value for the
1157 	 * uncertainty margin.  Allow stupidly small uncertainty margins
1158 	 * to be specified by the caller for testing purposes, but warn
1159 	 * to discourage production use of this capability.
1160 	 */
1161 	if (scale && freq && !cs->uncertainty_margin) {
1162 		cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1163 		if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1164 			cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1165 	} else if (!cs->uncertainty_margin) {
1166 		cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1167 	}
1168 	WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1169 
1170 	/*
1171 	 * Ensure clocksources that have large 'mult' values don't overflow
1172 	 * when adjusted.
1173 	 */
1174 	cs->maxadj = clocksource_max_adjustment(cs);
1175 	while (freq && ((cs->mult + cs->maxadj < cs->mult)
1176 		|| (cs->mult - cs->maxadj > cs->mult))) {
1177 		cs->mult >>= 1;
1178 		cs->shift--;
1179 		cs->maxadj = clocksource_max_adjustment(cs);
1180 	}
1181 
1182 	/*
1183 	 * Only warn for *special* clocksources that self-define
1184 	 * their mult/shift values and don't specify a freq.
1185 	 */
1186 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1187 		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1188 		cs->name);
1189 
1190 	clocksource_update_max_deferment(cs);
1191 
1192 	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1193 		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1194 }
1195 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1196 
1197 /**
1198  * __clocksource_register_scale - Used to install new clocksources
1199  * @cs:		clocksource to be registered
1200  * @scale:	Scale factor multiplied against freq to get clocksource hz
1201  * @freq:	clocksource frequency (cycles per second) divided by scale
1202  *
1203  * Returns -EBUSY if registration fails, zero otherwise.
1204  *
1205  * This *SHOULD NOT* be called directly! Please use the
1206  * clocksource_register_hz() or clocksource_register_khz helper functions.
1207  */
__clocksource_register_scale(struct clocksource * cs,u32 scale,u32 freq)1208 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1209 {
1210 	unsigned long flags;
1211 
1212 	clocksource_arch_init(cs);
1213 
1214 	if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1215 		cs->id = CSID_GENERIC;
1216 	if (cs->vdso_clock_mode < 0 ||
1217 	    cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1218 		pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1219 			cs->name, cs->vdso_clock_mode);
1220 		cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1221 	}
1222 
1223 	/* Initialize mult/shift and max_idle_ns */
1224 	__clocksource_update_freq_scale(cs, scale, freq);
1225 
1226 	/* Add clocksource to the clocksource list */
1227 	mutex_lock(&clocksource_mutex);
1228 
1229 	clocksource_watchdog_lock(&flags);
1230 	clocksource_enqueue(cs);
1231 	clocksource_enqueue_watchdog(cs);
1232 	clocksource_watchdog_unlock(&flags);
1233 
1234 	clocksource_select();
1235 	clocksource_select_watchdog(false);
1236 	__clocksource_suspend_select(cs);
1237 	mutex_unlock(&clocksource_mutex);
1238 	return 0;
1239 }
1240 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1241 
__clocksource_change_rating(struct clocksource * cs,int rating)1242 static void __clocksource_change_rating(struct clocksource *cs, int rating)
1243 {
1244 	list_del(&cs->list);
1245 	cs->rating = rating;
1246 	clocksource_enqueue(cs);
1247 }
1248 
1249 /**
1250  * clocksource_change_rating - Change the rating of a registered clocksource
1251  * @cs:		clocksource to be changed
1252  * @rating:	new rating
1253  */
clocksource_change_rating(struct clocksource * cs,int rating)1254 void clocksource_change_rating(struct clocksource *cs, int rating)
1255 {
1256 	unsigned long flags;
1257 
1258 	mutex_lock(&clocksource_mutex);
1259 	clocksource_watchdog_lock(&flags);
1260 	__clocksource_change_rating(cs, rating);
1261 	clocksource_watchdog_unlock(&flags);
1262 
1263 	clocksource_select();
1264 	clocksource_select_watchdog(false);
1265 	clocksource_suspend_select(false);
1266 	mutex_unlock(&clocksource_mutex);
1267 }
1268 EXPORT_SYMBOL(clocksource_change_rating);
1269 
1270 /*
1271  * Unbind clocksource @cs. Called with clocksource_mutex held
1272  */
clocksource_unbind(struct clocksource * cs)1273 static int clocksource_unbind(struct clocksource *cs)
1274 {
1275 	unsigned long flags;
1276 
1277 	if (clocksource_is_watchdog(cs)) {
1278 		/* Select and try to install a replacement watchdog. */
1279 		clocksource_select_watchdog(true);
1280 		if (clocksource_is_watchdog(cs))
1281 			return -EBUSY;
1282 	}
1283 
1284 	if (cs == curr_clocksource) {
1285 		/* Select and try to install a replacement clock source */
1286 		clocksource_select_fallback();
1287 		if (curr_clocksource == cs)
1288 			return -EBUSY;
1289 	}
1290 
1291 	if (clocksource_is_suspend(cs)) {
1292 		/*
1293 		 * Select and try to install a replacement suspend clocksource.
1294 		 * If no replacement suspend clocksource, we will just let the
1295 		 * clocksource go and have no suspend clocksource.
1296 		 */
1297 		clocksource_suspend_select(true);
1298 	}
1299 
1300 	clocksource_watchdog_lock(&flags);
1301 	clocksource_dequeue_watchdog(cs);
1302 	list_del_init(&cs->list);
1303 	clocksource_watchdog_unlock(&flags);
1304 
1305 	return 0;
1306 }
1307 
1308 /**
1309  * clocksource_unregister - remove a registered clocksource
1310  * @cs:	clocksource to be unregistered
1311  */
clocksource_unregister(struct clocksource * cs)1312 int clocksource_unregister(struct clocksource *cs)
1313 {
1314 	int ret = 0;
1315 
1316 	mutex_lock(&clocksource_mutex);
1317 	if (!list_empty(&cs->list))
1318 		ret = clocksource_unbind(cs);
1319 	mutex_unlock(&clocksource_mutex);
1320 	return ret;
1321 }
1322 EXPORT_SYMBOL(clocksource_unregister);
1323 
1324 #ifdef CONFIG_SYSFS
1325 /**
1326  * current_clocksource_show - sysfs interface for current clocksource
1327  * @dev:	unused
1328  * @attr:	unused
1329  * @buf:	char buffer to be filled with clocksource list
1330  *
1331  * Provides sysfs interface for listing current clocksource.
1332  */
current_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1333 static ssize_t current_clocksource_show(struct device *dev,
1334 					struct device_attribute *attr,
1335 					char *buf)
1336 {
1337 	ssize_t count = 0;
1338 
1339 	mutex_lock(&clocksource_mutex);
1340 	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1341 	mutex_unlock(&clocksource_mutex);
1342 
1343 	return count;
1344 }
1345 
sysfs_get_uname(const char * buf,char * dst,size_t cnt)1346 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1347 {
1348 	size_t ret = cnt;
1349 
1350 	/* strings from sysfs write are not 0 terminated! */
1351 	if (!cnt || cnt >= CS_NAME_LEN)
1352 		return -EINVAL;
1353 
1354 	/* strip of \n: */
1355 	if (buf[cnt-1] == '\n')
1356 		cnt--;
1357 	if (cnt > 0)
1358 		memcpy(dst, buf, cnt);
1359 	dst[cnt] = 0;
1360 	return ret;
1361 }
1362 
1363 /**
1364  * current_clocksource_store - interface for manually overriding clocksource
1365  * @dev:	unused
1366  * @attr:	unused
1367  * @buf:	name of override clocksource
1368  * @count:	length of buffer
1369  *
1370  * Takes input from sysfs interface for manually overriding the default
1371  * clocksource selection.
1372  */
current_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1373 static ssize_t current_clocksource_store(struct device *dev,
1374 					 struct device_attribute *attr,
1375 					 const char *buf, size_t count)
1376 {
1377 	ssize_t ret;
1378 
1379 	mutex_lock(&clocksource_mutex);
1380 
1381 	ret = sysfs_get_uname(buf, override_name, count);
1382 	if (ret >= 0)
1383 		clocksource_select();
1384 
1385 	mutex_unlock(&clocksource_mutex);
1386 
1387 	return ret;
1388 }
1389 static DEVICE_ATTR_RW(current_clocksource);
1390 
1391 /**
1392  * unbind_clocksource_store - interface for manually unbinding clocksource
1393  * @dev:	unused
1394  * @attr:	unused
1395  * @buf:	unused
1396  * @count:	length of buffer
1397  *
1398  * Takes input from sysfs interface for manually unbinding a clocksource.
1399  */
unbind_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1400 static ssize_t unbind_clocksource_store(struct device *dev,
1401 					struct device_attribute *attr,
1402 					const char *buf, size_t count)
1403 {
1404 	struct clocksource *cs;
1405 	char name[CS_NAME_LEN];
1406 	ssize_t ret;
1407 
1408 	ret = sysfs_get_uname(buf, name, count);
1409 	if (ret < 0)
1410 		return ret;
1411 
1412 	ret = -ENODEV;
1413 	mutex_lock(&clocksource_mutex);
1414 	list_for_each_entry(cs, &clocksource_list, list) {
1415 		if (strcmp(cs->name, name))
1416 			continue;
1417 		ret = clocksource_unbind(cs);
1418 		break;
1419 	}
1420 	mutex_unlock(&clocksource_mutex);
1421 
1422 	return ret ? ret : count;
1423 }
1424 static DEVICE_ATTR_WO(unbind_clocksource);
1425 
1426 /**
1427  * available_clocksource_show - sysfs interface for listing clocksource
1428  * @dev:	unused
1429  * @attr:	unused
1430  * @buf:	char buffer to be filled with clocksource list
1431  *
1432  * Provides sysfs interface for listing registered clocksources
1433  */
available_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1434 static ssize_t available_clocksource_show(struct device *dev,
1435 					  struct device_attribute *attr,
1436 					  char *buf)
1437 {
1438 	struct clocksource *src;
1439 	ssize_t count = 0;
1440 
1441 	mutex_lock(&clocksource_mutex);
1442 	list_for_each_entry(src, &clocksource_list, list) {
1443 		/*
1444 		 * Don't show non-HRES clocksource if the tick code is
1445 		 * in one shot mode (highres=on or nohz=on)
1446 		 */
1447 		if (!tick_oneshot_mode_active() ||
1448 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1449 			count += snprintf(buf + count,
1450 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1451 				  "%s ", src->name);
1452 	}
1453 	mutex_unlock(&clocksource_mutex);
1454 
1455 	count += snprintf(buf + count,
1456 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1457 
1458 	return count;
1459 }
1460 static DEVICE_ATTR_RO(available_clocksource);
1461 
1462 static struct attribute *clocksource_attrs[] = {
1463 	&dev_attr_current_clocksource.attr,
1464 	&dev_attr_unbind_clocksource.attr,
1465 	&dev_attr_available_clocksource.attr,
1466 	NULL
1467 };
1468 ATTRIBUTE_GROUPS(clocksource);
1469 
1470 static struct bus_type clocksource_subsys = {
1471 	.name = "clocksource",
1472 	.dev_name = "clocksource",
1473 };
1474 
1475 static struct device device_clocksource = {
1476 	.id	= 0,
1477 	.bus	= &clocksource_subsys,
1478 	.groups	= clocksource_groups,
1479 };
1480 
init_clocksource_sysfs(void)1481 static int __init init_clocksource_sysfs(void)
1482 {
1483 	int error = subsys_system_register(&clocksource_subsys, NULL);
1484 
1485 	if (!error)
1486 		error = device_register(&device_clocksource);
1487 
1488 	return error;
1489 }
1490 
1491 device_initcall(init_clocksource_sysfs);
1492 #endif /* CONFIG_SYSFS */
1493 
1494 /**
1495  * boot_override_clocksource - boot clock override
1496  * @str:	override name
1497  *
1498  * Takes a clocksource= boot argument and uses it
1499  * as the clocksource override name.
1500  */
boot_override_clocksource(char * str)1501 static int __init boot_override_clocksource(char* str)
1502 {
1503 	mutex_lock(&clocksource_mutex);
1504 	if (str)
1505 		strscpy(override_name, str, sizeof(override_name));
1506 	mutex_unlock(&clocksource_mutex);
1507 	return 1;
1508 }
1509 
1510 __setup("clocksource=", boot_override_clocksource);
1511 
1512 /**
1513  * boot_override_clock - Compatibility layer for deprecated boot option
1514  * @str:	override name
1515  *
1516  * DEPRECATED! Takes a clock= boot argument and uses it
1517  * as the clocksource override name
1518  */
boot_override_clock(char * str)1519 static int __init boot_override_clock(char* str)
1520 {
1521 	if (!strcmp(str, "pmtmr")) {
1522 		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1523 		return boot_override_clocksource("acpi_pm");
1524 	}
1525 	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1526 	return boot_override_clocksource(str);
1527 }
1528 
1529 __setup("clock=", boot_override_clock);
1530