1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 #include "fs.h"
47 #include "accessors.h"
48 #include "extent-tree.h"
49 #include "root-tree.h"
50 #include "defrag.h"
51 #include "uuid-tree.h"
52 #include "relocation.h"
53 #include "scrub.h"
54 #include "super.h"
55
56 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
57 BTRFS_HEADER_FLAG_RELOC |\
58 BTRFS_SUPER_FLAG_ERROR |\
59 BTRFS_SUPER_FLAG_SEEDING |\
60 BTRFS_SUPER_FLAG_METADUMP |\
61 BTRFS_SUPER_FLAG_METADUMP_V2)
62
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)66 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67 {
68 if (fs_info->csum_shash)
69 crypto_free_shash(fs_info->csum_shash);
70 }
71
72 /*
73 * Compute the csum of a btree block and store the result to provided buffer.
74 */
csum_tree_block(struct extent_buffer * buf,u8 * result)75 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
76 {
77 struct btrfs_fs_info *fs_info = buf->fs_info;
78 const int num_pages = num_extent_pages(buf);
79 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
80 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
81 char *kaddr;
82 int i;
83
84 shash->tfm = fs_info->csum_shash;
85 crypto_shash_init(shash);
86 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
87 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
88 first_page_part - BTRFS_CSUM_SIZE);
89
90 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
91 kaddr = page_address(buf->pages[i]);
92 crypto_shash_update(shash, kaddr, PAGE_SIZE);
93 }
94 memset(result, 0, BTRFS_CSUM_SIZE);
95 crypto_shash_final(shash, result);
96 }
97
98 /*
99 * we can't consider a given block up to date unless the transid of the
100 * block matches the transid in the parent node's pointer. This is how we
101 * detect blocks that either didn't get written at all or got written
102 * in the wrong place.
103 */
btrfs_buffer_uptodate(struct extent_buffer * eb,u64 parent_transid,int atomic)104 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
105 {
106 if (!extent_buffer_uptodate(eb))
107 return 0;
108
109 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
110 return 1;
111
112 if (atomic)
113 return -EAGAIN;
114
115 if (!extent_buffer_uptodate(eb) ||
116 btrfs_header_generation(eb) != parent_transid) {
117 btrfs_err_rl(eb->fs_info,
118 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
119 eb->start, eb->read_mirror,
120 parent_transid, btrfs_header_generation(eb));
121 clear_extent_buffer_uptodate(eb);
122 return 0;
123 }
124 return 1;
125 }
126
btrfs_supported_super_csum(u16 csum_type)127 static bool btrfs_supported_super_csum(u16 csum_type)
128 {
129 switch (csum_type) {
130 case BTRFS_CSUM_TYPE_CRC32:
131 case BTRFS_CSUM_TYPE_XXHASH:
132 case BTRFS_CSUM_TYPE_SHA256:
133 case BTRFS_CSUM_TYPE_BLAKE2:
134 return true;
135 default:
136 return false;
137 }
138 }
139
140 /*
141 * Return 0 if the superblock checksum type matches the checksum value of that
142 * algorithm. Pass the raw disk superblock data.
143 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,const struct btrfs_super_block * disk_sb)144 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
145 const struct btrfs_super_block *disk_sb)
146 {
147 char result[BTRFS_CSUM_SIZE];
148 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
149
150 shash->tfm = fs_info->csum_shash;
151
152 /*
153 * The super_block structure does not span the whole
154 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
155 * filled with zeros and is included in the checksum.
156 */
157 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
158 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
159
160 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
161 return 1;
162
163 return 0;
164 }
165
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)166 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
167 int mirror_num)
168 {
169 struct btrfs_fs_info *fs_info = eb->fs_info;
170 int i, num_pages = num_extent_pages(eb);
171 int ret = 0;
172
173 if (sb_rdonly(fs_info->sb))
174 return -EROFS;
175
176 for (i = 0; i < num_pages; i++) {
177 struct page *p = eb->pages[i];
178 u64 start = max_t(u64, eb->start, page_offset(p));
179 u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE);
180 u32 len = end - start;
181
182 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
183 start, p, offset_in_page(start), mirror_num);
184 if (ret)
185 break;
186 }
187
188 return ret;
189 }
190
191 /*
192 * helper to read a given tree block, doing retries as required when
193 * the checksums don't match and we have alternate mirrors to try.
194 *
195 * @check: expected tree parentness check, see the comments of the
196 * structure for details.
197 */
btrfs_read_extent_buffer(struct extent_buffer * eb,struct btrfs_tree_parent_check * check)198 int btrfs_read_extent_buffer(struct extent_buffer *eb,
199 struct btrfs_tree_parent_check *check)
200 {
201 struct btrfs_fs_info *fs_info = eb->fs_info;
202 int failed = 0;
203 int ret;
204 int num_copies = 0;
205 int mirror_num = 0;
206 int failed_mirror = 0;
207
208 ASSERT(check);
209
210 while (1) {
211 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
212 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
213 if (!ret)
214 break;
215
216 num_copies = btrfs_num_copies(fs_info,
217 eb->start, eb->len);
218 if (num_copies == 1)
219 break;
220
221 if (!failed_mirror) {
222 failed = 1;
223 failed_mirror = eb->read_mirror;
224 }
225
226 mirror_num++;
227 if (mirror_num == failed_mirror)
228 mirror_num++;
229
230 if (mirror_num > num_copies)
231 break;
232 }
233
234 if (failed && !ret && failed_mirror)
235 btrfs_repair_eb_io_failure(eb, failed_mirror);
236
237 return ret;
238 }
239
240 /*
241 * Checksum a dirty tree block before IO.
242 */
btree_csum_one_bio(struct btrfs_bio * bbio)243 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
244 {
245 struct extent_buffer *eb = bbio->private;
246 struct btrfs_fs_info *fs_info = eb->fs_info;
247 u64 found_start = btrfs_header_bytenr(eb);
248 u8 result[BTRFS_CSUM_SIZE];
249 int ret;
250
251 /* Btree blocks are always contiguous on disk. */
252 if (WARN_ON_ONCE(bbio->file_offset != eb->start))
253 return BLK_STS_IOERR;
254 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
255 return BLK_STS_IOERR;
256
257 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
258 WARN_ON_ONCE(found_start != 0);
259 return BLK_STS_OK;
260 }
261
262 if (WARN_ON_ONCE(found_start != eb->start))
263 return BLK_STS_IOERR;
264 if (WARN_ON(!btrfs_page_test_uptodate(fs_info, eb->pages[0], eb->start,
265 eb->len)))
266 return BLK_STS_IOERR;
267
268 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
269 offsetof(struct btrfs_header, fsid),
270 BTRFS_FSID_SIZE) == 0);
271 csum_tree_block(eb, result);
272
273 if (btrfs_header_level(eb))
274 ret = btrfs_check_node(eb);
275 else
276 ret = btrfs_check_leaf(eb);
277
278 if (ret < 0)
279 goto error;
280
281 /*
282 * Also check the generation, the eb reached here must be newer than
283 * last committed. Or something seriously wrong happened.
284 */
285 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
286 ret = -EUCLEAN;
287 btrfs_err(fs_info,
288 "block=%llu bad generation, have %llu expect > %llu",
289 eb->start, btrfs_header_generation(eb),
290 fs_info->last_trans_committed);
291 goto error;
292 }
293 write_extent_buffer(eb, result, 0, fs_info->csum_size);
294 return BLK_STS_OK;
295
296 error:
297 btrfs_print_tree(eb, 0);
298 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
299 eb->start);
300 /*
301 * Be noisy if this is an extent buffer from a log tree. We don't abort
302 * a transaction in case there's a bad log tree extent buffer, we just
303 * fallback to a transaction commit. Still we want to know when there is
304 * a bad log tree extent buffer, as that may signal a bug somewhere.
305 */
306 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
307 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
308 return errno_to_blk_status(ret);
309 }
310
check_tree_block_fsid(struct extent_buffer * eb)311 static bool check_tree_block_fsid(struct extent_buffer *eb)
312 {
313 struct btrfs_fs_info *fs_info = eb->fs_info;
314 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
315 u8 fsid[BTRFS_FSID_SIZE];
316
317 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
318 BTRFS_FSID_SIZE);
319
320 /*
321 * alloc_fs_devices() copies the fsid into metadata_uuid if the
322 * metadata_uuid is unset in the superblock, including for a seed device.
323 * So, we can use fs_devices->metadata_uuid.
324 */
325 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
326 return false;
327
328 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
329 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
330 return false;
331
332 return true;
333 }
334
335 /* Do basic extent buffer checks at read time */
btrfs_validate_extent_buffer(struct extent_buffer * eb,struct btrfs_tree_parent_check * check)336 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
337 struct btrfs_tree_parent_check *check)
338 {
339 struct btrfs_fs_info *fs_info = eb->fs_info;
340 u64 found_start;
341 const u32 csum_size = fs_info->csum_size;
342 u8 found_level;
343 u8 result[BTRFS_CSUM_SIZE];
344 const u8 *header_csum;
345 int ret = 0;
346
347 ASSERT(check);
348
349 found_start = btrfs_header_bytenr(eb);
350 if (found_start != eb->start) {
351 btrfs_err_rl(fs_info,
352 "bad tree block start, mirror %u want %llu have %llu",
353 eb->read_mirror, eb->start, found_start);
354 ret = -EIO;
355 goto out;
356 }
357 if (check_tree_block_fsid(eb)) {
358 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
359 eb->start, eb->read_mirror);
360 ret = -EIO;
361 goto out;
362 }
363 found_level = btrfs_header_level(eb);
364 if (found_level >= BTRFS_MAX_LEVEL) {
365 btrfs_err(fs_info,
366 "bad tree block level, mirror %u level %d on logical %llu",
367 eb->read_mirror, btrfs_header_level(eb), eb->start);
368 ret = -EIO;
369 goto out;
370 }
371
372 csum_tree_block(eb, result);
373 header_csum = page_address(eb->pages[0]) +
374 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
375
376 if (memcmp(result, header_csum, csum_size) != 0) {
377 btrfs_warn_rl(fs_info,
378 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
379 eb->start, eb->read_mirror,
380 CSUM_FMT_VALUE(csum_size, header_csum),
381 CSUM_FMT_VALUE(csum_size, result),
382 btrfs_header_level(eb));
383 ret = -EUCLEAN;
384 goto out;
385 }
386
387 if (found_level != check->level) {
388 btrfs_err(fs_info,
389 "level verify failed on logical %llu mirror %u wanted %u found %u",
390 eb->start, eb->read_mirror, check->level, found_level);
391 ret = -EIO;
392 goto out;
393 }
394 if (unlikely(check->transid &&
395 btrfs_header_generation(eb) != check->transid)) {
396 btrfs_err_rl(eb->fs_info,
397 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
398 eb->start, eb->read_mirror, check->transid,
399 btrfs_header_generation(eb));
400 ret = -EIO;
401 goto out;
402 }
403 if (check->has_first_key) {
404 struct btrfs_key *expect_key = &check->first_key;
405 struct btrfs_key found_key;
406
407 if (found_level)
408 btrfs_node_key_to_cpu(eb, &found_key, 0);
409 else
410 btrfs_item_key_to_cpu(eb, &found_key, 0);
411 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
412 btrfs_err(fs_info,
413 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
414 eb->start, check->transid,
415 expect_key->objectid,
416 expect_key->type, expect_key->offset,
417 found_key.objectid, found_key.type,
418 found_key.offset);
419 ret = -EUCLEAN;
420 goto out;
421 }
422 }
423 if (check->owner_root) {
424 ret = btrfs_check_eb_owner(eb, check->owner_root);
425 if (ret < 0)
426 goto out;
427 }
428
429 /*
430 * If this is a leaf block and it is corrupt, set the corrupt bit so
431 * that we don't try and read the other copies of this block, just
432 * return -EIO.
433 */
434 if (found_level == 0 && btrfs_check_leaf(eb)) {
435 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
436 ret = -EIO;
437 }
438
439 if (found_level > 0 && btrfs_check_node(eb))
440 ret = -EIO;
441
442 if (ret)
443 btrfs_err(fs_info,
444 "read time tree block corruption detected on logical %llu mirror %u",
445 eb->start, eb->read_mirror);
446 out:
447 return ret;
448 }
449
450 #ifdef CONFIG_MIGRATION
btree_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)451 static int btree_migrate_folio(struct address_space *mapping,
452 struct folio *dst, struct folio *src, enum migrate_mode mode)
453 {
454 /*
455 * we can't safely write a btree page from here,
456 * we haven't done the locking hook
457 */
458 if (folio_test_dirty(src))
459 return -EAGAIN;
460 /*
461 * Buffers may be managed in a filesystem specific way.
462 * We must have no buffers or drop them.
463 */
464 if (folio_get_private(src) &&
465 !filemap_release_folio(src, GFP_KERNEL))
466 return -EAGAIN;
467 return migrate_folio(mapping, dst, src, mode);
468 }
469 #else
470 #define btree_migrate_folio NULL
471 #endif
472
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)473 static int btree_writepages(struct address_space *mapping,
474 struct writeback_control *wbc)
475 {
476 struct btrfs_fs_info *fs_info;
477 int ret;
478
479 if (wbc->sync_mode == WB_SYNC_NONE) {
480
481 if (wbc->for_kupdate)
482 return 0;
483
484 fs_info = BTRFS_I(mapping->host)->root->fs_info;
485 /* this is a bit racy, but that's ok */
486 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
487 BTRFS_DIRTY_METADATA_THRESH,
488 fs_info->dirty_metadata_batch);
489 if (ret < 0)
490 return 0;
491 }
492 return btree_write_cache_pages(mapping, wbc);
493 }
494
btree_release_folio(struct folio * folio,gfp_t gfp_flags)495 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
496 {
497 if (folio_test_writeback(folio) || folio_test_dirty(folio))
498 return false;
499
500 return try_release_extent_buffer(&folio->page);
501 }
502
btree_invalidate_folio(struct folio * folio,size_t offset,size_t length)503 static void btree_invalidate_folio(struct folio *folio, size_t offset,
504 size_t length)
505 {
506 struct extent_io_tree *tree;
507 tree = &BTRFS_I(folio->mapping->host)->io_tree;
508 extent_invalidate_folio(tree, folio, offset);
509 btree_release_folio(folio, GFP_NOFS);
510 if (folio_get_private(folio)) {
511 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
512 "folio private not zero on folio %llu",
513 (unsigned long long)folio_pos(folio));
514 folio_detach_private(folio);
515 }
516 }
517
518 #ifdef DEBUG
btree_dirty_folio(struct address_space * mapping,struct folio * folio)519 static bool btree_dirty_folio(struct address_space *mapping,
520 struct folio *folio)
521 {
522 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
523 struct btrfs_subpage_info *spi = fs_info->subpage_info;
524 struct btrfs_subpage *subpage;
525 struct extent_buffer *eb;
526 int cur_bit = 0;
527 u64 page_start = folio_pos(folio);
528
529 if (fs_info->sectorsize == PAGE_SIZE) {
530 eb = folio_get_private(folio);
531 BUG_ON(!eb);
532 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
533 BUG_ON(!atomic_read(&eb->refs));
534 btrfs_assert_tree_write_locked(eb);
535 return filemap_dirty_folio(mapping, folio);
536 }
537
538 ASSERT(spi);
539 subpage = folio_get_private(folio);
540
541 for (cur_bit = spi->dirty_offset;
542 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
543 cur_bit++) {
544 unsigned long flags;
545 u64 cur;
546
547 spin_lock_irqsave(&subpage->lock, flags);
548 if (!test_bit(cur_bit, subpage->bitmaps)) {
549 spin_unlock_irqrestore(&subpage->lock, flags);
550 continue;
551 }
552 spin_unlock_irqrestore(&subpage->lock, flags);
553 cur = page_start + cur_bit * fs_info->sectorsize;
554
555 eb = find_extent_buffer(fs_info, cur);
556 ASSERT(eb);
557 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
558 ASSERT(atomic_read(&eb->refs));
559 btrfs_assert_tree_write_locked(eb);
560 free_extent_buffer(eb);
561
562 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
563 }
564 return filemap_dirty_folio(mapping, folio);
565 }
566 #else
567 #define btree_dirty_folio filemap_dirty_folio
568 #endif
569
570 static const struct address_space_operations btree_aops = {
571 .writepages = btree_writepages,
572 .release_folio = btree_release_folio,
573 .invalidate_folio = btree_invalidate_folio,
574 .migrate_folio = btree_migrate_folio,
575 .dirty_folio = btree_dirty_folio,
576 };
577
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level)578 struct extent_buffer *btrfs_find_create_tree_block(
579 struct btrfs_fs_info *fs_info,
580 u64 bytenr, u64 owner_root,
581 int level)
582 {
583 if (btrfs_is_testing(fs_info))
584 return alloc_test_extent_buffer(fs_info, bytenr);
585 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
586 }
587
588 /*
589 * Read tree block at logical address @bytenr and do variant basic but critical
590 * verification.
591 *
592 * @check: expected tree parentness check, see comments of the
593 * structure for details.
594 */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,struct btrfs_tree_parent_check * check)595 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
596 struct btrfs_tree_parent_check *check)
597 {
598 struct extent_buffer *buf = NULL;
599 int ret;
600
601 ASSERT(check);
602
603 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
604 check->level);
605 if (IS_ERR(buf))
606 return buf;
607
608 ret = btrfs_read_extent_buffer(buf, check);
609 if (ret) {
610 free_extent_buffer_stale(buf);
611 return ERR_PTR(ret);
612 }
613 if (btrfs_check_eb_owner(buf, check->owner_root)) {
614 free_extent_buffer_stale(buf);
615 return ERR_PTR(-EUCLEAN);
616 }
617 return buf;
618
619 }
620
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)621 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
622 u64 objectid)
623 {
624 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
625
626 memset(&root->root_key, 0, sizeof(root->root_key));
627 memset(&root->root_item, 0, sizeof(root->root_item));
628 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
629 root->fs_info = fs_info;
630 root->root_key.objectid = objectid;
631 root->node = NULL;
632 root->commit_root = NULL;
633 root->state = 0;
634 RB_CLEAR_NODE(&root->rb_node);
635
636 root->last_trans = 0;
637 root->free_objectid = 0;
638 root->nr_delalloc_inodes = 0;
639 root->nr_ordered_extents = 0;
640 root->inode_tree = RB_ROOT;
641 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
642
643 btrfs_init_root_block_rsv(root);
644
645 INIT_LIST_HEAD(&root->dirty_list);
646 INIT_LIST_HEAD(&root->root_list);
647 INIT_LIST_HEAD(&root->delalloc_inodes);
648 INIT_LIST_HEAD(&root->delalloc_root);
649 INIT_LIST_HEAD(&root->ordered_extents);
650 INIT_LIST_HEAD(&root->ordered_root);
651 INIT_LIST_HEAD(&root->reloc_dirty_list);
652 INIT_LIST_HEAD(&root->logged_list[0]);
653 INIT_LIST_HEAD(&root->logged_list[1]);
654 spin_lock_init(&root->inode_lock);
655 spin_lock_init(&root->delalloc_lock);
656 spin_lock_init(&root->ordered_extent_lock);
657 spin_lock_init(&root->accounting_lock);
658 spin_lock_init(&root->log_extents_lock[0]);
659 spin_lock_init(&root->log_extents_lock[1]);
660 spin_lock_init(&root->qgroup_meta_rsv_lock);
661 mutex_init(&root->objectid_mutex);
662 mutex_init(&root->log_mutex);
663 mutex_init(&root->ordered_extent_mutex);
664 mutex_init(&root->delalloc_mutex);
665 init_waitqueue_head(&root->qgroup_flush_wait);
666 init_waitqueue_head(&root->log_writer_wait);
667 init_waitqueue_head(&root->log_commit_wait[0]);
668 init_waitqueue_head(&root->log_commit_wait[1]);
669 INIT_LIST_HEAD(&root->log_ctxs[0]);
670 INIT_LIST_HEAD(&root->log_ctxs[1]);
671 atomic_set(&root->log_commit[0], 0);
672 atomic_set(&root->log_commit[1], 0);
673 atomic_set(&root->log_writers, 0);
674 atomic_set(&root->log_batch, 0);
675 refcount_set(&root->refs, 1);
676 atomic_set(&root->snapshot_force_cow, 0);
677 atomic_set(&root->nr_swapfiles, 0);
678 root->log_transid = 0;
679 root->log_transid_committed = -1;
680 root->last_log_commit = 0;
681 root->anon_dev = 0;
682 if (!dummy) {
683 extent_io_tree_init(fs_info, &root->dirty_log_pages,
684 IO_TREE_ROOT_DIRTY_LOG_PAGES);
685 extent_io_tree_init(fs_info, &root->log_csum_range,
686 IO_TREE_LOG_CSUM_RANGE);
687 }
688
689 spin_lock_init(&root->root_item_lock);
690 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
691 #ifdef CONFIG_BTRFS_DEBUG
692 INIT_LIST_HEAD(&root->leak_list);
693 spin_lock(&fs_info->fs_roots_radix_lock);
694 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
695 spin_unlock(&fs_info->fs_roots_radix_lock);
696 #endif
697 }
698
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)699 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
700 u64 objectid, gfp_t flags)
701 {
702 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
703 if (root)
704 __setup_root(root, fs_info, objectid);
705 return root;
706 }
707
708 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
709 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)710 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
711 {
712 struct btrfs_root *root;
713
714 if (!fs_info)
715 return ERR_PTR(-EINVAL);
716
717 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
718 if (!root)
719 return ERR_PTR(-ENOMEM);
720
721 /* We don't use the stripesize in selftest, set it as sectorsize */
722 root->alloc_bytenr = 0;
723
724 return root;
725 }
726 #endif
727
global_root_cmp(struct rb_node * a_node,const struct rb_node * b_node)728 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
729 {
730 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
731 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
732
733 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
734 }
735
global_root_key_cmp(const void * k,const struct rb_node * node)736 static int global_root_key_cmp(const void *k, const struct rb_node *node)
737 {
738 const struct btrfs_key *key = k;
739 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
740
741 return btrfs_comp_cpu_keys(key, &root->root_key);
742 }
743
btrfs_global_root_insert(struct btrfs_root * root)744 int btrfs_global_root_insert(struct btrfs_root *root)
745 {
746 struct btrfs_fs_info *fs_info = root->fs_info;
747 struct rb_node *tmp;
748 int ret = 0;
749
750 write_lock(&fs_info->global_root_lock);
751 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
752 write_unlock(&fs_info->global_root_lock);
753
754 if (tmp) {
755 ret = -EEXIST;
756 btrfs_warn(fs_info, "global root %llu %llu already exists",
757 root->root_key.objectid, root->root_key.offset);
758 }
759 return ret;
760 }
761
btrfs_global_root_delete(struct btrfs_root * root)762 void btrfs_global_root_delete(struct btrfs_root *root)
763 {
764 struct btrfs_fs_info *fs_info = root->fs_info;
765
766 write_lock(&fs_info->global_root_lock);
767 rb_erase(&root->rb_node, &fs_info->global_root_tree);
768 write_unlock(&fs_info->global_root_lock);
769 }
770
btrfs_global_root(struct btrfs_fs_info * fs_info,struct btrfs_key * key)771 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
772 struct btrfs_key *key)
773 {
774 struct rb_node *node;
775 struct btrfs_root *root = NULL;
776
777 read_lock(&fs_info->global_root_lock);
778 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
779 if (node)
780 root = container_of(node, struct btrfs_root, rb_node);
781 read_unlock(&fs_info->global_root_lock);
782
783 return root;
784 }
785
btrfs_global_root_id(struct btrfs_fs_info * fs_info,u64 bytenr)786 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
787 {
788 struct btrfs_block_group *block_group;
789 u64 ret;
790
791 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
792 return 0;
793
794 if (bytenr)
795 block_group = btrfs_lookup_block_group(fs_info, bytenr);
796 else
797 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
798 ASSERT(block_group);
799 if (!block_group)
800 return 0;
801 ret = block_group->global_root_id;
802 btrfs_put_block_group(block_group);
803
804 return ret;
805 }
806
btrfs_csum_root(struct btrfs_fs_info * fs_info,u64 bytenr)807 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
808 {
809 struct btrfs_key key = {
810 .objectid = BTRFS_CSUM_TREE_OBJECTID,
811 .type = BTRFS_ROOT_ITEM_KEY,
812 .offset = btrfs_global_root_id(fs_info, bytenr),
813 };
814
815 return btrfs_global_root(fs_info, &key);
816 }
817
btrfs_extent_root(struct btrfs_fs_info * fs_info,u64 bytenr)818 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
819 {
820 struct btrfs_key key = {
821 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
822 .type = BTRFS_ROOT_ITEM_KEY,
823 .offset = btrfs_global_root_id(fs_info, bytenr),
824 };
825
826 return btrfs_global_root(fs_info, &key);
827 }
828
btrfs_block_group_root(struct btrfs_fs_info * fs_info)829 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
830 {
831 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
832 return fs_info->block_group_root;
833 return btrfs_extent_root(fs_info, 0);
834 }
835
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)836 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
837 u64 objectid)
838 {
839 struct btrfs_fs_info *fs_info = trans->fs_info;
840 struct extent_buffer *leaf;
841 struct btrfs_root *tree_root = fs_info->tree_root;
842 struct btrfs_root *root;
843 struct btrfs_key key;
844 unsigned int nofs_flag;
845 int ret = 0;
846
847 /*
848 * We're holding a transaction handle, so use a NOFS memory allocation
849 * context to avoid deadlock if reclaim happens.
850 */
851 nofs_flag = memalloc_nofs_save();
852 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
853 memalloc_nofs_restore(nofs_flag);
854 if (!root)
855 return ERR_PTR(-ENOMEM);
856
857 root->root_key.objectid = objectid;
858 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
859 root->root_key.offset = 0;
860
861 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
862 BTRFS_NESTING_NORMAL);
863 if (IS_ERR(leaf)) {
864 ret = PTR_ERR(leaf);
865 leaf = NULL;
866 goto fail;
867 }
868
869 root->node = leaf;
870 btrfs_mark_buffer_dirty(trans, leaf);
871
872 root->commit_root = btrfs_root_node(root);
873 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
874
875 btrfs_set_root_flags(&root->root_item, 0);
876 btrfs_set_root_limit(&root->root_item, 0);
877 btrfs_set_root_bytenr(&root->root_item, leaf->start);
878 btrfs_set_root_generation(&root->root_item, trans->transid);
879 btrfs_set_root_level(&root->root_item, 0);
880 btrfs_set_root_refs(&root->root_item, 1);
881 btrfs_set_root_used(&root->root_item, leaf->len);
882 btrfs_set_root_last_snapshot(&root->root_item, 0);
883 btrfs_set_root_dirid(&root->root_item, 0);
884 if (is_fstree(objectid))
885 generate_random_guid(root->root_item.uuid);
886 else
887 export_guid(root->root_item.uuid, &guid_null);
888 btrfs_set_root_drop_level(&root->root_item, 0);
889
890 btrfs_tree_unlock(leaf);
891
892 key.objectid = objectid;
893 key.type = BTRFS_ROOT_ITEM_KEY;
894 key.offset = 0;
895 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
896 if (ret)
897 goto fail;
898
899 return root;
900
901 fail:
902 btrfs_put_root(root);
903
904 return ERR_PTR(ret);
905 }
906
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)907 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
908 struct btrfs_fs_info *fs_info)
909 {
910 struct btrfs_root *root;
911
912 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
913 if (!root)
914 return ERR_PTR(-ENOMEM);
915
916 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
917 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
918 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
919
920 return root;
921 }
922
btrfs_alloc_log_tree_node(struct btrfs_trans_handle * trans,struct btrfs_root * root)923 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
924 struct btrfs_root *root)
925 {
926 struct extent_buffer *leaf;
927
928 /*
929 * DON'T set SHAREABLE bit for log trees.
930 *
931 * Log trees are not exposed to user space thus can't be snapshotted,
932 * and they go away before a real commit is actually done.
933 *
934 * They do store pointers to file data extents, and those reference
935 * counts still get updated (along with back refs to the log tree).
936 */
937
938 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
939 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
940 if (IS_ERR(leaf))
941 return PTR_ERR(leaf);
942
943 root->node = leaf;
944
945 btrfs_mark_buffer_dirty(trans, root->node);
946 btrfs_tree_unlock(root->node);
947
948 return 0;
949 }
950
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)951 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
952 struct btrfs_fs_info *fs_info)
953 {
954 struct btrfs_root *log_root;
955
956 log_root = alloc_log_tree(trans, fs_info);
957 if (IS_ERR(log_root))
958 return PTR_ERR(log_root);
959
960 if (!btrfs_is_zoned(fs_info)) {
961 int ret = btrfs_alloc_log_tree_node(trans, log_root);
962
963 if (ret) {
964 btrfs_put_root(log_root);
965 return ret;
966 }
967 }
968
969 WARN_ON(fs_info->log_root_tree);
970 fs_info->log_root_tree = log_root;
971 return 0;
972 }
973
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)974 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
975 struct btrfs_root *root)
976 {
977 struct btrfs_fs_info *fs_info = root->fs_info;
978 struct btrfs_root *log_root;
979 struct btrfs_inode_item *inode_item;
980 int ret;
981
982 log_root = alloc_log_tree(trans, fs_info);
983 if (IS_ERR(log_root))
984 return PTR_ERR(log_root);
985
986 ret = btrfs_alloc_log_tree_node(trans, log_root);
987 if (ret) {
988 btrfs_put_root(log_root);
989 return ret;
990 }
991
992 log_root->last_trans = trans->transid;
993 log_root->root_key.offset = root->root_key.objectid;
994
995 inode_item = &log_root->root_item.inode;
996 btrfs_set_stack_inode_generation(inode_item, 1);
997 btrfs_set_stack_inode_size(inode_item, 3);
998 btrfs_set_stack_inode_nlink(inode_item, 1);
999 btrfs_set_stack_inode_nbytes(inode_item,
1000 fs_info->nodesize);
1001 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1002
1003 btrfs_set_root_node(&log_root->root_item, log_root->node);
1004
1005 WARN_ON(root->log_root);
1006 root->log_root = log_root;
1007 root->log_transid = 0;
1008 root->log_transid_committed = -1;
1009 root->last_log_commit = 0;
1010 return 0;
1011 }
1012
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,struct btrfs_key * key)1013 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1014 struct btrfs_path *path,
1015 struct btrfs_key *key)
1016 {
1017 struct btrfs_root *root;
1018 struct btrfs_tree_parent_check check = { 0 };
1019 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1020 u64 generation;
1021 int ret;
1022 int level;
1023
1024 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1025 if (!root)
1026 return ERR_PTR(-ENOMEM);
1027
1028 ret = btrfs_find_root(tree_root, key, path,
1029 &root->root_item, &root->root_key);
1030 if (ret) {
1031 if (ret > 0)
1032 ret = -ENOENT;
1033 goto fail;
1034 }
1035
1036 generation = btrfs_root_generation(&root->root_item);
1037 level = btrfs_root_level(&root->root_item);
1038 check.level = level;
1039 check.transid = generation;
1040 check.owner_root = key->objectid;
1041 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1042 &check);
1043 if (IS_ERR(root->node)) {
1044 ret = PTR_ERR(root->node);
1045 root->node = NULL;
1046 goto fail;
1047 }
1048 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1049 ret = -EIO;
1050 goto fail;
1051 }
1052
1053 /*
1054 * For real fs, and not log/reloc trees, root owner must
1055 * match its root node owner
1056 */
1057 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1058 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1059 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1060 root->root_key.objectid != btrfs_header_owner(root->node)) {
1061 btrfs_crit(fs_info,
1062 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1063 root->root_key.objectid, root->node->start,
1064 btrfs_header_owner(root->node),
1065 root->root_key.objectid);
1066 ret = -EUCLEAN;
1067 goto fail;
1068 }
1069 root->commit_root = btrfs_root_node(root);
1070 return root;
1071 fail:
1072 btrfs_put_root(root);
1073 return ERR_PTR(ret);
1074 }
1075
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1076 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1077 struct btrfs_key *key)
1078 {
1079 struct btrfs_root *root;
1080 struct btrfs_path *path;
1081
1082 path = btrfs_alloc_path();
1083 if (!path)
1084 return ERR_PTR(-ENOMEM);
1085 root = read_tree_root_path(tree_root, path, key);
1086 btrfs_free_path(path);
1087
1088 return root;
1089 }
1090
1091 /*
1092 * Initialize subvolume root in-memory structure
1093 *
1094 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1095 */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1096 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1097 {
1098 int ret;
1099
1100 btrfs_drew_lock_init(&root->snapshot_lock);
1101
1102 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1103 !btrfs_is_data_reloc_root(root) &&
1104 is_fstree(root->root_key.objectid)) {
1105 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1106 btrfs_check_and_init_root_item(&root->root_item);
1107 }
1108
1109 /*
1110 * Don't assign anonymous block device to roots that are not exposed to
1111 * userspace, the id pool is limited to 1M
1112 */
1113 if (is_fstree(root->root_key.objectid) &&
1114 btrfs_root_refs(&root->root_item) > 0) {
1115 if (!anon_dev) {
1116 ret = get_anon_bdev(&root->anon_dev);
1117 if (ret)
1118 goto fail;
1119 } else {
1120 root->anon_dev = anon_dev;
1121 }
1122 }
1123
1124 mutex_lock(&root->objectid_mutex);
1125 ret = btrfs_init_root_free_objectid(root);
1126 if (ret) {
1127 mutex_unlock(&root->objectid_mutex);
1128 goto fail;
1129 }
1130
1131 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1132
1133 mutex_unlock(&root->objectid_mutex);
1134
1135 return 0;
1136 fail:
1137 /* The caller is responsible to call btrfs_free_fs_root */
1138 return ret;
1139 }
1140
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1141 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1142 u64 root_id)
1143 {
1144 struct btrfs_root *root;
1145
1146 spin_lock(&fs_info->fs_roots_radix_lock);
1147 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1148 (unsigned long)root_id);
1149 root = btrfs_grab_root(root);
1150 spin_unlock(&fs_info->fs_roots_radix_lock);
1151 return root;
1152 }
1153
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1154 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1155 u64 objectid)
1156 {
1157 struct btrfs_key key = {
1158 .objectid = objectid,
1159 .type = BTRFS_ROOT_ITEM_KEY,
1160 .offset = 0,
1161 };
1162
1163 switch (objectid) {
1164 case BTRFS_ROOT_TREE_OBJECTID:
1165 return btrfs_grab_root(fs_info->tree_root);
1166 case BTRFS_EXTENT_TREE_OBJECTID:
1167 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1168 case BTRFS_CHUNK_TREE_OBJECTID:
1169 return btrfs_grab_root(fs_info->chunk_root);
1170 case BTRFS_DEV_TREE_OBJECTID:
1171 return btrfs_grab_root(fs_info->dev_root);
1172 case BTRFS_CSUM_TREE_OBJECTID:
1173 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1174 case BTRFS_QUOTA_TREE_OBJECTID:
1175 return btrfs_grab_root(fs_info->quota_root);
1176 case BTRFS_UUID_TREE_OBJECTID:
1177 return btrfs_grab_root(fs_info->uuid_root);
1178 case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1179 return btrfs_grab_root(fs_info->block_group_root);
1180 case BTRFS_FREE_SPACE_TREE_OBJECTID:
1181 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1182 default:
1183 return NULL;
1184 }
1185 }
1186
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1187 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1188 struct btrfs_root *root)
1189 {
1190 int ret;
1191
1192 ret = radix_tree_preload(GFP_NOFS);
1193 if (ret)
1194 return ret;
1195
1196 spin_lock(&fs_info->fs_roots_radix_lock);
1197 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1198 (unsigned long)root->root_key.objectid,
1199 root);
1200 if (ret == 0) {
1201 btrfs_grab_root(root);
1202 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1203 }
1204 spin_unlock(&fs_info->fs_roots_radix_lock);
1205 radix_tree_preload_end();
1206
1207 return ret;
1208 }
1209
btrfs_check_leaked_roots(struct btrfs_fs_info * fs_info)1210 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1211 {
1212 #ifdef CONFIG_BTRFS_DEBUG
1213 struct btrfs_root *root;
1214
1215 while (!list_empty(&fs_info->allocated_roots)) {
1216 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1217
1218 root = list_first_entry(&fs_info->allocated_roots,
1219 struct btrfs_root, leak_list);
1220 btrfs_err(fs_info, "leaked root %s refcount %d",
1221 btrfs_root_name(&root->root_key, buf),
1222 refcount_read(&root->refs));
1223 while (refcount_read(&root->refs) > 1)
1224 btrfs_put_root(root);
1225 btrfs_put_root(root);
1226 }
1227 #endif
1228 }
1229
free_global_roots(struct btrfs_fs_info * fs_info)1230 static void free_global_roots(struct btrfs_fs_info *fs_info)
1231 {
1232 struct btrfs_root *root;
1233 struct rb_node *node;
1234
1235 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1236 root = rb_entry(node, struct btrfs_root, rb_node);
1237 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1238 btrfs_put_root(root);
1239 }
1240 }
1241
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1242 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1243 {
1244 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1245 percpu_counter_destroy(&fs_info->delalloc_bytes);
1246 percpu_counter_destroy(&fs_info->ordered_bytes);
1247 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1248 btrfs_free_csum_hash(fs_info);
1249 btrfs_free_stripe_hash_table(fs_info);
1250 btrfs_free_ref_cache(fs_info);
1251 kfree(fs_info->balance_ctl);
1252 kfree(fs_info->delayed_root);
1253 free_global_roots(fs_info);
1254 btrfs_put_root(fs_info->tree_root);
1255 btrfs_put_root(fs_info->chunk_root);
1256 btrfs_put_root(fs_info->dev_root);
1257 btrfs_put_root(fs_info->quota_root);
1258 btrfs_put_root(fs_info->uuid_root);
1259 btrfs_put_root(fs_info->fs_root);
1260 btrfs_put_root(fs_info->data_reloc_root);
1261 btrfs_put_root(fs_info->block_group_root);
1262 btrfs_check_leaked_roots(fs_info);
1263 btrfs_extent_buffer_leak_debug_check(fs_info);
1264 kfree(fs_info->super_copy);
1265 kfree(fs_info->super_for_commit);
1266 kfree(fs_info->subpage_info);
1267 kvfree(fs_info);
1268 }
1269
1270
1271 /*
1272 * Get an in-memory reference of a root structure.
1273 *
1274 * For essential trees like root/extent tree, we grab it from fs_info directly.
1275 * For subvolume trees, we check the cached filesystem roots first. If not
1276 * found, then read it from disk and add it to cached fs roots.
1277 *
1278 * Caller should release the root by calling btrfs_put_root() after the usage.
1279 *
1280 * NOTE: Reloc and log trees can't be read by this function as they share the
1281 * same root objectid.
1282 *
1283 * @objectid: root id
1284 * @anon_dev: preallocated anonymous block device number for new roots,
1285 * pass NULL for a new allocation.
1286 * @check_ref: whether to check root item references, If true, return -ENOENT
1287 * for orphan roots
1288 */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev,bool check_ref)1289 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1290 u64 objectid, dev_t *anon_dev,
1291 bool check_ref)
1292 {
1293 struct btrfs_root *root;
1294 struct btrfs_path *path;
1295 struct btrfs_key key;
1296 int ret;
1297
1298 root = btrfs_get_global_root(fs_info, objectid);
1299 if (root)
1300 return root;
1301
1302 /*
1303 * If we're called for non-subvolume trees, and above function didn't
1304 * find one, do not try to read it from disk.
1305 *
1306 * This is namely for free-space-tree and quota tree, which can change
1307 * at runtime and should only be grabbed from fs_info.
1308 */
1309 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1310 return ERR_PTR(-ENOENT);
1311 again:
1312 root = btrfs_lookup_fs_root(fs_info, objectid);
1313 if (root) {
1314 /*
1315 * Some other caller may have read out the newly inserted
1316 * subvolume already (for things like backref walk etc). Not
1317 * that common but still possible. In that case, we just need
1318 * to free the anon_dev.
1319 */
1320 if (unlikely(anon_dev && *anon_dev)) {
1321 free_anon_bdev(*anon_dev);
1322 *anon_dev = 0;
1323 }
1324
1325 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1326 btrfs_put_root(root);
1327 return ERR_PTR(-ENOENT);
1328 }
1329 return root;
1330 }
1331
1332 key.objectid = objectid;
1333 key.type = BTRFS_ROOT_ITEM_KEY;
1334 key.offset = (u64)-1;
1335 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1336 if (IS_ERR(root))
1337 return root;
1338
1339 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1340 ret = -ENOENT;
1341 goto fail;
1342 }
1343
1344 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1345 if (ret)
1346 goto fail;
1347
1348 path = btrfs_alloc_path();
1349 if (!path) {
1350 ret = -ENOMEM;
1351 goto fail;
1352 }
1353 key.objectid = BTRFS_ORPHAN_OBJECTID;
1354 key.type = BTRFS_ORPHAN_ITEM_KEY;
1355 key.offset = objectid;
1356
1357 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1358 btrfs_free_path(path);
1359 if (ret < 0)
1360 goto fail;
1361 if (ret == 0)
1362 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1363
1364 ret = btrfs_insert_fs_root(fs_info, root);
1365 if (ret) {
1366 if (ret == -EEXIST) {
1367 btrfs_put_root(root);
1368 goto again;
1369 }
1370 goto fail;
1371 }
1372 return root;
1373 fail:
1374 /*
1375 * If our caller provided us an anonymous device, then it's his
1376 * responsibility to free it in case we fail. So we have to set our
1377 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1378 * and once again by our caller.
1379 */
1380 if (anon_dev && *anon_dev)
1381 root->anon_dev = 0;
1382 btrfs_put_root(root);
1383 return ERR_PTR(ret);
1384 }
1385
1386 /*
1387 * Get in-memory reference of a root structure
1388 *
1389 * @objectid: tree objectid
1390 * @check_ref: if set, verify that the tree exists and the item has at least
1391 * one reference
1392 */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1393 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1394 u64 objectid, bool check_ref)
1395 {
1396 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1397 }
1398
1399 /*
1400 * Get in-memory reference of a root structure, created as new, optionally pass
1401 * the anonymous block device id
1402 *
1403 * @objectid: tree objectid
1404 * @anon_dev: if NULL, allocate a new anonymous block device or use the
1405 * parameter value if not NULL
1406 */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev)1407 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1408 u64 objectid, dev_t *anon_dev)
1409 {
1410 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1411 }
1412
1413 /*
1414 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1415 * @fs_info: the fs_info
1416 * @objectid: the objectid we need to lookup
1417 *
1418 * This is exclusively used for backref walking, and exists specifically because
1419 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1420 * creation time, which means we may have to read the tree_root in order to look
1421 * up a fs root that is not in memory. If the root is not in memory we will
1422 * read the tree root commit root and look up the fs root from there. This is a
1423 * temporary root, it will not be inserted into the radix tree as it doesn't
1424 * have the most uptodate information, it'll simply be discarded once the
1425 * backref code is finished using the root.
1426 */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1427 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1428 struct btrfs_path *path,
1429 u64 objectid)
1430 {
1431 struct btrfs_root *root;
1432 struct btrfs_key key;
1433
1434 ASSERT(path->search_commit_root && path->skip_locking);
1435
1436 /*
1437 * This can return -ENOENT if we ask for a root that doesn't exist, but
1438 * since this is called via the backref walking code we won't be looking
1439 * up a root that doesn't exist, unless there's corruption. So if root
1440 * != NULL just return it.
1441 */
1442 root = btrfs_get_global_root(fs_info, objectid);
1443 if (root)
1444 return root;
1445
1446 root = btrfs_lookup_fs_root(fs_info, objectid);
1447 if (root)
1448 return root;
1449
1450 key.objectid = objectid;
1451 key.type = BTRFS_ROOT_ITEM_KEY;
1452 key.offset = (u64)-1;
1453 root = read_tree_root_path(fs_info->tree_root, path, &key);
1454 btrfs_release_path(path);
1455
1456 return root;
1457 }
1458
cleaner_kthread(void * arg)1459 static int cleaner_kthread(void *arg)
1460 {
1461 struct btrfs_fs_info *fs_info = arg;
1462 int again;
1463
1464 while (1) {
1465 again = 0;
1466
1467 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1468
1469 /* Make the cleaner go to sleep early. */
1470 if (btrfs_need_cleaner_sleep(fs_info))
1471 goto sleep;
1472
1473 /*
1474 * Do not do anything if we might cause open_ctree() to block
1475 * before we have finished mounting the filesystem.
1476 */
1477 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1478 goto sleep;
1479
1480 if (!mutex_trylock(&fs_info->cleaner_mutex))
1481 goto sleep;
1482
1483 /*
1484 * Avoid the problem that we change the status of the fs
1485 * during the above check and trylock.
1486 */
1487 if (btrfs_need_cleaner_sleep(fs_info)) {
1488 mutex_unlock(&fs_info->cleaner_mutex);
1489 goto sleep;
1490 }
1491
1492 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1493 btrfs_sysfs_feature_update(fs_info);
1494
1495 btrfs_run_delayed_iputs(fs_info);
1496
1497 again = btrfs_clean_one_deleted_snapshot(fs_info);
1498 mutex_unlock(&fs_info->cleaner_mutex);
1499
1500 /*
1501 * The defragger has dealt with the R/O remount and umount,
1502 * needn't do anything special here.
1503 */
1504 btrfs_run_defrag_inodes(fs_info);
1505
1506 /*
1507 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1508 * with relocation (btrfs_relocate_chunk) and relocation
1509 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1510 * after acquiring fs_info->reclaim_bgs_lock. So we
1511 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1512 * unused block groups.
1513 */
1514 btrfs_delete_unused_bgs(fs_info);
1515
1516 /*
1517 * Reclaim block groups in the reclaim_bgs list after we deleted
1518 * all unused block_groups. This possibly gives us some more free
1519 * space.
1520 */
1521 btrfs_reclaim_bgs(fs_info);
1522 sleep:
1523 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1524 if (kthread_should_park())
1525 kthread_parkme();
1526 if (kthread_should_stop())
1527 return 0;
1528 if (!again) {
1529 set_current_state(TASK_INTERRUPTIBLE);
1530 schedule();
1531 __set_current_state(TASK_RUNNING);
1532 }
1533 }
1534 }
1535
transaction_kthread(void * arg)1536 static int transaction_kthread(void *arg)
1537 {
1538 struct btrfs_root *root = arg;
1539 struct btrfs_fs_info *fs_info = root->fs_info;
1540 struct btrfs_trans_handle *trans;
1541 struct btrfs_transaction *cur;
1542 u64 transid;
1543 time64_t delta;
1544 unsigned long delay;
1545 bool cannot_commit;
1546
1547 do {
1548 cannot_commit = false;
1549 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1550 mutex_lock(&fs_info->transaction_kthread_mutex);
1551
1552 spin_lock(&fs_info->trans_lock);
1553 cur = fs_info->running_transaction;
1554 if (!cur) {
1555 spin_unlock(&fs_info->trans_lock);
1556 goto sleep;
1557 }
1558
1559 delta = ktime_get_seconds() - cur->start_time;
1560 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1561 cur->state < TRANS_STATE_COMMIT_PREP &&
1562 delta < fs_info->commit_interval) {
1563 spin_unlock(&fs_info->trans_lock);
1564 delay -= msecs_to_jiffies((delta - 1) * 1000);
1565 delay = min(delay,
1566 msecs_to_jiffies(fs_info->commit_interval * 1000));
1567 goto sleep;
1568 }
1569 transid = cur->transid;
1570 spin_unlock(&fs_info->trans_lock);
1571
1572 /* If the file system is aborted, this will always fail. */
1573 trans = btrfs_attach_transaction(root);
1574 if (IS_ERR(trans)) {
1575 if (PTR_ERR(trans) != -ENOENT)
1576 cannot_commit = true;
1577 goto sleep;
1578 }
1579 if (transid == trans->transid) {
1580 btrfs_commit_transaction(trans);
1581 } else {
1582 btrfs_end_transaction(trans);
1583 }
1584 sleep:
1585 wake_up_process(fs_info->cleaner_kthread);
1586 mutex_unlock(&fs_info->transaction_kthread_mutex);
1587
1588 if (BTRFS_FS_ERROR(fs_info))
1589 btrfs_cleanup_transaction(fs_info);
1590 if (!kthread_should_stop() &&
1591 (!btrfs_transaction_blocked(fs_info) ||
1592 cannot_commit))
1593 schedule_timeout_interruptible(delay);
1594 } while (!kthread_should_stop());
1595 return 0;
1596 }
1597
1598 /*
1599 * This will find the highest generation in the array of root backups. The
1600 * index of the highest array is returned, or -EINVAL if we can't find
1601 * anything.
1602 *
1603 * We check to make sure the array is valid by comparing the
1604 * generation of the latest root in the array with the generation
1605 * in the super block. If they don't match we pitch it.
1606 */
find_newest_super_backup(struct btrfs_fs_info * info)1607 static int find_newest_super_backup(struct btrfs_fs_info *info)
1608 {
1609 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1610 u64 cur;
1611 struct btrfs_root_backup *root_backup;
1612 int i;
1613
1614 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1615 root_backup = info->super_copy->super_roots + i;
1616 cur = btrfs_backup_tree_root_gen(root_backup);
1617 if (cur == newest_gen)
1618 return i;
1619 }
1620
1621 return -EINVAL;
1622 }
1623
1624 /*
1625 * copy all the root pointers into the super backup array.
1626 * this will bump the backup pointer by one when it is
1627 * done
1628 */
backup_super_roots(struct btrfs_fs_info * info)1629 static void backup_super_roots(struct btrfs_fs_info *info)
1630 {
1631 const int next_backup = info->backup_root_index;
1632 struct btrfs_root_backup *root_backup;
1633
1634 root_backup = info->super_for_commit->super_roots + next_backup;
1635
1636 /*
1637 * make sure all of our padding and empty slots get zero filled
1638 * regardless of which ones we use today
1639 */
1640 memset(root_backup, 0, sizeof(*root_backup));
1641
1642 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1643
1644 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1645 btrfs_set_backup_tree_root_gen(root_backup,
1646 btrfs_header_generation(info->tree_root->node));
1647
1648 btrfs_set_backup_tree_root_level(root_backup,
1649 btrfs_header_level(info->tree_root->node));
1650
1651 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1652 btrfs_set_backup_chunk_root_gen(root_backup,
1653 btrfs_header_generation(info->chunk_root->node));
1654 btrfs_set_backup_chunk_root_level(root_backup,
1655 btrfs_header_level(info->chunk_root->node));
1656
1657 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1658 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1659 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1660
1661 btrfs_set_backup_extent_root(root_backup,
1662 extent_root->node->start);
1663 btrfs_set_backup_extent_root_gen(root_backup,
1664 btrfs_header_generation(extent_root->node));
1665 btrfs_set_backup_extent_root_level(root_backup,
1666 btrfs_header_level(extent_root->node));
1667
1668 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1669 btrfs_set_backup_csum_root_gen(root_backup,
1670 btrfs_header_generation(csum_root->node));
1671 btrfs_set_backup_csum_root_level(root_backup,
1672 btrfs_header_level(csum_root->node));
1673 }
1674
1675 /*
1676 * we might commit during log recovery, which happens before we set
1677 * the fs_root. Make sure it is valid before we fill it in.
1678 */
1679 if (info->fs_root && info->fs_root->node) {
1680 btrfs_set_backup_fs_root(root_backup,
1681 info->fs_root->node->start);
1682 btrfs_set_backup_fs_root_gen(root_backup,
1683 btrfs_header_generation(info->fs_root->node));
1684 btrfs_set_backup_fs_root_level(root_backup,
1685 btrfs_header_level(info->fs_root->node));
1686 }
1687
1688 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1689 btrfs_set_backup_dev_root_gen(root_backup,
1690 btrfs_header_generation(info->dev_root->node));
1691 btrfs_set_backup_dev_root_level(root_backup,
1692 btrfs_header_level(info->dev_root->node));
1693
1694 btrfs_set_backup_total_bytes(root_backup,
1695 btrfs_super_total_bytes(info->super_copy));
1696 btrfs_set_backup_bytes_used(root_backup,
1697 btrfs_super_bytes_used(info->super_copy));
1698 btrfs_set_backup_num_devices(root_backup,
1699 btrfs_super_num_devices(info->super_copy));
1700
1701 /*
1702 * if we don't copy this out to the super_copy, it won't get remembered
1703 * for the next commit
1704 */
1705 memcpy(&info->super_copy->super_roots,
1706 &info->super_for_commit->super_roots,
1707 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1708 }
1709
1710 /*
1711 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1712 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1713 *
1714 * fs_info - filesystem whose backup roots need to be read
1715 * priority - priority of backup root required
1716 *
1717 * Returns backup root index on success and -EINVAL otherwise.
1718 */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)1719 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1720 {
1721 int backup_index = find_newest_super_backup(fs_info);
1722 struct btrfs_super_block *super = fs_info->super_copy;
1723 struct btrfs_root_backup *root_backup;
1724
1725 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1726 if (priority == 0)
1727 return backup_index;
1728
1729 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1730 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1731 } else {
1732 return -EINVAL;
1733 }
1734
1735 root_backup = super->super_roots + backup_index;
1736
1737 btrfs_set_super_generation(super,
1738 btrfs_backup_tree_root_gen(root_backup));
1739 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1740 btrfs_set_super_root_level(super,
1741 btrfs_backup_tree_root_level(root_backup));
1742 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1743
1744 /*
1745 * Fixme: the total bytes and num_devices need to match or we should
1746 * need a fsck
1747 */
1748 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1749 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1750
1751 return backup_index;
1752 }
1753
1754 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)1755 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1756 {
1757 btrfs_destroy_workqueue(fs_info->fixup_workers);
1758 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1759 btrfs_destroy_workqueue(fs_info->workers);
1760 if (fs_info->endio_workers)
1761 destroy_workqueue(fs_info->endio_workers);
1762 if (fs_info->rmw_workers)
1763 destroy_workqueue(fs_info->rmw_workers);
1764 if (fs_info->compressed_write_workers)
1765 destroy_workqueue(fs_info->compressed_write_workers);
1766 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1767 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1768 btrfs_destroy_workqueue(fs_info->delayed_workers);
1769 btrfs_destroy_workqueue(fs_info->caching_workers);
1770 btrfs_destroy_workqueue(fs_info->flush_workers);
1771 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1772 if (fs_info->discard_ctl.discard_workers)
1773 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1774 /*
1775 * Now that all other work queues are destroyed, we can safely destroy
1776 * the queues used for metadata I/O, since tasks from those other work
1777 * queues can do metadata I/O operations.
1778 */
1779 if (fs_info->endio_meta_workers)
1780 destroy_workqueue(fs_info->endio_meta_workers);
1781 }
1782
free_root_extent_buffers(struct btrfs_root * root)1783 static void free_root_extent_buffers(struct btrfs_root *root)
1784 {
1785 if (root) {
1786 free_extent_buffer(root->node);
1787 free_extent_buffer(root->commit_root);
1788 root->node = NULL;
1789 root->commit_root = NULL;
1790 }
1791 }
1792
free_global_root_pointers(struct btrfs_fs_info * fs_info)1793 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1794 {
1795 struct btrfs_root *root, *tmp;
1796
1797 rbtree_postorder_for_each_entry_safe(root, tmp,
1798 &fs_info->global_root_tree,
1799 rb_node)
1800 free_root_extent_buffers(root);
1801 }
1802
1803 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)1804 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1805 {
1806 free_root_extent_buffers(info->tree_root);
1807
1808 free_global_root_pointers(info);
1809 free_root_extent_buffers(info->dev_root);
1810 free_root_extent_buffers(info->quota_root);
1811 free_root_extent_buffers(info->uuid_root);
1812 free_root_extent_buffers(info->fs_root);
1813 free_root_extent_buffers(info->data_reloc_root);
1814 free_root_extent_buffers(info->block_group_root);
1815 if (free_chunk_root)
1816 free_root_extent_buffers(info->chunk_root);
1817 }
1818
btrfs_put_root(struct btrfs_root * root)1819 void btrfs_put_root(struct btrfs_root *root)
1820 {
1821 if (!root)
1822 return;
1823
1824 if (refcount_dec_and_test(&root->refs)) {
1825 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1826 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1827 if (root->anon_dev)
1828 free_anon_bdev(root->anon_dev);
1829 free_root_extent_buffers(root);
1830 #ifdef CONFIG_BTRFS_DEBUG
1831 spin_lock(&root->fs_info->fs_roots_radix_lock);
1832 list_del_init(&root->leak_list);
1833 spin_unlock(&root->fs_info->fs_roots_radix_lock);
1834 #endif
1835 kfree(root);
1836 }
1837 }
1838
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)1839 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1840 {
1841 int ret;
1842 struct btrfs_root *gang[8];
1843 int i;
1844
1845 while (!list_empty(&fs_info->dead_roots)) {
1846 gang[0] = list_entry(fs_info->dead_roots.next,
1847 struct btrfs_root, root_list);
1848 list_del(&gang[0]->root_list);
1849
1850 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1851 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1852 btrfs_put_root(gang[0]);
1853 }
1854
1855 while (1) {
1856 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1857 (void **)gang, 0,
1858 ARRAY_SIZE(gang));
1859 if (!ret)
1860 break;
1861 for (i = 0; i < ret; i++)
1862 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1863 }
1864 }
1865
btrfs_init_scrub(struct btrfs_fs_info * fs_info)1866 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1867 {
1868 mutex_init(&fs_info->scrub_lock);
1869 atomic_set(&fs_info->scrubs_running, 0);
1870 atomic_set(&fs_info->scrub_pause_req, 0);
1871 atomic_set(&fs_info->scrubs_paused, 0);
1872 atomic_set(&fs_info->scrub_cancel_req, 0);
1873 init_waitqueue_head(&fs_info->scrub_pause_wait);
1874 refcount_set(&fs_info->scrub_workers_refcnt, 0);
1875 }
1876
btrfs_init_balance(struct btrfs_fs_info * fs_info)1877 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1878 {
1879 spin_lock_init(&fs_info->balance_lock);
1880 mutex_init(&fs_info->balance_mutex);
1881 atomic_set(&fs_info->balance_pause_req, 0);
1882 atomic_set(&fs_info->balance_cancel_req, 0);
1883 fs_info->balance_ctl = NULL;
1884 init_waitqueue_head(&fs_info->balance_wait_q);
1885 atomic_set(&fs_info->reloc_cancel_req, 0);
1886 }
1887
btrfs_init_btree_inode(struct super_block * sb)1888 static int btrfs_init_btree_inode(struct super_block *sb)
1889 {
1890 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1891 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1892 fs_info->tree_root);
1893 struct inode *inode;
1894
1895 inode = new_inode(sb);
1896 if (!inode)
1897 return -ENOMEM;
1898
1899 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1900 set_nlink(inode, 1);
1901 /*
1902 * we set the i_size on the btree inode to the max possible int.
1903 * the real end of the address space is determined by all of
1904 * the devices in the system
1905 */
1906 inode->i_size = OFFSET_MAX;
1907 inode->i_mapping->a_ops = &btree_aops;
1908 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1909
1910 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1911 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1912 IO_TREE_BTREE_INODE_IO);
1913 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1914
1915 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1916 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1917 BTRFS_I(inode)->location.type = 0;
1918 BTRFS_I(inode)->location.offset = 0;
1919 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1920 __insert_inode_hash(inode, hash);
1921 fs_info->btree_inode = inode;
1922
1923 return 0;
1924 }
1925
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)1926 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1927 {
1928 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1929 init_rwsem(&fs_info->dev_replace.rwsem);
1930 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1931 }
1932
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)1933 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1934 {
1935 spin_lock_init(&fs_info->qgroup_lock);
1936 mutex_init(&fs_info->qgroup_ioctl_lock);
1937 fs_info->qgroup_tree = RB_ROOT;
1938 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1939 fs_info->qgroup_seq = 1;
1940 fs_info->qgroup_ulist = NULL;
1941 fs_info->qgroup_rescan_running = false;
1942 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1943 mutex_init(&fs_info->qgroup_rescan_lock);
1944 }
1945
btrfs_init_workqueues(struct btrfs_fs_info * fs_info)1946 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1947 {
1948 u32 max_active = fs_info->thread_pool_size;
1949 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1950 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1951
1952 fs_info->workers =
1953 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1954
1955 fs_info->delalloc_workers =
1956 btrfs_alloc_workqueue(fs_info, "delalloc",
1957 flags, max_active, 2);
1958
1959 fs_info->flush_workers =
1960 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1961 flags, max_active, 0);
1962
1963 fs_info->caching_workers =
1964 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1965
1966 fs_info->fixup_workers =
1967 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1968
1969 fs_info->endio_workers =
1970 alloc_workqueue("btrfs-endio", flags, max_active);
1971 fs_info->endio_meta_workers =
1972 alloc_workqueue("btrfs-endio-meta", flags, max_active);
1973 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1974 fs_info->endio_write_workers =
1975 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1976 max_active, 2);
1977 fs_info->compressed_write_workers =
1978 alloc_workqueue("btrfs-compressed-write", flags, max_active);
1979 fs_info->endio_freespace_worker =
1980 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1981 max_active, 0);
1982 fs_info->delayed_workers =
1983 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1984 max_active, 0);
1985 fs_info->qgroup_rescan_workers =
1986 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1987 ordered_flags);
1988 fs_info->discard_ctl.discard_workers =
1989 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
1990
1991 if (!(fs_info->workers &&
1992 fs_info->delalloc_workers && fs_info->flush_workers &&
1993 fs_info->endio_workers && fs_info->endio_meta_workers &&
1994 fs_info->compressed_write_workers &&
1995 fs_info->endio_write_workers &&
1996 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
1997 fs_info->caching_workers && fs_info->fixup_workers &&
1998 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
1999 fs_info->discard_ctl.discard_workers)) {
2000 return -ENOMEM;
2001 }
2002
2003 return 0;
2004 }
2005
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2006 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2007 {
2008 struct crypto_shash *csum_shash;
2009 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2010
2011 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2012
2013 if (IS_ERR(csum_shash)) {
2014 btrfs_err(fs_info, "error allocating %s hash for checksum",
2015 csum_driver);
2016 return PTR_ERR(csum_shash);
2017 }
2018
2019 fs_info->csum_shash = csum_shash;
2020
2021 /*
2022 * Check if the checksum implementation is a fast accelerated one.
2023 * As-is this is a bit of a hack and should be replaced once the csum
2024 * implementations provide that information themselves.
2025 */
2026 switch (csum_type) {
2027 case BTRFS_CSUM_TYPE_CRC32:
2028 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2029 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2030 break;
2031 case BTRFS_CSUM_TYPE_XXHASH:
2032 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2033 break;
2034 default:
2035 break;
2036 }
2037
2038 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2039 btrfs_super_csum_name(csum_type),
2040 crypto_shash_driver_name(csum_shash));
2041 return 0;
2042 }
2043
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2044 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2045 struct btrfs_fs_devices *fs_devices)
2046 {
2047 int ret;
2048 struct btrfs_tree_parent_check check = { 0 };
2049 struct btrfs_root *log_tree_root;
2050 struct btrfs_super_block *disk_super = fs_info->super_copy;
2051 u64 bytenr = btrfs_super_log_root(disk_super);
2052 int level = btrfs_super_log_root_level(disk_super);
2053
2054 if (fs_devices->rw_devices == 0) {
2055 btrfs_warn(fs_info, "log replay required on RO media");
2056 return -EIO;
2057 }
2058
2059 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2060 GFP_KERNEL);
2061 if (!log_tree_root)
2062 return -ENOMEM;
2063
2064 check.level = level;
2065 check.transid = fs_info->generation + 1;
2066 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2067 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2068 if (IS_ERR(log_tree_root->node)) {
2069 btrfs_warn(fs_info, "failed to read log tree");
2070 ret = PTR_ERR(log_tree_root->node);
2071 log_tree_root->node = NULL;
2072 btrfs_put_root(log_tree_root);
2073 return ret;
2074 }
2075 if (!extent_buffer_uptodate(log_tree_root->node)) {
2076 btrfs_err(fs_info, "failed to read log tree");
2077 btrfs_put_root(log_tree_root);
2078 return -EIO;
2079 }
2080
2081 /* returns with log_tree_root freed on success */
2082 ret = btrfs_recover_log_trees(log_tree_root);
2083 if (ret) {
2084 btrfs_handle_fs_error(fs_info, ret,
2085 "Failed to recover log tree");
2086 btrfs_put_root(log_tree_root);
2087 return ret;
2088 }
2089
2090 if (sb_rdonly(fs_info->sb)) {
2091 ret = btrfs_commit_super(fs_info);
2092 if (ret)
2093 return ret;
2094 }
2095
2096 return 0;
2097 }
2098
load_global_roots_objectid(struct btrfs_root * tree_root,struct btrfs_path * path,u64 objectid,const char * name)2099 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2100 struct btrfs_path *path, u64 objectid,
2101 const char *name)
2102 {
2103 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2104 struct btrfs_root *root;
2105 u64 max_global_id = 0;
2106 int ret;
2107 struct btrfs_key key = {
2108 .objectid = objectid,
2109 .type = BTRFS_ROOT_ITEM_KEY,
2110 .offset = 0,
2111 };
2112 bool found = false;
2113
2114 /* If we have IGNOREDATACSUMS skip loading these roots. */
2115 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2116 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2117 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2118 return 0;
2119 }
2120
2121 while (1) {
2122 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2123 if (ret < 0)
2124 break;
2125
2126 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2127 ret = btrfs_next_leaf(tree_root, path);
2128 if (ret) {
2129 if (ret > 0)
2130 ret = 0;
2131 break;
2132 }
2133 }
2134 ret = 0;
2135
2136 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2137 if (key.objectid != objectid)
2138 break;
2139 btrfs_release_path(path);
2140
2141 /*
2142 * Just worry about this for extent tree, it'll be the same for
2143 * everybody.
2144 */
2145 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2146 max_global_id = max(max_global_id, key.offset);
2147
2148 found = true;
2149 root = read_tree_root_path(tree_root, path, &key);
2150 if (IS_ERR(root)) {
2151 ret = PTR_ERR(root);
2152 break;
2153 }
2154 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2155 ret = btrfs_global_root_insert(root);
2156 if (ret) {
2157 btrfs_put_root(root);
2158 break;
2159 }
2160 key.offset++;
2161 }
2162 btrfs_release_path(path);
2163
2164 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2165 fs_info->nr_global_roots = max_global_id + 1;
2166
2167 if (!found || ret) {
2168 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2169 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2170
2171 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2172 ret = ret ? ret : -ENOENT;
2173 else
2174 ret = 0;
2175 btrfs_err(fs_info, "failed to load root %s", name);
2176 }
2177 return ret;
2178 }
2179
load_global_roots(struct btrfs_root * tree_root)2180 static int load_global_roots(struct btrfs_root *tree_root)
2181 {
2182 struct btrfs_path *path;
2183 int ret = 0;
2184
2185 path = btrfs_alloc_path();
2186 if (!path)
2187 return -ENOMEM;
2188
2189 ret = load_global_roots_objectid(tree_root, path,
2190 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2191 if (ret)
2192 goto out;
2193 ret = load_global_roots_objectid(tree_root, path,
2194 BTRFS_CSUM_TREE_OBJECTID, "csum");
2195 if (ret)
2196 goto out;
2197 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2198 goto out;
2199 ret = load_global_roots_objectid(tree_root, path,
2200 BTRFS_FREE_SPACE_TREE_OBJECTID,
2201 "free space");
2202 out:
2203 btrfs_free_path(path);
2204 return ret;
2205 }
2206
btrfs_read_roots(struct btrfs_fs_info * fs_info)2207 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2208 {
2209 struct btrfs_root *tree_root = fs_info->tree_root;
2210 struct btrfs_root *root;
2211 struct btrfs_key location;
2212 int ret;
2213
2214 BUG_ON(!fs_info->tree_root);
2215
2216 ret = load_global_roots(tree_root);
2217 if (ret)
2218 return ret;
2219
2220 location.type = BTRFS_ROOT_ITEM_KEY;
2221 location.offset = 0;
2222
2223 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2224 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2225 root = btrfs_read_tree_root(tree_root, &location);
2226 if (IS_ERR(root)) {
2227 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2228 ret = PTR_ERR(root);
2229 goto out;
2230 }
2231 } else {
2232 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2233 fs_info->block_group_root = root;
2234 }
2235 }
2236
2237 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2238 root = btrfs_read_tree_root(tree_root, &location);
2239 if (IS_ERR(root)) {
2240 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2241 ret = PTR_ERR(root);
2242 goto out;
2243 }
2244 } else {
2245 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2246 fs_info->dev_root = root;
2247 }
2248 /* Initialize fs_info for all devices in any case */
2249 ret = btrfs_init_devices_late(fs_info);
2250 if (ret)
2251 goto out;
2252
2253 /*
2254 * This tree can share blocks with some other fs tree during relocation
2255 * and we need a proper setup by btrfs_get_fs_root
2256 */
2257 root = btrfs_get_fs_root(tree_root->fs_info,
2258 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2259 if (IS_ERR(root)) {
2260 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2261 ret = PTR_ERR(root);
2262 goto out;
2263 }
2264 } else {
2265 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2266 fs_info->data_reloc_root = root;
2267 }
2268
2269 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2270 root = btrfs_read_tree_root(tree_root, &location);
2271 if (!IS_ERR(root)) {
2272 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2273 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2274 fs_info->quota_root = root;
2275 }
2276
2277 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2278 root = btrfs_read_tree_root(tree_root, &location);
2279 if (IS_ERR(root)) {
2280 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2281 ret = PTR_ERR(root);
2282 if (ret != -ENOENT)
2283 goto out;
2284 }
2285 } else {
2286 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2287 fs_info->uuid_root = root;
2288 }
2289
2290 return 0;
2291 out:
2292 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2293 location.objectid, ret);
2294 return ret;
2295 }
2296
2297 /*
2298 * Real super block validation
2299 * NOTE: super csum type and incompat features will not be checked here.
2300 *
2301 * @sb: super block to check
2302 * @mirror_num: the super block number to check its bytenr:
2303 * 0 the primary (1st) sb
2304 * 1, 2 2nd and 3rd backup copy
2305 * -1 skip bytenr check
2306 */
btrfs_validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2307 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2308 struct btrfs_super_block *sb, int mirror_num)
2309 {
2310 u64 nodesize = btrfs_super_nodesize(sb);
2311 u64 sectorsize = btrfs_super_sectorsize(sb);
2312 int ret = 0;
2313
2314 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2315 btrfs_err(fs_info, "no valid FS found");
2316 ret = -EINVAL;
2317 }
2318 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2319 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2320 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2321 ret = -EINVAL;
2322 }
2323 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2324 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2325 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2326 ret = -EINVAL;
2327 }
2328 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2329 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2330 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2331 ret = -EINVAL;
2332 }
2333 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2334 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2335 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2336 ret = -EINVAL;
2337 }
2338
2339 /*
2340 * Check sectorsize and nodesize first, other check will need it.
2341 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2342 */
2343 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2344 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2345 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2346 ret = -EINVAL;
2347 }
2348
2349 /*
2350 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2351 *
2352 * We can support 16K sectorsize with 64K page size without problem,
2353 * but such sectorsize/pagesize combination doesn't make much sense.
2354 * 4K will be our future standard, PAGE_SIZE is supported from the very
2355 * beginning.
2356 */
2357 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2358 btrfs_err(fs_info,
2359 "sectorsize %llu not yet supported for page size %lu",
2360 sectorsize, PAGE_SIZE);
2361 ret = -EINVAL;
2362 }
2363
2364 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2365 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2366 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2367 ret = -EINVAL;
2368 }
2369 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2370 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2371 le32_to_cpu(sb->__unused_leafsize), nodesize);
2372 ret = -EINVAL;
2373 }
2374
2375 /* Root alignment check */
2376 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2377 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2378 btrfs_super_root(sb));
2379 ret = -EINVAL;
2380 }
2381 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2382 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2383 btrfs_super_chunk_root(sb));
2384 ret = -EINVAL;
2385 }
2386 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2387 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2388 btrfs_super_log_root(sb));
2389 ret = -EINVAL;
2390 }
2391
2392 if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2393 btrfs_err(fs_info,
2394 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2395 sb->fsid, fs_info->fs_devices->fsid);
2396 ret = -EINVAL;
2397 }
2398
2399 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2400 BTRFS_FSID_SIZE) != 0) {
2401 btrfs_err(fs_info,
2402 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2403 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2404 ret = -EINVAL;
2405 }
2406
2407 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2408 BTRFS_FSID_SIZE) != 0) {
2409 btrfs_err(fs_info,
2410 "dev_item UUID does not match metadata fsid: %pU != %pU",
2411 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2412 ret = -EINVAL;
2413 }
2414
2415 /*
2416 * Artificial requirement for block-group-tree to force newer features
2417 * (free-space-tree, no-holes) so the test matrix is smaller.
2418 */
2419 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2420 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2421 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2422 btrfs_err(fs_info,
2423 "block-group-tree feature requires fres-space-tree and no-holes");
2424 ret = -EINVAL;
2425 }
2426
2427 /*
2428 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2429 * done later
2430 */
2431 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2432 btrfs_err(fs_info, "bytes_used is too small %llu",
2433 btrfs_super_bytes_used(sb));
2434 ret = -EINVAL;
2435 }
2436 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2437 btrfs_err(fs_info, "invalid stripesize %u",
2438 btrfs_super_stripesize(sb));
2439 ret = -EINVAL;
2440 }
2441 if (btrfs_super_num_devices(sb) > (1UL << 31))
2442 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2443 btrfs_super_num_devices(sb));
2444 if (btrfs_super_num_devices(sb) == 0) {
2445 btrfs_err(fs_info, "number of devices is 0");
2446 ret = -EINVAL;
2447 }
2448
2449 if (mirror_num >= 0 &&
2450 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2451 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2452 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2453 ret = -EINVAL;
2454 }
2455
2456 /*
2457 * Obvious sys_chunk_array corruptions, it must hold at least one key
2458 * and one chunk
2459 */
2460 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2461 btrfs_err(fs_info, "system chunk array too big %u > %u",
2462 btrfs_super_sys_array_size(sb),
2463 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2464 ret = -EINVAL;
2465 }
2466 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2467 + sizeof(struct btrfs_chunk)) {
2468 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2469 btrfs_super_sys_array_size(sb),
2470 sizeof(struct btrfs_disk_key)
2471 + sizeof(struct btrfs_chunk));
2472 ret = -EINVAL;
2473 }
2474
2475 /*
2476 * The generation is a global counter, we'll trust it more than the others
2477 * but it's still possible that it's the one that's wrong.
2478 */
2479 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2480 btrfs_warn(fs_info,
2481 "suspicious: generation < chunk_root_generation: %llu < %llu",
2482 btrfs_super_generation(sb),
2483 btrfs_super_chunk_root_generation(sb));
2484 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2485 && btrfs_super_cache_generation(sb) != (u64)-1)
2486 btrfs_warn(fs_info,
2487 "suspicious: generation < cache_generation: %llu < %llu",
2488 btrfs_super_generation(sb),
2489 btrfs_super_cache_generation(sb));
2490
2491 return ret;
2492 }
2493
2494 /*
2495 * Validation of super block at mount time.
2496 * Some checks already done early at mount time, like csum type and incompat
2497 * flags will be skipped.
2498 */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2499 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2500 {
2501 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2502 }
2503
2504 /*
2505 * Validation of super block at write time.
2506 * Some checks like bytenr check will be skipped as their values will be
2507 * overwritten soon.
2508 * Extra checks like csum type and incompat flags will be done here.
2509 */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2510 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2511 struct btrfs_super_block *sb)
2512 {
2513 int ret;
2514
2515 ret = btrfs_validate_super(fs_info, sb, -1);
2516 if (ret < 0)
2517 goto out;
2518 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2519 ret = -EUCLEAN;
2520 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2521 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2522 goto out;
2523 }
2524 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2525 ret = -EUCLEAN;
2526 btrfs_err(fs_info,
2527 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2528 btrfs_super_incompat_flags(sb),
2529 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2530 goto out;
2531 }
2532 out:
2533 if (ret < 0)
2534 btrfs_err(fs_info,
2535 "super block corruption detected before writing it to disk");
2536 return ret;
2537 }
2538
load_super_root(struct btrfs_root * root,u64 bytenr,u64 gen,int level)2539 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2540 {
2541 struct btrfs_tree_parent_check check = {
2542 .level = level,
2543 .transid = gen,
2544 .owner_root = root->root_key.objectid
2545 };
2546 int ret = 0;
2547
2548 root->node = read_tree_block(root->fs_info, bytenr, &check);
2549 if (IS_ERR(root->node)) {
2550 ret = PTR_ERR(root->node);
2551 root->node = NULL;
2552 return ret;
2553 }
2554 if (!extent_buffer_uptodate(root->node)) {
2555 free_extent_buffer(root->node);
2556 root->node = NULL;
2557 return -EIO;
2558 }
2559
2560 btrfs_set_root_node(&root->root_item, root->node);
2561 root->commit_root = btrfs_root_node(root);
2562 btrfs_set_root_refs(&root->root_item, 1);
2563 return ret;
2564 }
2565
load_important_roots(struct btrfs_fs_info * fs_info)2566 static int load_important_roots(struct btrfs_fs_info *fs_info)
2567 {
2568 struct btrfs_super_block *sb = fs_info->super_copy;
2569 u64 gen, bytenr;
2570 int level, ret;
2571
2572 bytenr = btrfs_super_root(sb);
2573 gen = btrfs_super_generation(sb);
2574 level = btrfs_super_root_level(sb);
2575 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2576 if (ret) {
2577 btrfs_warn(fs_info, "couldn't read tree root");
2578 return ret;
2579 }
2580 return 0;
2581 }
2582
init_tree_roots(struct btrfs_fs_info * fs_info)2583 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2584 {
2585 int backup_index = find_newest_super_backup(fs_info);
2586 struct btrfs_super_block *sb = fs_info->super_copy;
2587 struct btrfs_root *tree_root = fs_info->tree_root;
2588 bool handle_error = false;
2589 int ret = 0;
2590 int i;
2591
2592 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2593 if (handle_error) {
2594 if (!IS_ERR(tree_root->node))
2595 free_extent_buffer(tree_root->node);
2596 tree_root->node = NULL;
2597
2598 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2599 break;
2600
2601 free_root_pointers(fs_info, 0);
2602
2603 /*
2604 * Don't use the log in recovery mode, it won't be
2605 * valid
2606 */
2607 btrfs_set_super_log_root(sb, 0);
2608
2609 /* We can't trust the free space cache either */
2610 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2611
2612 btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2613 ret = read_backup_root(fs_info, i);
2614 backup_index = ret;
2615 if (ret < 0)
2616 return ret;
2617 }
2618
2619 ret = load_important_roots(fs_info);
2620 if (ret) {
2621 handle_error = true;
2622 continue;
2623 }
2624
2625 /*
2626 * No need to hold btrfs_root::objectid_mutex since the fs
2627 * hasn't been fully initialised and we are the only user
2628 */
2629 ret = btrfs_init_root_free_objectid(tree_root);
2630 if (ret < 0) {
2631 handle_error = true;
2632 continue;
2633 }
2634
2635 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2636
2637 ret = btrfs_read_roots(fs_info);
2638 if (ret < 0) {
2639 handle_error = true;
2640 continue;
2641 }
2642
2643 /* All successful */
2644 fs_info->generation = btrfs_header_generation(tree_root->node);
2645 fs_info->last_trans_committed = fs_info->generation;
2646 fs_info->last_reloc_trans = 0;
2647
2648 /* Always begin writing backup roots after the one being used */
2649 if (backup_index < 0) {
2650 fs_info->backup_root_index = 0;
2651 } else {
2652 fs_info->backup_root_index = backup_index + 1;
2653 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2654 }
2655 break;
2656 }
2657
2658 return ret;
2659 }
2660
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2661 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2662 {
2663 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2664 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2665 INIT_LIST_HEAD(&fs_info->trans_list);
2666 INIT_LIST_HEAD(&fs_info->dead_roots);
2667 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2668 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2669 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2670 spin_lock_init(&fs_info->delalloc_root_lock);
2671 spin_lock_init(&fs_info->trans_lock);
2672 spin_lock_init(&fs_info->fs_roots_radix_lock);
2673 spin_lock_init(&fs_info->delayed_iput_lock);
2674 spin_lock_init(&fs_info->defrag_inodes_lock);
2675 spin_lock_init(&fs_info->super_lock);
2676 spin_lock_init(&fs_info->buffer_lock);
2677 spin_lock_init(&fs_info->unused_bgs_lock);
2678 spin_lock_init(&fs_info->treelog_bg_lock);
2679 spin_lock_init(&fs_info->zone_active_bgs_lock);
2680 spin_lock_init(&fs_info->relocation_bg_lock);
2681 rwlock_init(&fs_info->tree_mod_log_lock);
2682 rwlock_init(&fs_info->global_root_lock);
2683 mutex_init(&fs_info->unused_bg_unpin_mutex);
2684 mutex_init(&fs_info->reclaim_bgs_lock);
2685 mutex_init(&fs_info->reloc_mutex);
2686 mutex_init(&fs_info->delalloc_root_mutex);
2687 mutex_init(&fs_info->zoned_meta_io_lock);
2688 mutex_init(&fs_info->zoned_data_reloc_io_lock);
2689 seqlock_init(&fs_info->profiles_lock);
2690
2691 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2692 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2693 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2694 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2695 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2696 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2697 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2698 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2699 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2700 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2701 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2702 BTRFS_LOCKDEP_TRANS_COMPLETED);
2703
2704 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2705 INIT_LIST_HEAD(&fs_info->space_info);
2706 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2707 INIT_LIST_HEAD(&fs_info->unused_bgs);
2708 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2709 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2710 #ifdef CONFIG_BTRFS_DEBUG
2711 INIT_LIST_HEAD(&fs_info->allocated_roots);
2712 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2713 spin_lock_init(&fs_info->eb_leak_lock);
2714 #endif
2715 extent_map_tree_init(&fs_info->mapping_tree);
2716 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2717 BTRFS_BLOCK_RSV_GLOBAL);
2718 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2719 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2720 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2721 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2722 BTRFS_BLOCK_RSV_DELOPS);
2723 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2724 BTRFS_BLOCK_RSV_DELREFS);
2725
2726 atomic_set(&fs_info->async_delalloc_pages, 0);
2727 atomic_set(&fs_info->defrag_running, 0);
2728 atomic_set(&fs_info->nr_delayed_iputs, 0);
2729 atomic64_set(&fs_info->tree_mod_seq, 0);
2730 fs_info->global_root_tree = RB_ROOT;
2731 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2732 fs_info->metadata_ratio = 0;
2733 fs_info->defrag_inodes = RB_ROOT;
2734 atomic64_set(&fs_info->free_chunk_space, 0);
2735 fs_info->tree_mod_log = RB_ROOT;
2736 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2737 btrfs_init_ref_verify(fs_info);
2738
2739 fs_info->thread_pool_size = min_t(unsigned long,
2740 num_online_cpus() + 2, 8);
2741
2742 INIT_LIST_HEAD(&fs_info->ordered_roots);
2743 spin_lock_init(&fs_info->ordered_root_lock);
2744
2745 btrfs_init_scrub(fs_info);
2746 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2747 fs_info->check_integrity_print_mask = 0;
2748 #endif
2749 btrfs_init_balance(fs_info);
2750 btrfs_init_async_reclaim_work(fs_info);
2751
2752 rwlock_init(&fs_info->block_group_cache_lock);
2753 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2754
2755 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2756 IO_TREE_FS_EXCLUDED_EXTENTS);
2757
2758 mutex_init(&fs_info->ordered_operations_mutex);
2759 mutex_init(&fs_info->tree_log_mutex);
2760 mutex_init(&fs_info->chunk_mutex);
2761 mutex_init(&fs_info->transaction_kthread_mutex);
2762 mutex_init(&fs_info->cleaner_mutex);
2763 mutex_init(&fs_info->ro_block_group_mutex);
2764 init_rwsem(&fs_info->commit_root_sem);
2765 init_rwsem(&fs_info->cleanup_work_sem);
2766 init_rwsem(&fs_info->subvol_sem);
2767 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2768
2769 btrfs_init_dev_replace_locks(fs_info);
2770 btrfs_init_qgroup(fs_info);
2771 btrfs_discard_init(fs_info);
2772
2773 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2774 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2775
2776 init_waitqueue_head(&fs_info->transaction_throttle);
2777 init_waitqueue_head(&fs_info->transaction_wait);
2778 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2779 init_waitqueue_head(&fs_info->async_submit_wait);
2780 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2781
2782 /* Usable values until the real ones are cached from the superblock */
2783 fs_info->nodesize = 4096;
2784 fs_info->sectorsize = 4096;
2785 fs_info->sectorsize_bits = ilog2(4096);
2786 fs_info->stripesize = 4096;
2787
2788 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2789
2790 spin_lock_init(&fs_info->swapfile_pins_lock);
2791 fs_info->swapfile_pins = RB_ROOT;
2792
2793 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2794 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2795 }
2796
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2797 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2798 {
2799 int ret;
2800
2801 fs_info->sb = sb;
2802 /* Temporary fixed values for block size until we read the superblock. */
2803 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2804 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2805
2806 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2807 if (ret)
2808 return ret;
2809
2810 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2811 if (ret)
2812 return ret;
2813
2814 fs_info->dirty_metadata_batch = PAGE_SIZE *
2815 (1 + ilog2(nr_cpu_ids));
2816
2817 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2818 if (ret)
2819 return ret;
2820
2821 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2822 GFP_KERNEL);
2823 if (ret)
2824 return ret;
2825
2826 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2827 GFP_KERNEL);
2828 if (!fs_info->delayed_root)
2829 return -ENOMEM;
2830 btrfs_init_delayed_root(fs_info->delayed_root);
2831
2832 if (sb_rdonly(sb))
2833 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2834
2835 return btrfs_alloc_stripe_hash_table(fs_info);
2836 }
2837
btrfs_uuid_rescan_kthread(void * data)2838 static int btrfs_uuid_rescan_kthread(void *data)
2839 {
2840 struct btrfs_fs_info *fs_info = data;
2841 int ret;
2842
2843 /*
2844 * 1st step is to iterate through the existing UUID tree and
2845 * to delete all entries that contain outdated data.
2846 * 2nd step is to add all missing entries to the UUID tree.
2847 */
2848 ret = btrfs_uuid_tree_iterate(fs_info);
2849 if (ret < 0) {
2850 if (ret != -EINTR)
2851 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2852 ret);
2853 up(&fs_info->uuid_tree_rescan_sem);
2854 return ret;
2855 }
2856 return btrfs_uuid_scan_kthread(data);
2857 }
2858
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)2859 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2860 {
2861 struct task_struct *task;
2862
2863 down(&fs_info->uuid_tree_rescan_sem);
2864 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2865 if (IS_ERR(task)) {
2866 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2867 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2868 up(&fs_info->uuid_tree_rescan_sem);
2869 return PTR_ERR(task);
2870 }
2871
2872 return 0;
2873 }
2874
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)2875 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2876 {
2877 u64 root_objectid = 0;
2878 struct btrfs_root *gang[8];
2879 int i = 0;
2880 int err = 0;
2881 unsigned int ret = 0;
2882
2883 while (1) {
2884 spin_lock(&fs_info->fs_roots_radix_lock);
2885 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2886 (void **)gang, root_objectid,
2887 ARRAY_SIZE(gang));
2888 if (!ret) {
2889 spin_unlock(&fs_info->fs_roots_radix_lock);
2890 break;
2891 }
2892 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2893
2894 for (i = 0; i < ret; i++) {
2895 /* Avoid to grab roots in dead_roots. */
2896 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2897 gang[i] = NULL;
2898 continue;
2899 }
2900 /* Grab all the search result for later use. */
2901 gang[i] = btrfs_grab_root(gang[i]);
2902 }
2903 spin_unlock(&fs_info->fs_roots_radix_lock);
2904
2905 for (i = 0; i < ret; i++) {
2906 if (!gang[i])
2907 continue;
2908 root_objectid = gang[i]->root_key.objectid;
2909 err = btrfs_orphan_cleanup(gang[i]);
2910 if (err)
2911 goto out;
2912 btrfs_put_root(gang[i]);
2913 }
2914 root_objectid++;
2915 }
2916 out:
2917 /* Release the uncleaned roots due to error. */
2918 for (; i < ret; i++) {
2919 if (gang[i])
2920 btrfs_put_root(gang[i]);
2921 }
2922 return err;
2923 }
2924
2925 /*
2926 * Some options only have meaning at mount time and shouldn't persist across
2927 * remounts, or be displayed. Clear these at the end of mount and remount
2928 * code paths.
2929 */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)2930 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2931 {
2932 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
2933 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
2934 }
2935
2936 /*
2937 * Mounting logic specific to read-write file systems. Shared by open_ctree
2938 * and btrfs_remount when remounting from read-only to read-write.
2939 */
btrfs_start_pre_rw_mount(struct btrfs_fs_info * fs_info)2940 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2941 {
2942 int ret;
2943 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2944 bool rebuild_free_space_tree = false;
2945
2946 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2947 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2948 rebuild_free_space_tree = true;
2949 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2950 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2951 btrfs_warn(fs_info, "free space tree is invalid");
2952 rebuild_free_space_tree = true;
2953 }
2954
2955 if (rebuild_free_space_tree) {
2956 btrfs_info(fs_info, "rebuilding free space tree");
2957 ret = btrfs_rebuild_free_space_tree(fs_info);
2958 if (ret) {
2959 btrfs_warn(fs_info,
2960 "failed to rebuild free space tree: %d", ret);
2961 goto out;
2962 }
2963 }
2964
2965 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2966 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
2967 btrfs_info(fs_info, "disabling free space tree");
2968 ret = btrfs_delete_free_space_tree(fs_info);
2969 if (ret) {
2970 btrfs_warn(fs_info,
2971 "failed to disable free space tree: %d", ret);
2972 goto out;
2973 }
2974 }
2975
2976 /*
2977 * btrfs_find_orphan_roots() is responsible for finding all the dead
2978 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
2979 * them into the fs_info->fs_roots_radix tree. This must be done before
2980 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
2981 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
2982 * item before the root's tree is deleted - this means that if we unmount
2983 * or crash before the deletion completes, on the next mount we will not
2984 * delete what remains of the tree because the orphan item does not
2985 * exists anymore, which is what tells us we have a pending deletion.
2986 */
2987 ret = btrfs_find_orphan_roots(fs_info);
2988 if (ret)
2989 goto out;
2990
2991 ret = btrfs_cleanup_fs_roots(fs_info);
2992 if (ret)
2993 goto out;
2994
2995 down_read(&fs_info->cleanup_work_sem);
2996 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2997 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2998 up_read(&fs_info->cleanup_work_sem);
2999 goto out;
3000 }
3001 up_read(&fs_info->cleanup_work_sem);
3002
3003 mutex_lock(&fs_info->cleaner_mutex);
3004 ret = btrfs_recover_relocation(fs_info);
3005 mutex_unlock(&fs_info->cleaner_mutex);
3006 if (ret < 0) {
3007 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3008 goto out;
3009 }
3010
3011 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3012 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3013 btrfs_info(fs_info, "creating free space tree");
3014 ret = btrfs_create_free_space_tree(fs_info);
3015 if (ret) {
3016 btrfs_warn(fs_info,
3017 "failed to create free space tree: %d", ret);
3018 goto out;
3019 }
3020 }
3021
3022 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3023 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3024 if (ret)
3025 goto out;
3026 }
3027
3028 ret = btrfs_resume_balance_async(fs_info);
3029 if (ret)
3030 goto out;
3031
3032 ret = btrfs_resume_dev_replace_async(fs_info);
3033 if (ret) {
3034 btrfs_warn(fs_info, "failed to resume dev_replace");
3035 goto out;
3036 }
3037
3038 btrfs_qgroup_rescan_resume(fs_info);
3039
3040 if (!fs_info->uuid_root) {
3041 btrfs_info(fs_info, "creating UUID tree");
3042 ret = btrfs_create_uuid_tree(fs_info);
3043 if (ret) {
3044 btrfs_warn(fs_info,
3045 "failed to create the UUID tree %d", ret);
3046 goto out;
3047 }
3048 }
3049
3050 out:
3051 return ret;
3052 }
3053
3054 /*
3055 * Do various sanity and dependency checks of different features.
3056 *
3057 * @is_rw_mount: If the mount is read-write.
3058 *
3059 * This is the place for less strict checks (like for subpage or artificial
3060 * feature dependencies).
3061 *
3062 * For strict checks or possible corruption detection, see
3063 * btrfs_validate_super().
3064 *
3065 * This should be called after btrfs_parse_options(), as some mount options
3066 * (space cache related) can modify on-disk format like free space tree and
3067 * screw up certain feature dependencies.
3068 */
btrfs_check_features(struct btrfs_fs_info * fs_info,bool is_rw_mount)3069 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3070 {
3071 struct btrfs_super_block *disk_super = fs_info->super_copy;
3072 u64 incompat = btrfs_super_incompat_flags(disk_super);
3073 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3074 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3075
3076 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3077 btrfs_err(fs_info,
3078 "cannot mount because of unknown incompat features (0x%llx)",
3079 incompat);
3080 return -EINVAL;
3081 }
3082
3083 /* Runtime limitation for mixed block groups. */
3084 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3085 (fs_info->sectorsize != fs_info->nodesize)) {
3086 btrfs_err(fs_info,
3087 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3088 fs_info->nodesize, fs_info->sectorsize);
3089 return -EINVAL;
3090 }
3091
3092 /* Mixed backref is an always-enabled feature. */
3093 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3094
3095 /* Set compression related flags just in case. */
3096 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3097 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3098 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3099 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3100
3101 /*
3102 * An ancient flag, which should really be marked deprecated.
3103 * Such runtime limitation doesn't really need a incompat flag.
3104 */
3105 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3106 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3107
3108 if (compat_ro_unsupp && is_rw_mount) {
3109 btrfs_err(fs_info,
3110 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3111 compat_ro);
3112 return -EINVAL;
3113 }
3114
3115 /*
3116 * We have unsupported RO compat features, although RO mounted, we
3117 * should not cause any metadata writes, including log replay.
3118 * Or we could screw up whatever the new feature requires.
3119 */
3120 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3121 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3122 btrfs_err(fs_info,
3123 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3124 compat_ro);
3125 return -EINVAL;
3126 }
3127
3128 /*
3129 * Artificial limitations for block group tree, to force
3130 * block-group-tree to rely on no-holes and free-space-tree.
3131 */
3132 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3133 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3134 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3135 btrfs_err(fs_info,
3136 "block-group-tree feature requires no-holes and free-space-tree features");
3137 return -EINVAL;
3138 }
3139
3140 /*
3141 * Subpage runtime limitation on v1 cache.
3142 *
3143 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3144 * we're already defaulting to v2 cache, no need to bother v1 as it's
3145 * going to be deprecated anyway.
3146 */
3147 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3148 btrfs_warn(fs_info,
3149 "v1 space cache is not supported for page size %lu with sectorsize %u",
3150 PAGE_SIZE, fs_info->sectorsize);
3151 return -EINVAL;
3152 }
3153
3154 /* This can be called by remount, we need to protect the super block. */
3155 spin_lock(&fs_info->super_lock);
3156 btrfs_set_super_incompat_flags(disk_super, incompat);
3157 spin_unlock(&fs_info->super_lock);
3158
3159 return 0;
3160 }
3161
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)3162 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3163 char *options)
3164 {
3165 u32 sectorsize;
3166 u32 nodesize;
3167 u32 stripesize;
3168 u64 generation;
3169 u64 features;
3170 u16 csum_type;
3171 struct btrfs_super_block *disk_super;
3172 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3173 struct btrfs_root *tree_root;
3174 struct btrfs_root *chunk_root;
3175 int ret;
3176 int level;
3177
3178 ret = init_mount_fs_info(fs_info, sb);
3179 if (ret)
3180 goto fail;
3181
3182 /* These need to be init'ed before we start creating inodes and such. */
3183 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3184 GFP_KERNEL);
3185 fs_info->tree_root = tree_root;
3186 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3187 GFP_KERNEL);
3188 fs_info->chunk_root = chunk_root;
3189 if (!tree_root || !chunk_root) {
3190 ret = -ENOMEM;
3191 goto fail;
3192 }
3193
3194 ret = btrfs_init_btree_inode(sb);
3195 if (ret)
3196 goto fail;
3197
3198 invalidate_bdev(fs_devices->latest_dev->bdev);
3199
3200 /*
3201 * Read super block and check the signature bytes only
3202 */
3203 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3204 if (IS_ERR(disk_super)) {
3205 ret = PTR_ERR(disk_super);
3206 goto fail_alloc;
3207 }
3208
3209 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3210 /*
3211 * Verify the type first, if that or the checksum value are
3212 * corrupted, we'll find out
3213 */
3214 csum_type = btrfs_super_csum_type(disk_super);
3215 if (!btrfs_supported_super_csum(csum_type)) {
3216 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3217 csum_type);
3218 ret = -EINVAL;
3219 btrfs_release_disk_super(disk_super);
3220 goto fail_alloc;
3221 }
3222
3223 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3224
3225 ret = btrfs_init_csum_hash(fs_info, csum_type);
3226 if (ret) {
3227 btrfs_release_disk_super(disk_super);
3228 goto fail_alloc;
3229 }
3230
3231 /*
3232 * We want to check superblock checksum, the type is stored inside.
3233 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3234 */
3235 if (btrfs_check_super_csum(fs_info, disk_super)) {
3236 btrfs_err(fs_info, "superblock checksum mismatch");
3237 ret = -EINVAL;
3238 btrfs_release_disk_super(disk_super);
3239 goto fail_alloc;
3240 }
3241
3242 /*
3243 * super_copy is zeroed at allocation time and we never touch the
3244 * following bytes up to INFO_SIZE, the checksum is calculated from
3245 * the whole block of INFO_SIZE
3246 */
3247 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3248 btrfs_release_disk_super(disk_super);
3249
3250 disk_super = fs_info->super_copy;
3251
3252
3253 features = btrfs_super_flags(disk_super);
3254 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3255 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3256 btrfs_set_super_flags(disk_super, features);
3257 btrfs_info(fs_info,
3258 "found metadata UUID change in progress flag, clearing");
3259 }
3260
3261 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3262 sizeof(*fs_info->super_for_commit));
3263
3264 ret = btrfs_validate_mount_super(fs_info);
3265 if (ret) {
3266 btrfs_err(fs_info, "superblock contains fatal errors");
3267 ret = -EINVAL;
3268 goto fail_alloc;
3269 }
3270
3271 if (!btrfs_super_root(disk_super)) {
3272 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3273 ret = -EINVAL;
3274 goto fail_alloc;
3275 }
3276
3277 /* check FS state, whether FS is broken. */
3278 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3279 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3280
3281 /*
3282 * In the long term, we'll store the compression type in the super
3283 * block, and it'll be used for per file compression control.
3284 */
3285 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3286
3287
3288 /* Set up fs_info before parsing mount options */
3289 nodesize = btrfs_super_nodesize(disk_super);
3290 sectorsize = btrfs_super_sectorsize(disk_super);
3291 stripesize = sectorsize;
3292 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3293 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3294
3295 fs_info->nodesize = nodesize;
3296 fs_info->sectorsize = sectorsize;
3297 fs_info->sectorsize_bits = ilog2(sectorsize);
3298 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3299 fs_info->stripesize = stripesize;
3300
3301 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3302 if (ret)
3303 goto fail_alloc;
3304
3305 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3306 if (ret < 0)
3307 goto fail_alloc;
3308
3309 if (sectorsize < PAGE_SIZE) {
3310 struct btrfs_subpage_info *subpage_info;
3311
3312 /*
3313 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3314 * going to be deprecated.
3315 *
3316 * Force to use v2 cache for subpage case.
3317 */
3318 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3319 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3320 "forcing free space tree for sector size %u with page size %lu",
3321 sectorsize, PAGE_SIZE);
3322
3323 btrfs_warn(fs_info,
3324 "read-write for sector size %u with page size %lu is experimental",
3325 sectorsize, PAGE_SIZE);
3326 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3327 if (!subpage_info) {
3328 ret = -ENOMEM;
3329 goto fail_alloc;
3330 }
3331 btrfs_init_subpage_info(subpage_info, sectorsize);
3332 fs_info->subpage_info = subpage_info;
3333 }
3334
3335 ret = btrfs_init_workqueues(fs_info);
3336 if (ret)
3337 goto fail_sb_buffer;
3338
3339 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3340 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3341
3342 /* Update the values for the current filesystem. */
3343 sb->s_blocksize = sectorsize;
3344 sb->s_blocksize_bits = blksize_bits(sectorsize);
3345 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3346
3347 mutex_lock(&fs_info->chunk_mutex);
3348 ret = btrfs_read_sys_array(fs_info);
3349 mutex_unlock(&fs_info->chunk_mutex);
3350 if (ret) {
3351 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3352 goto fail_sb_buffer;
3353 }
3354
3355 generation = btrfs_super_chunk_root_generation(disk_super);
3356 level = btrfs_super_chunk_root_level(disk_super);
3357 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3358 generation, level);
3359 if (ret) {
3360 btrfs_err(fs_info, "failed to read chunk root");
3361 goto fail_tree_roots;
3362 }
3363
3364 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3365 offsetof(struct btrfs_header, chunk_tree_uuid),
3366 BTRFS_UUID_SIZE);
3367
3368 ret = btrfs_read_chunk_tree(fs_info);
3369 if (ret) {
3370 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3371 goto fail_tree_roots;
3372 }
3373
3374 /*
3375 * At this point we know all the devices that make this filesystem,
3376 * including the seed devices but we don't know yet if the replace
3377 * target is required. So free devices that are not part of this
3378 * filesystem but skip the replace target device which is checked
3379 * below in btrfs_init_dev_replace().
3380 */
3381 btrfs_free_extra_devids(fs_devices);
3382 if (!fs_devices->latest_dev->bdev) {
3383 btrfs_err(fs_info, "failed to read devices");
3384 ret = -EIO;
3385 goto fail_tree_roots;
3386 }
3387
3388 ret = init_tree_roots(fs_info);
3389 if (ret)
3390 goto fail_tree_roots;
3391
3392 /*
3393 * Get zone type information of zoned block devices. This will also
3394 * handle emulation of a zoned filesystem if a regular device has the
3395 * zoned incompat feature flag set.
3396 */
3397 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3398 if (ret) {
3399 btrfs_err(fs_info,
3400 "zoned: failed to read device zone info: %d", ret);
3401 goto fail_block_groups;
3402 }
3403
3404 /*
3405 * If we have a uuid root and we're not being told to rescan we need to
3406 * check the generation here so we can set the
3407 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3408 * transaction during a balance or the log replay without updating the
3409 * uuid generation, and then if we crash we would rescan the uuid tree,
3410 * even though it was perfectly fine.
3411 */
3412 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3413 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3414 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3415
3416 ret = btrfs_verify_dev_extents(fs_info);
3417 if (ret) {
3418 btrfs_err(fs_info,
3419 "failed to verify dev extents against chunks: %d",
3420 ret);
3421 goto fail_block_groups;
3422 }
3423 ret = btrfs_recover_balance(fs_info);
3424 if (ret) {
3425 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3426 goto fail_block_groups;
3427 }
3428
3429 ret = btrfs_init_dev_stats(fs_info);
3430 if (ret) {
3431 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3432 goto fail_block_groups;
3433 }
3434
3435 ret = btrfs_init_dev_replace(fs_info);
3436 if (ret) {
3437 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3438 goto fail_block_groups;
3439 }
3440
3441 ret = btrfs_check_zoned_mode(fs_info);
3442 if (ret) {
3443 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3444 ret);
3445 goto fail_block_groups;
3446 }
3447
3448 ret = btrfs_sysfs_add_fsid(fs_devices);
3449 if (ret) {
3450 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3451 ret);
3452 goto fail_block_groups;
3453 }
3454
3455 ret = btrfs_sysfs_add_mounted(fs_info);
3456 if (ret) {
3457 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3458 goto fail_fsdev_sysfs;
3459 }
3460
3461 ret = btrfs_init_space_info(fs_info);
3462 if (ret) {
3463 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3464 goto fail_sysfs;
3465 }
3466
3467 ret = btrfs_read_block_groups(fs_info);
3468 if (ret) {
3469 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3470 goto fail_sysfs;
3471 }
3472
3473 btrfs_free_zone_cache(fs_info);
3474
3475 btrfs_check_active_zone_reservation(fs_info);
3476
3477 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3478 !btrfs_check_rw_degradable(fs_info, NULL)) {
3479 btrfs_warn(fs_info,
3480 "writable mount is not allowed due to too many missing devices");
3481 ret = -EINVAL;
3482 goto fail_sysfs;
3483 }
3484
3485 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3486 "btrfs-cleaner");
3487 if (IS_ERR(fs_info->cleaner_kthread)) {
3488 ret = PTR_ERR(fs_info->cleaner_kthread);
3489 goto fail_sysfs;
3490 }
3491
3492 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3493 tree_root,
3494 "btrfs-transaction");
3495 if (IS_ERR(fs_info->transaction_kthread)) {
3496 ret = PTR_ERR(fs_info->transaction_kthread);
3497 goto fail_cleaner;
3498 }
3499
3500 if (!btrfs_test_opt(fs_info, NOSSD) &&
3501 !fs_info->fs_devices->rotating) {
3502 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3503 }
3504
3505 /*
3506 * For devices supporting discard turn on discard=async automatically,
3507 * unless it's already set or disabled. This could be turned off by
3508 * nodiscard for the same mount.
3509 *
3510 * The zoned mode piggy backs on the discard functionality for
3511 * resetting a zone. There is no reason to delay the zone reset as it is
3512 * fast enough. So, do not enable async discard for zoned mode.
3513 */
3514 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3515 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3516 btrfs_test_opt(fs_info, NODISCARD)) &&
3517 fs_info->fs_devices->discardable &&
3518 !btrfs_is_zoned(fs_info)) {
3519 btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3520 "auto enabling async discard");
3521 }
3522
3523 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3524 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3525 ret = btrfsic_mount(fs_info, fs_devices,
3526 btrfs_test_opt(fs_info,
3527 CHECK_INTEGRITY_DATA) ? 1 : 0,
3528 fs_info->check_integrity_print_mask);
3529 if (ret)
3530 btrfs_warn(fs_info,
3531 "failed to initialize integrity check module: %d",
3532 ret);
3533 }
3534 #endif
3535 ret = btrfs_read_qgroup_config(fs_info);
3536 if (ret)
3537 goto fail_trans_kthread;
3538
3539 if (btrfs_build_ref_tree(fs_info))
3540 btrfs_err(fs_info, "couldn't build ref tree");
3541
3542 /* do not make disk changes in broken FS or nologreplay is given */
3543 if (btrfs_super_log_root(disk_super) != 0 &&
3544 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3545 btrfs_info(fs_info, "start tree-log replay");
3546 ret = btrfs_replay_log(fs_info, fs_devices);
3547 if (ret)
3548 goto fail_qgroup;
3549 }
3550
3551 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3552 if (IS_ERR(fs_info->fs_root)) {
3553 ret = PTR_ERR(fs_info->fs_root);
3554 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3555 fs_info->fs_root = NULL;
3556 goto fail_qgroup;
3557 }
3558
3559 if (sb_rdonly(sb))
3560 goto clear_oneshot;
3561
3562 ret = btrfs_start_pre_rw_mount(fs_info);
3563 if (ret) {
3564 close_ctree(fs_info);
3565 return ret;
3566 }
3567 btrfs_discard_resume(fs_info);
3568
3569 if (fs_info->uuid_root &&
3570 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3571 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3572 btrfs_info(fs_info, "checking UUID tree");
3573 ret = btrfs_check_uuid_tree(fs_info);
3574 if (ret) {
3575 btrfs_warn(fs_info,
3576 "failed to check the UUID tree: %d", ret);
3577 close_ctree(fs_info);
3578 return ret;
3579 }
3580 }
3581
3582 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3583
3584 /* Kick the cleaner thread so it'll start deleting snapshots. */
3585 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3586 wake_up_process(fs_info->cleaner_kthread);
3587
3588 clear_oneshot:
3589 btrfs_clear_oneshot_options(fs_info);
3590 return 0;
3591
3592 fail_qgroup:
3593 btrfs_free_qgroup_config(fs_info);
3594 fail_trans_kthread:
3595 kthread_stop(fs_info->transaction_kthread);
3596 btrfs_cleanup_transaction(fs_info);
3597 btrfs_free_fs_roots(fs_info);
3598 fail_cleaner:
3599 kthread_stop(fs_info->cleaner_kthread);
3600
3601 /*
3602 * make sure we're done with the btree inode before we stop our
3603 * kthreads
3604 */
3605 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3606
3607 fail_sysfs:
3608 btrfs_sysfs_remove_mounted(fs_info);
3609
3610 fail_fsdev_sysfs:
3611 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3612
3613 fail_block_groups:
3614 btrfs_put_block_group_cache(fs_info);
3615
3616 fail_tree_roots:
3617 if (fs_info->data_reloc_root)
3618 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3619 free_root_pointers(fs_info, true);
3620 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3621
3622 fail_sb_buffer:
3623 btrfs_stop_all_workers(fs_info);
3624 btrfs_free_block_groups(fs_info);
3625 fail_alloc:
3626 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3627
3628 iput(fs_info->btree_inode);
3629 fail:
3630 btrfs_close_devices(fs_info->fs_devices);
3631 ASSERT(ret < 0);
3632 return ret;
3633 }
3634 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3635
btrfs_end_super_write(struct bio * bio)3636 static void btrfs_end_super_write(struct bio *bio)
3637 {
3638 struct btrfs_device *device = bio->bi_private;
3639 struct bio_vec *bvec;
3640 struct bvec_iter_all iter_all;
3641 struct page *page;
3642
3643 bio_for_each_segment_all(bvec, bio, iter_all) {
3644 page = bvec->bv_page;
3645
3646 if (bio->bi_status) {
3647 btrfs_warn_rl_in_rcu(device->fs_info,
3648 "lost page write due to IO error on %s (%d)",
3649 btrfs_dev_name(device),
3650 blk_status_to_errno(bio->bi_status));
3651 ClearPageUptodate(page);
3652 SetPageError(page);
3653 btrfs_dev_stat_inc_and_print(device,
3654 BTRFS_DEV_STAT_WRITE_ERRS);
3655 } else {
3656 SetPageUptodate(page);
3657 }
3658
3659 put_page(page);
3660 unlock_page(page);
3661 }
3662
3663 bio_put(bio);
3664 }
3665
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,bool drop_cache)3666 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3667 int copy_num, bool drop_cache)
3668 {
3669 struct btrfs_super_block *super;
3670 struct page *page;
3671 u64 bytenr, bytenr_orig;
3672 struct address_space *mapping = bdev->bd_inode->i_mapping;
3673 int ret;
3674
3675 bytenr_orig = btrfs_sb_offset(copy_num);
3676 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3677 if (ret == -ENOENT)
3678 return ERR_PTR(-EINVAL);
3679 else if (ret)
3680 return ERR_PTR(ret);
3681
3682 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3683 return ERR_PTR(-EINVAL);
3684
3685 if (drop_cache) {
3686 /* This should only be called with the primary sb. */
3687 ASSERT(copy_num == 0);
3688
3689 /*
3690 * Drop the page of the primary superblock, so later read will
3691 * always read from the device.
3692 */
3693 invalidate_inode_pages2_range(mapping,
3694 bytenr >> PAGE_SHIFT,
3695 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3696 }
3697
3698 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3699 if (IS_ERR(page))
3700 return ERR_CAST(page);
3701
3702 super = page_address(page);
3703 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3704 btrfs_release_disk_super(super);
3705 return ERR_PTR(-ENODATA);
3706 }
3707
3708 if (btrfs_super_bytenr(super) != bytenr_orig) {
3709 btrfs_release_disk_super(super);
3710 return ERR_PTR(-EINVAL);
3711 }
3712
3713 return super;
3714 }
3715
3716
btrfs_read_dev_super(struct block_device * bdev)3717 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3718 {
3719 struct btrfs_super_block *super, *latest = NULL;
3720 int i;
3721 u64 transid = 0;
3722
3723 /* we would like to check all the supers, but that would make
3724 * a btrfs mount succeed after a mkfs from a different FS.
3725 * So, we need to add a special mount option to scan for
3726 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3727 */
3728 for (i = 0; i < 1; i++) {
3729 super = btrfs_read_dev_one_super(bdev, i, false);
3730 if (IS_ERR(super))
3731 continue;
3732
3733 if (!latest || btrfs_super_generation(super) > transid) {
3734 if (latest)
3735 btrfs_release_disk_super(super);
3736
3737 latest = super;
3738 transid = btrfs_super_generation(super);
3739 }
3740 }
3741
3742 return super;
3743 }
3744
3745 /*
3746 * Write superblock @sb to the @device. Do not wait for completion, all the
3747 * pages we use for writing are locked.
3748 *
3749 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3750 * the expected device size at commit time. Note that max_mirrors must be
3751 * same for write and wait phases.
3752 *
3753 * Return number of errors when page is not found or submission fails.
3754 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3755 static int write_dev_supers(struct btrfs_device *device,
3756 struct btrfs_super_block *sb, int max_mirrors)
3757 {
3758 struct btrfs_fs_info *fs_info = device->fs_info;
3759 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3760 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3761 int i;
3762 int errors = 0;
3763 int ret;
3764 u64 bytenr, bytenr_orig;
3765
3766 if (max_mirrors == 0)
3767 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3768
3769 shash->tfm = fs_info->csum_shash;
3770
3771 for (i = 0; i < max_mirrors; i++) {
3772 struct page *page;
3773 struct bio *bio;
3774 struct btrfs_super_block *disk_super;
3775
3776 bytenr_orig = btrfs_sb_offset(i);
3777 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3778 if (ret == -ENOENT) {
3779 continue;
3780 } else if (ret < 0) {
3781 btrfs_err(device->fs_info,
3782 "couldn't get super block location for mirror %d",
3783 i);
3784 errors++;
3785 continue;
3786 }
3787 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3788 device->commit_total_bytes)
3789 break;
3790
3791 btrfs_set_super_bytenr(sb, bytenr_orig);
3792
3793 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3794 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3795 sb->csum);
3796
3797 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3798 GFP_NOFS);
3799 if (!page) {
3800 btrfs_err(device->fs_info,
3801 "couldn't get super block page for bytenr %llu",
3802 bytenr);
3803 errors++;
3804 continue;
3805 }
3806
3807 /* Bump the refcount for wait_dev_supers() */
3808 get_page(page);
3809
3810 disk_super = page_address(page);
3811 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3812
3813 /*
3814 * Directly use bios here instead of relying on the page cache
3815 * to do I/O, so we don't lose the ability to do integrity
3816 * checking.
3817 */
3818 bio = bio_alloc(device->bdev, 1,
3819 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3820 GFP_NOFS);
3821 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3822 bio->bi_private = device;
3823 bio->bi_end_io = btrfs_end_super_write;
3824 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3825 offset_in_page(bytenr));
3826
3827 /*
3828 * We FUA only the first super block. The others we allow to
3829 * go down lazy and there's a short window where the on-disk
3830 * copies might still contain the older version.
3831 */
3832 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3833 bio->bi_opf |= REQ_FUA;
3834
3835 btrfsic_check_bio(bio);
3836 submit_bio(bio);
3837
3838 if (btrfs_advance_sb_log(device, i))
3839 errors++;
3840 }
3841 return errors < i ? 0 : -1;
3842 }
3843
3844 /*
3845 * Wait for write completion of superblocks done by write_dev_supers,
3846 * @max_mirrors same for write and wait phases.
3847 *
3848 * Return number of errors when page is not found or not marked up to
3849 * date.
3850 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3851 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3852 {
3853 int i;
3854 int errors = 0;
3855 bool primary_failed = false;
3856 int ret;
3857 u64 bytenr;
3858
3859 if (max_mirrors == 0)
3860 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3861
3862 for (i = 0; i < max_mirrors; i++) {
3863 struct page *page;
3864
3865 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3866 if (ret == -ENOENT) {
3867 break;
3868 } else if (ret < 0) {
3869 errors++;
3870 if (i == 0)
3871 primary_failed = true;
3872 continue;
3873 }
3874 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3875 device->commit_total_bytes)
3876 break;
3877
3878 page = find_get_page(device->bdev->bd_inode->i_mapping,
3879 bytenr >> PAGE_SHIFT);
3880 if (!page) {
3881 errors++;
3882 if (i == 0)
3883 primary_failed = true;
3884 continue;
3885 }
3886 /* Page is submitted locked and unlocked once the IO completes */
3887 wait_on_page_locked(page);
3888 if (PageError(page)) {
3889 errors++;
3890 if (i == 0)
3891 primary_failed = true;
3892 }
3893
3894 /* Drop our reference */
3895 put_page(page);
3896
3897 /* Drop the reference from the writing run */
3898 put_page(page);
3899 }
3900
3901 /* log error, force error return */
3902 if (primary_failed) {
3903 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3904 device->devid);
3905 return -1;
3906 }
3907
3908 return errors < i ? 0 : -1;
3909 }
3910
3911 /*
3912 * endio for the write_dev_flush, this will wake anyone waiting
3913 * for the barrier when it is done
3914 */
btrfs_end_empty_barrier(struct bio * bio)3915 static void btrfs_end_empty_barrier(struct bio *bio)
3916 {
3917 bio_uninit(bio);
3918 complete(bio->bi_private);
3919 }
3920
3921 /*
3922 * Submit a flush request to the device if it supports it. Error handling is
3923 * done in the waiting counterpart.
3924 */
write_dev_flush(struct btrfs_device * device)3925 static void write_dev_flush(struct btrfs_device *device)
3926 {
3927 struct bio *bio = &device->flush_bio;
3928
3929 device->last_flush_error = BLK_STS_OK;
3930
3931 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3932 /*
3933 * When a disk has write caching disabled, we skip submission of a bio
3934 * with flush and sync requests before writing the superblock, since
3935 * it's not needed. However when the integrity checker is enabled, this
3936 * results in reports that there are metadata blocks referred by a
3937 * superblock that were not properly flushed. So don't skip the bio
3938 * submission only when the integrity checker is enabled for the sake
3939 * of simplicity, since this is a debug tool and not meant for use in
3940 * non-debug builds.
3941 */
3942 if (!bdev_write_cache(device->bdev))
3943 return;
3944 #endif
3945
3946 bio_init(bio, device->bdev, NULL, 0,
3947 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3948 bio->bi_end_io = btrfs_end_empty_barrier;
3949 init_completion(&device->flush_wait);
3950 bio->bi_private = &device->flush_wait;
3951
3952 btrfsic_check_bio(bio);
3953 submit_bio(bio);
3954 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3955 }
3956
3957 /*
3958 * If the flush bio has been submitted by write_dev_flush, wait for it.
3959 * Return true for any error, and false otherwise.
3960 */
wait_dev_flush(struct btrfs_device * device)3961 static bool wait_dev_flush(struct btrfs_device *device)
3962 {
3963 struct bio *bio = &device->flush_bio;
3964
3965 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3966 return false;
3967
3968 wait_for_completion_io(&device->flush_wait);
3969
3970 if (bio->bi_status) {
3971 device->last_flush_error = bio->bi_status;
3972 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3973 return true;
3974 }
3975
3976 return false;
3977 }
3978
3979 /*
3980 * send an empty flush down to each device in parallel,
3981 * then wait for them
3982 */
barrier_all_devices(struct btrfs_fs_info * info)3983 static int barrier_all_devices(struct btrfs_fs_info *info)
3984 {
3985 struct list_head *head;
3986 struct btrfs_device *dev;
3987 int errors_wait = 0;
3988
3989 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3990 /* send down all the barriers */
3991 head = &info->fs_devices->devices;
3992 list_for_each_entry(dev, head, dev_list) {
3993 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3994 continue;
3995 if (!dev->bdev)
3996 continue;
3997 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3998 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3999 continue;
4000
4001 write_dev_flush(dev);
4002 }
4003
4004 /* wait for all the barriers */
4005 list_for_each_entry(dev, head, dev_list) {
4006 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4007 continue;
4008 if (!dev->bdev) {
4009 errors_wait++;
4010 continue;
4011 }
4012 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4013 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4014 continue;
4015
4016 if (wait_dev_flush(dev))
4017 errors_wait++;
4018 }
4019
4020 /*
4021 * Checks last_flush_error of disks in order to determine the device
4022 * state.
4023 */
4024 if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
4025 return -EIO;
4026
4027 return 0;
4028 }
4029
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)4030 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4031 {
4032 int raid_type;
4033 int min_tolerated = INT_MAX;
4034
4035 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4036 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4037 min_tolerated = min_t(int, min_tolerated,
4038 btrfs_raid_array[BTRFS_RAID_SINGLE].
4039 tolerated_failures);
4040
4041 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4042 if (raid_type == BTRFS_RAID_SINGLE)
4043 continue;
4044 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4045 continue;
4046 min_tolerated = min_t(int, min_tolerated,
4047 btrfs_raid_array[raid_type].
4048 tolerated_failures);
4049 }
4050
4051 if (min_tolerated == INT_MAX) {
4052 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4053 min_tolerated = 0;
4054 }
4055
4056 return min_tolerated;
4057 }
4058
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)4059 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4060 {
4061 struct list_head *head;
4062 struct btrfs_device *dev;
4063 struct btrfs_super_block *sb;
4064 struct btrfs_dev_item *dev_item;
4065 int ret;
4066 int do_barriers;
4067 int max_errors;
4068 int total_errors = 0;
4069 u64 flags;
4070
4071 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4072
4073 /*
4074 * max_mirrors == 0 indicates we're from commit_transaction,
4075 * not from fsync where the tree roots in fs_info have not
4076 * been consistent on disk.
4077 */
4078 if (max_mirrors == 0)
4079 backup_super_roots(fs_info);
4080
4081 sb = fs_info->super_for_commit;
4082 dev_item = &sb->dev_item;
4083
4084 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4085 head = &fs_info->fs_devices->devices;
4086 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4087
4088 if (do_barriers) {
4089 ret = barrier_all_devices(fs_info);
4090 if (ret) {
4091 mutex_unlock(
4092 &fs_info->fs_devices->device_list_mutex);
4093 btrfs_handle_fs_error(fs_info, ret,
4094 "errors while submitting device barriers.");
4095 return ret;
4096 }
4097 }
4098
4099 list_for_each_entry(dev, head, dev_list) {
4100 if (!dev->bdev) {
4101 total_errors++;
4102 continue;
4103 }
4104 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4105 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4106 continue;
4107
4108 btrfs_set_stack_device_generation(dev_item, 0);
4109 btrfs_set_stack_device_type(dev_item, dev->type);
4110 btrfs_set_stack_device_id(dev_item, dev->devid);
4111 btrfs_set_stack_device_total_bytes(dev_item,
4112 dev->commit_total_bytes);
4113 btrfs_set_stack_device_bytes_used(dev_item,
4114 dev->commit_bytes_used);
4115 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4116 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4117 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4118 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4119 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4120 BTRFS_FSID_SIZE);
4121
4122 flags = btrfs_super_flags(sb);
4123 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4124
4125 ret = btrfs_validate_write_super(fs_info, sb);
4126 if (ret < 0) {
4127 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4128 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4129 "unexpected superblock corruption detected");
4130 return -EUCLEAN;
4131 }
4132
4133 ret = write_dev_supers(dev, sb, max_mirrors);
4134 if (ret)
4135 total_errors++;
4136 }
4137 if (total_errors > max_errors) {
4138 btrfs_err(fs_info, "%d errors while writing supers",
4139 total_errors);
4140 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4141
4142 /* FUA is masked off if unsupported and can't be the reason */
4143 btrfs_handle_fs_error(fs_info, -EIO,
4144 "%d errors while writing supers",
4145 total_errors);
4146 return -EIO;
4147 }
4148
4149 total_errors = 0;
4150 list_for_each_entry(dev, head, dev_list) {
4151 if (!dev->bdev)
4152 continue;
4153 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4154 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4155 continue;
4156
4157 ret = wait_dev_supers(dev, max_mirrors);
4158 if (ret)
4159 total_errors++;
4160 }
4161 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4162 if (total_errors > max_errors) {
4163 btrfs_handle_fs_error(fs_info, -EIO,
4164 "%d errors while writing supers",
4165 total_errors);
4166 return -EIO;
4167 }
4168 return 0;
4169 }
4170
4171 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)4172 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4173 struct btrfs_root *root)
4174 {
4175 bool drop_ref = false;
4176
4177 spin_lock(&fs_info->fs_roots_radix_lock);
4178 radix_tree_delete(&fs_info->fs_roots_radix,
4179 (unsigned long)root->root_key.objectid);
4180 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4181 drop_ref = true;
4182 spin_unlock(&fs_info->fs_roots_radix_lock);
4183
4184 if (BTRFS_FS_ERROR(fs_info)) {
4185 ASSERT(root->log_root == NULL);
4186 if (root->reloc_root) {
4187 btrfs_put_root(root->reloc_root);
4188 root->reloc_root = NULL;
4189 }
4190 }
4191
4192 if (drop_ref)
4193 btrfs_put_root(root);
4194 }
4195
btrfs_commit_super(struct btrfs_fs_info * fs_info)4196 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4197 {
4198 struct btrfs_root *root = fs_info->tree_root;
4199 struct btrfs_trans_handle *trans;
4200
4201 mutex_lock(&fs_info->cleaner_mutex);
4202 btrfs_run_delayed_iputs(fs_info);
4203 mutex_unlock(&fs_info->cleaner_mutex);
4204 wake_up_process(fs_info->cleaner_kthread);
4205
4206 /* wait until ongoing cleanup work done */
4207 down_write(&fs_info->cleanup_work_sem);
4208 up_write(&fs_info->cleanup_work_sem);
4209
4210 trans = btrfs_join_transaction(root);
4211 if (IS_ERR(trans))
4212 return PTR_ERR(trans);
4213 return btrfs_commit_transaction(trans);
4214 }
4215
warn_about_uncommitted_trans(struct btrfs_fs_info * fs_info)4216 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4217 {
4218 struct btrfs_transaction *trans;
4219 struct btrfs_transaction *tmp;
4220 bool found = false;
4221
4222 if (list_empty(&fs_info->trans_list))
4223 return;
4224
4225 /*
4226 * This function is only called at the very end of close_ctree(),
4227 * thus no other running transaction, no need to take trans_lock.
4228 */
4229 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4230 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4231 struct extent_state *cached = NULL;
4232 u64 dirty_bytes = 0;
4233 u64 cur = 0;
4234 u64 found_start;
4235 u64 found_end;
4236
4237 found = true;
4238 while (find_first_extent_bit(&trans->dirty_pages, cur,
4239 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4240 dirty_bytes += found_end + 1 - found_start;
4241 cur = found_end + 1;
4242 }
4243 btrfs_warn(fs_info,
4244 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4245 trans->transid, dirty_bytes);
4246 btrfs_cleanup_one_transaction(trans, fs_info);
4247
4248 if (trans == fs_info->running_transaction)
4249 fs_info->running_transaction = NULL;
4250 list_del_init(&trans->list);
4251
4252 btrfs_put_transaction(trans);
4253 trace_btrfs_transaction_commit(fs_info);
4254 }
4255 ASSERT(!found);
4256 }
4257
close_ctree(struct btrfs_fs_info * fs_info)4258 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4259 {
4260 int ret;
4261
4262 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4263
4264 /*
4265 * If we had UNFINISHED_DROPS we could still be processing them, so
4266 * clear that bit and wake up relocation so it can stop.
4267 * We must do this before stopping the block group reclaim task, because
4268 * at btrfs_relocate_block_group() we wait for this bit, and after the
4269 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4270 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4271 * return 1.
4272 */
4273 btrfs_wake_unfinished_drop(fs_info);
4274
4275 /*
4276 * We may have the reclaim task running and relocating a data block group,
4277 * in which case it may create delayed iputs. So stop it before we park
4278 * the cleaner kthread otherwise we can get new delayed iputs after
4279 * parking the cleaner, and that can make the async reclaim task to hang
4280 * if it's waiting for delayed iputs to complete, since the cleaner is
4281 * parked and can not run delayed iputs - this will make us hang when
4282 * trying to stop the async reclaim task.
4283 */
4284 cancel_work_sync(&fs_info->reclaim_bgs_work);
4285 /*
4286 * We don't want the cleaner to start new transactions, add more delayed
4287 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4288 * because that frees the task_struct, and the transaction kthread might
4289 * still try to wake up the cleaner.
4290 */
4291 kthread_park(fs_info->cleaner_kthread);
4292
4293 /* wait for the qgroup rescan worker to stop */
4294 btrfs_qgroup_wait_for_completion(fs_info, false);
4295
4296 /* wait for the uuid_scan task to finish */
4297 down(&fs_info->uuid_tree_rescan_sem);
4298 /* avoid complains from lockdep et al., set sem back to initial state */
4299 up(&fs_info->uuid_tree_rescan_sem);
4300
4301 /* pause restriper - we want to resume on mount */
4302 btrfs_pause_balance(fs_info);
4303
4304 btrfs_dev_replace_suspend_for_unmount(fs_info);
4305
4306 btrfs_scrub_cancel(fs_info);
4307
4308 /* wait for any defraggers to finish */
4309 wait_event(fs_info->transaction_wait,
4310 (atomic_read(&fs_info->defrag_running) == 0));
4311
4312 /* clear out the rbtree of defraggable inodes */
4313 btrfs_cleanup_defrag_inodes(fs_info);
4314
4315 /*
4316 * Handle the error fs first, as it will flush and wait for all ordered
4317 * extents. This will generate delayed iputs, thus we want to handle
4318 * it first.
4319 */
4320 if (unlikely(BTRFS_FS_ERROR(fs_info)))
4321 btrfs_error_commit_super(fs_info);
4322
4323 /*
4324 * Wait for any fixup workers to complete.
4325 * If we don't wait for them here and they are still running by the time
4326 * we call kthread_stop() against the cleaner kthread further below, we
4327 * get an use-after-free on the cleaner because the fixup worker adds an
4328 * inode to the list of delayed iputs and then attempts to wakeup the
4329 * cleaner kthread, which was already stopped and destroyed. We parked
4330 * already the cleaner, but below we run all pending delayed iputs.
4331 */
4332 btrfs_flush_workqueue(fs_info->fixup_workers);
4333 /*
4334 * Similar case here, we have to wait for delalloc workers before we
4335 * proceed below and stop the cleaner kthread, otherwise we trigger a
4336 * use-after-tree on the cleaner kthread task_struct when a delalloc
4337 * worker running submit_compressed_extents() adds a delayed iput, which
4338 * does a wake up on the cleaner kthread, which was already freed below
4339 * when we call kthread_stop().
4340 */
4341 btrfs_flush_workqueue(fs_info->delalloc_workers);
4342
4343 /*
4344 * We can have ordered extents getting their last reference dropped from
4345 * the fs_info->workers queue because for async writes for data bios we
4346 * queue a work for that queue, at btrfs_wq_submit_bio(), that runs
4347 * run_one_async_done() which calls btrfs_bio_end_io() in case the bio
4348 * has an error, and that later function can do the final
4349 * btrfs_put_ordered_extent() on the ordered extent attached to the bio,
4350 * which adds a delayed iput for the inode. So we must flush the queue
4351 * so that we don't have delayed iputs after committing the current
4352 * transaction below and stopping the cleaner and transaction kthreads.
4353 */
4354 btrfs_flush_workqueue(fs_info->workers);
4355
4356 /*
4357 * When finishing a compressed write bio we schedule a work queue item
4358 * to finish an ordered extent - btrfs_finish_compressed_write_work()
4359 * calls btrfs_finish_ordered_extent() which in turns does a call to
4360 * btrfs_queue_ordered_fn(), and that queues the ordered extent
4361 * completion either in the endio_write_workers work queue or in the
4362 * fs_info->endio_freespace_worker work queue. We flush those queues
4363 * below, so before we flush them we must flush this queue for the
4364 * workers of compressed writes.
4365 */
4366 flush_workqueue(fs_info->compressed_write_workers);
4367
4368 /*
4369 * After we parked the cleaner kthread, ordered extents may have
4370 * completed and created new delayed iputs. If one of the async reclaim
4371 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4372 * can hang forever trying to stop it, because if a delayed iput is
4373 * added after it ran btrfs_run_delayed_iputs() and before it called
4374 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4375 * no one else to run iputs.
4376 *
4377 * So wait for all ongoing ordered extents to complete and then run
4378 * delayed iputs. This works because once we reach this point no one
4379 * can either create new ordered extents nor create delayed iputs
4380 * through some other means.
4381 *
4382 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4383 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4384 * but the delayed iput for the respective inode is made only when doing
4385 * the final btrfs_put_ordered_extent() (which must happen at
4386 * btrfs_finish_ordered_io() when we are unmounting).
4387 */
4388 btrfs_flush_workqueue(fs_info->endio_write_workers);
4389 /* Ordered extents for free space inodes. */
4390 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4391 btrfs_run_delayed_iputs(fs_info);
4392
4393 cancel_work_sync(&fs_info->async_reclaim_work);
4394 cancel_work_sync(&fs_info->async_data_reclaim_work);
4395 cancel_work_sync(&fs_info->preempt_reclaim_work);
4396
4397 /* Cancel or finish ongoing discard work */
4398 btrfs_discard_cleanup(fs_info);
4399
4400 if (!sb_rdonly(fs_info->sb)) {
4401 /*
4402 * The cleaner kthread is stopped, so do one final pass over
4403 * unused block groups.
4404 */
4405 btrfs_delete_unused_bgs(fs_info);
4406
4407 /*
4408 * There might be existing delayed inode workers still running
4409 * and holding an empty delayed inode item. We must wait for
4410 * them to complete first because they can create a transaction.
4411 * This happens when someone calls btrfs_balance_delayed_items()
4412 * and then a transaction commit runs the same delayed nodes
4413 * before any delayed worker has done something with the nodes.
4414 * We must wait for any worker here and not at transaction
4415 * commit time since that could cause a deadlock.
4416 * This is a very rare case.
4417 */
4418 btrfs_flush_workqueue(fs_info->delayed_workers);
4419
4420 ret = btrfs_commit_super(fs_info);
4421 if (ret)
4422 btrfs_err(fs_info, "commit super ret %d", ret);
4423 }
4424
4425 kthread_stop(fs_info->transaction_kthread);
4426 kthread_stop(fs_info->cleaner_kthread);
4427
4428 ASSERT(list_empty(&fs_info->delayed_iputs));
4429 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4430
4431 if (btrfs_check_quota_leak(fs_info)) {
4432 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4433 btrfs_err(fs_info, "qgroup reserved space leaked");
4434 }
4435
4436 btrfs_free_qgroup_config(fs_info);
4437 ASSERT(list_empty(&fs_info->delalloc_roots));
4438
4439 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4440 btrfs_info(fs_info, "at unmount delalloc count %lld",
4441 percpu_counter_sum(&fs_info->delalloc_bytes));
4442 }
4443
4444 if (percpu_counter_sum(&fs_info->ordered_bytes))
4445 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4446 percpu_counter_sum(&fs_info->ordered_bytes));
4447
4448 btrfs_sysfs_remove_mounted(fs_info);
4449 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4450
4451 btrfs_put_block_group_cache(fs_info);
4452
4453 /*
4454 * we must make sure there is not any read request to
4455 * submit after we stopping all workers.
4456 */
4457 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4458 btrfs_stop_all_workers(fs_info);
4459
4460 /* We shouldn't have any transaction open at this point */
4461 warn_about_uncommitted_trans(fs_info);
4462
4463 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4464 free_root_pointers(fs_info, true);
4465 btrfs_free_fs_roots(fs_info);
4466
4467 /*
4468 * We must free the block groups after dropping the fs_roots as we could
4469 * have had an IO error and have left over tree log blocks that aren't
4470 * cleaned up until the fs roots are freed. This makes the block group
4471 * accounting appear to be wrong because there's pending reserved bytes,
4472 * so make sure we do the block group cleanup afterwards.
4473 */
4474 btrfs_free_block_groups(fs_info);
4475
4476 iput(fs_info->btree_inode);
4477
4478 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4479 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4480 btrfsic_unmount(fs_info->fs_devices);
4481 #endif
4482
4483 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4484 btrfs_close_devices(fs_info->fs_devices);
4485 }
4486
btrfs_mark_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * buf)4487 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4488 struct extent_buffer *buf)
4489 {
4490 struct btrfs_fs_info *fs_info = buf->fs_info;
4491 u64 transid = btrfs_header_generation(buf);
4492
4493 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4494 /*
4495 * This is a fast path so only do this check if we have sanity tests
4496 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4497 * outside of the sanity tests.
4498 */
4499 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4500 return;
4501 #endif
4502 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4503 ASSERT(trans->transid == fs_info->generation);
4504 btrfs_assert_tree_write_locked(buf);
4505 if (transid != fs_info->generation) {
4506 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4507 buf->start, transid, fs_info->generation);
4508 btrfs_abort_transaction(trans, -EUCLEAN);
4509 }
4510 set_extent_buffer_dirty(buf);
4511 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4512 /*
4513 * btrfs_check_leaf() won't check item data if we don't have WRITTEN
4514 * set, so this will only validate the basic structure of the items.
4515 */
4516 if (btrfs_header_level(buf) == 0 && btrfs_check_leaf(buf)) {
4517 btrfs_print_leaf(buf);
4518 ASSERT(0);
4519 }
4520 #endif
4521 }
4522
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4523 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4524 int flush_delayed)
4525 {
4526 /*
4527 * looks as though older kernels can get into trouble with
4528 * this code, they end up stuck in balance_dirty_pages forever
4529 */
4530 int ret;
4531
4532 if (current->flags & PF_MEMALLOC)
4533 return;
4534
4535 if (flush_delayed)
4536 btrfs_balance_delayed_items(fs_info);
4537
4538 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4539 BTRFS_DIRTY_METADATA_THRESH,
4540 fs_info->dirty_metadata_batch);
4541 if (ret > 0) {
4542 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4543 }
4544 }
4545
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4546 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4547 {
4548 __btrfs_btree_balance_dirty(fs_info, 1);
4549 }
4550
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4551 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4552 {
4553 __btrfs_btree_balance_dirty(fs_info, 0);
4554 }
4555
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4556 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4557 {
4558 /* cleanup FS via transaction */
4559 btrfs_cleanup_transaction(fs_info);
4560
4561 down_write(&fs_info->cleanup_work_sem);
4562 up_write(&fs_info->cleanup_work_sem);
4563 }
4564
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4565 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4566 {
4567 struct btrfs_root *gang[8];
4568 u64 root_objectid = 0;
4569 int ret;
4570
4571 spin_lock(&fs_info->fs_roots_radix_lock);
4572 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4573 (void **)gang, root_objectid,
4574 ARRAY_SIZE(gang))) != 0) {
4575 int i;
4576
4577 for (i = 0; i < ret; i++)
4578 gang[i] = btrfs_grab_root(gang[i]);
4579 spin_unlock(&fs_info->fs_roots_radix_lock);
4580
4581 for (i = 0; i < ret; i++) {
4582 if (!gang[i])
4583 continue;
4584 root_objectid = gang[i]->root_key.objectid;
4585 btrfs_free_log(NULL, gang[i]);
4586 btrfs_put_root(gang[i]);
4587 }
4588 root_objectid++;
4589 spin_lock(&fs_info->fs_roots_radix_lock);
4590 }
4591 spin_unlock(&fs_info->fs_roots_radix_lock);
4592 btrfs_free_log_root_tree(NULL, fs_info);
4593 }
4594
btrfs_destroy_ordered_extents(struct btrfs_root * root)4595 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4596 {
4597 struct btrfs_ordered_extent *ordered;
4598
4599 spin_lock(&root->ordered_extent_lock);
4600 /*
4601 * This will just short circuit the ordered completion stuff which will
4602 * make sure the ordered extent gets properly cleaned up.
4603 */
4604 list_for_each_entry(ordered, &root->ordered_extents,
4605 root_extent_list)
4606 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4607 spin_unlock(&root->ordered_extent_lock);
4608 }
4609
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4610 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4611 {
4612 struct btrfs_root *root;
4613 LIST_HEAD(splice);
4614
4615 spin_lock(&fs_info->ordered_root_lock);
4616 list_splice_init(&fs_info->ordered_roots, &splice);
4617 while (!list_empty(&splice)) {
4618 root = list_first_entry(&splice, struct btrfs_root,
4619 ordered_root);
4620 list_move_tail(&root->ordered_root,
4621 &fs_info->ordered_roots);
4622
4623 spin_unlock(&fs_info->ordered_root_lock);
4624 btrfs_destroy_ordered_extents(root);
4625
4626 cond_resched();
4627 spin_lock(&fs_info->ordered_root_lock);
4628 }
4629 spin_unlock(&fs_info->ordered_root_lock);
4630
4631 /*
4632 * We need this here because if we've been flipped read-only we won't
4633 * get sync() from the umount, so we need to make sure any ordered
4634 * extents that haven't had their dirty pages IO start writeout yet
4635 * actually get run and error out properly.
4636 */
4637 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4638 }
4639
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4640 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4641 struct btrfs_fs_info *fs_info)
4642 {
4643 struct rb_node *node;
4644 struct btrfs_delayed_ref_root *delayed_refs = &trans->delayed_refs;
4645 struct btrfs_delayed_ref_node *ref;
4646
4647 spin_lock(&delayed_refs->lock);
4648 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4649 struct btrfs_delayed_ref_head *head;
4650 struct rb_node *n;
4651 bool pin_bytes = false;
4652
4653 head = rb_entry(node, struct btrfs_delayed_ref_head,
4654 href_node);
4655 if (btrfs_delayed_ref_lock(delayed_refs, head))
4656 continue;
4657
4658 spin_lock(&head->lock);
4659 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4660 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4661 ref_node);
4662 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4663 RB_CLEAR_NODE(&ref->ref_node);
4664 if (!list_empty(&ref->add_list))
4665 list_del(&ref->add_list);
4666 atomic_dec(&delayed_refs->num_entries);
4667 btrfs_put_delayed_ref(ref);
4668 }
4669 if (head->must_insert_reserved)
4670 pin_bytes = true;
4671 btrfs_free_delayed_extent_op(head->extent_op);
4672 btrfs_delete_ref_head(delayed_refs, head);
4673 spin_unlock(&head->lock);
4674 spin_unlock(&delayed_refs->lock);
4675 mutex_unlock(&head->mutex);
4676
4677 if (pin_bytes) {
4678 struct btrfs_block_group *cache;
4679
4680 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4681 BUG_ON(!cache);
4682
4683 spin_lock(&cache->space_info->lock);
4684 spin_lock(&cache->lock);
4685 cache->pinned += head->num_bytes;
4686 btrfs_space_info_update_bytes_pinned(fs_info,
4687 cache->space_info, head->num_bytes);
4688 cache->reserved -= head->num_bytes;
4689 cache->space_info->bytes_reserved -= head->num_bytes;
4690 spin_unlock(&cache->lock);
4691 spin_unlock(&cache->space_info->lock);
4692
4693 btrfs_put_block_group(cache);
4694
4695 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4696 head->bytenr + head->num_bytes - 1);
4697 }
4698 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4699 btrfs_put_delayed_ref_head(head);
4700 cond_resched();
4701 spin_lock(&delayed_refs->lock);
4702 }
4703 btrfs_qgroup_destroy_extent_records(trans);
4704
4705 spin_unlock(&delayed_refs->lock);
4706 }
4707
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4708 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4709 {
4710 struct btrfs_inode *btrfs_inode;
4711 LIST_HEAD(splice);
4712
4713 spin_lock(&root->delalloc_lock);
4714 list_splice_init(&root->delalloc_inodes, &splice);
4715
4716 while (!list_empty(&splice)) {
4717 struct inode *inode = NULL;
4718 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4719 delalloc_inodes);
4720 __btrfs_del_delalloc_inode(root, btrfs_inode);
4721 spin_unlock(&root->delalloc_lock);
4722
4723 /*
4724 * Make sure we get a live inode and that it'll not disappear
4725 * meanwhile.
4726 */
4727 inode = igrab(&btrfs_inode->vfs_inode);
4728 if (inode) {
4729 unsigned int nofs_flag;
4730
4731 nofs_flag = memalloc_nofs_save();
4732 invalidate_inode_pages2(inode->i_mapping);
4733 memalloc_nofs_restore(nofs_flag);
4734 iput(inode);
4735 }
4736 spin_lock(&root->delalloc_lock);
4737 }
4738 spin_unlock(&root->delalloc_lock);
4739 }
4740
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4741 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4742 {
4743 struct btrfs_root *root;
4744 LIST_HEAD(splice);
4745
4746 spin_lock(&fs_info->delalloc_root_lock);
4747 list_splice_init(&fs_info->delalloc_roots, &splice);
4748 while (!list_empty(&splice)) {
4749 root = list_first_entry(&splice, struct btrfs_root,
4750 delalloc_root);
4751 root = btrfs_grab_root(root);
4752 BUG_ON(!root);
4753 spin_unlock(&fs_info->delalloc_root_lock);
4754
4755 btrfs_destroy_delalloc_inodes(root);
4756 btrfs_put_root(root);
4757
4758 spin_lock(&fs_info->delalloc_root_lock);
4759 }
4760 spin_unlock(&fs_info->delalloc_root_lock);
4761 }
4762
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4763 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4764 struct extent_io_tree *dirty_pages,
4765 int mark)
4766 {
4767 struct extent_buffer *eb;
4768 u64 start = 0;
4769 u64 end;
4770
4771 while (find_first_extent_bit(dirty_pages, start, &start, &end,
4772 mark, NULL)) {
4773 clear_extent_bits(dirty_pages, start, end, mark);
4774 while (start <= end) {
4775 eb = find_extent_buffer(fs_info, start);
4776 start += fs_info->nodesize;
4777 if (!eb)
4778 continue;
4779
4780 btrfs_tree_lock(eb);
4781 wait_on_extent_buffer_writeback(eb);
4782 btrfs_clear_buffer_dirty(NULL, eb);
4783 btrfs_tree_unlock(eb);
4784
4785 free_extent_buffer_stale(eb);
4786 }
4787 }
4788 }
4789
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4790 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4791 struct extent_io_tree *unpin)
4792 {
4793 u64 start;
4794 u64 end;
4795
4796 while (1) {
4797 struct extent_state *cached_state = NULL;
4798
4799 /*
4800 * The btrfs_finish_extent_commit() may get the same range as
4801 * ours between find_first_extent_bit and clear_extent_dirty.
4802 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4803 * the same extent range.
4804 */
4805 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4806 if (!find_first_extent_bit(unpin, 0, &start, &end,
4807 EXTENT_DIRTY, &cached_state)) {
4808 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4809 break;
4810 }
4811
4812 clear_extent_dirty(unpin, start, end, &cached_state);
4813 free_extent_state(cached_state);
4814 btrfs_error_unpin_extent_range(fs_info, start, end);
4815 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4816 cond_resched();
4817 }
4818 }
4819
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4820 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4821 {
4822 struct inode *inode;
4823
4824 inode = cache->io_ctl.inode;
4825 if (inode) {
4826 unsigned int nofs_flag;
4827
4828 nofs_flag = memalloc_nofs_save();
4829 invalidate_inode_pages2(inode->i_mapping);
4830 memalloc_nofs_restore(nofs_flag);
4831
4832 BTRFS_I(inode)->generation = 0;
4833 cache->io_ctl.inode = NULL;
4834 iput(inode);
4835 }
4836 ASSERT(cache->io_ctl.pages == NULL);
4837 btrfs_put_block_group(cache);
4838 }
4839
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4840 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4841 struct btrfs_fs_info *fs_info)
4842 {
4843 struct btrfs_block_group *cache;
4844
4845 spin_lock(&cur_trans->dirty_bgs_lock);
4846 while (!list_empty(&cur_trans->dirty_bgs)) {
4847 cache = list_first_entry(&cur_trans->dirty_bgs,
4848 struct btrfs_block_group,
4849 dirty_list);
4850
4851 if (!list_empty(&cache->io_list)) {
4852 spin_unlock(&cur_trans->dirty_bgs_lock);
4853 list_del_init(&cache->io_list);
4854 btrfs_cleanup_bg_io(cache);
4855 spin_lock(&cur_trans->dirty_bgs_lock);
4856 }
4857
4858 list_del_init(&cache->dirty_list);
4859 spin_lock(&cache->lock);
4860 cache->disk_cache_state = BTRFS_DC_ERROR;
4861 spin_unlock(&cache->lock);
4862
4863 spin_unlock(&cur_trans->dirty_bgs_lock);
4864 btrfs_put_block_group(cache);
4865 btrfs_delayed_refs_rsv_release(fs_info, 1);
4866 spin_lock(&cur_trans->dirty_bgs_lock);
4867 }
4868 spin_unlock(&cur_trans->dirty_bgs_lock);
4869
4870 /*
4871 * Refer to the definition of io_bgs member for details why it's safe
4872 * to use it without any locking
4873 */
4874 while (!list_empty(&cur_trans->io_bgs)) {
4875 cache = list_first_entry(&cur_trans->io_bgs,
4876 struct btrfs_block_group,
4877 io_list);
4878
4879 list_del_init(&cache->io_list);
4880 spin_lock(&cache->lock);
4881 cache->disk_cache_state = BTRFS_DC_ERROR;
4882 spin_unlock(&cache->lock);
4883 btrfs_cleanup_bg_io(cache);
4884 }
4885 }
4886
btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info * fs_info)4887 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4888 {
4889 struct btrfs_root *gang[8];
4890 int i;
4891 int ret;
4892
4893 spin_lock(&fs_info->fs_roots_radix_lock);
4894 while (1) {
4895 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4896 (void **)gang, 0,
4897 ARRAY_SIZE(gang),
4898 BTRFS_ROOT_TRANS_TAG);
4899 if (ret == 0)
4900 break;
4901 for (i = 0; i < ret; i++) {
4902 struct btrfs_root *root = gang[i];
4903
4904 btrfs_qgroup_free_meta_all_pertrans(root);
4905 radix_tree_tag_clear(&fs_info->fs_roots_radix,
4906 (unsigned long)root->root_key.objectid,
4907 BTRFS_ROOT_TRANS_TAG);
4908 }
4909 }
4910 spin_unlock(&fs_info->fs_roots_radix_lock);
4911 }
4912
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4913 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4914 struct btrfs_fs_info *fs_info)
4915 {
4916 struct btrfs_device *dev, *tmp;
4917
4918 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4919 ASSERT(list_empty(&cur_trans->dirty_bgs));
4920 ASSERT(list_empty(&cur_trans->io_bgs));
4921
4922 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4923 post_commit_list) {
4924 list_del_init(&dev->post_commit_list);
4925 }
4926
4927 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4928
4929 cur_trans->state = TRANS_STATE_COMMIT_START;
4930 wake_up(&fs_info->transaction_blocked_wait);
4931
4932 cur_trans->state = TRANS_STATE_UNBLOCKED;
4933 wake_up(&fs_info->transaction_wait);
4934
4935 btrfs_destroy_delayed_inodes(fs_info);
4936
4937 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4938 EXTENT_DIRTY);
4939 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4940
4941 btrfs_free_all_qgroup_pertrans(fs_info);
4942
4943 cur_trans->state =TRANS_STATE_COMPLETED;
4944 wake_up(&cur_trans->commit_wait);
4945 }
4946
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4947 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4948 {
4949 struct btrfs_transaction *t;
4950
4951 mutex_lock(&fs_info->transaction_kthread_mutex);
4952
4953 spin_lock(&fs_info->trans_lock);
4954 while (!list_empty(&fs_info->trans_list)) {
4955 t = list_first_entry(&fs_info->trans_list,
4956 struct btrfs_transaction, list);
4957 if (t->state >= TRANS_STATE_COMMIT_PREP) {
4958 refcount_inc(&t->use_count);
4959 spin_unlock(&fs_info->trans_lock);
4960 btrfs_wait_for_commit(fs_info, t->transid);
4961 btrfs_put_transaction(t);
4962 spin_lock(&fs_info->trans_lock);
4963 continue;
4964 }
4965 if (t == fs_info->running_transaction) {
4966 t->state = TRANS_STATE_COMMIT_DOING;
4967 spin_unlock(&fs_info->trans_lock);
4968 /*
4969 * We wait for 0 num_writers since we don't hold a trans
4970 * handle open currently for this transaction.
4971 */
4972 wait_event(t->writer_wait,
4973 atomic_read(&t->num_writers) == 0);
4974 } else {
4975 spin_unlock(&fs_info->trans_lock);
4976 }
4977 btrfs_cleanup_one_transaction(t, fs_info);
4978
4979 spin_lock(&fs_info->trans_lock);
4980 if (t == fs_info->running_transaction)
4981 fs_info->running_transaction = NULL;
4982 list_del_init(&t->list);
4983 spin_unlock(&fs_info->trans_lock);
4984
4985 btrfs_put_transaction(t);
4986 trace_btrfs_transaction_commit(fs_info);
4987 spin_lock(&fs_info->trans_lock);
4988 }
4989 spin_unlock(&fs_info->trans_lock);
4990 btrfs_destroy_all_ordered_extents(fs_info);
4991 btrfs_destroy_delayed_inodes(fs_info);
4992 btrfs_assert_delayed_root_empty(fs_info);
4993 btrfs_destroy_all_delalloc_inodes(fs_info);
4994 btrfs_drop_all_logs(fs_info);
4995 mutex_unlock(&fs_info->transaction_kthread_mutex);
4996
4997 return 0;
4998 }
4999
btrfs_init_root_free_objectid(struct btrfs_root * root)5000 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5001 {
5002 struct btrfs_path *path;
5003 int ret;
5004 struct extent_buffer *l;
5005 struct btrfs_key search_key;
5006 struct btrfs_key found_key;
5007 int slot;
5008
5009 path = btrfs_alloc_path();
5010 if (!path)
5011 return -ENOMEM;
5012
5013 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5014 search_key.type = -1;
5015 search_key.offset = (u64)-1;
5016 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5017 if (ret < 0)
5018 goto error;
5019 BUG_ON(ret == 0); /* Corruption */
5020 if (path->slots[0] > 0) {
5021 slot = path->slots[0] - 1;
5022 l = path->nodes[0];
5023 btrfs_item_key_to_cpu(l, &found_key, slot);
5024 root->free_objectid = max_t(u64, found_key.objectid + 1,
5025 BTRFS_FIRST_FREE_OBJECTID);
5026 } else {
5027 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5028 }
5029 ret = 0;
5030 error:
5031 btrfs_free_path(path);
5032 return ret;
5033 }
5034
btrfs_get_free_objectid(struct btrfs_root * root,u64 * objectid)5035 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5036 {
5037 int ret;
5038 mutex_lock(&root->objectid_mutex);
5039
5040 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5041 btrfs_warn(root->fs_info,
5042 "the objectid of root %llu reaches its highest value",
5043 root->root_key.objectid);
5044 ret = -ENOSPC;
5045 goto out;
5046 }
5047
5048 *objectid = root->free_objectid++;
5049 ret = 0;
5050 out:
5051 mutex_unlock(&root->objectid_mutex);
5052 return ret;
5053 }
5054