xref: /openbmc/linux/fs/ocfs2/aops.c (revision fac59652993f075d57860769c99045b3ca18780d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/highmem.h>
9 #include <linux/pagemap.h>
10 #include <asm/byteorder.h>
11 #include <linux/swap.h>
12 #include <linux/mpage.h>
13 #include <linux/quotaops.h>
14 #include <linux/blkdev.h>
15 #include <linux/uio.h>
16 #include <linux/mm.h>
17 
18 #include <cluster/masklog.h>
19 
20 #include "ocfs2.h"
21 
22 #include "alloc.h"
23 #include "aops.h"
24 #include "dlmglue.h"
25 #include "extent_map.h"
26 #include "file.h"
27 #include "inode.h"
28 #include "journal.h"
29 #include "suballoc.h"
30 #include "super.h"
31 #include "symlink.h"
32 #include "refcounttree.h"
33 #include "ocfs2_trace.h"
34 
35 #include "buffer_head_io.h"
36 #include "dir.h"
37 #include "namei.h"
38 #include "sysfile.h"
39 
ocfs2_symlink_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
41 				   struct buffer_head *bh_result, int create)
42 {
43 	int err = -EIO;
44 	int status;
45 	struct ocfs2_dinode *fe = NULL;
46 	struct buffer_head *bh = NULL;
47 	struct buffer_head *buffer_cache_bh = NULL;
48 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
49 	void *kaddr;
50 
51 	trace_ocfs2_symlink_get_block(
52 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
53 			(unsigned long long)iblock, bh_result, create);
54 
55 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
56 
57 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
58 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
59 		     (unsigned long long)iblock);
60 		goto bail;
61 	}
62 
63 	status = ocfs2_read_inode_block(inode, &bh);
64 	if (status < 0) {
65 		mlog_errno(status);
66 		goto bail;
67 	}
68 	fe = (struct ocfs2_dinode *) bh->b_data;
69 
70 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
71 						    le32_to_cpu(fe->i_clusters))) {
72 		err = -ENOMEM;
73 		mlog(ML_ERROR, "block offset is outside the allocated size: "
74 		     "%llu\n", (unsigned long long)iblock);
75 		goto bail;
76 	}
77 
78 	/* We don't use the page cache to create symlink data, so if
79 	 * need be, copy it over from the buffer cache. */
80 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
81 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
82 			    iblock;
83 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
84 		if (!buffer_cache_bh) {
85 			err = -ENOMEM;
86 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
87 			goto bail;
88 		}
89 
90 		/* we haven't locked out transactions, so a commit
91 		 * could've happened. Since we've got a reference on
92 		 * the bh, even if it commits while we're doing the
93 		 * copy, the data is still good. */
94 		if (buffer_jbd(buffer_cache_bh)
95 		    && ocfs2_inode_is_new(inode)) {
96 			kaddr = kmap_atomic(bh_result->b_page);
97 			if (!kaddr) {
98 				mlog(ML_ERROR, "couldn't kmap!\n");
99 				goto bail;
100 			}
101 			memcpy(kaddr + (bh_result->b_size * iblock),
102 			       buffer_cache_bh->b_data,
103 			       bh_result->b_size);
104 			kunmap_atomic(kaddr);
105 			set_buffer_uptodate(bh_result);
106 		}
107 		brelse(buffer_cache_bh);
108 	}
109 
110 	map_bh(bh_result, inode->i_sb,
111 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
112 
113 	err = 0;
114 
115 bail:
116 	brelse(bh);
117 
118 	return err;
119 }
120 
ocfs2_lock_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122 		    struct buffer_head *bh_result, int create)
123 {
124 	int ret = 0;
125 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
126 
127 	down_read(&oi->ip_alloc_sem);
128 	ret = ocfs2_get_block(inode, iblock, bh_result, create);
129 	up_read(&oi->ip_alloc_sem);
130 
131 	return ret;
132 }
133 
ocfs2_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)134 int ocfs2_get_block(struct inode *inode, sector_t iblock,
135 		    struct buffer_head *bh_result, int create)
136 {
137 	int err = 0;
138 	unsigned int ext_flags;
139 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140 	u64 p_blkno, count, past_eof;
141 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
142 
143 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144 			      (unsigned long long)iblock, bh_result, create);
145 
146 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148 		     inode, inode->i_ino);
149 
150 	if (S_ISLNK(inode->i_mode)) {
151 		/* this always does I/O for some reason. */
152 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153 		goto bail;
154 	}
155 
156 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
157 					  &ext_flags);
158 	if (err) {
159 		mlog(ML_ERROR, "get_blocks() failed, inode: 0x%p, "
160 		     "block: %llu\n", inode, (unsigned long long)iblock);
161 		goto bail;
162 	}
163 
164 	if (max_blocks < count)
165 		count = max_blocks;
166 
167 	/*
168 	 * ocfs2 never allocates in this function - the only time we
169 	 * need to use BH_New is when we're extending i_size on a file
170 	 * system which doesn't support holes, in which case BH_New
171 	 * allows __block_write_begin() to zero.
172 	 *
173 	 * If we see this on a sparse file system, then a truncate has
174 	 * raced us and removed the cluster. In this case, we clear
175 	 * the buffers dirty and uptodate bits and let the buffer code
176 	 * ignore it as a hole.
177 	 */
178 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
179 		clear_buffer_dirty(bh_result);
180 		clear_buffer_uptodate(bh_result);
181 		goto bail;
182 	}
183 
184 	/* Treat the unwritten extent as a hole for zeroing purposes. */
185 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
186 		map_bh(bh_result, inode->i_sb, p_blkno);
187 
188 	bh_result->b_size = count << inode->i_blkbits;
189 
190 	if (!ocfs2_sparse_alloc(osb)) {
191 		if (p_blkno == 0) {
192 			err = -EIO;
193 			mlog(ML_ERROR,
194 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
195 			     (unsigned long long)iblock,
196 			     (unsigned long long)p_blkno,
197 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
198 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
199 			dump_stack();
200 			goto bail;
201 		}
202 	}
203 
204 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
205 
206 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
207 				  (unsigned long long)past_eof);
208 	if (create && (iblock >= past_eof))
209 		set_buffer_new(bh_result);
210 
211 bail:
212 	if (err < 0)
213 		err = -EIO;
214 
215 	return err;
216 }
217 
ocfs2_read_inline_data(struct inode * inode,struct page * page,struct buffer_head * di_bh)218 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
219 			   struct buffer_head *di_bh)
220 {
221 	void *kaddr;
222 	loff_t size;
223 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
224 
225 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
226 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
227 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
228 		return -EROFS;
229 	}
230 
231 	size = i_size_read(inode);
232 
233 	if (size > PAGE_SIZE ||
234 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
235 		ocfs2_error(inode->i_sb,
236 			    "Inode %llu has with inline data has bad size: %Lu\n",
237 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
238 			    (unsigned long long)size);
239 		return -EROFS;
240 	}
241 
242 	kaddr = kmap_atomic(page);
243 	if (size)
244 		memcpy(kaddr, di->id2.i_data.id_data, size);
245 	/* Clear the remaining part of the page */
246 	memset(kaddr + size, 0, PAGE_SIZE - size);
247 	flush_dcache_page(page);
248 	kunmap_atomic(kaddr);
249 
250 	SetPageUptodate(page);
251 
252 	return 0;
253 }
254 
ocfs2_readpage_inline(struct inode * inode,struct page * page)255 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
256 {
257 	int ret;
258 	struct buffer_head *di_bh = NULL;
259 
260 	BUG_ON(!PageLocked(page));
261 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
262 
263 	ret = ocfs2_read_inode_block(inode, &di_bh);
264 	if (ret) {
265 		mlog_errno(ret);
266 		goto out;
267 	}
268 
269 	ret = ocfs2_read_inline_data(inode, page, di_bh);
270 out:
271 	unlock_page(page);
272 
273 	brelse(di_bh);
274 	return ret;
275 }
276 
ocfs2_read_folio(struct file * file,struct folio * folio)277 static int ocfs2_read_folio(struct file *file, struct folio *folio)
278 {
279 	struct inode *inode = folio->mapping->host;
280 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
281 	loff_t start = folio_pos(folio);
282 	int ret, unlock = 1;
283 
284 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index);
285 
286 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, &folio->page);
287 	if (ret != 0) {
288 		if (ret == AOP_TRUNCATED_PAGE)
289 			unlock = 0;
290 		mlog_errno(ret);
291 		goto out;
292 	}
293 
294 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
295 		/*
296 		 * Unlock the folio and cycle ip_alloc_sem so that we don't
297 		 * busyloop waiting for ip_alloc_sem to unlock
298 		 */
299 		ret = AOP_TRUNCATED_PAGE;
300 		folio_unlock(folio);
301 		unlock = 0;
302 		down_read(&oi->ip_alloc_sem);
303 		up_read(&oi->ip_alloc_sem);
304 		goto out_inode_unlock;
305 	}
306 
307 	/*
308 	 * i_size might have just been updated as we grabed the meta lock.  We
309 	 * might now be discovering a truncate that hit on another node.
310 	 * block_read_full_folio->get_block freaks out if it is asked to read
311 	 * beyond the end of a file, so we check here.  Callers
312 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
313 	 * and notice that the folio they just read isn't needed.
314 	 *
315 	 * XXX sys_readahead() seems to get that wrong?
316 	 */
317 	if (start >= i_size_read(inode)) {
318 		folio_zero_segment(folio, 0, folio_size(folio));
319 		folio_mark_uptodate(folio);
320 		ret = 0;
321 		goto out_alloc;
322 	}
323 
324 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
325 		ret = ocfs2_readpage_inline(inode, &folio->page);
326 	else
327 		ret = block_read_full_folio(folio, ocfs2_get_block);
328 	unlock = 0;
329 
330 out_alloc:
331 	up_read(&oi->ip_alloc_sem);
332 out_inode_unlock:
333 	ocfs2_inode_unlock(inode, 0);
334 out:
335 	if (unlock)
336 		folio_unlock(folio);
337 	return ret;
338 }
339 
340 /*
341  * This is used only for read-ahead. Failures or difficult to handle
342  * situations are safe to ignore.
343  *
344  * Right now, we don't bother with BH_Boundary - in-inode extent lists
345  * are quite large (243 extents on 4k blocks), so most inodes don't
346  * grow out to a tree. If need be, detecting boundary extents could
347  * trivially be added in a future version of ocfs2_get_block().
348  */
ocfs2_readahead(struct readahead_control * rac)349 static void ocfs2_readahead(struct readahead_control *rac)
350 {
351 	int ret;
352 	struct inode *inode = rac->mapping->host;
353 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
354 
355 	/*
356 	 * Use the nonblocking flag for the dlm code to avoid page
357 	 * lock inversion, but don't bother with retrying.
358 	 */
359 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
360 	if (ret)
361 		return;
362 
363 	if (down_read_trylock(&oi->ip_alloc_sem) == 0)
364 		goto out_unlock;
365 
366 	/*
367 	 * Don't bother with inline-data. There isn't anything
368 	 * to read-ahead in that case anyway...
369 	 */
370 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
371 		goto out_up;
372 
373 	/*
374 	 * Check whether a remote node truncated this file - we just
375 	 * drop out in that case as it's not worth handling here.
376 	 */
377 	if (readahead_pos(rac) >= i_size_read(inode))
378 		goto out_up;
379 
380 	mpage_readahead(rac, ocfs2_get_block);
381 
382 out_up:
383 	up_read(&oi->ip_alloc_sem);
384 out_unlock:
385 	ocfs2_inode_unlock(inode, 0);
386 }
387 
388 /* Note: Because we don't support holes, our allocation has
389  * already happened (allocation writes zeros to the file data)
390  * so we don't have to worry about ordered writes in
391  * ocfs2_writepage.
392  *
393  * ->writepage is called during the process of invalidating the page cache
394  * during blocked lock processing.  It can't block on any cluster locks
395  * to during block mapping.  It's relying on the fact that the block
396  * mapping can't have disappeared under the dirty pages that it is
397  * being asked to write back.
398  */
ocfs2_writepage(struct page * page,struct writeback_control * wbc)399 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
400 {
401 	trace_ocfs2_writepage(
402 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
403 		page->index);
404 
405 	return block_write_full_page(page, ocfs2_get_block, wbc);
406 }
407 
408 /* Taken from ext3. We don't necessarily need the full blown
409  * functionality yet, but IMHO it's better to cut and paste the whole
410  * thing so we can avoid introducing our own bugs (and easily pick up
411  * their fixes when they happen) --Mark */
walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))412 int walk_page_buffers(	handle_t *handle,
413 			struct buffer_head *head,
414 			unsigned from,
415 			unsigned to,
416 			int *partial,
417 			int (*fn)(	handle_t *handle,
418 					struct buffer_head *bh))
419 {
420 	struct buffer_head *bh;
421 	unsigned block_start, block_end;
422 	unsigned blocksize = head->b_size;
423 	int err, ret = 0;
424 	struct buffer_head *next;
425 
426 	for (	bh = head, block_start = 0;
427 		ret == 0 && (bh != head || !block_start);
428 	    	block_start = block_end, bh = next)
429 	{
430 		next = bh->b_this_page;
431 		block_end = block_start + blocksize;
432 		if (block_end <= from || block_start >= to) {
433 			if (partial && !buffer_uptodate(bh))
434 				*partial = 1;
435 			continue;
436 		}
437 		err = (*fn)(handle, bh);
438 		if (!ret)
439 			ret = err;
440 	}
441 	return ret;
442 }
443 
ocfs2_bmap(struct address_space * mapping,sector_t block)444 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
445 {
446 	sector_t status;
447 	u64 p_blkno = 0;
448 	int err = 0;
449 	struct inode *inode = mapping->host;
450 
451 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
452 			 (unsigned long long)block);
453 
454 	/*
455 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
456 	 * bypasseѕ the file system for actual I/O.  We really can't allow
457 	 * that on refcounted inodes, so we have to skip out here.  And yes,
458 	 * 0 is the magic code for a bmap error..
459 	 */
460 	if (ocfs2_is_refcount_inode(inode))
461 		return 0;
462 
463 	/* We don't need to lock journal system files, since they aren't
464 	 * accessed concurrently from multiple nodes.
465 	 */
466 	if (!INODE_JOURNAL(inode)) {
467 		err = ocfs2_inode_lock(inode, NULL, 0);
468 		if (err) {
469 			if (err != -ENOENT)
470 				mlog_errno(err);
471 			goto bail;
472 		}
473 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
474 	}
475 
476 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
477 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
478 						  NULL);
479 
480 	if (!INODE_JOURNAL(inode)) {
481 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
482 		ocfs2_inode_unlock(inode, 0);
483 	}
484 
485 	if (err) {
486 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
487 		     (unsigned long long)block);
488 		mlog_errno(err);
489 		goto bail;
490 	}
491 
492 bail:
493 	status = err ? 0 : p_blkno;
494 
495 	return status;
496 }
497 
ocfs2_release_folio(struct folio * folio,gfp_t wait)498 static bool ocfs2_release_folio(struct folio *folio, gfp_t wait)
499 {
500 	if (!folio_buffers(folio))
501 		return false;
502 	return try_to_free_buffers(folio);
503 }
504 
ocfs2_figure_cluster_boundaries(struct ocfs2_super * osb,u32 cpos,unsigned int * start,unsigned int * end)505 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
506 					    u32 cpos,
507 					    unsigned int *start,
508 					    unsigned int *end)
509 {
510 	unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
511 
512 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
513 		unsigned int cpp;
514 
515 		cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
516 
517 		cluster_start = cpos % cpp;
518 		cluster_start = cluster_start << osb->s_clustersize_bits;
519 
520 		cluster_end = cluster_start + osb->s_clustersize;
521 	}
522 
523 	BUG_ON(cluster_start > PAGE_SIZE);
524 	BUG_ON(cluster_end > PAGE_SIZE);
525 
526 	if (start)
527 		*start = cluster_start;
528 	if (end)
529 		*end = cluster_end;
530 }
531 
532 /*
533  * 'from' and 'to' are the region in the page to avoid zeroing.
534  *
535  * If pagesize > clustersize, this function will avoid zeroing outside
536  * of the cluster boundary.
537  *
538  * from == to == 0 is code for "zero the entire cluster region"
539  */
ocfs2_clear_page_regions(struct page * page,struct ocfs2_super * osb,u32 cpos,unsigned from,unsigned to)540 static void ocfs2_clear_page_regions(struct page *page,
541 				     struct ocfs2_super *osb, u32 cpos,
542 				     unsigned from, unsigned to)
543 {
544 	void *kaddr;
545 	unsigned int cluster_start, cluster_end;
546 
547 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
548 
549 	kaddr = kmap_atomic(page);
550 
551 	if (from || to) {
552 		if (from > cluster_start)
553 			memset(kaddr + cluster_start, 0, from - cluster_start);
554 		if (to < cluster_end)
555 			memset(kaddr + to, 0, cluster_end - to);
556 	} else {
557 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
558 	}
559 
560 	kunmap_atomic(kaddr);
561 }
562 
563 /*
564  * Nonsparse file systems fully allocate before we get to the write
565  * code. This prevents ocfs2_write() from tagging the write as an
566  * allocating one, which means ocfs2_map_page_blocks() might try to
567  * read-in the blocks at the tail of our file. Avoid reading them by
568  * testing i_size against each block offset.
569  */
ocfs2_should_read_blk(struct inode * inode,struct page * page,unsigned int block_start)570 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
571 				 unsigned int block_start)
572 {
573 	u64 offset = page_offset(page) + block_start;
574 
575 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
576 		return 1;
577 
578 	if (i_size_read(inode) > offset)
579 		return 1;
580 
581 	return 0;
582 }
583 
584 /*
585  * Some of this taken from __block_write_begin(). We already have our
586  * mapping by now though, and the entire write will be allocating or
587  * it won't, so not much need to use BH_New.
588  *
589  * This will also skip zeroing, which is handled externally.
590  */
ocfs2_map_page_blocks(struct page * page,u64 * p_blkno,struct inode * inode,unsigned int from,unsigned int to,int new)591 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
592 			  struct inode *inode, unsigned int from,
593 			  unsigned int to, int new)
594 {
595 	int ret = 0;
596 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
597 	unsigned int block_end, block_start;
598 	unsigned int bsize = i_blocksize(inode);
599 
600 	if (!page_has_buffers(page))
601 		create_empty_buffers(page, bsize, 0);
602 
603 	head = page_buffers(page);
604 	for (bh = head, block_start = 0; bh != head || !block_start;
605 	     bh = bh->b_this_page, block_start += bsize) {
606 		block_end = block_start + bsize;
607 
608 		clear_buffer_new(bh);
609 
610 		/*
611 		 * Ignore blocks outside of our i/o range -
612 		 * they may belong to unallocated clusters.
613 		 */
614 		if (block_start >= to || block_end <= from) {
615 			if (PageUptodate(page))
616 				set_buffer_uptodate(bh);
617 			continue;
618 		}
619 
620 		/*
621 		 * For an allocating write with cluster size >= page
622 		 * size, we always write the entire page.
623 		 */
624 		if (new)
625 			set_buffer_new(bh);
626 
627 		if (!buffer_mapped(bh)) {
628 			map_bh(bh, inode->i_sb, *p_blkno);
629 			clean_bdev_bh_alias(bh);
630 		}
631 
632 		if (PageUptodate(page)) {
633 			set_buffer_uptodate(bh);
634 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
635 			   !buffer_new(bh) &&
636 			   ocfs2_should_read_blk(inode, page, block_start) &&
637 			   (block_start < from || block_end > to)) {
638 			bh_read_nowait(bh, 0);
639 			*wait_bh++=bh;
640 		}
641 
642 		*p_blkno = *p_blkno + 1;
643 	}
644 
645 	/*
646 	 * If we issued read requests - let them complete.
647 	 */
648 	while(wait_bh > wait) {
649 		wait_on_buffer(*--wait_bh);
650 		if (!buffer_uptodate(*wait_bh))
651 			ret = -EIO;
652 	}
653 
654 	if (ret == 0 || !new)
655 		return ret;
656 
657 	/*
658 	 * If we get -EIO above, zero out any newly allocated blocks
659 	 * to avoid exposing stale data.
660 	 */
661 	bh = head;
662 	block_start = 0;
663 	do {
664 		block_end = block_start + bsize;
665 		if (block_end <= from)
666 			goto next_bh;
667 		if (block_start >= to)
668 			break;
669 
670 		zero_user(page, block_start, bh->b_size);
671 		set_buffer_uptodate(bh);
672 		mark_buffer_dirty(bh);
673 
674 next_bh:
675 		block_start = block_end;
676 		bh = bh->b_this_page;
677 	} while (bh != head);
678 
679 	return ret;
680 }
681 
682 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
683 #define OCFS2_MAX_CTXT_PAGES	1
684 #else
685 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
686 #endif
687 
688 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
689 
690 struct ocfs2_unwritten_extent {
691 	struct list_head	ue_node;
692 	struct list_head	ue_ip_node;
693 	u32			ue_cpos;
694 	u32			ue_phys;
695 };
696 
697 /*
698  * Describe the state of a single cluster to be written to.
699  */
700 struct ocfs2_write_cluster_desc {
701 	u32		c_cpos;
702 	u32		c_phys;
703 	/*
704 	 * Give this a unique field because c_phys eventually gets
705 	 * filled.
706 	 */
707 	unsigned	c_new;
708 	unsigned	c_clear_unwritten;
709 	unsigned	c_needs_zero;
710 };
711 
712 struct ocfs2_write_ctxt {
713 	/* Logical cluster position / len of write */
714 	u32				w_cpos;
715 	u32				w_clen;
716 
717 	/* First cluster allocated in a nonsparse extend */
718 	u32				w_first_new_cpos;
719 
720 	/* Type of caller. Must be one of buffer, mmap, direct.  */
721 	ocfs2_write_type_t		w_type;
722 
723 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
724 
725 	/*
726 	 * This is true if page_size > cluster_size.
727 	 *
728 	 * It triggers a set of special cases during write which might
729 	 * have to deal with allocating writes to partial pages.
730 	 */
731 	unsigned int			w_large_pages;
732 
733 	/*
734 	 * Pages involved in this write.
735 	 *
736 	 * w_target_page is the page being written to by the user.
737 	 *
738 	 * w_pages is an array of pages which always contains
739 	 * w_target_page, and in the case of an allocating write with
740 	 * page_size < cluster size, it will contain zero'd and mapped
741 	 * pages adjacent to w_target_page which need to be written
742 	 * out in so that future reads from that region will get
743 	 * zero's.
744 	 */
745 	unsigned int			w_num_pages;
746 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
747 	struct page			*w_target_page;
748 
749 	/*
750 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
751 	 * against w_target_page in ocfs2_write_end_nolock.
752 	 */
753 	unsigned int			w_target_locked:1;
754 
755 	/*
756 	 * ocfs2_write_end() uses this to know what the real range to
757 	 * write in the target should be.
758 	 */
759 	unsigned int			w_target_from;
760 	unsigned int			w_target_to;
761 
762 	/*
763 	 * We could use journal_current_handle() but this is cleaner,
764 	 * IMHO -Mark
765 	 */
766 	handle_t			*w_handle;
767 
768 	struct buffer_head		*w_di_bh;
769 
770 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
771 
772 	struct list_head		w_unwritten_list;
773 	unsigned int			w_unwritten_count;
774 };
775 
ocfs2_unlock_and_free_pages(struct page ** pages,int num_pages)776 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
777 {
778 	int i;
779 
780 	for(i = 0; i < num_pages; i++) {
781 		if (pages[i]) {
782 			unlock_page(pages[i]);
783 			mark_page_accessed(pages[i]);
784 			put_page(pages[i]);
785 		}
786 	}
787 }
788 
ocfs2_unlock_pages(struct ocfs2_write_ctxt * wc)789 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
790 {
791 	int i;
792 
793 	/*
794 	 * w_target_locked is only set to true in the page_mkwrite() case.
795 	 * The intent is to allow us to lock the target page from write_begin()
796 	 * to write_end(). The caller must hold a ref on w_target_page.
797 	 */
798 	if (wc->w_target_locked) {
799 		BUG_ON(!wc->w_target_page);
800 		for (i = 0; i < wc->w_num_pages; i++) {
801 			if (wc->w_target_page == wc->w_pages[i]) {
802 				wc->w_pages[i] = NULL;
803 				break;
804 			}
805 		}
806 		mark_page_accessed(wc->w_target_page);
807 		put_page(wc->w_target_page);
808 	}
809 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
810 }
811 
ocfs2_free_unwritten_list(struct inode * inode,struct list_head * head)812 static void ocfs2_free_unwritten_list(struct inode *inode,
813 				 struct list_head *head)
814 {
815 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
816 	struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
817 
818 	list_for_each_entry_safe(ue, tmp, head, ue_node) {
819 		list_del(&ue->ue_node);
820 		spin_lock(&oi->ip_lock);
821 		list_del(&ue->ue_ip_node);
822 		spin_unlock(&oi->ip_lock);
823 		kfree(ue);
824 	}
825 }
826 
ocfs2_free_write_ctxt(struct inode * inode,struct ocfs2_write_ctxt * wc)827 static void ocfs2_free_write_ctxt(struct inode *inode,
828 				  struct ocfs2_write_ctxt *wc)
829 {
830 	ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
831 	ocfs2_unlock_pages(wc);
832 	brelse(wc->w_di_bh);
833 	kfree(wc);
834 }
835 
ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt ** wcp,struct ocfs2_super * osb,loff_t pos,unsigned len,ocfs2_write_type_t type,struct buffer_head * di_bh)836 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
837 				  struct ocfs2_super *osb, loff_t pos,
838 				  unsigned len, ocfs2_write_type_t type,
839 				  struct buffer_head *di_bh)
840 {
841 	u32 cend;
842 	struct ocfs2_write_ctxt *wc;
843 
844 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
845 	if (!wc)
846 		return -ENOMEM;
847 
848 	wc->w_cpos = pos >> osb->s_clustersize_bits;
849 	wc->w_first_new_cpos = UINT_MAX;
850 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
851 	wc->w_clen = cend - wc->w_cpos + 1;
852 	get_bh(di_bh);
853 	wc->w_di_bh = di_bh;
854 	wc->w_type = type;
855 
856 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
857 		wc->w_large_pages = 1;
858 	else
859 		wc->w_large_pages = 0;
860 
861 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
862 	INIT_LIST_HEAD(&wc->w_unwritten_list);
863 
864 	*wcp = wc;
865 
866 	return 0;
867 }
868 
869 /*
870  * If a page has any new buffers, zero them out here, and mark them uptodate
871  * and dirty so they'll be written out (in order to prevent uninitialised
872  * block data from leaking). And clear the new bit.
873  */
ocfs2_zero_new_buffers(struct page * page,unsigned from,unsigned to)874 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
875 {
876 	unsigned int block_start, block_end;
877 	struct buffer_head *head, *bh;
878 
879 	BUG_ON(!PageLocked(page));
880 	if (!page_has_buffers(page))
881 		return;
882 
883 	bh = head = page_buffers(page);
884 	block_start = 0;
885 	do {
886 		block_end = block_start + bh->b_size;
887 
888 		if (buffer_new(bh)) {
889 			if (block_end > from && block_start < to) {
890 				if (!PageUptodate(page)) {
891 					unsigned start, end;
892 
893 					start = max(from, block_start);
894 					end = min(to, block_end);
895 
896 					zero_user_segment(page, start, end);
897 					set_buffer_uptodate(bh);
898 				}
899 
900 				clear_buffer_new(bh);
901 				mark_buffer_dirty(bh);
902 			}
903 		}
904 
905 		block_start = block_end;
906 		bh = bh->b_this_page;
907 	} while (bh != head);
908 }
909 
910 /*
911  * Only called when we have a failure during allocating write to write
912  * zero's to the newly allocated region.
913  */
ocfs2_write_failure(struct inode * inode,struct ocfs2_write_ctxt * wc,loff_t user_pos,unsigned user_len)914 static void ocfs2_write_failure(struct inode *inode,
915 				struct ocfs2_write_ctxt *wc,
916 				loff_t user_pos, unsigned user_len)
917 {
918 	int i;
919 	unsigned from = user_pos & (PAGE_SIZE - 1),
920 		to = user_pos + user_len;
921 	struct page *tmppage;
922 
923 	if (wc->w_target_page)
924 		ocfs2_zero_new_buffers(wc->w_target_page, from, to);
925 
926 	for(i = 0; i < wc->w_num_pages; i++) {
927 		tmppage = wc->w_pages[i];
928 
929 		if (tmppage && page_has_buffers(tmppage)) {
930 			if (ocfs2_should_order_data(inode))
931 				ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
932 							   user_pos, user_len);
933 
934 			block_commit_write(tmppage, from, to);
935 		}
936 	}
937 }
938 
ocfs2_prepare_page_for_write(struct inode * inode,u64 * p_blkno,struct ocfs2_write_ctxt * wc,struct page * page,u32 cpos,loff_t user_pos,unsigned user_len,int new)939 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
940 					struct ocfs2_write_ctxt *wc,
941 					struct page *page, u32 cpos,
942 					loff_t user_pos, unsigned user_len,
943 					int new)
944 {
945 	int ret;
946 	unsigned int map_from = 0, map_to = 0;
947 	unsigned int cluster_start, cluster_end;
948 	unsigned int user_data_from = 0, user_data_to = 0;
949 
950 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
951 					&cluster_start, &cluster_end);
952 
953 	/* treat the write as new if the a hole/lseek spanned across
954 	 * the page boundary.
955 	 */
956 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
957 			(page_offset(page) <= user_pos));
958 
959 	if (page == wc->w_target_page) {
960 		map_from = user_pos & (PAGE_SIZE - 1);
961 		map_to = map_from + user_len;
962 
963 		if (new)
964 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
965 						    cluster_start, cluster_end,
966 						    new);
967 		else
968 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
969 						    map_from, map_to, new);
970 		if (ret) {
971 			mlog_errno(ret);
972 			goto out;
973 		}
974 
975 		user_data_from = map_from;
976 		user_data_to = map_to;
977 		if (new) {
978 			map_from = cluster_start;
979 			map_to = cluster_end;
980 		}
981 	} else {
982 		/*
983 		 * If we haven't allocated the new page yet, we
984 		 * shouldn't be writing it out without copying user
985 		 * data. This is likely a math error from the caller.
986 		 */
987 		BUG_ON(!new);
988 
989 		map_from = cluster_start;
990 		map_to = cluster_end;
991 
992 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
993 					    cluster_start, cluster_end, new);
994 		if (ret) {
995 			mlog_errno(ret);
996 			goto out;
997 		}
998 	}
999 
1000 	/*
1001 	 * Parts of newly allocated pages need to be zero'd.
1002 	 *
1003 	 * Above, we have also rewritten 'to' and 'from' - as far as
1004 	 * the rest of the function is concerned, the entire cluster
1005 	 * range inside of a page needs to be written.
1006 	 *
1007 	 * We can skip this if the page is up to date - it's already
1008 	 * been zero'd from being read in as a hole.
1009 	 */
1010 	if (new && !PageUptodate(page))
1011 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1012 					 cpos, user_data_from, user_data_to);
1013 
1014 	flush_dcache_page(page);
1015 
1016 out:
1017 	return ret;
1018 }
1019 
1020 /*
1021  * This function will only grab one clusters worth of pages.
1022  */
ocfs2_grab_pages_for_write(struct address_space * mapping,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len,int new,struct page * mmap_page)1023 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1024 				      struct ocfs2_write_ctxt *wc,
1025 				      u32 cpos, loff_t user_pos,
1026 				      unsigned user_len, int new,
1027 				      struct page *mmap_page)
1028 {
1029 	int ret = 0, i;
1030 	unsigned long start, target_index, end_index, index;
1031 	struct inode *inode = mapping->host;
1032 	loff_t last_byte;
1033 
1034 	target_index = user_pos >> PAGE_SHIFT;
1035 
1036 	/*
1037 	 * Figure out how many pages we'll be manipulating here. For
1038 	 * non allocating write, we just change the one
1039 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1040 	 * writing past i_size, we only need enough pages to cover the
1041 	 * last page of the write.
1042 	 */
1043 	if (new) {
1044 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1045 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1046 		/*
1047 		 * We need the index *past* the last page we could possibly
1048 		 * touch.  This is the page past the end of the write or
1049 		 * i_size, whichever is greater.
1050 		 */
1051 		last_byte = max(user_pos + user_len, i_size_read(inode));
1052 		BUG_ON(last_byte < 1);
1053 		end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1054 		if ((start + wc->w_num_pages) > end_index)
1055 			wc->w_num_pages = end_index - start;
1056 	} else {
1057 		wc->w_num_pages = 1;
1058 		start = target_index;
1059 	}
1060 	end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1061 
1062 	for(i = 0; i < wc->w_num_pages; i++) {
1063 		index = start + i;
1064 
1065 		if (index >= target_index && index <= end_index &&
1066 		    wc->w_type == OCFS2_WRITE_MMAP) {
1067 			/*
1068 			 * ocfs2_pagemkwrite() is a little different
1069 			 * and wants us to directly use the page
1070 			 * passed in.
1071 			 */
1072 			lock_page(mmap_page);
1073 
1074 			/* Exit and let the caller retry */
1075 			if (mmap_page->mapping != mapping) {
1076 				WARN_ON(mmap_page->mapping);
1077 				unlock_page(mmap_page);
1078 				ret = -EAGAIN;
1079 				goto out;
1080 			}
1081 
1082 			get_page(mmap_page);
1083 			wc->w_pages[i] = mmap_page;
1084 			wc->w_target_locked = true;
1085 		} else if (index >= target_index && index <= end_index &&
1086 			   wc->w_type == OCFS2_WRITE_DIRECT) {
1087 			/* Direct write has no mapping page. */
1088 			wc->w_pages[i] = NULL;
1089 			continue;
1090 		} else {
1091 			wc->w_pages[i] = find_or_create_page(mapping, index,
1092 							     GFP_NOFS);
1093 			if (!wc->w_pages[i]) {
1094 				ret = -ENOMEM;
1095 				mlog_errno(ret);
1096 				goto out;
1097 			}
1098 		}
1099 		wait_for_stable_page(wc->w_pages[i]);
1100 
1101 		if (index == target_index)
1102 			wc->w_target_page = wc->w_pages[i];
1103 	}
1104 out:
1105 	if (ret)
1106 		wc->w_target_locked = false;
1107 	return ret;
1108 }
1109 
1110 /*
1111  * Prepare a single cluster for write one cluster into the file.
1112  */
ocfs2_write_cluster(struct address_space * mapping,u32 * phys,unsigned int new,unsigned int clear_unwritten,unsigned int should_zero,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len)1113 static int ocfs2_write_cluster(struct address_space *mapping,
1114 			       u32 *phys, unsigned int new,
1115 			       unsigned int clear_unwritten,
1116 			       unsigned int should_zero,
1117 			       struct ocfs2_alloc_context *data_ac,
1118 			       struct ocfs2_alloc_context *meta_ac,
1119 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1120 			       loff_t user_pos, unsigned user_len)
1121 {
1122 	int ret, i;
1123 	u64 p_blkno;
1124 	struct inode *inode = mapping->host;
1125 	struct ocfs2_extent_tree et;
1126 	int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1127 
1128 	if (new) {
1129 		u32 tmp_pos;
1130 
1131 		/*
1132 		 * This is safe to call with the page locks - it won't take
1133 		 * any additional semaphores or cluster locks.
1134 		 */
1135 		tmp_pos = cpos;
1136 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1137 					   &tmp_pos, 1, !clear_unwritten,
1138 					   wc->w_di_bh, wc->w_handle,
1139 					   data_ac, meta_ac, NULL);
1140 		/*
1141 		 * This shouldn't happen because we must have already
1142 		 * calculated the correct meta data allocation required. The
1143 		 * internal tree allocation code should know how to increase
1144 		 * transaction credits itself.
1145 		 *
1146 		 * If need be, we could handle -EAGAIN for a
1147 		 * RESTART_TRANS here.
1148 		 */
1149 		mlog_bug_on_msg(ret == -EAGAIN,
1150 				"Inode %llu: EAGAIN return during allocation.\n",
1151 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1152 		if (ret < 0) {
1153 			mlog_errno(ret);
1154 			goto out;
1155 		}
1156 	} else if (clear_unwritten) {
1157 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1158 					      wc->w_di_bh);
1159 		ret = ocfs2_mark_extent_written(inode, &et,
1160 						wc->w_handle, cpos, 1, *phys,
1161 						meta_ac, &wc->w_dealloc);
1162 		if (ret < 0) {
1163 			mlog_errno(ret);
1164 			goto out;
1165 		}
1166 	}
1167 
1168 	/*
1169 	 * The only reason this should fail is due to an inability to
1170 	 * find the extent added.
1171 	 */
1172 	ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1173 	if (ret < 0) {
1174 		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1175 			    "at logical cluster %u",
1176 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1177 		goto out;
1178 	}
1179 
1180 	BUG_ON(*phys == 0);
1181 
1182 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1183 	if (!should_zero)
1184 		p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1185 
1186 	for(i = 0; i < wc->w_num_pages; i++) {
1187 		int tmpret;
1188 
1189 		/* This is the direct io target page. */
1190 		if (wc->w_pages[i] == NULL) {
1191 			p_blkno++;
1192 			continue;
1193 		}
1194 
1195 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1196 						      wc->w_pages[i], cpos,
1197 						      user_pos, user_len,
1198 						      should_zero);
1199 		if (tmpret) {
1200 			mlog_errno(tmpret);
1201 			if (ret == 0)
1202 				ret = tmpret;
1203 		}
1204 	}
1205 
1206 	/*
1207 	 * We only have cleanup to do in case of allocating write.
1208 	 */
1209 	if (ret && new)
1210 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1211 
1212 out:
1213 
1214 	return ret;
1215 }
1216 
ocfs2_write_cluster_by_desc(struct address_space * mapping,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len)1217 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1218 				       struct ocfs2_alloc_context *data_ac,
1219 				       struct ocfs2_alloc_context *meta_ac,
1220 				       struct ocfs2_write_ctxt *wc,
1221 				       loff_t pos, unsigned len)
1222 {
1223 	int ret, i;
1224 	loff_t cluster_off;
1225 	unsigned int local_len = len;
1226 	struct ocfs2_write_cluster_desc *desc;
1227 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1228 
1229 	for (i = 0; i < wc->w_clen; i++) {
1230 		desc = &wc->w_desc[i];
1231 
1232 		/*
1233 		 * We have to make sure that the total write passed in
1234 		 * doesn't extend past a single cluster.
1235 		 */
1236 		local_len = len;
1237 		cluster_off = pos & (osb->s_clustersize - 1);
1238 		if ((cluster_off + local_len) > osb->s_clustersize)
1239 			local_len = osb->s_clustersize - cluster_off;
1240 
1241 		ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1242 					  desc->c_new,
1243 					  desc->c_clear_unwritten,
1244 					  desc->c_needs_zero,
1245 					  data_ac, meta_ac,
1246 					  wc, desc->c_cpos, pos, local_len);
1247 		if (ret) {
1248 			mlog_errno(ret);
1249 			goto out;
1250 		}
1251 
1252 		len -= local_len;
1253 		pos += local_len;
1254 	}
1255 
1256 	ret = 0;
1257 out:
1258 	return ret;
1259 }
1260 
1261 /*
1262  * ocfs2_write_end() wants to know which parts of the target page it
1263  * should complete the write on. It's easiest to compute them ahead of
1264  * time when a more complete view of the write is available.
1265  */
ocfs2_set_target_boundaries(struct ocfs2_super * osb,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len,int alloc)1266 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1267 					struct ocfs2_write_ctxt *wc,
1268 					loff_t pos, unsigned len, int alloc)
1269 {
1270 	struct ocfs2_write_cluster_desc *desc;
1271 
1272 	wc->w_target_from = pos & (PAGE_SIZE - 1);
1273 	wc->w_target_to = wc->w_target_from + len;
1274 
1275 	if (alloc == 0)
1276 		return;
1277 
1278 	/*
1279 	 * Allocating write - we may have different boundaries based
1280 	 * on page size and cluster size.
1281 	 *
1282 	 * NOTE: We can no longer compute one value from the other as
1283 	 * the actual write length and user provided length may be
1284 	 * different.
1285 	 */
1286 
1287 	if (wc->w_large_pages) {
1288 		/*
1289 		 * We only care about the 1st and last cluster within
1290 		 * our range and whether they should be zero'd or not. Either
1291 		 * value may be extended out to the start/end of a
1292 		 * newly allocated cluster.
1293 		 */
1294 		desc = &wc->w_desc[0];
1295 		if (desc->c_needs_zero)
1296 			ocfs2_figure_cluster_boundaries(osb,
1297 							desc->c_cpos,
1298 							&wc->w_target_from,
1299 							NULL);
1300 
1301 		desc = &wc->w_desc[wc->w_clen - 1];
1302 		if (desc->c_needs_zero)
1303 			ocfs2_figure_cluster_boundaries(osb,
1304 							desc->c_cpos,
1305 							NULL,
1306 							&wc->w_target_to);
1307 	} else {
1308 		wc->w_target_from = 0;
1309 		wc->w_target_to = PAGE_SIZE;
1310 	}
1311 }
1312 
1313 /*
1314  * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1315  * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1316  * by the direct io procedure.
1317  * If this is a new extent that allocated by direct io, we should mark it in
1318  * the ip_unwritten_list.
1319  */
ocfs2_unwritten_check(struct inode * inode,struct ocfs2_write_ctxt * wc,struct ocfs2_write_cluster_desc * desc)1320 static int ocfs2_unwritten_check(struct inode *inode,
1321 				 struct ocfs2_write_ctxt *wc,
1322 				 struct ocfs2_write_cluster_desc *desc)
1323 {
1324 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1325 	struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1326 	int ret = 0;
1327 
1328 	if (!desc->c_needs_zero)
1329 		return 0;
1330 
1331 retry:
1332 	spin_lock(&oi->ip_lock);
1333 	/* Needs not to zero no metter buffer or direct. The one who is zero
1334 	 * the cluster is doing zero. And he will clear unwritten after all
1335 	 * cluster io finished. */
1336 	list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1337 		if (desc->c_cpos == ue->ue_cpos) {
1338 			BUG_ON(desc->c_new);
1339 			desc->c_needs_zero = 0;
1340 			desc->c_clear_unwritten = 0;
1341 			goto unlock;
1342 		}
1343 	}
1344 
1345 	if (wc->w_type != OCFS2_WRITE_DIRECT)
1346 		goto unlock;
1347 
1348 	if (new == NULL) {
1349 		spin_unlock(&oi->ip_lock);
1350 		new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1351 			     GFP_NOFS);
1352 		if (new == NULL) {
1353 			ret = -ENOMEM;
1354 			goto out;
1355 		}
1356 		goto retry;
1357 	}
1358 	/* This direct write will doing zero. */
1359 	new->ue_cpos = desc->c_cpos;
1360 	new->ue_phys = desc->c_phys;
1361 	desc->c_clear_unwritten = 0;
1362 	list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1363 	list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1364 	wc->w_unwritten_count++;
1365 	new = NULL;
1366 unlock:
1367 	spin_unlock(&oi->ip_lock);
1368 out:
1369 	kfree(new);
1370 	return ret;
1371 }
1372 
1373 /*
1374  * Populate each single-cluster write descriptor in the write context
1375  * with information about the i/o to be done.
1376  *
1377  * Returns the number of clusters that will have to be allocated, as
1378  * well as a worst case estimate of the number of extent records that
1379  * would have to be created during a write to an unwritten region.
1380  */
ocfs2_populate_write_desc(struct inode * inode,struct ocfs2_write_ctxt * wc,unsigned int * clusters_to_alloc,unsigned int * extents_to_split)1381 static int ocfs2_populate_write_desc(struct inode *inode,
1382 				     struct ocfs2_write_ctxt *wc,
1383 				     unsigned int *clusters_to_alloc,
1384 				     unsigned int *extents_to_split)
1385 {
1386 	int ret;
1387 	struct ocfs2_write_cluster_desc *desc;
1388 	unsigned int num_clusters = 0;
1389 	unsigned int ext_flags = 0;
1390 	u32 phys = 0;
1391 	int i;
1392 
1393 	*clusters_to_alloc = 0;
1394 	*extents_to_split = 0;
1395 
1396 	for (i = 0; i < wc->w_clen; i++) {
1397 		desc = &wc->w_desc[i];
1398 		desc->c_cpos = wc->w_cpos + i;
1399 
1400 		if (num_clusters == 0) {
1401 			/*
1402 			 * Need to look up the next extent record.
1403 			 */
1404 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1405 						 &num_clusters, &ext_flags);
1406 			if (ret) {
1407 				mlog_errno(ret);
1408 				goto out;
1409 			}
1410 
1411 			/* We should already CoW the refcountd extent. */
1412 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1413 
1414 			/*
1415 			 * Assume worst case - that we're writing in
1416 			 * the middle of the extent.
1417 			 *
1418 			 * We can assume that the write proceeds from
1419 			 * left to right, in which case the extent
1420 			 * insert code is smart enough to coalesce the
1421 			 * next splits into the previous records created.
1422 			 */
1423 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1424 				*extents_to_split = *extents_to_split + 2;
1425 		} else if (phys) {
1426 			/*
1427 			 * Only increment phys if it doesn't describe
1428 			 * a hole.
1429 			 */
1430 			phys++;
1431 		}
1432 
1433 		/*
1434 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1435 		 * file that got extended.  w_first_new_cpos tells us
1436 		 * where the newly allocated clusters are so we can
1437 		 * zero them.
1438 		 */
1439 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1440 			BUG_ON(phys == 0);
1441 			desc->c_needs_zero = 1;
1442 		}
1443 
1444 		desc->c_phys = phys;
1445 		if (phys == 0) {
1446 			desc->c_new = 1;
1447 			desc->c_needs_zero = 1;
1448 			desc->c_clear_unwritten = 1;
1449 			*clusters_to_alloc = *clusters_to_alloc + 1;
1450 		}
1451 
1452 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1453 			desc->c_clear_unwritten = 1;
1454 			desc->c_needs_zero = 1;
1455 		}
1456 
1457 		ret = ocfs2_unwritten_check(inode, wc, desc);
1458 		if (ret) {
1459 			mlog_errno(ret);
1460 			goto out;
1461 		}
1462 
1463 		num_clusters--;
1464 	}
1465 
1466 	ret = 0;
1467 out:
1468 	return ret;
1469 }
1470 
ocfs2_write_begin_inline(struct address_space * mapping,struct inode * inode,struct ocfs2_write_ctxt * wc)1471 static int ocfs2_write_begin_inline(struct address_space *mapping,
1472 				    struct inode *inode,
1473 				    struct ocfs2_write_ctxt *wc)
1474 {
1475 	int ret;
1476 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1477 	struct page *page;
1478 	handle_t *handle;
1479 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1480 
1481 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1482 	if (IS_ERR(handle)) {
1483 		ret = PTR_ERR(handle);
1484 		mlog_errno(ret);
1485 		goto out;
1486 	}
1487 
1488 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1489 	if (!page) {
1490 		ocfs2_commit_trans(osb, handle);
1491 		ret = -ENOMEM;
1492 		mlog_errno(ret);
1493 		goto out;
1494 	}
1495 	/*
1496 	 * If we don't set w_num_pages then this page won't get unlocked
1497 	 * and freed on cleanup of the write context.
1498 	 */
1499 	wc->w_pages[0] = wc->w_target_page = page;
1500 	wc->w_num_pages = 1;
1501 
1502 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1503 				      OCFS2_JOURNAL_ACCESS_WRITE);
1504 	if (ret) {
1505 		ocfs2_commit_trans(osb, handle);
1506 
1507 		mlog_errno(ret);
1508 		goto out;
1509 	}
1510 
1511 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1512 		ocfs2_set_inode_data_inline(inode, di);
1513 
1514 	if (!PageUptodate(page)) {
1515 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1516 		if (ret) {
1517 			ocfs2_commit_trans(osb, handle);
1518 
1519 			goto out;
1520 		}
1521 	}
1522 
1523 	wc->w_handle = handle;
1524 out:
1525 	return ret;
1526 }
1527 
ocfs2_size_fits_inline_data(struct buffer_head * di_bh,u64 new_size)1528 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1529 {
1530 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1531 
1532 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1533 		return 1;
1534 	return 0;
1535 }
1536 
ocfs2_try_to_write_inline_data(struct address_space * mapping,struct inode * inode,loff_t pos,unsigned len,struct page * mmap_page,struct ocfs2_write_ctxt * wc)1537 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1538 					  struct inode *inode, loff_t pos,
1539 					  unsigned len, struct page *mmap_page,
1540 					  struct ocfs2_write_ctxt *wc)
1541 {
1542 	int ret, written = 0;
1543 	loff_t end = pos + len;
1544 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1545 	struct ocfs2_dinode *di = NULL;
1546 
1547 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1548 					     len, (unsigned long long)pos,
1549 					     oi->ip_dyn_features);
1550 
1551 	/*
1552 	 * Handle inodes which already have inline data 1st.
1553 	 */
1554 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1555 		if (mmap_page == NULL &&
1556 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1557 			goto do_inline_write;
1558 
1559 		/*
1560 		 * The write won't fit - we have to give this inode an
1561 		 * inline extent list now.
1562 		 */
1563 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1564 		if (ret)
1565 			mlog_errno(ret);
1566 		goto out;
1567 	}
1568 
1569 	/*
1570 	 * Check whether the inode can accept inline data.
1571 	 */
1572 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1573 		return 0;
1574 
1575 	/*
1576 	 * Check whether the write can fit.
1577 	 */
1578 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1579 	if (mmap_page ||
1580 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1581 		return 0;
1582 
1583 do_inline_write:
1584 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1585 	if (ret) {
1586 		mlog_errno(ret);
1587 		goto out;
1588 	}
1589 
1590 	/*
1591 	 * This signals to the caller that the data can be written
1592 	 * inline.
1593 	 */
1594 	written = 1;
1595 out:
1596 	return written ? written : ret;
1597 }
1598 
1599 /*
1600  * This function only does anything for file systems which can't
1601  * handle sparse files.
1602  *
1603  * What we want to do here is fill in any hole between the current end
1604  * of allocation and the end of our write. That way the rest of the
1605  * write path can treat it as an non-allocating write, which has no
1606  * special case code for sparse/nonsparse files.
1607  */
ocfs2_expand_nonsparse_inode(struct inode * inode,struct buffer_head * di_bh,loff_t pos,unsigned len,struct ocfs2_write_ctxt * wc)1608 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1609 					struct buffer_head *di_bh,
1610 					loff_t pos, unsigned len,
1611 					struct ocfs2_write_ctxt *wc)
1612 {
1613 	int ret;
1614 	loff_t newsize = pos + len;
1615 
1616 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1617 
1618 	if (newsize <= i_size_read(inode))
1619 		return 0;
1620 
1621 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1622 	if (ret)
1623 		mlog_errno(ret);
1624 
1625 	/* There is no wc if this is call from direct. */
1626 	if (wc)
1627 		wc->w_first_new_cpos =
1628 			ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1629 
1630 	return ret;
1631 }
1632 
ocfs2_zero_tail(struct inode * inode,struct buffer_head * di_bh,loff_t pos)1633 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1634 			   loff_t pos)
1635 {
1636 	int ret = 0;
1637 
1638 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1639 	if (pos > i_size_read(inode))
1640 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1641 
1642 	return ret;
1643 }
1644 
ocfs2_write_begin_nolock(struct address_space * mapping,loff_t pos,unsigned len,ocfs2_write_type_t type,struct page ** pagep,void ** fsdata,struct buffer_head * di_bh,struct page * mmap_page)1645 int ocfs2_write_begin_nolock(struct address_space *mapping,
1646 			     loff_t pos, unsigned len, ocfs2_write_type_t type,
1647 			     struct page **pagep, void **fsdata,
1648 			     struct buffer_head *di_bh, struct page *mmap_page)
1649 {
1650 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1651 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1652 	struct ocfs2_write_ctxt *wc;
1653 	struct inode *inode = mapping->host;
1654 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1655 	struct ocfs2_dinode *di;
1656 	struct ocfs2_alloc_context *data_ac = NULL;
1657 	struct ocfs2_alloc_context *meta_ac = NULL;
1658 	handle_t *handle;
1659 	struct ocfs2_extent_tree et;
1660 	int try_free = 1, ret1;
1661 
1662 try_again:
1663 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1664 	if (ret) {
1665 		mlog_errno(ret);
1666 		return ret;
1667 	}
1668 
1669 	if (ocfs2_supports_inline_data(osb)) {
1670 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1671 						     mmap_page, wc);
1672 		if (ret == 1) {
1673 			ret = 0;
1674 			goto success;
1675 		}
1676 		if (ret < 0) {
1677 			mlog_errno(ret);
1678 			goto out;
1679 		}
1680 	}
1681 
1682 	/* Direct io change i_size late, should not zero tail here. */
1683 	if (type != OCFS2_WRITE_DIRECT) {
1684 		if (ocfs2_sparse_alloc(osb))
1685 			ret = ocfs2_zero_tail(inode, di_bh, pos);
1686 		else
1687 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1688 							   len, wc);
1689 		if (ret) {
1690 			mlog_errno(ret);
1691 			goto out;
1692 		}
1693 	}
1694 
1695 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1696 	if (ret < 0) {
1697 		mlog_errno(ret);
1698 		goto out;
1699 	} else if (ret == 1) {
1700 		clusters_need = wc->w_clen;
1701 		ret = ocfs2_refcount_cow(inode, di_bh,
1702 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1703 		if (ret) {
1704 			mlog_errno(ret);
1705 			goto out;
1706 		}
1707 	}
1708 
1709 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1710 					&extents_to_split);
1711 	if (ret) {
1712 		mlog_errno(ret);
1713 		goto out;
1714 	}
1715 	clusters_need += clusters_to_alloc;
1716 
1717 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1718 
1719 	trace_ocfs2_write_begin_nolock(
1720 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1721 			(long long)i_size_read(inode),
1722 			le32_to_cpu(di->i_clusters),
1723 			pos, len, type, mmap_page,
1724 			clusters_to_alloc, extents_to_split);
1725 
1726 	/*
1727 	 * We set w_target_from, w_target_to here so that
1728 	 * ocfs2_write_end() knows which range in the target page to
1729 	 * write out. An allocation requires that we write the entire
1730 	 * cluster range.
1731 	 */
1732 	if (clusters_to_alloc || extents_to_split) {
1733 		/*
1734 		 * XXX: We are stretching the limits of
1735 		 * ocfs2_lock_allocators(). It greatly over-estimates
1736 		 * the work to be done.
1737 		 */
1738 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1739 					      wc->w_di_bh);
1740 		ret = ocfs2_lock_allocators(inode, &et,
1741 					    clusters_to_alloc, extents_to_split,
1742 					    &data_ac, &meta_ac);
1743 		if (ret) {
1744 			mlog_errno(ret);
1745 			goto out;
1746 		}
1747 
1748 		if (data_ac)
1749 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1750 
1751 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1752 						    &di->id2.i_list);
1753 	} else if (type == OCFS2_WRITE_DIRECT)
1754 		/* direct write needs not to start trans if no extents alloc. */
1755 		goto success;
1756 
1757 	/*
1758 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1759 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1760 	 * we know zeros will only be needed in the first and/or last cluster.
1761 	 */
1762 	if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1763 			   wc->w_desc[wc->w_clen - 1].c_needs_zero))
1764 		cluster_of_pages = 1;
1765 	else
1766 		cluster_of_pages = 0;
1767 
1768 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1769 
1770 	handle = ocfs2_start_trans(osb, credits);
1771 	if (IS_ERR(handle)) {
1772 		ret = PTR_ERR(handle);
1773 		mlog_errno(ret);
1774 		goto out;
1775 	}
1776 
1777 	wc->w_handle = handle;
1778 
1779 	if (clusters_to_alloc) {
1780 		ret = dquot_alloc_space_nodirty(inode,
1781 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1782 		if (ret)
1783 			goto out_commit;
1784 	}
1785 
1786 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1787 				      OCFS2_JOURNAL_ACCESS_WRITE);
1788 	if (ret) {
1789 		mlog_errno(ret);
1790 		goto out_quota;
1791 	}
1792 
1793 	/*
1794 	 * Fill our page array first. That way we've grabbed enough so
1795 	 * that we can zero and flush if we error after adding the
1796 	 * extent.
1797 	 */
1798 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1799 					 cluster_of_pages, mmap_page);
1800 	if (ret) {
1801 		/*
1802 		 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1803 		 * the target page. In this case, we exit with no error and no target
1804 		 * page. This will trigger the caller, page_mkwrite(), to re-try
1805 		 * the operation.
1806 		 */
1807 		if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1808 			BUG_ON(wc->w_target_page);
1809 			ret = 0;
1810 			goto out_quota;
1811 		}
1812 
1813 		mlog_errno(ret);
1814 		goto out_quota;
1815 	}
1816 
1817 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1818 					  len);
1819 	if (ret) {
1820 		mlog_errno(ret);
1821 		goto out_quota;
1822 	}
1823 
1824 	if (data_ac)
1825 		ocfs2_free_alloc_context(data_ac);
1826 	if (meta_ac)
1827 		ocfs2_free_alloc_context(meta_ac);
1828 
1829 success:
1830 	if (pagep)
1831 		*pagep = wc->w_target_page;
1832 	*fsdata = wc;
1833 	return 0;
1834 out_quota:
1835 	if (clusters_to_alloc)
1836 		dquot_free_space(inode,
1837 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1838 out_commit:
1839 	ocfs2_commit_trans(osb, handle);
1840 
1841 out:
1842 	/*
1843 	 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1844 	 * even in case of error here like ENOSPC and ENOMEM. So, we need
1845 	 * to unlock the target page manually to prevent deadlocks when
1846 	 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1847 	 * to VM code.
1848 	 */
1849 	if (wc->w_target_locked)
1850 		unlock_page(mmap_page);
1851 
1852 	ocfs2_free_write_ctxt(inode, wc);
1853 
1854 	if (data_ac) {
1855 		ocfs2_free_alloc_context(data_ac);
1856 		data_ac = NULL;
1857 	}
1858 	if (meta_ac) {
1859 		ocfs2_free_alloc_context(meta_ac);
1860 		meta_ac = NULL;
1861 	}
1862 
1863 	if (ret == -ENOSPC && try_free) {
1864 		/*
1865 		 * Try to free some truncate log so that we can have enough
1866 		 * clusters to allocate.
1867 		 */
1868 		try_free = 0;
1869 
1870 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1871 		if (ret1 == 1)
1872 			goto try_again;
1873 
1874 		if (ret1 < 0)
1875 			mlog_errno(ret1);
1876 	}
1877 
1878 	return ret;
1879 }
1880 
ocfs2_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)1881 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1882 			     loff_t pos, unsigned len,
1883 			     struct page **pagep, void **fsdata)
1884 {
1885 	int ret;
1886 	struct buffer_head *di_bh = NULL;
1887 	struct inode *inode = mapping->host;
1888 
1889 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1890 	if (ret) {
1891 		mlog_errno(ret);
1892 		return ret;
1893 	}
1894 
1895 	/*
1896 	 * Take alloc sem here to prevent concurrent lookups. That way
1897 	 * the mapping, zeroing and tree manipulation within
1898 	 * ocfs2_write() will be safe against ->read_folio(). This
1899 	 * should also serve to lock out allocation from a shared
1900 	 * writeable region.
1901 	 */
1902 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1903 
1904 	ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1905 				       pagep, fsdata, di_bh, NULL);
1906 	if (ret) {
1907 		mlog_errno(ret);
1908 		goto out_fail;
1909 	}
1910 
1911 	brelse(di_bh);
1912 
1913 	return 0;
1914 
1915 out_fail:
1916 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1917 
1918 	brelse(di_bh);
1919 	ocfs2_inode_unlock(inode, 1);
1920 
1921 	return ret;
1922 }
1923 
ocfs2_write_end_inline(struct inode * inode,loff_t pos,unsigned len,unsigned * copied,struct ocfs2_dinode * di,struct ocfs2_write_ctxt * wc)1924 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1925 				   unsigned len, unsigned *copied,
1926 				   struct ocfs2_dinode *di,
1927 				   struct ocfs2_write_ctxt *wc)
1928 {
1929 	void *kaddr;
1930 
1931 	if (unlikely(*copied < len)) {
1932 		if (!PageUptodate(wc->w_target_page)) {
1933 			*copied = 0;
1934 			return;
1935 		}
1936 	}
1937 
1938 	kaddr = kmap_atomic(wc->w_target_page);
1939 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1940 	kunmap_atomic(kaddr);
1941 
1942 	trace_ocfs2_write_end_inline(
1943 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1944 	     (unsigned long long)pos, *copied,
1945 	     le16_to_cpu(di->id2.i_data.id_count),
1946 	     le16_to_cpu(di->i_dyn_features));
1947 }
1948 
ocfs2_write_end_nolock(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,void * fsdata)1949 int ocfs2_write_end_nolock(struct address_space *mapping,
1950 			   loff_t pos, unsigned len, unsigned copied, void *fsdata)
1951 {
1952 	int i, ret;
1953 	unsigned from, to, start = pos & (PAGE_SIZE - 1);
1954 	struct inode *inode = mapping->host;
1955 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1956 	struct ocfs2_write_ctxt *wc = fsdata;
1957 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1958 	handle_t *handle = wc->w_handle;
1959 	struct page *tmppage;
1960 
1961 	BUG_ON(!list_empty(&wc->w_unwritten_list));
1962 
1963 	if (handle) {
1964 		ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1965 				wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1966 		if (ret) {
1967 			copied = ret;
1968 			mlog_errno(ret);
1969 			goto out;
1970 		}
1971 	}
1972 
1973 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1974 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1975 		goto out_write_size;
1976 	}
1977 
1978 	if (unlikely(copied < len) && wc->w_target_page) {
1979 		loff_t new_isize;
1980 
1981 		if (!PageUptodate(wc->w_target_page))
1982 			copied = 0;
1983 
1984 		new_isize = max_t(loff_t, i_size_read(inode), pos + copied);
1985 		if (new_isize > page_offset(wc->w_target_page))
1986 			ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1987 					       start+len);
1988 		else {
1989 			/*
1990 			 * When page is fully beyond new isize (data copy
1991 			 * failed), do not bother zeroing the page. Invalidate
1992 			 * it instead so that writeback does not get confused
1993 			 * put page & buffer dirty bits into inconsistent
1994 			 * state.
1995 			 */
1996 			block_invalidate_folio(page_folio(wc->w_target_page),
1997 						0, PAGE_SIZE);
1998 		}
1999 	}
2000 	if (wc->w_target_page)
2001 		flush_dcache_page(wc->w_target_page);
2002 
2003 	for(i = 0; i < wc->w_num_pages; i++) {
2004 		tmppage = wc->w_pages[i];
2005 
2006 		/* This is the direct io target page. */
2007 		if (tmppage == NULL)
2008 			continue;
2009 
2010 		if (tmppage == wc->w_target_page) {
2011 			from = wc->w_target_from;
2012 			to = wc->w_target_to;
2013 
2014 			BUG_ON(from > PAGE_SIZE ||
2015 			       to > PAGE_SIZE ||
2016 			       to < from);
2017 		} else {
2018 			/*
2019 			 * Pages adjacent to the target (if any) imply
2020 			 * a hole-filling write in which case we want
2021 			 * to flush their entire range.
2022 			 */
2023 			from = 0;
2024 			to = PAGE_SIZE;
2025 		}
2026 
2027 		if (page_has_buffers(tmppage)) {
2028 			if (handle && ocfs2_should_order_data(inode)) {
2029 				loff_t start_byte =
2030 					((loff_t)tmppage->index << PAGE_SHIFT) +
2031 					from;
2032 				loff_t length = to - from;
2033 				ocfs2_jbd2_inode_add_write(handle, inode,
2034 							   start_byte, length);
2035 			}
2036 			block_commit_write(tmppage, from, to);
2037 		}
2038 	}
2039 
2040 out_write_size:
2041 	/* Direct io do not update i_size here. */
2042 	if (wc->w_type != OCFS2_WRITE_DIRECT) {
2043 		pos += copied;
2044 		if (pos > i_size_read(inode)) {
2045 			i_size_write(inode, pos);
2046 			mark_inode_dirty(inode);
2047 		}
2048 		inode->i_blocks = ocfs2_inode_sector_count(inode);
2049 		di->i_size = cpu_to_le64((u64)i_size_read(inode));
2050 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2051 		di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode));
2052 		di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
2053 		if (handle)
2054 			ocfs2_update_inode_fsync_trans(handle, inode, 1);
2055 	}
2056 	if (handle)
2057 		ocfs2_journal_dirty(handle, wc->w_di_bh);
2058 
2059 out:
2060 	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2061 	 * lock, or it will cause a deadlock since journal commit threads holds
2062 	 * this lock and will ask for the page lock when flushing the data.
2063 	 * put it here to preserve the unlock order.
2064 	 */
2065 	ocfs2_unlock_pages(wc);
2066 
2067 	if (handle)
2068 		ocfs2_commit_trans(osb, handle);
2069 
2070 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2071 
2072 	brelse(wc->w_di_bh);
2073 	kfree(wc);
2074 
2075 	return copied;
2076 }
2077 
ocfs2_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2078 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2079 			   loff_t pos, unsigned len, unsigned copied,
2080 			   struct page *page, void *fsdata)
2081 {
2082 	int ret;
2083 	struct inode *inode = mapping->host;
2084 
2085 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2086 
2087 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2088 	ocfs2_inode_unlock(inode, 1);
2089 
2090 	return ret;
2091 }
2092 
2093 struct ocfs2_dio_write_ctxt {
2094 	struct list_head	dw_zero_list;
2095 	unsigned		dw_zero_count;
2096 	int			dw_orphaned;
2097 	pid_t			dw_writer_pid;
2098 };
2099 
2100 static struct ocfs2_dio_write_ctxt *
ocfs2_dio_alloc_write_ctx(struct buffer_head * bh,int * alloc)2101 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2102 {
2103 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2104 
2105 	if (bh->b_private)
2106 		return bh->b_private;
2107 
2108 	dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2109 	if (dwc == NULL)
2110 		return NULL;
2111 	INIT_LIST_HEAD(&dwc->dw_zero_list);
2112 	dwc->dw_zero_count = 0;
2113 	dwc->dw_orphaned = 0;
2114 	dwc->dw_writer_pid = task_pid_nr(current);
2115 	bh->b_private = dwc;
2116 	*alloc = 1;
2117 
2118 	return dwc;
2119 }
2120 
ocfs2_dio_free_write_ctx(struct inode * inode,struct ocfs2_dio_write_ctxt * dwc)2121 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2122 				     struct ocfs2_dio_write_ctxt *dwc)
2123 {
2124 	ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2125 	kfree(dwc);
2126 }
2127 
2128 /*
2129  * TODO: Make this into a generic get_blocks function.
2130  *
2131  * From do_direct_io in direct-io.c:
2132  *  "So what we do is to permit the ->get_blocks function to populate
2133  *   bh.b_size with the size of IO which is permitted at this offset and
2134  *   this i_blkbits."
2135  *
2136  * This function is called directly from get_more_blocks in direct-io.c.
2137  *
2138  * called like this: dio->get_blocks(dio->inode, fs_startblk,
2139  * 					fs_count, map_bh, dio->rw == WRITE);
2140  */
ocfs2_dio_wr_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)2141 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2142 			       struct buffer_head *bh_result, int create)
2143 {
2144 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2145 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2146 	struct ocfs2_write_ctxt *wc;
2147 	struct ocfs2_write_cluster_desc *desc = NULL;
2148 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2149 	struct buffer_head *di_bh = NULL;
2150 	u64 p_blkno;
2151 	unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2152 	loff_t pos = iblock << i_blkbits;
2153 	sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2154 	unsigned len, total_len = bh_result->b_size;
2155 	int ret = 0, first_get_block = 0;
2156 
2157 	len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2158 	len = min(total_len, len);
2159 
2160 	/*
2161 	 * bh_result->b_size is count in get_more_blocks according to write
2162 	 * "pos" and "end", we need map twice to return different buffer state:
2163 	 * 1. area in file size, not set NEW;
2164 	 * 2. area out file size, set  NEW.
2165 	 *
2166 	 *		   iblock    endblk
2167 	 * |--------|---------|---------|---------
2168 	 * |<-------area in file------->|
2169 	 */
2170 
2171 	if ((iblock <= endblk) &&
2172 	    ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2173 		len = (endblk - iblock + 1) << i_blkbits;
2174 
2175 	mlog(0, "get block of %lu at %llu:%u req %u\n",
2176 			inode->i_ino, pos, len, total_len);
2177 
2178 	/*
2179 	 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2180 	 * we may need to add it to orphan dir. So can not fall to fast path
2181 	 * while file size will be changed.
2182 	 */
2183 	if (pos + total_len <= i_size_read(inode)) {
2184 
2185 		/* This is the fast path for re-write. */
2186 		ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2187 		if (buffer_mapped(bh_result) &&
2188 		    !buffer_new(bh_result) &&
2189 		    ret == 0)
2190 			goto out;
2191 
2192 		/* Clear state set by ocfs2_get_block. */
2193 		bh_result->b_state = 0;
2194 	}
2195 
2196 	dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2197 	if (unlikely(dwc == NULL)) {
2198 		ret = -ENOMEM;
2199 		mlog_errno(ret);
2200 		goto out;
2201 	}
2202 
2203 	if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2204 	    ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2205 	    !dwc->dw_orphaned) {
2206 		/*
2207 		 * when we are going to alloc extents beyond file size, add the
2208 		 * inode to orphan dir, so we can recall those spaces when
2209 		 * system crashed during write.
2210 		 */
2211 		ret = ocfs2_add_inode_to_orphan(osb, inode);
2212 		if (ret < 0) {
2213 			mlog_errno(ret);
2214 			goto out;
2215 		}
2216 		dwc->dw_orphaned = 1;
2217 	}
2218 
2219 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2220 	if (ret) {
2221 		mlog_errno(ret);
2222 		goto out;
2223 	}
2224 
2225 	down_write(&oi->ip_alloc_sem);
2226 
2227 	if (first_get_block) {
2228 		if (ocfs2_sparse_alloc(osb))
2229 			ret = ocfs2_zero_tail(inode, di_bh, pos);
2230 		else
2231 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2232 							   total_len, NULL);
2233 		if (ret < 0) {
2234 			mlog_errno(ret);
2235 			goto unlock;
2236 		}
2237 	}
2238 
2239 	ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2240 				       OCFS2_WRITE_DIRECT, NULL,
2241 				       (void **)&wc, di_bh, NULL);
2242 	if (ret) {
2243 		mlog_errno(ret);
2244 		goto unlock;
2245 	}
2246 
2247 	desc = &wc->w_desc[0];
2248 
2249 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2250 	BUG_ON(p_blkno == 0);
2251 	p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2252 
2253 	map_bh(bh_result, inode->i_sb, p_blkno);
2254 	bh_result->b_size = len;
2255 	if (desc->c_needs_zero)
2256 		set_buffer_new(bh_result);
2257 
2258 	if (iblock > endblk)
2259 		set_buffer_new(bh_result);
2260 
2261 	/* May sleep in end_io. It should not happen in a irq context. So defer
2262 	 * it to dio work queue. */
2263 	set_buffer_defer_completion(bh_result);
2264 
2265 	if (!list_empty(&wc->w_unwritten_list)) {
2266 		struct ocfs2_unwritten_extent *ue = NULL;
2267 
2268 		ue = list_first_entry(&wc->w_unwritten_list,
2269 				      struct ocfs2_unwritten_extent,
2270 				      ue_node);
2271 		BUG_ON(ue->ue_cpos != desc->c_cpos);
2272 		/* The physical address may be 0, fill it. */
2273 		ue->ue_phys = desc->c_phys;
2274 
2275 		list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2276 		dwc->dw_zero_count += wc->w_unwritten_count;
2277 	}
2278 
2279 	ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2280 	BUG_ON(ret != len);
2281 	ret = 0;
2282 unlock:
2283 	up_write(&oi->ip_alloc_sem);
2284 	ocfs2_inode_unlock(inode, 1);
2285 	brelse(di_bh);
2286 out:
2287 	if (ret < 0)
2288 		ret = -EIO;
2289 	return ret;
2290 }
2291 
ocfs2_dio_end_io_write(struct inode * inode,struct ocfs2_dio_write_ctxt * dwc,loff_t offset,ssize_t bytes)2292 static int ocfs2_dio_end_io_write(struct inode *inode,
2293 				  struct ocfs2_dio_write_ctxt *dwc,
2294 				  loff_t offset,
2295 				  ssize_t bytes)
2296 {
2297 	struct ocfs2_cached_dealloc_ctxt dealloc;
2298 	struct ocfs2_extent_tree et;
2299 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2300 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2301 	struct ocfs2_unwritten_extent *ue = NULL;
2302 	struct buffer_head *di_bh = NULL;
2303 	struct ocfs2_dinode *di;
2304 	struct ocfs2_alloc_context *data_ac = NULL;
2305 	struct ocfs2_alloc_context *meta_ac = NULL;
2306 	handle_t *handle = NULL;
2307 	loff_t end = offset + bytes;
2308 	int ret = 0, credits = 0;
2309 
2310 	ocfs2_init_dealloc_ctxt(&dealloc);
2311 
2312 	/* We do clear unwritten, delete orphan, change i_size here. If neither
2313 	 * of these happen, we can skip all this. */
2314 	if (list_empty(&dwc->dw_zero_list) &&
2315 	    end <= i_size_read(inode) &&
2316 	    !dwc->dw_orphaned)
2317 		goto out;
2318 
2319 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2320 	if (ret < 0) {
2321 		mlog_errno(ret);
2322 		goto out;
2323 	}
2324 
2325 	down_write(&oi->ip_alloc_sem);
2326 
2327 	/* Delete orphan before acquire i_rwsem. */
2328 	if (dwc->dw_orphaned) {
2329 		BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2330 
2331 		end = end > i_size_read(inode) ? end : 0;
2332 
2333 		ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2334 				!!end, end);
2335 		if (ret < 0)
2336 			mlog_errno(ret);
2337 	}
2338 
2339 	di = (struct ocfs2_dinode *)di_bh->b_data;
2340 
2341 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2342 
2343 	/* Attach dealloc with extent tree in case that we may reuse extents
2344 	 * which are already unlinked from current extent tree due to extent
2345 	 * rotation and merging.
2346 	 */
2347 	et.et_dealloc = &dealloc;
2348 
2349 	ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2350 				    &data_ac, &meta_ac);
2351 	if (ret) {
2352 		mlog_errno(ret);
2353 		goto unlock;
2354 	}
2355 
2356 	credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2357 
2358 	handle = ocfs2_start_trans(osb, credits);
2359 	if (IS_ERR(handle)) {
2360 		ret = PTR_ERR(handle);
2361 		mlog_errno(ret);
2362 		goto unlock;
2363 	}
2364 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2365 				      OCFS2_JOURNAL_ACCESS_WRITE);
2366 	if (ret) {
2367 		mlog_errno(ret);
2368 		goto commit;
2369 	}
2370 
2371 	list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2372 		ret = ocfs2_assure_trans_credits(handle, credits);
2373 		if (ret < 0) {
2374 			mlog_errno(ret);
2375 			break;
2376 		}
2377 		ret = ocfs2_mark_extent_written(inode, &et, handle,
2378 						ue->ue_cpos, 1,
2379 						ue->ue_phys,
2380 						meta_ac, &dealloc);
2381 		if (ret < 0) {
2382 			mlog_errno(ret);
2383 			break;
2384 		}
2385 	}
2386 
2387 	if (end > i_size_read(inode)) {
2388 		ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2389 		if (ret < 0)
2390 			mlog_errno(ret);
2391 	}
2392 commit:
2393 	ocfs2_commit_trans(osb, handle);
2394 unlock:
2395 	up_write(&oi->ip_alloc_sem);
2396 	ocfs2_inode_unlock(inode, 1);
2397 	brelse(di_bh);
2398 out:
2399 	if (data_ac)
2400 		ocfs2_free_alloc_context(data_ac);
2401 	if (meta_ac)
2402 		ocfs2_free_alloc_context(meta_ac);
2403 	ocfs2_run_deallocs(osb, &dealloc);
2404 	ocfs2_dio_free_write_ctx(inode, dwc);
2405 
2406 	return ret;
2407 }
2408 
2409 /*
2410  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2411  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2412  * to protect io on one node from truncation on another.
2413  */
ocfs2_dio_end_io(struct kiocb * iocb,loff_t offset,ssize_t bytes,void * private)2414 static int ocfs2_dio_end_io(struct kiocb *iocb,
2415 			    loff_t offset,
2416 			    ssize_t bytes,
2417 			    void *private)
2418 {
2419 	struct inode *inode = file_inode(iocb->ki_filp);
2420 	int level;
2421 	int ret = 0;
2422 
2423 	/* this io's submitter should not have unlocked this before we could */
2424 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2425 
2426 	if (bytes <= 0)
2427 		mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2428 				 (long long)bytes);
2429 	if (private) {
2430 		if (bytes > 0)
2431 			ret = ocfs2_dio_end_io_write(inode, private, offset,
2432 						     bytes);
2433 		else
2434 			ocfs2_dio_free_write_ctx(inode, private);
2435 	}
2436 
2437 	ocfs2_iocb_clear_rw_locked(iocb);
2438 
2439 	level = ocfs2_iocb_rw_locked_level(iocb);
2440 	ocfs2_rw_unlock(inode, level);
2441 	return ret;
2442 }
2443 
ocfs2_direct_IO(struct kiocb * iocb,struct iov_iter * iter)2444 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2445 {
2446 	struct file *file = iocb->ki_filp;
2447 	struct inode *inode = file->f_mapping->host;
2448 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2449 	get_block_t *get_block;
2450 
2451 	/*
2452 	 * Fallback to buffered I/O if we see an inode without
2453 	 * extents.
2454 	 */
2455 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2456 		return 0;
2457 
2458 	/* Fallback to buffered I/O if we do not support append dio. */
2459 	if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2460 	    !ocfs2_supports_append_dio(osb))
2461 		return 0;
2462 
2463 	if (iov_iter_rw(iter) == READ)
2464 		get_block = ocfs2_lock_get_block;
2465 	else
2466 		get_block = ocfs2_dio_wr_get_block;
2467 
2468 	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2469 				    iter, get_block,
2470 				    ocfs2_dio_end_io, 0);
2471 }
2472 
2473 const struct address_space_operations ocfs2_aops = {
2474 	.dirty_folio		= block_dirty_folio,
2475 	.read_folio		= ocfs2_read_folio,
2476 	.readahead		= ocfs2_readahead,
2477 	.writepage		= ocfs2_writepage,
2478 	.write_begin		= ocfs2_write_begin,
2479 	.write_end		= ocfs2_write_end,
2480 	.bmap			= ocfs2_bmap,
2481 	.direct_IO		= ocfs2_direct_IO,
2482 	.invalidate_folio	= block_invalidate_folio,
2483 	.release_folio		= ocfs2_release_folio,
2484 	.migrate_folio		= buffer_migrate_folio,
2485 	.is_partially_uptodate	= block_is_partially_uptodate,
2486 	.error_remove_page	= generic_error_remove_page,
2487 };
2488