1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "system/kvm.h"
36 #include "system/dma.h"
37 #include "system/system.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
41 #include "trace.h"
42
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
48
49 /* pe operations */
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_FL_LEVEL(pe) \
52 (4 + (((pe)->val[2] >> 2) & VTD_SM_PASID_ENTRY_FLPM))
53 #define VTD_PE_GET_SL_LEVEL(pe) \
54 (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
55
56 /*
57 * PCI bus number (or SID) is not reliable since the device is usaully
58 * initialized before guest can configure the PCI bridge
59 * (SECONDARY_BUS_NUMBER).
60 */
61 struct vtd_as_key {
62 PCIBus *bus;
63 uint8_t devfn;
64 uint32_t pasid;
65 };
66
67 /* bus/devfn is PCI device's real BDF not the aliased one */
68 struct vtd_hiod_key {
69 PCIBus *bus;
70 uint8_t devfn;
71 };
72
73 struct vtd_as_raw_key {
74 uint16_t sid;
75 uint32_t pasid;
76 };
77
78 struct vtd_iotlb_key {
79 uint64_t gfn;
80 uint32_t pasid;
81 uint16_t sid;
82 uint8_t level;
83 };
84
85 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
86 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
87
vtd_panic_require_caching_mode(void)88 static void vtd_panic_require_caching_mode(void)
89 {
90 error_report("We need to set caching-mode=on for intel-iommu to enable "
91 "device assignment with IOMMU protection.");
92 exit(1);
93 }
94
vtd_define_quad(IntelIOMMUState * s,hwaddr addr,uint64_t val,uint64_t wmask,uint64_t w1cmask)95 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
96 uint64_t wmask, uint64_t w1cmask)
97 {
98 stq_le_p(&s->csr[addr], val);
99 stq_le_p(&s->wmask[addr], wmask);
100 stq_le_p(&s->w1cmask[addr], w1cmask);
101 }
102
vtd_define_quad_wo(IntelIOMMUState * s,hwaddr addr,uint64_t mask)103 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
104 {
105 stq_le_p(&s->womask[addr], mask);
106 }
107
vtd_define_long(IntelIOMMUState * s,hwaddr addr,uint32_t val,uint32_t wmask,uint32_t w1cmask)108 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
109 uint32_t wmask, uint32_t w1cmask)
110 {
111 stl_le_p(&s->csr[addr], val);
112 stl_le_p(&s->wmask[addr], wmask);
113 stl_le_p(&s->w1cmask[addr], w1cmask);
114 }
115
vtd_define_long_wo(IntelIOMMUState * s,hwaddr addr,uint32_t mask)116 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
117 {
118 stl_le_p(&s->womask[addr], mask);
119 }
120
121 /* "External" get/set operations */
vtd_set_quad(IntelIOMMUState * s,hwaddr addr,uint64_t val)122 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
123 {
124 uint64_t oldval = ldq_le_p(&s->csr[addr]);
125 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
126 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
127 stq_le_p(&s->csr[addr],
128 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
129 }
130
vtd_set_long(IntelIOMMUState * s,hwaddr addr,uint32_t val)131 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
132 {
133 uint32_t oldval = ldl_le_p(&s->csr[addr]);
134 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
135 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
136 stl_le_p(&s->csr[addr],
137 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
138 }
139
vtd_get_quad(IntelIOMMUState * s,hwaddr addr)140 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
141 {
142 uint64_t val = ldq_le_p(&s->csr[addr]);
143 uint64_t womask = ldq_le_p(&s->womask[addr]);
144 return val & ~womask;
145 }
146
vtd_get_long(IntelIOMMUState * s,hwaddr addr)147 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
148 {
149 uint32_t val = ldl_le_p(&s->csr[addr]);
150 uint32_t womask = ldl_le_p(&s->womask[addr]);
151 return val & ~womask;
152 }
153
154 /* "Internal" get/set operations */
vtd_get_quad_raw(IntelIOMMUState * s,hwaddr addr)155 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
156 {
157 return ldq_le_p(&s->csr[addr]);
158 }
159
vtd_get_long_raw(IntelIOMMUState * s,hwaddr addr)160 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
161 {
162 return ldl_le_p(&s->csr[addr]);
163 }
164
vtd_set_quad_raw(IntelIOMMUState * s,hwaddr addr,uint64_t val)165 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
166 {
167 stq_le_p(&s->csr[addr], val);
168 }
169
vtd_set_clear_mask_long(IntelIOMMUState * s,hwaddr addr,uint32_t clear,uint32_t mask)170 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
171 uint32_t clear, uint32_t mask)
172 {
173 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
174 stl_le_p(&s->csr[addr], new_val);
175 return new_val;
176 }
177
vtd_set_clear_mask_quad(IntelIOMMUState * s,hwaddr addr,uint64_t clear,uint64_t mask)178 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
179 uint64_t clear, uint64_t mask)
180 {
181 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
182 stq_le_p(&s->csr[addr], new_val);
183 return new_val;
184 }
185
vtd_iommu_lock(IntelIOMMUState * s)186 static inline void vtd_iommu_lock(IntelIOMMUState *s)
187 {
188 qemu_mutex_lock(&s->iommu_lock);
189 }
190
vtd_iommu_unlock(IntelIOMMUState * s)191 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
192 {
193 qemu_mutex_unlock(&s->iommu_lock);
194 }
195
vtd_update_scalable_state(IntelIOMMUState * s)196 static void vtd_update_scalable_state(IntelIOMMUState *s)
197 {
198 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
199
200 if (s->scalable_mode) {
201 s->root_scalable = val & VTD_RTADDR_SMT;
202 }
203 }
204
vtd_update_iq_dw(IntelIOMMUState * s)205 static void vtd_update_iq_dw(IntelIOMMUState *s)
206 {
207 uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
208
209 if (s->ecap & VTD_ECAP_SMTS &&
210 val & VTD_IQA_DW_MASK) {
211 s->iq_dw = true;
212 } else {
213 s->iq_dw = false;
214 }
215 }
216
217 /* Whether the address space needs to notify new mappings */
vtd_as_has_map_notifier(VTDAddressSpace * as)218 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
219 {
220 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
221 }
222
223 /* GHashTable functions */
vtd_iotlb_equal(gconstpointer v1,gconstpointer v2)224 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2)
225 {
226 const struct vtd_iotlb_key *key1 = v1;
227 const struct vtd_iotlb_key *key2 = v2;
228
229 return key1->sid == key2->sid &&
230 key1->pasid == key2->pasid &&
231 key1->level == key2->level &&
232 key1->gfn == key2->gfn;
233 }
234
vtd_iotlb_hash(gconstpointer v)235 static guint vtd_iotlb_hash(gconstpointer v)
236 {
237 const struct vtd_iotlb_key *key = v;
238 uint64_t hash64 = key->gfn | ((uint64_t)(key->sid) << VTD_IOTLB_SID_SHIFT) |
239 (uint64_t)(key->level - 1) << VTD_IOTLB_LVL_SHIFT |
240 (uint64_t)(key->pasid) << VTD_IOTLB_PASID_SHIFT;
241
242 return (guint)((hash64 >> 32) ^ (hash64 & 0xffffffffU));
243 }
244
vtd_as_equal(gconstpointer v1,gconstpointer v2)245 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2)
246 {
247 const struct vtd_as_key *key1 = v1;
248 const struct vtd_as_key *key2 = v2;
249
250 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) &&
251 (key1->pasid == key2->pasid);
252 }
253
254 /*
255 * Note that we use pointer to PCIBus as the key, so hashing/shifting
256 * based on the pointer value is intended. Note that we deal with
257 * collisions through vtd_as_equal().
258 */
vtd_as_hash(gconstpointer v)259 static guint vtd_as_hash(gconstpointer v)
260 {
261 const struct vtd_as_key *key = v;
262 guint value = (guint)(uintptr_t)key->bus;
263
264 return (guint)(value << 8 | key->devfn);
265 }
266
267 /* Same implementation as vtd_as_hash() */
vtd_hiod_hash(gconstpointer v)268 static guint vtd_hiod_hash(gconstpointer v)
269 {
270 return vtd_as_hash(v);
271 }
272
vtd_hiod_equal(gconstpointer v1,gconstpointer v2)273 static gboolean vtd_hiod_equal(gconstpointer v1, gconstpointer v2)
274 {
275 const struct vtd_hiod_key *key1 = v1;
276 const struct vtd_hiod_key *key2 = v2;
277
278 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn);
279 }
280
vtd_hiod_destroy(gpointer v)281 static void vtd_hiod_destroy(gpointer v)
282 {
283 object_unref(v);
284 }
285
vtd_hash_remove_by_domain(gpointer key,gpointer value,gpointer user_data)286 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
287 gpointer user_data)
288 {
289 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
290 uint16_t domain_id = *(uint16_t *)user_data;
291 return entry->domain_id == domain_id;
292 }
293
294 /* The shift of an addr for a certain level of paging structure */
vtd_pt_level_shift(uint32_t level)295 static inline uint32_t vtd_pt_level_shift(uint32_t level)
296 {
297 assert(level != 0);
298 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_LEVEL_BITS;
299 }
300
vtd_pt_level_page_mask(uint32_t level)301 static inline uint64_t vtd_pt_level_page_mask(uint32_t level)
302 {
303 return ~((1ULL << vtd_pt_level_shift(level)) - 1);
304 }
305
vtd_hash_remove_by_page(gpointer key,gpointer value,gpointer user_data)306 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
307 gpointer user_data)
308 {
309 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
310 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
311 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
312 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
313
314 if (entry->domain_id != info->domain_id) {
315 return false;
316 }
317
318 /*
319 * According to spec, IOTLB entries caching first-stage (PGTT=001b) or
320 * nested (PGTT=011b) mapping associated with specified domain-id are
321 * invalidated. Nested isn't supported yet, so only need to check 001b.
322 */
323 if (entry->pgtt == VTD_SM_PASID_ENTRY_FLT) {
324 return true;
325 }
326
327 return (entry->gfn & info->mask) == gfn || entry->gfn == gfn_tlb;
328 }
329
vtd_hash_remove_by_page_piotlb(gpointer key,gpointer value,gpointer user_data)330 static gboolean vtd_hash_remove_by_page_piotlb(gpointer key, gpointer value,
331 gpointer user_data)
332 {
333 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
334 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
335 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
336 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
337
338 /*
339 * According to spec, PASID-based-IOTLB Invalidation in page granularity
340 * doesn't invalidate IOTLB entries caching second-stage (PGTT=010b)
341 * or pass-through (PGTT=100b) mappings. Nested isn't supported yet,
342 * so only need to check first-stage (PGTT=001b) mappings.
343 */
344 if (entry->pgtt != VTD_SM_PASID_ENTRY_FLT) {
345 return false;
346 }
347
348 return entry->domain_id == info->domain_id && entry->pasid == info->pasid &&
349 ((entry->gfn & info->mask) == gfn || entry->gfn == gfn_tlb);
350 }
351
352 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
353 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
354 */
vtd_reset_context_cache_locked(IntelIOMMUState * s)355 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
356 {
357 VTDAddressSpace *vtd_as;
358 GHashTableIter as_it;
359
360 trace_vtd_context_cache_reset();
361
362 g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
363
364 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
365 vtd_as->context_cache_entry.context_cache_gen = 0;
366 }
367 s->context_cache_gen = 1;
368 }
369
370 /* Must be called with IOMMU lock held. */
vtd_reset_iotlb_locked(IntelIOMMUState * s)371 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
372 {
373 assert(s->iotlb);
374 g_hash_table_remove_all(s->iotlb);
375 }
376
vtd_reset_iotlb(IntelIOMMUState * s)377 static void vtd_reset_iotlb(IntelIOMMUState *s)
378 {
379 vtd_iommu_lock(s);
380 vtd_reset_iotlb_locked(s);
381 vtd_iommu_unlock(s);
382 }
383
vtd_reset_caches(IntelIOMMUState * s)384 static void vtd_reset_caches(IntelIOMMUState *s)
385 {
386 vtd_iommu_lock(s);
387 vtd_reset_iotlb_locked(s);
388 vtd_reset_context_cache_locked(s);
389 vtd_iommu_unlock(s);
390 }
391
vtd_get_iotlb_gfn(hwaddr addr,uint32_t level)392 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
393 {
394 return (addr & vtd_pt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
395 }
396
397 /* Must be called with IOMMU lock held */
vtd_lookup_iotlb(IntelIOMMUState * s,uint16_t source_id,uint32_t pasid,hwaddr addr)398 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
399 uint32_t pasid, hwaddr addr)
400 {
401 struct vtd_iotlb_key key;
402 VTDIOTLBEntry *entry;
403 unsigned level;
404
405 for (level = VTD_PT_LEVEL; level < VTD_PML4_LEVEL; level++) {
406 key.gfn = vtd_get_iotlb_gfn(addr, level);
407 key.level = level;
408 key.sid = source_id;
409 key.pasid = pasid;
410 entry = g_hash_table_lookup(s->iotlb, &key);
411 if (entry) {
412 goto out;
413 }
414 }
415
416 out:
417 return entry;
418 }
419
420 /* Must be with IOMMU lock held */
vtd_update_iotlb(IntelIOMMUState * s,uint16_t source_id,uint16_t domain_id,hwaddr addr,uint64_t pte,uint8_t access_flags,uint32_t level,uint32_t pasid,uint8_t pgtt)421 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
422 uint16_t domain_id, hwaddr addr, uint64_t pte,
423 uint8_t access_flags, uint32_t level,
424 uint32_t pasid, uint8_t pgtt)
425 {
426 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
427 struct vtd_iotlb_key *key = g_malloc(sizeof(*key));
428 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
429
430 trace_vtd_iotlb_page_update(source_id, addr, pte, domain_id);
431 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
432 trace_vtd_iotlb_reset("iotlb exceeds size limit");
433 vtd_reset_iotlb_locked(s);
434 }
435
436 entry->gfn = gfn;
437 entry->domain_id = domain_id;
438 entry->pte = pte;
439 entry->access_flags = access_flags;
440 entry->mask = vtd_pt_level_page_mask(level);
441 entry->pasid = pasid;
442 entry->pgtt = pgtt;
443
444 key->gfn = gfn;
445 key->sid = source_id;
446 key->level = level;
447 key->pasid = pasid;
448
449 g_hash_table_replace(s->iotlb, key, entry);
450 }
451
452 /* Given the reg addr of both the message data and address, generate an
453 * interrupt via MSI.
454 */
vtd_generate_interrupt(IntelIOMMUState * s,hwaddr mesg_addr_reg,hwaddr mesg_data_reg)455 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
456 hwaddr mesg_data_reg)
457 {
458 MSIMessage msi;
459
460 assert(mesg_data_reg < DMAR_REG_SIZE);
461 assert(mesg_addr_reg < DMAR_REG_SIZE);
462
463 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
464 msi.data = vtd_get_long_raw(s, mesg_data_reg);
465
466 trace_vtd_irq_generate(msi.address, msi.data);
467
468 apic_get_class(NULL)->send_msi(&msi);
469 }
470
471 /* Generate a fault event to software via MSI if conditions are met.
472 * Notice that the value of FSTS_REG being passed to it should be the one
473 * before any update.
474 */
vtd_generate_fault_event(IntelIOMMUState * s,uint32_t pre_fsts)475 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
476 {
477 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
478 pre_fsts & VTD_FSTS_IQE) {
479 error_report_once("There are previous interrupt conditions "
480 "to be serviced by software, fault event "
481 "is not generated");
482 return;
483 }
484 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
485 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
486 error_report_once("Interrupt Mask set, irq is not generated");
487 } else {
488 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
489 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
490 }
491 }
492
493 /* Check if the Fault (F) field of the Fault Recording Register referenced by
494 * @index is Set.
495 */
vtd_is_frcd_set(IntelIOMMUState * s,uint16_t index)496 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
497 {
498 /* Each reg is 128-bit */
499 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
500 addr += 8; /* Access the high 64-bit half */
501
502 assert(index < DMAR_FRCD_REG_NR);
503
504 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
505 }
506
507 /* Update the PPF field of Fault Status Register.
508 * Should be called whenever change the F field of any fault recording
509 * registers.
510 */
vtd_update_fsts_ppf(IntelIOMMUState * s)511 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
512 {
513 uint32_t i;
514 uint32_t ppf_mask = 0;
515
516 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
517 if (vtd_is_frcd_set(s, i)) {
518 ppf_mask = VTD_FSTS_PPF;
519 break;
520 }
521 }
522 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
523 trace_vtd_fsts_ppf(!!ppf_mask);
524 }
525
vtd_set_frcd_and_update_ppf(IntelIOMMUState * s,uint16_t index)526 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
527 {
528 /* Each reg is 128-bit */
529 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
530 addr += 8; /* Access the high 64-bit half */
531
532 assert(index < DMAR_FRCD_REG_NR);
533
534 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
535 vtd_update_fsts_ppf(s);
536 }
537
538 /* Must not update F field now, should be done later */
vtd_record_frcd(IntelIOMMUState * s,uint16_t index,uint64_t hi,uint64_t lo)539 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
540 uint64_t hi, uint64_t lo)
541 {
542 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
543
544 assert(index < DMAR_FRCD_REG_NR);
545
546 vtd_set_quad_raw(s, frcd_reg_addr, lo);
547 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
548
549 trace_vtd_frr_new(index, hi, lo);
550 }
551
552 /* Try to collapse multiple pending faults from the same requester */
vtd_try_collapse_fault(IntelIOMMUState * s,uint16_t source_id)553 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
554 {
555 uint32_t i;
556 uint64_t frcd_reg;
557 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
558
559 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
560 frcd_reg = vtd_get_quad_raw(s, addr);
561 if ((frcd_reg & VTD_FRCD_F) &&
562 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
563 return true;
564 }
565 addr += 16; /* 128-bit for each */
566 }
567 return false;
568 }
569
570 /* Log and report an DMAR (address translation) fault to software */
vtd_report_frcd_fault(IntelIOMMUState * s,uint64_t source_id,uint64_t hi,uint64_t lo)571 static void vtd_report_frcd_fault(IntelIOMMUState *s, uint64_t source_id,
572 uint64_t hi, uint64_t lo)
573 {
574 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
575
576 if (fsts_reg & VTD_FSTS_PFO) {
577 error_report_once("New fault is not recorded due to "
578 "Primary Fault Overflow");
579 return;
580 }
581
582 if (vtd_try_collapse_fault(s, source_id)) {
583 error_report_once("New fault is not recorded due to "
584 "compression of faults");
585 return;
586 }
587
588 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
589 error_report_once("Next Fault Recording Reg is used, "
590 "new fault is not recorded, set PFO field");
591 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
592 return;
593 }
594
595 vtd_record_frcd(s, s->next_frcd_reg, hi, lo);
596
597 if (fsts_reg & VTD_FSTS_PPF) {
598 error_report_once("There are pending faults already, "
599 "fault event is not generated");
600 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
601 s->next_frcd_reg++;
602 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
603 s->next_frcd_reg = 0;
604 }
605 } else {
606 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
607 VTD_FSTS_FRI(s->next_frcd_reg));
608 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
609 s->next_frcd_reg++;
610 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
611 s->next_frcd_reg = 0;
612 }
613 /* This case actually cause the PPF to be Set.
614 * So generate fault event (interrupt).
615 */
616 vtd_generate_fault_event(s, fsts_reg);
617 }
618 }
619
620 /* Log and report an DMAR (address translation) fault to software */
vtd_report_dmar_fault(IntelIOMMUState * s,uint16_t source_id,hwaddr addr,VTDFaultReason fault,bool is_write,bool is_pasid,uint32_t pasid)621 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
622 hwaddr addr, VTDFaultReason fault,
623 bool is_write, bool is_pasid,
624 uint32_t pasid)
625 {
626 uint64_t hi, lo;
627
628 assert(fault < VTD_FR_MAX);
629
630 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
631
632 lo = VTD_FRCD_FI(addr);
633 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) |
634 VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid);
635 if (!is_write) {
636 hi |= VTD_FRCD_T;
637 }
638
639 vtd_report_frcd_fault(s, source_id, hi, lo);
640 }
641
642
vtd_report_ir_fault(IntelIOMMUState * s,uint64_t source_id,VTDFaultReason fault,uint16_t index)643 static void vtd_report_ir_fault(IntelIOMMUState *s, uint64_t source_id,
644 VTDFaultReason fault, uint16_t index)
645 {
646 uint64_t hi, lo;
647
648 lo = VTD_FRCD_IR_IDX(index);
649 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
650
651 vtd_report_frcd_fault(s, source_id, hi, lo);
652 }
653
654 /* Handle Invalidation Queue Errors of queued invalidation interface error
655 * conditions.
656 */
vtd_handle_inv_queue_error(IntelIOMMUState * s)657 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
658 {
659 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
660
661 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
662 vtd_generate_fault_event(s, fsts_reg);
663 }
664
665 /* Set the IWC field and try to generate an invalidation completion interrupt */
vtd_generate_completion_event(IntelIOMMUState * s)666 static void vtd_generate_completion_event(IntelIOMMUState *s)
667 {
668 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
669 trace_vtd_inv_desc_wait_irq("One pending, skip current");
670 return;
671 }
672 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
673 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
674 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
675 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
676 "new event not generated");
677 return;
678 } else {
679 /* Generate the interrupt event */
680 trace_vtd_inv_desc_wait_irq("Generating complete event");
681 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
682 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
683 }
684 }
685
vtd_root_entry_present(IntelIOMMUState * s,VTDRootEntry * re,uint8_t devfn)686 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
687 VTDRootEntry *re,
688 uint8_t devfn)
689 {
690 if (s->root_scalable && devfn > UINT8_MAX / 2) {
691 return re->hi & VTD_ROOT_ENTRY_P;
692 }
693
694 return re->lo & VTD_ROOT_ENTRY_P;
695 }
696
vtd_get_root_entry(IntelIOMMUState * s,uint8_t index,VTDRootEntry * re)697 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
698 VTDRootEntry *re)
699 {
700 dma_addr_t addr;
701
702 addr = s->root + index * sizeof(*re);
703 if (dma_memory_read(&address_space_memory, addr,
704 re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
705 re->lo = 0;
706 return -VTD_FR_ROOT_TABLE_INV;
707 }
708 re->lo = le64_to_cpu(re->lo);
709 re->hi = le64_to_cpu(re->hi);
710 return 0;
711 }
712
vtd_ce_present(VTDContextEntry * context)713 static inline bool vtd_ce_present(VTDContextEntry *context)
714 {
715 return context->lo & VTD_CONTEXT_ENTRY_P;
716 }
717
vtd_get_context_entry_from_root(IntelIOMMUState * s,VTDRootEntry * re,uint8_t index,VTDContextEntry * ce)718 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
719 VTDRootEntry *re,
720 uint8_t index,
721 VTDContextEntry *ce)
722 {
723 dma_addr_t addr, ce_size;
724
725 /* we have checked that root entry is present */
726 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
727 VTD_CTX_ENTRY_LEGACY_SIZE;
728
729 if (s->root_scalable && index > UINT8_MAX / 2) {
730 index = index & (~VTD_DEVFN_CHECK_MASK);
731 addr = re->hi & VTD_ROOT_ENTRY_CTP;
732 } else {
733 addr = re->lo & VTD_ROOT_ENTRY_CTP;
734 }
735
736 addr = addr + index * ce_size;
737 if (dma_memory_read(&address_space_memory, addr,
738 ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
739 return -VTD_FR_CONTEXT_TABLE_INV;
740 }
741
742 ce->lo = le64_to_cpu(ce->lo);
743 ce->hi = le64_to_cpu(ce->hi);
744 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
745 ce->val[2] = le64_to_cpu(ce->val[2]);
746 ce->val[3] = le64_to_cpu(ce->val[3]);
747 }
748 return 0;
749 }
750
vtd_ce_get_slpt_base(VTDContextEntry * ce)751 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
752 {
753 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
754 }
755
vtd_get_pte_addr(uint64_t pte,uint8_t aw)756 static inline uint64_t vtd_get_pte_addr(uint64_t pte, uint8_t aw)
757 {
758 return pte & VTD_PT_BASE_ADDR_MASK(aw);
759 }
760
761 /* Whether the pte indicates the address of the page frame */
vtd_is_last_pte(uint64_t pte,uint32_t level)762 static inline bool vtd_is_last_pte(uint64_t pte, uint32_t level)
763 {
764 return level == VTD_PT_LEVEL || (pte & VTD_PT_PAGE_SIZE_MASK);
765 }
766
767 /* Get the content of a pte located in @base_addr[@index] */
vtd_get_pte(dma_addr_t base_addr,uint32_t index)768 static uint64_t vtd_get_pte(dma_addr_t base_addr, uint32_t index)
769 {
770 uint64_t pte;
771
772 assert(index < VTD_PT_ENTRY_NR);
773
774 if (dma_memory_read(&address_space_memory,
775 base_addr + index * sizeof(pte),
776 &pte, sizeof(pte), MEMTXATTRS_UNSPECIFIED)) {
777 pte = (uint64_t)-1;
778 return pte;
779 }
780 pte = le64_to_cpu(pte);
781 return pte;
782 }
783
784 /* Given an iova and the level of paging structure, return the offset
785 * of current level.
786 */
vtd_iova_level_offset(uint64_t iova,uint32_t level)787 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
788 {
789 return (iova >> vtd_pt_level_shift(level)) &
790 ((1ULL << VTD_LEVEL_BITS) - 1);
791 }
792
793 /* Check Capability Register to see if the @level of page-table is supported */
vtd_is_sl_level_supported(IntelIOMMUState * s,uint32_t level)794 static inline bool vtd_is_sl_level_supported(IntelIOMMUState *s, uint32_t level)
795 {
796 return VTD_CAP_SAGAW_MASK & s->cap &
797 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
798 }
799
vtd_is_fl_level_supported(IntelIOMMUState * s,uint32_t level)800 static inline bool vtd_is_fl_level_supported(IntelIOMMUState *s, uint32_t level)
801 {
802 return level == VTD_PML4_LEVEL;
803 }
804
805 /* Return true if check passed, otherwise false */
vtd_pe_type_check(IntelIOMMUState * s,VTDPASIDEntry * pe)806 static inline bool vtd_pe_type_check(IntelIOMMUState *s, VTDPASIDEntry *pe)
807 {
808 switch (VTD_PE_GET_TYPE(pe)) {
809 case VTD_SM_PASID_ENTRY_FLT:
810 return !!(s->ecap & VTD_ECAP_FLTS);
811 case VTD_SM_PASID_ENTRY_SLT:
812 return !!(s->ecap & VTD_ECAP_SLTS);
813 case VTD_SM_PASID_ENTRY_NESTED:
814 /* Not support NESTED page table type yet */
815 return false;
816 case VTD_SM_PASID_ENTRY_PT:
817 return !!(s->ecap & VTD_ECAP_PT);
818 default:
819 /* Unknown type */
820 return false;
821 }
822 }
823
vtd_pdire_present(VTDPASIDDirEntry * pdire)824 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
825 {
826 return pdire->val & 1;
827 }
828
829 /**
830 * Caller of this function should check present bit if wants
831 * to use pdir entry for further usage except for fpd bit check.
832 */
vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,uint32_t pasid,VTDPASIDDirEntry * pdire)833 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
834 uint32_t pasid,
835 VTDPASIDDirEntry *pdire)
836 {
837 uint32_t index;
838 dma_addr_t addr, entry_size;
839
840 index = VTD_PASID_DIR_INDEX(pasid);
841 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
842 addr = pasid_dir_base + index * entry_size;
843 if (dma_memory_read(&address_space_memory, addr,
844 pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
845 return -VTD_FR_PASID_DIR_ACCESS_ERR;
846 }
847
848 pdire->val = le64_to_cpu(pdire->val);
849
850 return 0;
851 }
852
vtd_pe_present(VTDPASIDEntry * pe)853 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
854 {
855 return pe->val[0] & VTD_PASID_ENTRY_P;
856 }
857
vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState * s,uint32_t pasid,dma_addr_t addr,VTDPASIDEntry * pe)858 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
859 uint32_t pasid,
860 dma_addr_t addr,
861 VTDPASIDEntry *pe)
862 {
863 uint8_t pgtt;
864 uint32_t index;
865 dma_addr_t entry_size;
866
867 index = VTD_PASID_TABLE_INDEX(pasid);
868 entry_size = VTD_PASID_ENTRY_SIZE;
869 addr = addr + index * entry_size;
870 if (dma_memory_read(&address_space_memory, addr,
871 pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
872 return -VTD_FR_PASID_TABLE_ACCESS_ERR;
873 }
874 for (size_t i = 0; i < ARRAY_SIZE(pe->val); i++) {
875 pe->val[i] = le64_to_cpu(pe->val[i]);
876 }
877
878 /* Do translation type check */
879 if (!vtd_pe_type_check(s, pe)) {
880 return -VTD_FR_PASID_TABLE_ENTRY_INV;
881 }
882
883 pgtt = VTD_PE_GET_TYPE(pe);
884 if (pgtt == VTD_SM_PASID_ENTRY_SLT &&
885 !vtd_is_sl_level_supported(s, VTD_PE_GET_SL_LEVEL(pe))) {
886 return -VTD_FR_PASID_TABLE_ENTRY_INV;
887 }
888
889 if (pgtt == VTD_SM_PASID_ENTRY_FLT &&
890 !vtd_is_fl_level_supported(s, VTD_PE_GET_FL_LEVEL(pe))) {
891 return -VTD_FR_PASID_TABLE_ENTRY_INV;
892 }
893
894 return 0;
895 }
896
897 /**
898 * Caller of this function should check present bit if wants
899 * to use pasid entry for further usage except for fpd bit check.
900 */
vtd_get_pe_from_pdire(IntelIOMMUState * s,uint32_t pasid,VTDPASIDDirEntry * pdire,VTDPASIDEntry * pe)901 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
902 uint32_t pasid,
903 VTDPASIDDirEntry *pdire,
904 VTDPASIDEntry *pe)
905 {
906 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
907
908 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
909 }
910
911 /**
912 * This function gets a pasid entry from a specified pasid
913 * table (includes dir and leaf table) with a specified pasid.
914 * Sanity check should be done to ensure return a present
915 * pasid entry to caller.
916 */
vtd_get_pe_from_pasid_table(IntelIOMMUState * s,dma_addr_t pasid_dir_base,uint32_t pasid,VTDPASIDEntry * pe)917 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
918 dma_addr_t pasid_dir_base,
919 uint32_t pasid,
920 VTDPASIDEntry *pe)
921 {
922 int ret;
923 VTDPASIDDirEntry pdire;
924
925 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
926 pasid, &pdire);
927 if (ret) {
928 return ret;
929 }
930
931 if (!vtd_pdire_present(&pdire)) {
932 return -VTD_FR_PASID_DIR_ENTRY_P;
933 }
934
935 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
936 if (ret) {
937 return ret;
938 }
939
940 if (!vtd_pe_present(pe)) {
941 return -VTD_FR_PASID_ENTRY_P;
942 }
943
944 return 0;
945 }
946
vtd_ce_get_rid2pasid_entry(IntelIOMMUState * s,VTDContextEntry * ce,VTDPASIDEntry * pe,uint32_t pasid)947 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
948 VTDContextEntry *ce,
949 VTDPASIDEntry *pe,
950 uint32_t pasid)
951 {
952 dma_addr_t pasid_dir_base;
953 int ret = 0;
954
955 if (pasid == PCI_NO_PASID) {
956 pasid = VTD_CE_GET_RID2PASID(ce);
957 }
958 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
959 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
960
961 return ret;
962 }
963
vtd_ce_get_pasid_fpd(IntelIOMMUState * s,VTDContextEntry * ce,bool * pe_fpd_set,uint32_t pasid)964 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
965 VTDContextEntry *ce,
966 bool *pe_fpd_set,
967 uint32_t pasid)
968 {
969 int ret;
970 dma_addr_t pasid_dir_base;
971 VTDPASIDDirEntry pdire;
972 VTDPASIDEntry pe;
973
974 if (pasid == PCI_NO_PASID) {
975 pasid = VTD_CE_GET_RID2PASID(ce);
976 }
977 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
978
979 /*
980 * No present bit check since fpd is meaningful even
981 * if the present bit is clear.
982 */
983 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
984 if (ret) {
985 return ret;
986 }
987
988 if (pdire.val & VTD_PASID_DIR_FPD) {
989 *pe_fpd_set = true;
990 return 0;
991 }
992
993 if (!vtd_pdire_present(&pdire)) {
994 return -VTD_FR_PASID_DIR_ENTRY_P;
995 }
996
997 /*
998 * No present bit check since fpd is meaningful even
999 * if the present bit is clear.
1000 */
1001 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
1002 if (ret) {
1003 return ret;
1004 }
1005
1006 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
1007 *pe_fpd_set = true;
1008 }
1009
1010 return 0;
1011 }
1012
1013 /* Get the page-table level that hardware should use for the second-level
1014 * page-table walk from the Address Width field of context-entry.
1015 */
vtd_ce_get_level(VTDContextEntry * ce)1016 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
1017 {
1018 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
1019 }
1020
vtd_get_iova_level(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1021 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
1022 VTDContextEntry *ce,
1023 uint32_t pasid)
1024 {
1025 VTDPASIDEntry pe;
1026
1027 if (s->root_scalable) {
1028 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1029 if (s->flts) {
1030 return VTD_PE_GET_FL_LEVEL(&pe);
1031 } else {
1032 return VTD_PE_GET_SL_LEVEL(&pe);
1033 }
1034 }
1035
1036 return vtd_ce_get_level(ce);
1037 }
1038
vtd_ce_get_agaw(VTDContextEntry * ce)1039 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
1040 {
1041 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
1042 }
1043
vtd_get_iova_agaw(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1044 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
1045 VTDContextEntry *ce,
1046 uint32_t pasid)
1047 {
1048 VTDPASIDEntry pe;
1049
1050 if (s->root_scalable) {
1051 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1052 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
1053 }
1054
1055 return vtd_ce_get_agaw(ce);
1056 }
1057
vtd_ce_get_type(VTDContextEntry * ce)1058 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
1059 {
1060 return ce->lo & VTD_CONTEXT_ENTRY_TT;
1061 }
1062
1063 /* Only for Legacy Mode. Return true if check passed, otherwise false */
vtd_ce_type_check(X86IOMMUState * x86_iommu,VTDContextEntry * ce)1064 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
1065 VTDContextEntry *ce)
1066 {
1067 switch (vtd_ce_get_type(ce)) {
1068 case VTD_CONTEXT_TT_MULTI_LEVEL:
1069 /* Always supported */
1070 break;
1071 case VTD_CONTEXT_TT_DEV_IOTLB:
1072 if (!x86_iommu->dt_supported) {
1073 error_report_once("%s: DT specified but not supported", __func__);
1074 return false;
1075 }
1076 break;
1077 case VTD_CONTEXT_TT_PASS_THROUGH:
1078 if (!x86_iommu->pt_supported) {
1079 error_report_once("%s: PT specified but not supported", __func__);
1080 return false;
1081 }
1082 break;
1083 default:
1084 /* Unknown type */
1085 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
1086 vtd_ce_get_type(ce));
1087 return false;
1088 }
1089 return true;
1090 }
1091
vtd_iova_limit(IntelIOMMUState * s,VTDContextEntry * ce,uint8_t aw,uint32_t pasid)1092 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
1093 VTDContextEntry *ce, uint8_t aw,
1094 uint32_t pasid)
1095 {
1096 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid);
1097 return 1ULL << MIN(ce_agaw, aw);
1098 }
1099
1100 /* Return true if IOVA passes range check, otherwise false. */
vtd_iova_sl_range_check(IntelIOMMUState * s,uint64_t iova,VTDContextEntry * ce,uint8_t aw,uint32_t pasid)1101 static inline bool vtd_iova_sl_range_check(IntelIOMMUState *s,
1102 uint64_t iova, VTDContextEntry *ce,
1103 uint8_t aw, uint32_t pasid)
1104 {
1105 /*
1106 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
1107 * in CAP_REG and AW in context-entry.
1108 */
1109 return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1));
1110 }
1111
vtd_get_iova_pgtbl_base(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1112 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
1113 VTDContextEntry *ce,
1114 uint32_t pasid)
1115 {
1116 VTDPASIDEntry pe;
1117
1118 if (s->root_scalable) {
1119 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1120 if (s->flts) {
1121 return pe.val[2] & VTD_SM_PASID_ENTRY_FLPTPTR;
1122 } else {
1123 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
1124 }
1125 }
1126
1127 return vtd_ce_get_slpt_base(ce);
1128 }
1129
1130 /*
1131 * Rsvd field masks for spte:
1132 * vtd_spte_rsvd 4k pages
1133 * vtd_spte_rsvd_large large pages
1134 *
1135 * We support only 3-level and 4-level page tables (see vtd_init() which
1136 * sets only VTD_CAP_SAGAW_39bit and maybe VTD_CAP_SAGAW_48bit bits in s->cap).
1137 */
1138 #define VTD_SPTE_RSVD_LEN 5
1139 static uint64_t vtd_spte_rsvd[VTD_SPTE_RSVD_LEN];
1140 static uint64_t vtd_spte_rsvd_large[VTD_SPTE_RSVD_LEN];
1141
vtd_slpte_nonzero_rsvd(uint64_t slpte,uint32_t level)1142 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
1143 {
1144 uint64_t rsvd_mask;
1145
1146 /*
1147 * We should have caught a guest-mis-programmed level earlier,
1148 * via vtd_is_sl_level_supported.
1149 */
1150 assert(level < VTD_SPTE_RSVD_LEN);
1151 /*
1152 * Zero level doesn't exist. The smallest level is VTD_PT_LEVEL=1 and
1153 * checked by vtd_is_last_pte().
1154 */
1155 assert(level);
1156
1157 if ((level == VTD_PD_LEVEL || level == VTD_PDP_LEVEL) &&
1158 (slpte & VTD_PT_PAGE_SIZE_MASK)) {
1159 /* large page */
1160 rsvd_mask = vtd_spte_rsvd_large[level];
1161 } else {
1162 rsvd_mask = vtd_spte_rsvd[level];
1163 }
1164
1165 return slpte & rsvd_mask;
1166 }
1167
1168 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1169 * of the translation, can be used for deciding the size of large page.
1170 */
vtd_iova_to_slpte(IntelIOMMUState * s,VTDContextEntry * ce,uint64_t iova,bool is_write,uint64_t * slptep,uint32_t * slpte_level,bool * reads,bool * writes,uint8_t aw_bits,uint32_t pasid)1171 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1172 uint64_t iova, bool is_write,
1173 uint64_t *slptep, uint32_t *slpte_level,
1174 bool *reads, bool *writes, uint8_t aw_bits,
1175 uint32_t pasid)
1176 {
1177 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1178 uint32_t level = vtd_get_iova_level(s, ce, pasid);
1179 uint32_t offset;
1180 uint64_t slpte;
1181 uint64_t access_right_check;
1182
1183 if (!vtd_iova_sl_range_check(s, iova, ce, aw_bits, pasid)) {
1184 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ","
1185 "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
1186 return -VTD_FR_ADDR_BEYOND_MGAW;
1187 }
1188
1189 /* FIXME: what is the Atomics request here? */
1190 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1191
1192 while (true) {
1193 offset = vtd_iova_level_offset(iova, level);
1194 slpte = vtd_get_pte(addr, offset);
1195
1196 if (slpte == (uint64_t)-1) {
1197 error_report_once("%s: detected read error on DMAR slpte "
1198 "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")",
1199 __func__, iova, pasid);
1200 if (level == vtd_get_iova_level(s, ce, pasid)) {
1201 /* Invalid programming of context-entry */
1202 return -VTD_FR_CONTEXT_ENTRY_INV;
1203 } else {
1204 return -VTD_FR_PAGING_ENTRY_INV;
1205 }
1206 }
1207 *reads = (*reads) && (slpte & VTD_SL_R);
1208 *writes = (*writes) && (slpte & VTD_SL_W);
1209 if (!(slpte & access_right_check)) {
1210 error_report_once("%s: detected slpte permission error "
1211 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1212 "slpte=0x%" PRIx64 ", write=%d, pasid=0x%"
1213 PRIx32 ")", __func__, iova, level,
1214 slpte, is_write, pasid);
1215 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1216 }
1217 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1218 error_report_once("%s: detected splte reserve non-zero "
1219 "iova=0x%" PRIx64 ", level=0x%" PRIx32
1220 "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
1221 __func__, iova, level, slpte, pasid);
1222 return -VTD_FR_PAGING_ENTRY_RSVD;
1223 }
1224
1225 if (vtd_is_last_pte(slpte, level)) {
1226 *slptep = slpte;
1227 *slpte_level = level;
1228 break;
1229 }
1230 addr = vtd_get_pte_addr(slpte, aw_bits);
1231 level--;
1232 }
1233
1234 return 0;
1235 }
1236
1237 typedef int (*vtd_page_walk_hook)(const IOMMUTLBEvent *event, void *private);
1238
1239 /**
1240 * Constant information used during page walking
1241 *
1242 * @hook_fn: hook func to be called when detected page
1243 * @private: private data to be passed into hook func
1244 * @notify_unmap: whether we should notify invalid entries
1245 * @as: VT-d address space of the device
1246 * @aw: maximum address width
1247 * @domain: domain ID of the page walk
1248 */
1249 typedef struct {
1250 VTDAddressSpace *as;
1251 vtd_page_walk_hook hook_fn;
1252 void *private;
1253 bool notify_unmap;
1254 uint8_t aw;
1255 uint16_t domain_id;
1256 } vtd_page_walk_info;
1257
vtd_page_walk_one(IOMMUTLBEvent * event,vtd_page_walk_info * info)1258 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1259 {
1260 VTDAddressSpace *as = info->as;
1261 vtd_page_walk_hook hook_fn = info->hook_fn;
1262 void *private = info->private;
1263 IOMMUTLBEntry *entry = &event->entry;
1264 DMAMap target = {
1265 .iova = entry->iova,
1266 .size = entry->addr_mask,
1267 .translated_addr = entry->translated_addr,
1268 .perm = entry->perm,
1269 };
1270 const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1271
1272 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1273 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1274 return 0;
1275 }
1276
1277 assert(hook_fn);
1278
1279 /* Update local IOVA mapped ranges */
1280 if (event->type == IOMMU_NOTIFIER_MAP) {
1281 if (mapped) {
1282 /* If it's exactly the same translation, skip */
1283 if (!memcmp(mapped, &target, sizeof(target))) {
1284 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1285 entry->translated_addr);
1286 return 0;
1287 } else {
1288 /*
1289 * Translation changed. Normally this should not
1290 * happen, but it can happen when with buggy guest
1291 * OSes. Note that there will be a small window that
1292 * we don't have map at all. But that's the best
1293 * effort we can do. The ideal way to emulate this is
1294 * atomically modify the PTE to follow what has
1295 * changed, but we can't. One example is that vfio
1296 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1297 * interface to modify a mapping (meanwhile it seems
1298 * meaningless to even provide one). Anyway, let's
1299 * mark this as a TODO in case one day we'll have
1300 * a better solution.
1301 */
1302 IOMMUAccessFlags cache_perm = entry->perm;
1303 int ret;
1304
1305 /* Emulate an UNMAP */
1306 event->type = IOMMU_NOTIFIER_UNMAP;
1307 entry->perm = IOMMU_NONE;
1308 trace_vtd_page_walk_one(info->domain_id,
1309 entry->iova,
1310 entry->translated_addr,
1311 entry->addr_mask,
1312 entry->perm);
1313 ret = hook_fn(event, private);
1314 if (ret) {
1315 return ret;
1316 }
1317 /* Drop any existing mapping */
1318 iova_tree_remove(as->iova_tree, target);
1319 /* Recover the correct type */
1320 event->type = IOMMU_NOTIFIER_MAP;
1321 entry->perm = cache_perm;
1322 }
1323 }
1324 iova_tree_insert(as->iova_tree, &target);
1325 } else {
1326 if (!mapped) {
1327 /* Skip since we didn't map this range at all */
1328 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1329 return 0;
1330 }
1331 iova_tree_remove(as->iova_tree, target);
1332 }
1333
1334 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1335 entry->translated_addr, entry->addr_mask,
1336 entry->perm);
1337 return hook_fn(event, private);
1338 }
1339
1340 /**
1341 * vtd_page_walk_level - walk over specific level for IOVA range
1342 *
1343 * @addr: base GPA addr to start the walk
1344 * @start: IOVA range start address
1345 * @end: IOVA range end address (start <= addr < end)
1346 * @read: whether parent level has read permission
1347 * @write: whether parent level has write permission
1348 * @info: constant information for the page walk
1349 */
vtd_page_walk_level(dma_addr_t addr,uint64_t start,uint64_t end,uint32_t level,bool read,bool write,vtd_page_walk_info * info)1350 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1351 uint64_t end, uint32_t level, bool read,
1352 bool write, vtd_page_walk_info *info)
1353 {
1354 bool read_cur, write_cur, entry_valid;
1355 uint32_t offset;
1356 uint64_t slpte;
1357 uint64_t subpage_size, subpage_mask;
1358 IOMMUTLBEvent event;
1359 uint64_t iova = start;
1360 uint64_t iova_next;
1361 int ret = 0;
1362
1363 trace_vtd_page_walk_level(addr, level, start, end);
1364
1365 subpage_size = 1ULL << vtd_pt_level_shift(level);
1366 subpage_mask = vtd_pt_level_page_mask(level);
1367
1368 while (iova < end) {
1369 iova_next = (iova & subpage_mask) + subpage_size;
1370
1371 offset = vtd_iova_level_offset(iova, level);
1372 slpte = vtd_get_pte(addr, offset);
1373
1374 if (slpte == (uint64_t)-1) {
1375 trace_vtd_page_walk_skip_read(iova, iova_next);
1376 goto next;
1377 }
1378
1379 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1380 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1381 goto next;
1382 }
1383
1384 /* Permissions are stacked with parents' */
1385 read_cur = read && (slpte & VTD_SL_R);
1386 write_cur = write && (slpte & VTD_SL_W);
1387
1388 /*
1389 * As long as we have either read/write permission, this is a
1390 * valid entry. The rule works for both page entries and page
1391 * table entries.
1392 */
1393 entry_valid = read_cur | write_cur;
1394
1395 if (!vtd_is_last_pte(slpte, level) && entry_valid) {
1396 /*
1397 * This is a valid PDE (or even bigger than PDE). We need
1398 * to walk one further level.
1399 */
1400 ret = vtd_page_walk_level(vtd_get_pte_addr(slpte, info->aw),
1401 iova, MIN(iova_next, end), level - 1,
1402 read_cur, write_cur, info);
1403 } else {
1404 /*
1405 * This means we are either:
1406 *
1407 * (1) the real page entry (either 4K page, or huge page)
1408 * (2) the whole range is invalid
1409 *
1410 * In either case, we send an IOTLB notification down.
1411 */
1412 event.entry.target_as = &address_space_memory;
1413 event.entry.iova = iova & subpage_mask;
1414 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1415 event.entry.addr_mask = ~subpage_mask;
1416 /* NOTE: this is only meaningful if entry_valid == true */
1417 event.entry.translated_addr = vtd_get_pte_addr(slpte, info->aw);
1418 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1419 IOMMU_NOTIFIER_UNMAP;
1420 ret = vtd_page_walk_one(&event, info);
1421 }
1422
1423 if (ret < 0) {
1424 return ret;
1425 }
1426
1427 next:
1428 iova = iova_next;
1429 }
1430
1431 return 0;
1432 }
1433
1434 /**
1435 * vtd_page_walk - walk specific IOVA range, and call the hook
1436 *
1437 * @s: intel iommu state
1438 * @ce: context entry to walk upon
1439 * @start: IOVA address to start the walk
1440 * @end: IOVA range end address (start <= addr < end)
1441 * @info: page walking information struct
1442 */
vtd_page_walk(IntelIOMMUState * s,VTDContextEntry * ce,uint64_t start,uint64_t end,vtd_page_walk_info * info,uint32_t pasid)1443 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1444 uint64_t start, uint64_t end,
1445 vtd_page_walk_info *info,
1446 uint32_t pasid)
1447 {
1448 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1449 uint32_t level = vtd_get_iova_level(s, ce, pasid);
1450
1451 if (!vtd_iova_sl_range_check(s, start, ce, info->aw, pasid)) {
1452 return -VTD_FR_ADDR_BEYOND_MGAW;
1453 }
1454
1455 if (!vtd_iova_sl_range_check(s, end, ce, info->aw, pasid)) {
1456 /* Fix end so that it reaches the maximum */
1457 end = vtd_iova_limit(s, ce, info->aw, pasid);
1458 }
1459
1460 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1461 }
1462
vtd_root_entry_rsvd_bits_check(IntelIOMMUState * s,VTDRootEntry * re)1463 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1464 VTDRootEntry *re)
1465 {
1466 /* Legacy Mode reserved bits check */
1467 if (!s->root_scalable &&
1468 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1469 goto rsvd_err;
1470
1471 /* Scalable Mode reserved bits check */
1472 if (s->root_scalable &&
1473 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1474 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1475 goto rsvd_err;
1476
1477 return 0;
1478
1479 rsvd_err:
1480 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1481 ", lo=0x%"PRIx64,
1482 __func__, re->hi, re->lo);
1483 return -VTD_FR_ROOT_ENTRY_RSVD;
1484 }
1485
vtd_context_entry_rsvd_bits_check(IntelIOMMUState * s,VTDContextEntry * ce)1486 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1487 VTDContextEntry *ce)
1488 {
1489 if (!s->root_scalable &&
1490 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1491 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1492 error_report_once("%s: invalid context entry: hi=%"PRIx64
1493 ", lo=%"PRIx64" (reserved nonzero)",
1494 __func__, ce->hi, ce->lo);
1495 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1496 }
1497
1498 if (s->root_scalable &&
1499 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1500 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1501 ce->val[2] ||
1502 ce->val[3])) {
1503 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1504 ", val[2]=%"PRIx64
1505 ", val[1]=%"PRIx64
1506 ", val[0]=%"PRIx64" (reserved nonzero)",
1507 __func__, ce->val[3], ce->val[2],
1508 ce->val[1], ce->val[0]);
1509 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1510 }
1511
1512 return 0;
1513 }
1514
vtd_ce_rid2pasid_check(IntelIOMMUState * s,VTDContextEntry * ce)1515 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1516 VTDContextEntry *ce)
1517 {
1518 VTDPASIDEntry pe;
1519
1520 /*
1521 * Make sure in Scalable Mode, a present context entry
1522 * has valid rid2pasid setting, which includes valid
1523 * rid2pasid field and corresponding pasid entry setting
1524 */
1525 return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID);
1526 }
1527
1528 /* Map a device to its corresponding domain (context-entry) */
vtd_dev_to_context_entry(IntelIOMMUState * s,uint8_t bus_num,uint8_t devfn,VTDContextEntry * ce)1529 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1530 uint8_t devfn, VTDContextEntry *ce)
1531 {
1532 VTDRootEntry re;
1533 int ret_fr;
1534 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1535
1536 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1537 if (ret_fr) {
1538 return ret_fr;
1539 }
1540
1541 if (!vtd_root_entry_present(s, &re, devfn)) {
1542 /* Not error - it's okay we don't have root entry. */
1543 trace_vtd_re_not_present(bus_num);
1544 return -VTD_FR_ROOT_ENTRY_P;
1545 }
1546
1547 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1548 if (ret_fr) {
1549 return ret_fr;
1550 }
1551
1552 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1553 if (ret_fr) {
1554 return ret_fr;
1555 }
1556
1557 if (!vtd_ce_present(ce)) {
1558 /* Not error - it's okay we don't have context entry. */
1559 trace_vtd_ce_not_present(bus_num, devfn);
1560 return -VTD_FR_CONTEXT_ENTRY_P;
1561 }
1562
1563 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1564 if (ret_fr) {
1565 return ret_fr;
1566 }
1567
1568 /* Check if the programming of context-entry is valid */
1569 if (!s->root_scalable &&
1570 !vtd_is_sl_level_supported(s, vtd_ce_get_level(ce))) {
1571 error_report_once("%s: invalid context entry: hi=%"PRIx64
1572 ", lo=%"PRIx64" (level %d not supported)",
1573 __func__, ce->hi, ce->lo,
1574 vtd_ce_get_level(ce));
1575 return -VTD_FR_CONTEXT_ENTRY_INV;
1576 }
1577
1578 if (!s->root_scalable) {
1579 /* Do translation type check */
1580 if (!vtd_ce_type_check(x86_iommu, ce)) {
1581 /* Errors dumped in vtd_ce_type_check() */
1582 return -VTD_FR_CONTEXT_ENTRY_INV;
1583 }
1584 } else {
1585 /*
1586 * Check if the programming of context-entry.rid2pasid
1587 * and corresponding pasid setting is valid, and thus
1588 * avoids to check pasid entry fetching result in future
1589 * helper function calling.
1590 */
1591 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1592 if (ret_fr) {
1593 return ret_fr;
1594 }
1595 }
1596
1597 return 0;
1598 }
1599
vtd_sync_shadow_page_hook(const IOMMUTLBEvent * event,void * private)1600 static int vtd_sync_shadow_page_hook(const IOMMUTLBEvent *event,
1601 void *private)
1602 {
1603 memory_region_notify_iommu(private, 0, *event);
1604 return 0;
1605 }
1606
vtd_get_domain_id(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1607 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1608 VTDContextEntry *ce,
1609 uint32_t pasid)
1610 {
1611 VTDPASIDEntry pe;
1612
1613 if (s->root_scalable) {
1614 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1615 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1616 }
1617
1618 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1619 }
1620
vtd_sync_shadow_page_table_range(VTDAddressSpace * vtd_as,VTDContextEntry * ce,hwaddr addr,hwaddr size)1621 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1622 VTDContextEntry *ce,
1623 hwaddr addr, hwaddr size)
1624 {
1625 IntelIOMMUState *s = vtd_as->iommu_state;
1626 vtd_page_walk_info info = {
1627 .hook_fn = vtd_sync_shadow_page_hook,
1628 .private = (void *)&vtd_as->iommu,
1629 .notify_unmap = true,
1630 .aw = s->aw_bits,
1631 .as = vtd_as,
1632 .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid),
1633 };
1634
1635 return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid);
1636 }
1637
vtd_address_space_sync(VTDAddressSpace * vtd_as)1638 static int vtd_address_space_sync(VTDAddressSpace *vtd_as)
1639 {
1640 int ret;
1641 VTDContextEntry ce;
1642 IOMMUNotifier *n;
1643
1644 /* If no MAP notifier registered, we simply invalidate all the cache */
1645 if (!vtd_as_has_map_notifier(vtd_as)) {
1646 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1647 memory_region_unmap_iommu_notifier_range(n);
1648 }
1649 return 0;
1650 }
1651
1652 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1653 pci_bus_num(vtd_as->bus),
1654 vtd_as->devfn, &ce);
1655 if (ret) {
1656 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1657 /*
1658 * It's a valid scenario to have a context entry that is
1659 * not present. For example, when a device is removed
1660 * from an existing domain then the context entry will be
1661 * zeroed by the guest before it was put into another
1662 * domain. When this happens, instead of synchronizing
1663 * the shadow pages we should invalidate all existing
1664 * mappings and notify the backends.
1665 */
1666 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1667 vtd_address_space_unmap(vtd_as, n);
1668 }
1669 ret = 0;
1670 }
1671 return ret;
1672 }
1673
1674 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1675 }
1676
1677 /*
1678 * Check if specific device is configured to bypass address
1679 * translation for DMA requests. In Scalable Mode, bypass
1680 * 1st-level translation or 2nd-level translation, it depends
1681 * on PGTT setting.
1682 */
vtd_dev_pt_enabled(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1683 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce,
1684 uint32_t pasid)
1685 {
1686 VTDPASIDEntry pe;
1687 int ret;
1688
1689 if (s->root_scalable) {
1690 ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1691 if (ret) {
1692 /*
1693 * This error is guest triggerable. We should assumt PT
1694 * not enabled for safety.
1695 */
1696 return false;
1697 }
1698 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1699 }
1700
1701 return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1702
1703 }
1704
vtd_as_pt_enabled(VTDAddressSpace * as)1705 static bool vtd_as_pt_enabled(VTDAddressSpace *as)
1706 {
1707 IntelIOMMUState *s;
1708 VTDContextEntry ce;
1709
1710 assert(as);
1711
1712 s = as->iommu_state;
1713 if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn,
1714 &ce)) {
1715 /*
1716 * Possibly failed to parse the context entry for some reason
1717 * (e.g., during init, or any guest configuration errors on
1718 * context entries). We should assume PT not enabled for
1719 * safety.
1720 */
1721 return false;
1722 }
1723
1724 return vtd_dev_pt_enabled(s, &ce, as->pasid);
1725 }
1726
1727 /* Return whether the device is using IOMMU translation. */
vtd_switch_address_space(VTDAddressSpace * as)1728 static bool vtd_switch_address_space(VTDAddressSpace *as)
1729 {
1730 bool use_iommu, pt;
1731 /* Whether we need to take the BQL on our own */
1732 bool take_bql = !bql_locked();
1733
1734 assert(as);
1735
1736 use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
1737 pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as);
1738
1739 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1740 VTD_PCI_SLOT(as->devfn),
1741 VTD_PCI_FUNC(as->devfn),
1742 use_iommu);
1743
1744 /*
1745 * It's possible that we reach here without BQL, e.g., when called
1746 * from vtd_pt_enable_fast_path(). However the memory APIs need
1747 * it. We'd better make sure we have had it already, or, take it.
1748 */
1749 if (take_bql) {
1750 bql_lock();
1751 }
1752
1753 /* Turn off first then on the other */
1754 if (use_iommu) {
1755 memory_region_set_enabled(&as->nodmar, false);
1756 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1757 /*
1758 * vt-d spec v3.4 3.14:
1759 *
1760 * """
1761 * Requests-with-PASID with input address in range 0xFEEx_xxxx
1762 * are translated normally like any other request-with-PASID
1763 * through DMA-remapping hardware.
1764 * """
1765 *
1766 * Need to disable ir for as with PASID.
1767 */
1768 if (as->pasid != PCI_NO_PASID) {
1769 memory_region_set_enabled(&as->iommu_ir, false);
1770 } else {
1771 memory_region_set_enabled(&as->iommu_ir, true);
1772 }
1773 } else {
1774 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1775 memory_region_set_enabled(&as->nodmar, true);
1776 }
1777
1778 /*
1779 * vtd-spec v3.4 3.14:
1780 *
1781 * """
1782 * Requests-with-PASID with input address in range 0xFEEx_xxxx are
1783 * translated normally like any other request-with-PASID through
1784 * DMA-remapping hardware. However, if such a request is processed
1785 * using pass-through translation, it will be blocked as described
1786 * in the paragraph below.
1787 *
1788 * Software must not program paging-structure entries to remap any
1789 * address to the interrupt address range. Untranslated requests
1790 * and translation requests that result in an address in the
1791 * interrupt range will be blocked with condition code LGN.4 or
1792 * SGN.8.
1793 * """
1794 *
1795 * We enable per as memory region (iommu_ir_fault) for catching
1796 * the translation for interrupt range through PASID + PT.
1797 */
1798 if (pt && as->pasid != PCI_NO_PASID) {
1799 memory_region_set_enabled(&as->iommu_ir_fault, true);
1800 } else {
1801 memory_region_set_enabled(&as->iommu_ir_fault, false);
1802 }
1803
1804 if (take_bql) {
1805 bql_unlock();
1806 }
1807
1808 return use_iommu;
1809 }
1810
vtd_switch_address_space_all(IntelIOMMUState * s)1811 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1812 {
1813 VTDAddressSpace *vtd_as;
1814 GHashTableIter iter;
1815
1816 g_hash_table_iter_init(&iter, s->vtd_address_spaces);
1817 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) {
1818 vtd_switch_address_space(vtd_as);
1819 }
1820 }
1821
1822 static const bool vtd_qualified_faults[] = {
1823 [VTD_FR_RESERVED] = false,
1824 [VTD_FR_ROOT_ENTRY_P] = false,
1825 [VTD_FR_CONTEXT_ENTRY_P] = true,
1826 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1827 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1828 [VTD_FR_WRITE] = true,
1829 [VTD_FR_READ] = true,
1830 [VTD_FR_PAGING_ENTRY_INV] = true,
1831 [VTD_FR_ROOT_TABLE_INV] = false,
1832 [VTD_FR_CONTEXT_TABLE_INV] = false,
1833 [VTD_FR_INTERRUPT_ADDR] = true,
1834 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1835 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1836 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1837 [VTD_FR_PASID_DIR_ACCESS_ERR] = false,
1838 [VTD_FR_PASID_DIR_ENTRY_P] = true,
1839 [VTD_FR_PASID_TABLE_ACCESS_ERR] = false,
1840 [VTD_FR_PASID_ENTRY_P] = true,
1841 [VTD_FR_PASID_TABLE_ENTRY_INV] = true,
1842 [VTD_FR_FS_PAGING_ENTRY_INV] = true,
1843 [VTD_FR_FS_PAGING_ENTRY_P] = true,
1844 [VTD_FR_FS_PAGING_ENTRY_RSVD] = true,
1845 [VTD_FR_PASID_ENTRY_FSPTPTR_INV] = true,
1846 [VTD_FR_FS_NON_CANONICAL] = true,
1847 [VTD_FR_FS_PAGING_ENTRY_US] = true,
1848 [VTD_FR_SM_WRITE] = true,
1849 [VTD_FR_SM_INTERRUPT_ADDR] = true,
1850 [VTD_FR_FS_BIT_UPDATE_FAILED] = true,
1851 [VTD_FR_MAX] = false,
1852 };
1853
1854 /* To see if a fault condition is "qualified", which is reported to software
1855 * only if the FPD field in the context-entry used to process the faulting
1856 * request is 0.
1857 */
vtd_is_qualified_fault(VTDFaultReason fault)1858 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1859 {
1860 return vtd_qualified_faults[fault];
1861 }
1862
vtd_is_interrupt_addr(hwaddr addr)1863 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1864 {
1865 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1866 }
1867
vtd_find_as_by_sid_and_pasid(gpointer key,gpointer value,gpointer user_data)1868 static gboolean vtd_find_as_by_sid_and_pasid(gpointer key, gpointer value,
1869 gpointer user_data)
1870 {
1871 struct vtd_as_key *as_key = (struct vtd_as_key *)key;
1872 struct vtd_as_raw_key *target = (struct vtd_as_raw_key *)user_data;
1873 uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn);
1874
1875 return (as_key->pasid == target->pasid) && (sid == target->sid);
1876 }
1877
vtd_get_as_by_sid_and_pasid(IntelIOMMUState * s,uint16_t sid,uint32_t pasid)1878 static VTDAddressSpace *vtd_get_as_by_sid_and_pasid(IntelIOMMUState *s,
1879 uint16_t sid,
1880 uint32_t pasid)
1881 {
1882 struct vtd_as_raw_key key = {
1883 .sid = sid,
1884 .pasid = pasid
1885 };
1886
1887 return g_hash_table_find(s->vtd_address_spaces,
1888 vtd_find_as_by_sid_and_pasid, &key);
1889 }
1890
vtd_get_as_by_sid(IntelIOMMUState * s,uint16_t sid)1891 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid)
1892 {
1893 return vtd_get_as_by_sid_and_pasid(s, sid, PCI_NO_PASID);
1894 }
1895
vtd_pt_enable_fast_path(IntelIOMMUState * s,uint16_t source_id)1896 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1897 {
1898 VTDAddressSpace *vtd_as;
1899 bool success = false;
1900
1901 vtd_as = vtd_get_as_by_sid(s, source_id);
1902 if (!vtd_as) {
1903 goto out;
1904 }
1905
1906 if (vtd_switch_address_space(vtd_as) == false) {
1907 /* We switched off IOMMU region successfully. */
1908 success = true;
1909 }
1910
1911 out:
1912 trace_vtd_pt_enable_fast_path(source_id, success);
1913 }
1914
1915 /*
1916 * Rsvd field masks for fpte:
1917 * vtd_fpte_rsvd 4k pages
1918 * vtd_fpte_rsvd_large large pages
1919 *
1920 * We support only 4-level page tables.
1921 */
1922 #define VTD_FPTE_RSVD_LEN 5
1923 static uint64_t vtd_fpte_rsvd[VTD_FPTE_RSVD_LEN];
1924 static uint64_t vtd_fpte_rsvd_large[VTD_FPTE_RSVD_LEN];
1925
vtd_flpte_nonzero_rsvd(uint64_t flpte,uint32_t level)1926 static bool vtd_flpte_nonzero_rsvd(uint64_t flpte, uint32_t level)
1927 {
1928 uint64_t rsvd_mask;
1929
1930 /*
1931 * We should have caught a guest-mis-programmed level earlier,
1932 * via vtd_is_fl_level_supported.
1933 */
1934 assert(level < VTD_FPTE_RSVD_LEN);
1935 /*
1936 * Zero level doesn't exist. The smallest level is VTD_PT_LEVEL=1 and
1937 * checked by vtd_is_last_pte().
1938 */
1939 assert(level);
1940
1941 if ((level == VTD_PD_LEVEL || level == VTD_PDP_LEVEL) &&
1942 (flpte & VTD_PT_PAGE_SIZE_MASK)) {
1943 /* large page */
1944 rsvd_mask = vtd_fpte_rsvd_large[level];
1945 } else {
1946 rsvd_mask = vtd_fpte_rsvd[level];
1947 }
1948
1949 return flpte & rsvd_mask;
1950 }
1951
vtd_flpte_present(uint64_t flpte)1952 static inline bool vtd_flpte_present(uint64_t flpte)
1953 {
1954 return !!(flpte & VTD_FL_P);
1955 }
1956
1957 /* Return true if IOVA is canonical, otherwise false. */
vtd_iova_fl_check_canonical(IntelIOMMUState * s,uint64_t iova,VTDContextEntry * ce,uint32_t pasid)1958 static bool vtd_iova_fl_check_canonical(IntelIOMMUState *s, uint64_t iova,
1959 VTDContextEntry *ce, uint32_t pasid)
1960 {
1961 uint64_t iova_limit = vtd_iova_limit(s, ce, s->aw_bits, pasid);
1962 uint64_t upper_bits_mask = ~(iova_limit - 1);
1963 uint64_t upper_bits = iova & upper_bits_mask;
1964 bool msb = ((iova & (iova_limit >> 1)) != 0);
1965
1966 if (msb) {
1967 return upper_bits == upper_bits_mask;
1968 } else {
1969 return !upper_bits;
1970 }
1971 }
1972
vtd_set_flag_in_pte(dma_addr_t base_addr,uint32_t index,uint64_t pte,uint64_t flag)1973 static MemTxResult vtd_set_flag_in_pte(dma_addr_t base_addr, uint32_t index,
1974 uint64_t pte, uint64_t flag)
1975 {
1976 if (pte & flag) {
1977 return MEMTX_OK;
1978 }
1979 pte |= flag;
1980 pte = cpu_to_le64(pte);
1981 return dma_memory_write(&address_space_memory,
1982 base_addr + index * sizeof(pte),
1983 &pte, sizeof(pte),
1984 MEMTXATTRS_UNSPECIFIED);
1985 }
1986
1987 /*
1988 * Given the @iova, get relevant @flptep. @flpte_level will be the last level
1989 * of the translation, can be used for deciding the size of large page.
1990 */
vtd_iova_to_flpte(IntelIOMMUState * s,VTDContextEntry * ce,uint64_t iova,bool is_write,uint64_t * flptep,uint32_t * flpte_level,bool * reads,bool * writes,uint8_t aw_bits,uint32_t pasid)1991 static int vtd_iova_to_flpte(IntelIOMMUState *s, VTDContextEntry *ce,
1992 uint64_t iova, bool is_write,
1993 uint64_t *flptep, uint32_t *flpte_level,
1994 bool *reads, bool *writes, uint8_t aw_bits,
1995 uint32_t pasid)
1996 {
1997 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1998 uint32_t level = vtd_get_iova_level(s, ce, pasid);
1999 uint32_t offset;
2000 uint64_t flpte, flag_ad = VTD_FL_A;
2001
2002 if (!vtd_iova_fl_check_canonical(s, iova, ce, pasid)) {
2003 error_report_once("%s: detected non canonical IOVA (iova=0x%" PRIx64 ","
2004 "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
2005 return -VTD_FR_FS_NON_CANONICAL;
2006 }
2007
2008 while (true) {
2009 offset = vtd_iova_level_offset(iova, level);
2010 flpte = vtd_get_pte(addr, offset);
2011
2012 if (flpte == (uint64_t)-1) {
2013 if (level == vtd_get_iova_level(s, ce, pasid)) {
2014 /* Invalid programming of pasid-entry */
2015 return -VTD_FR_PASID_ENTRY_FSPTPTR_INV;
2016 } else {
2017 return -VTD_FR_FS_PAGING_ENTRY_INV;
2018 }
2019 }
2020
2021 if (!vtd_flpte_present(flpte)) {
2022 *reads = false;
2023 *writes = false;
2024 return -VTD_FR_FS_PAGING_ENTRY_P;
2025 }
2026
2027 /* No emulated device supports supervisor privilege request yet */
2028 if (!(flpte & VTD_FL_US)) {
2029 *reads = false;
2030 *writes = false;
2031 return -VTD_FR_FS_PAGING_ENTRY_US;
2032 }
2033
2034 *reads = true;
2035 *writes = (*writes) && (flpte & VTD_FL_RW);
2036 if (is_write && !(flpte & VTD_FL_RW)) {
2037 return -VTD_FR_SM_WRITE;
2038 }
2039 if (vtd_flpte_nonzero_rsvd(flpte, level)) {
2040 error_report_once("%s: detected flpte reserved non-zero "
2041 "iova=0x%" PRIx64 ", level=0x%" PRIx32
2042 "flpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
2043 __func__, iova, level, flpte, pasid);
2044 return -VTD_FR_FS_PAGING_ENTRY_RSVD;
2045 }
2046
2047 if (vtd_is_last_pte(flpte, level) && is_write) {
2048 flag_ad |= VTD_FL_D;
2049 }
2050
2051 if (vtd_set_flag_in_pte(addr, offset, flpte, flag_ad) != MEMTX_OK) {
2052 return -VTD_FR_FS_BIT_UPDATE_FAILED;
2053 }
2054
2055 if (vtd_is_last_pte(flpte, level)) {
2056 *flptep = flpte;
2057 *flpte_level = level;
2058 return 0;
2059 }
2060
2061 addr = vtd_get_pte_addr(flpte, aw_bits);
2062 level--;
2063 }
2064 }
2065
vtd_report_fault(IntelIOMMUState * s,int err,bool is_fpd_set,uint16_t source_id,hwaddr addr,bool is_write,bool is_pasid,uint32_t pasid)2066 static void vtd_report_fault(IntelIOMMUState *s,
2067 int err, bool is_fpd_set,
2068 uint16_t source_id,
2069 hwaddr addr,
2070 bool is_write,
2071 bool is_pasid,
2072 uint32_t pasid)
2073 {
2074 if (is_fpd_set && vtd_is_qualified_fault(err)) {
2075 trace_vtd_fault_disabled();
2076 } else {
2077 vtd_report_dmar_fault(s, source_id, addr, err, is_write,
2078 is_pasid, pasid);
2079 }
2080 }
2081
2082 /* Map dev to context-entry then do a paging-structures walk to do a iommu
2083 * translation.
2084 *
2085 * Called from RCU critical section.
2086 *
2087 * @bus_num: The bus number
2088 * @devfn: The devfn, which is the combined of device and function number
2089 * @is_write: The access is a write operation
2090 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
2091 *
2092 * Returns true if translation is successful, otherwise false.
2093 */
vtd_do_iommu_translate(VTDAddressSpace * vtd_as,PCIBus * bus,uint8_t devfn,hwaddr addr,bool is_write,IOMMUTLBEntry * entry)2094 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
2095 uint8_t devfn, hwaddr addr, bool is_write,
2096 IOMMUTLBEntry *entry)
2097 {
2098 IntelIOMMUState *s = vtd_as->iommu_state;
2099 VTDContextEntry ce;
2100 uint8_t bus_num = pci_bus_num(bus);
2101 VTDContextCacheEntry *cc_entry;
2102 uint64_t pte, page_mask;
2103 uint32_t level, pasid = vtd_as->pasid;
2104 uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn);
2105 int ret_fr;
2106 bool is_fpd_set = false;
2107 bool reads = true;
2108 bool writes = true;
2109 uint8_t access_flags, pgtt;
2110 bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable;
2111 VTDIOTLBEntry *iotlb_entry;
2112 uint64_t xlat, size;
2113
2114 /*
2115 * We have standalone memory region for interrupt addresses, we
2116 * should never receive translation requests in this region.
2117 */
2118 assert(!vtd_is_interrupt_addr(addr));
2119
2120 vtd_iommu_lock(s);
2121
2122 cc_entry = &vtd_as->context_cache_entry;
2123
2124 /* Try to fetch pte from IOTLB, we don't need RID2PASID logic */
2125 if (!rid2pasid) {
2126 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
2127 if (iotlb_entry) {
2128 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->pte,
2129 iotlb_entry->domain_id);
2130 pte = iotlb_entry->pte;
2131 access_flags = iotlb_entry->access_flags;
2132 page_mask = iotlb_entry->mask;
2133 goto out;
2134 }
2135 }
2136
2137 /* Try to fetch context-entry from cache first */
2138 if (cc_entry->context_cache_gen == s->context_cache_gen) {
2139 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
2140 cc_entry->context_entry.lo,
2141 cc_entry->context_cache_gen);
2142 ce = cc_entry->context_entry;
2143 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
2144 if (!is_fpd_set && s->root_scalable) {
2145 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
2146 if (ret_fr) {
2147 vtd_report_fault(s, -ret_fr, is_fpd_set,
2148 source_id, addr, is_write,
2149 false, 0);
2150 goto error;
2151 }
2152 }
2153 } else {
2154 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
2155 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
2156 if (!ret_fr && !is_fpd_set && s->root_scalable) {
2157 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
2158 }
2159 if (ret_fr) {
2160 vtd_report_fault(s, -ret_fr, is_fpd_set,
2161 source_id, addr, is_write,
2162 false, 0);
2163 goto error;
2164 }
2165 /* Update context-cache */
2166 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
2167 cc_entry->context_cache_gen,
2168 s->context_cache_gen);
2169 cc_entry->context_entry = ce;
2170 cc_entry->context_cache_gen = s->context_cache_gen;
2171 }
2172
2173 if (rid2pasid) {
2174 pasid = VTD_CE_GET_RID2PASID(&ce);
2175 }
2176
2177 /*
2178 * We don't need to translate for pass-through context entries.
2179 * Also, let's ignore IOTLB caching as well for PT devices.
2180 */
2181 if (vtd_dev_pt_enabled(s, &ce, pasid)) {
2182 entry->iova = addr & VTD_PAGE_MASK_4K;
2183 entry->translated_addr = entry->iova;
2184 entry->addr_mask = ~VTD_PAGE_MASK_4K;
2185 entry->perm = IOMMU_RW;
2186 trace_vtd_translate_pt(source_id, entry->iova);
2187
2188 /*
2189 * When this happens, it means firstly caching-mode is not
2190 * enabled, and this is the first passthrough translation for
2191 * the device. Let's enable the fast path for passthrough.
2192 *
2193 * When passthrough is disabled again for the device, we can
2194 * capture it via the context entry invalidation, then the
2195 * IOMMU region can be swapped back.
2196 */
2197 vtd_pt_enable_fast_path(s, source_id);
2198 vtd_iommu_unlock(s);
2199 return true;
2200 }
2201
2202 /* Try to fetch pte from IOTLB for RID2PASID slow path */
2203 if (rid2pasid) {
2204 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
2205 if (iotlb_entry) {
2206 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->pte,
2207 iotlb_entry->domain_id);
2208 pte = iotlb_entry->pte;
2209 access_flags = iotlb_entry->access_flags;
2210 page_mask = iotlb_entry->mask;
2211 goto out;
2212 }
2213 }
2214
2215 if (s->flts && s->root_scalable) {
2216 ret_fr = vtd_iova_to_flpte(s, &ce, addr, is_write, &pte, &level,
2217 &reads, &writes, s->aw_bits, pasid);
2218 pgtt = VTD_SM_PASID_ENTRY_FLT;
2219 } else {
2220 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &pte, &level,
2221 &reads, &writes, s->aw_bits, pasid);
2222 pgtt = VTD_SM_PASID_ENTRY_SLT;
2223 }
2224 if (!ret_fr) {
2225 xlat = vtd_get_pte_addr(pte, s->aw_bits);
2226 size = ~vtd_pt_level_page_mask(level) + 1;
2227
2228 /*
2229 * Per VT-d spec 4.1 section 3.15: Untranslated requests and translation
2230 * requests that result in an address in the interrupt range will be
2231 * blocked with condition code LGN.4 or SGN.8.
2232 */
2233 if ((xlat <= VTD_INTERRUPT_ADDR_LAST &&
2234 xlat + size - 1 >= VTD_INTERRUPT_ADDR_FIRST)) {
2235 error_report_once("%s: xlat address is in interrupt range "
2236 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
2237 "pte=0x%" PRIx64 ", write=%d, "
2238 "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", "
2239 "pasid=0x%" PRIx32 ")",
2240 __func__, addr, level, pte, is_write,
2241 xlat, size, pasid);
2242 ret_fr = s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
2243 -VTD_FR_INTERRUPT_ADDR;
2244 }
2245 }
2246
2247 if (ret_fr) {
2248 vtd_report_fault(s, -ret_fr, is_fpd_set, source_id,
2249 addr, is_write, pasid != PCI_NO_PASID, pasid);
2250 goto error;
2251 }
2252
2253 page_mask = vtd_pt_level_page_mask(level);
2254 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
2255 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid),
2256 addr, pte, access_flags, level, pasid, pgtt);
2257 out:
2258 vtd_iommu_unlock(s);
2259 entry->iova = addr & page_mask;
2260 entry->translated_addr = vtd_get_pte_addr(pte, s->aw_bits) & page_mask;
2261 entry->addr_mask = ~page_mask;
2262 entry->perm = access_flags;
2263 return true;
2264
2265 error:
2266 vtd_iommu_unlock(s);
2267 entry->iova = 0;
2268 entry->translated_addr = 0;
2269 entry->addr_mask = 0;
2270 entry->perm = IOMMU_NONE;
2271 return false;
2272 }
2273
vtd_root_table_setup(IntelIOMMUState * s)2274 static void vtd_root_table_setup(IntelIOMMUState *s)
2275 {
2276 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2277 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
2278
2279 vtd_update_scalable_state(s);
2280
2281 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
2282 }
2283
vtd_iec_notify_all(IntelIOMMUState * s,bool global,uint32_t index,uint32_t mask)2284 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
2285 uint32_t index, uint32_t mask)
2286 {
2287 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
2288 }
2289
vtd_interrupt_remap_table_setup(IntelIOMMUState * s)2290 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
2291 {
2292 uint64_t value = 0;
2293 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
2294 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
2295 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
2296 s->intr_eime = value & VTD_IRTA_EIME;
2297
2298 /* Notify global invalidation */
2299 vtd_iec_notify_all(s, true, 0, 0);
2300
2301 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
2302 }
2303
vtd_iommu_replay_all(IntelIOMMUState * s)2304 static void vtd_iommu_replay_all(IntelIOMMUState *s)
2305 {
2306 VTDAddressSpace *vtd_as;
2307
2308 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2309 vtd_address_space_sync(vtd_as);
2310 }
2311 }
2312
vtd_context_global_invalidate(IntelIOMMUState * s)2313 static void vtd_context_global_invalidate(IntelIOMMUState *s)
2314 {
2315 trace_vtd_inv_desc_cc_global();
2316 /* Protects context cache */
2317 vtd_iommu_lock(s);
2318 s->context_cache_gen++;
2319 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
2320 vtd_reset_context_cache_locked(s);
2321 }
2322 vtd_iommu_unlock(s);
2323 vtd_address_space_refresh_all(s);
2324 /*
2325 * From VT-d spec 6.5.2.1, a global context entry invalidation
2326 * should be followed by a IOTLB global invalidation, so we should
2327 * be safe even without this. Hoewever, let's replay the region as
2328 * well to be safer, and go back here when we need finer tunes for
2329 * VT-d emulation codes.
2330 */
2331 vtd_iommu_replay_all(s);
2332 }
2333
2334 /* Do a context-cache device-selective invalidation.
2335 * @func_mask: FM field after shifting
2336 */
vtd_context_device_invalidate(IntelIOMMUState * s,uint16_t source_id,uint16_t func_mask)2337 static void vtd_context_device_invalidate(IntelIOMMUState *s,
2338 uint16_t source_id,
2339 uint16_t func_mask)
2340 {
2341 GHashTableIter as_it;
2342 uint16_t mask;
2343 VTDAddressSpace *vtd_as;
2344 uint8_t bus_n, devfn;
2345
2346 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
2347
2348 switch (func_mask & 3) {
2349 case 0:
2350 mask = 0; /* No bits in the SID field masked */
2351 break;
2352 case 1:
2353 mask = 4; /* Mask bit 2 in the SID field */
2354 break;
2355 case 2:
2356 mask = 6; /* Mask bit 2:1 in the SID field */
2357 break;
2358 case 3:
2359 mask = 7; /* Mask bit 2:0 in the SID field */
2360 break;
2361 default:
2362 g_assert_not_reached();
2363 }
2364 mask = ~mask;
2365
2366 bus_n = VTD_SID_TO_BUS(source_id);
2367 devfn = VTD_SID_TO_DEVFN(source_id);
2368
2369 g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
2370 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
2371 if ((pci_bus_num(vtd_as->bus) == bus_n) &&
2372 (vtd_as->devfn & mask) == (devfn & mask)) {
2373 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn),
2374 VTD_PCI_FUNC(vtd_as->devfn));
2375 vtd_iommu_lock(s);
2376 vtd_as->context_cache_entry.context_cache_gen = 0;
2377 vtd_iommu_unlock(s);
2378 /*
2379 * Do switch address space when needed, in case if the
2380 * device passthrough bit is switched.
2381 */
2382 vtd_switch_address_space(vtd_as);
2383 /*
2384 * So a device is moving out of (or moving into) a
2385 * domain, resync the shadow page table.
2386 * This won't bring bad even if we have no such
2387 * notifier registered - the IOMMU notification
2388 * framework will skip MAP notifications if that
2389 * happened.
2390 */
2391 vtd_address_space_sync(vtd_as);
2392 }
2393 }
2394 }
2395
2396 /* Context-cache invalidation
2397 * Returns the Context Actual Invalidation Granularity.
2398 * @val: the content of the CCMD_REG
2399 */
vtd_context_cache_invalidate(IntelIOMMUState * s,uint64_t val)2400 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
2401 {
2402 uint64_t caig;
2403 uint64_t type = val & VTD_CCMD_CIRG_MASK;
2404
2405 switch (type) {
2406 case VTD_CCMD_DOMAIN_INVL:
2407 /* Fall through */
2408 case VTD_CCMD_GLOBAL_INVL:
2409 caig = VTD_CCMD_GLOBAL_INVL_A;
2410 vtd_context_global_invalidate(s);
2411 break;
2412
2413 case VTD_CCMD_DEVICE_INVL:
2414 caig = VTD_CCMD_DEVICE_INVL_A;
2415 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
2416 break;
2417
2418 default:
2419 error_report_once("%s: invalid context: 0x%" PRIx64,
2420 __func__, val);
2421 caig = 0;
2422 }
2423 return caig;
2424 }
2425
vtd_iotlb_global_invalidate(IntelIOMMUState * s)2426 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
2427 {
2428 trace_vtd_inv_desc_iotlb_global();
2429 vtd_reset_iotlb(s);
2430 vtd_iommu_replay_all(s);
2431 }
2432
vtd_iotlb_domain_invalidate(IntelIOMMUState * s,uint16_t domain_id)2433 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
2434 {
2435 VTDContextEntry ce;
2436 VTDAddressSpace *vtd_as;
2437
2438 trace_vtd_inv_desc_iotlb_domain(domain_id);
2439
2440 vtd_iommu_lock(s);
2441 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
2442 &domain_id);
2443 vtd_iommu_unlock(s);
2444
2445 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2446 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2447 vtd_as->devfn, &ce) &&
2448 domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2449 vtd_address_space_sync(vtd_as);
2450 }
2451 }
2452 }
2453
2454 /*
2455 * There is no pasid field in iotlb invalidation descriptor, so PCI_NO_PASID
2456 * is passed as parameter. Piotlb invalidation supports pasid, pasid in its
2457 * descriptor is passed which should not be PCI_NO_PASID.
2458 */
vtd_iotlb_page_invalidate_notify(IntelIOMMUState * s,uint16_t domain_id,hwaddr addr,uint8_t am,uint32_t pasid)2459 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
2460 uint16_t domain_id, hwaddr addr,
2461 uint8_t am, uint32_t pasid)
2462 {
2463 VTDAddressSpace *vtd_as;
2464 VTDContextEntry ce;
2465 int ret;
2466 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
2467
2468 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
2469 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2470 vtd_as->devfn, &ce);
2471 if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2472 uint32_t rid2pasid = PCI_NO_PASID;
2473
2474 if (s->root_scalable) {
2475 rid2pasid = VTD_CE_GET_RID2PASID(&ce);
2476 }
2477
2478 /*
2479 * In legacy mode, vtd_as->pasid == pasid is always true.
2480 * In scalable mode, for vtd address space backing a PCI
2481 * device without pasid, needs to compare pasid with
2482 * rid2pasid of this device.
2483 */
2484 if (!(vtd_as->pasid == pasid ||
2485 (vtd_as->pasid == PCI_NO_PASID && pasid == rid2pasid))) {
2486 continue;
2487 }
2488
2489 if (vtd_as_has_map_notifier(vtd_as)) {
2490 /*
2491 * When stage-1 translation is off, as long as we have MAP
2492 * notifications registered in any of our IOMMU notifiers,
2493 * we need to sync the shadow page table. Otherwise VFIO
2494 * device attaches to nested page table instead of shadow
2495 * page table, so no need to sync.
2496 */
2497 if (!s->flts || !s->root_scalable) {
2498 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2499 }
2500 } else {
2501 /*
2502 * For UNMAP-only notifiers, we don't need to walk the
2503 * page tables. We just deliver the PSI down to
2504 * invalidate caches.
2505 */
2506 const IOMMUTLBEvent event = {
2507 .type = IOMMU_NOTIFIER_UNMAP,
2508 .entry = {
2509 .target_as = &address_space_memory,
2510 .iova = addr,
2511 .translated_addr = 0,
2512 .addr_mask = size - 1,
2513 .perm = IOMMU_NONE,
2514 },
2515 };
2516 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2517 }
2518 }
2519 }
2520 }
2521
vtd_iotlb_page_invalidate(IntelIOMMUState * s,uint16_t domain_id,hwaddr addr,uint8_t am)2522 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2523 hwaddr addr, uint8_t am)
2524 {
2525 VTDIOTLBPageInvInfo info;
2526
2527 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2528
2529 assert(am <= VTD_MAMV);
2530 info.domain_id = domain_id;
2531 info.addr = addr;
2532 info.mask = ~((1 << am) - 1);
2533 vtd_iommu_lock(s);
2534 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2535 vtd_iommu_unlock(s);
2536 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID);
2537 }
2538
2539 /* Flush IOTLB
2540 * Returns the IOTLB Actual Invalidation Granularity.
2541 * @val: the content of the IOTLB_REG
2542 */
vtd_iotlb_flush(IntelIOMMUState * s,uint64_t val)2543 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2544 {
2545 uint64_t iaig;
2546 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2547 uint16_t domain_id;
2548 hwaddr addr;
2549 uint8_t am;
2550
2551 switch (type) {
2552 case VTD_TLB_GLOBAL_FLUSH:
2553 iaig = VTD_TLB_GLOBAL_FLUSH_A;
2554 vtd_iotlb_global_invalidate(s);
2555 break;
2556
2557 case VTD_TLB_DSI_FLUSH:
2558 domain_id = VTD_TLB_DID(val);
2559 iaig = VTD_TLB_DSI_FLUSH_A;
2560 vtd_iotlb_domain_invalidate(s, domain_id);
2561 break;
2562
2563 case VTD_TLB_PSI_FLUSH:
2564 domain_id = VTD_TLB_DID(val);
2565 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2566 am = VTD_IVA_AM(addr);
2567 addr = VTD_IVA_ADDR(addr);
2568 if (am > VTD_MAMV) {
2569 error_report_once("%s: address mask overflow: 0x%" PRIx64,
2570 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2571 iaig = 0;
2572 break;
2573 }
2574 iaig = VTD_TLB_PSI_FLUSH_A;
2575 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2576 break;
2577
2578 default:
2579 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2580 __func__, val);
2581 iaig = 0;
2582 }
2583 return iaig;
2584 }
2585
2586 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2587
vtd_queued_inv_disable_check(IntelIOMMUState * s)2588 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2589 {
2590 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2591 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2592 }
2593
vtd_handle_gcmd_qie(IntelIOMMUState * s,bool en)2594 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2595 {
2596 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2597
2598 trace_vtd_inv_qi_enable(en);
2599
2600 if (en) {
2601 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2602 /* 2^(x+8) entries */
2603 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2604 s->qi_enabled = true;
2605 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2606 /* Ok - report back to driver */
2607 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2608
2609 if (s->iq_tail != 0) {
2610 /*
2611 * This is a spec violation but Windows guests are known to set up
2612 * Queued Invalidation this way so we allow the write and process
2613 * Invalidation Descriptors right away.
2614 */
2615 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2616 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2617 vtd_fetch_inv_desc(s);
2618 }
2619 }
2620 } else {
2621 if (vtd_queued_inv_disable_check(s)) {
2622 /* disable Queued Invalidation */
2623 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2624 s->iq_head = 0;
2625 s->qi_enabled = false;
2626 /* Ok - report back to driver */
2627 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2628 } else {
2629 error_report_once("%s: detected improper state when disable QI "
2630 "(head=0x%x, tail=0x%x, last_type=%d)",
2631 __func__,
2632 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2633 }
2634 }
2635 }
2636
2637 /* Set Root Table Pointer */
vtd_handle_gcmd_srtp(IntelIOMMUState * s)2638 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2639 {
2640 vtd_root_table_setup(s);
2641 /* Ok - report back to driver */
2642 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2643 vtd_reset_caches(s);
2644 vtd_address_space_refresh_all(s);
2645 }
2646
2647 /* Set Interrupt Remap Table Pointer */
vtd_handle_gcmd_sirtp(IntelIOMMUState * s)2648 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2649 {
2650 vtd_interrupt_remap_table_setup(s);
2651 /* Ok - report back to driver */
2652 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2653 }
2654
2655 /* Handle Translation Enable/Disable */
vtd_handle_gcmd_te(IntelIOMMUState * s,bool en)2656 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2657 {
2658 if (s->dmar_enabled == en) {
2659 return;
2660 }
2661
2662 trace_vtd_dmar_enable(en);
2663
2664 if (en) {
2665 s->dmar_enabled = true;
2666 /* Ok - report back to driver */
2667 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2668 } else {
2669 s->dmar_enabled = false;
2670
2671 /* Clear the index of Fault Recording Register */
2672 s->next_frcd_reg = 0;
2673 /* Ok - report back to driver */
2674 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2675 }
2676
2677 vtd_reset_caches(s);
2678 vtd_address_space_refresh_all(s);
2679 }
2680
2681 /* Handle Interrupt Remap Enable/Disable */
vtd_handle_gcmd_ire(IntelIOMMUState * s,bool en)2682 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2683 {
2684 trace_vtd_ir_enable(en);
2685
2686 if (en) {
2687 s->intr_enabled = true;
2688 /* Ok - report back to driver */
2689 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2690 } else {
2691 s->intr_enabled = false;
2692 /* Ok - report back to driver */
2693 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2694 }
2695 }
2696
2697 /* Handle write to Global Command Register */
vtd_handle_gcmd_write(IntelIOMMUState * s)2698 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2699 {
2700 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2701 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2702 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2703 uint32_t changed = status ^ val;
2704
2705 trace_vtd_reg_write_gcmd(status, val);
2706 if ((changed & VTD_GCMD_TE) && s->dma_translation) {
2707 /* Translation enable/disable */
2708 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2709 }
2710 if (val & VTD_GCMD_SRTP) {
2711 /* Set/update the root-table pointer */
2712 vtd_handle_gcmd_srtp(s);
2713 }
2714 if (changed & VTD_GCMD_QIE) {
2715 /* Queued Invalidation Enable */
2716 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2717 }
2718 if (val & VTD_GCMD_SIRTP) {
2719 /* Set/update the interrupt remapping root-table pointer */
2720 vtd_handle_gcmd_sirtp(s);
2721 }
2722 if ((changed & VTD_GCMD_IRE) &&
2723 x86_iommu_ir_supported(x86_iommu)) {
2724 /* Interrupt remap enable/disable */
2725 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2726 }
2727 }
2728
2729 /* Handle write to Context Command Register */
vtd_handle_ccmd_write(IntelIOMMUState * s)2730 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2731 {
2732 uint64_t ret;
2733 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2734
2735 /* Context-cache invalidation request */
2736 if (val & VTD_CCMD_ICC) {
2737 if (s->qi_enabled) {
2738 error_report_once("Queued Invalidation enabled, "
2739 "should not use register-based invalidation");
2740 return;
2741 }
2742 ret = vtd_context_cache_invalidate(s, val);
2743 /* Invalidation completed. Change something to show */
2744 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2745 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2746 ret);
2747 }
2748 }
2749
2750 /* Handle write to IOTLB Invalidation Register */
vtd_handle_iotlb_write(IntelIOMMUState * s)2751 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2752 {
2753 uint64_t ret;
2754 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2755
2756 /* IOTLB invalidation request */
2757 if (val & VTD_TLB_IVT) {
2758 if (s->qi_enabled) {
2759 error_report_once("Queued Invalidation enabled, "
2760 "should not use register-based invalidation");
2761 return;
2762 }
2763 ret = vtd_iotlb_flush(s, val);
2764 /* Invalidation completed. Change something to show */
2765 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2766 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2767 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2768 }
2769 }
2770
2771 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
vtd_get_inv_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2772 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2773 VTDInvDesc *inv_desc)
2774 {
2775 dma_addr_t base_addr = s->iq;
2776 uint32_t offset = s->iq_head;
2777 uint32_t dw = s->iq_dw ? 32 : 16;
2778 dma_addr_t addr = base_addr + offset * dw;
2779
2780 if (dma_memory_read(&address_space_memory, addr,
2781 inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
2782 error_report_once("Read INV DESC failed.");
2783 return false;
2784 }
2785 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2786 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2787 if (dw == 32) {
2788 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2789 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2790 }
2791 return true;
2792 }
2793
vtd_inv_desc_reserved_check(IntelIOMMUState * s,VTDInvDesc * inv_desc,uint64_t mask[4],bool dw,const char * func_name,const char * desc_type)2794 static bool vtd_inv_desc_reserved_check(IntelIOMMUState *s,
2795 VTDInvDesc *inv_desc,
2796 uint64_t mask[4], bool dw,
2797 const char *func_name,
2798 const char *desc_type)
2799 {
2800 if (s->iq_dw) {
2801 if (inv_desc->val[0] & mask[0] || inv_desc->val[1] & mask[1] ||
2802 inv_desc->val[2] & mask[2] || inv_desc->val[3] & mask[3]) {
2803 error_report("%s: invalid %s desc val[3]: 0x%"PRIx64
2804 " val[2]: 0x%"PRIx64" val[1]=0x%"PRIx64
2805 " val[0]=0x%"PRIx64" (reserved nonzero)",
2806 func_name, desc_type, inv_desc->val[3],
2807 inv_desc->val[2], inv_desc->val[1],
2808 inv_desc->val[0]);
2809 return false;
2810 }
2811 } else {
2812 if (dw) {
2813 error_report("%s: 256-bit %s desc in 128-bit invalidation queue",
2814 func_name, desc_type);
2815 return false;
2816 }
2817
2818 if (inv_desc->lo & mask[0] || inv_desc->hi & mask[1]) {
2819 error_report("%s: invalid %s desc: hi=%"PRIx64", lo=%"PRIx64
2820 " (reserved nonzero)", func_name, desc_type,
2821 inv_desc->hi, inv_desc->lo);
2822 return false;
2823 }
2824 }
2825
2826 return true;
2827 }
2828
vtd_process_wait_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2829 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2830 {
2831 uint64_t mask[4] = {VTD_INV_DESC_WAIT_RSVD_LO, VTD_INV_DESC_WAIT_RSVD_HI,
2832 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
2833
2834 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
2835 __func__, "wait")) {
2836 return false;
2837 }
2838
2839 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2840 /* Status Write */
2841 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2842 VTD_INV_DESC_WAIT_DATA_SHIFT);
2843
2844 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2845
2846 /* FIXME: need to be masked with HAW? */
2847 dma_addr_t status_addr = inv_desc->hi;
2848 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2849 status_data = cpu_to_le32(status_data);
2850 if (dma_memory_write(&address_space_memory, status_addr,
2851 &status_data, sizeof(status_data),
2852 MEMTXATTRS_UNSPECIFIED)) {
2853 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2854 return false;
2855 }
2856 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2857 /* Interrupt flag */
2858 vtd_generate_completion_event(s);
2859 } else {
2860 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2861 " (unknown type)", __func__, inv_desc->hi,
2862 inv_desc->lo);
2863 return false;
2864 }
2865 return true;
2866 }
2867
vtd_process_context_cache_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2868 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2869 VTDInvDesc *inv_desc)
2870 {
2871 uint16_t sid, fmask;
2872 uint64_t mask[4] = {VTD_INV_DESC_CC_RSVD, VTD_INV_DESC_ALL_ONE,
2873 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
2874
2875 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
2876 __func__, "cc inv")) {
2877 return false;
2878 }
2879
2880 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2881 case VTD_INV_DESC_CC_DOMAIN:
2882 trace_vtd_inv_desc_cc_domain(
2883 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2884 /* Fall through */
2885 case VTD_INV_DESC_CC_GLOBAL:
2886 vtd_context_global_invalidate(s);
2887 break;
2888
2889 case VTD_INV_DESC_CC_DEVICE:
2890 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2891 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2892 vtd_context_device_invalidate(s, sid, fmask);
2893 break;
2894
2895 default:
2896 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2897 " (invalid type)", __func__, inv_desc->hi,
2898 inv_desc->lo);
2899 return false;
2900 }
2901 return true;
2902 }
2903
vtd_process_iotlb_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2904 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2905 {
2906 uint16_t domain_id;
2907 uint8_t am;
2908 hwaddr addr;
2909 uint64_t mask[4] = {VTD_INV_DESC_IOTLB_RSVD_LO, VTD_INV_DESC_IOTLB_RSVD_HI,
2910 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
2911
2912 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
2913 __func__, "iotlb inv")) {
2914 return false;
2915 }
2916
2917 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2918 case VTD_INV_DESC_IOTLB_GLOBAL:
2919 vtd_iotlb_global_invalidate(s);
2920 break;
2921
2922 case VTD_INV_DESC_IOTLB_DOMAIN:
2923 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2924 vtd_iotlb_domain_invalidate(s, domain_id);
2925 break;
2926
2927 case VTD_INV_DESC_IOTLB_PAGE:
2928 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2929 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2930 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2931 if (am > VTD_MAMV) {
2932 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2933 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2934 __func__, inv_desc->hi, inv_desc->lo,
2935 am, (unsigned)VTD_MAMV);
2936 return false;
2937 }
2938 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2939 break;
2940
2941 default:
2942 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2943 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2944 __func__, inv_desc->hi, inv_desc->lo,
2945 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2946 return false;
2947 }
2948 return true;
2949 }
2950
vtd_hash_remove_by_pasid(gpointer key,gpointer value,gpointer user_data)2951 static gboolean vtd_hash_remove_by_pasid(gpointer key, gpointer value,
2952 gpointer user_data)
2953 {
2954 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
2955 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
2956
2957 return ((entry->domain_id == info->domain_id) &&
2958 (entry->pasid == info->pasid));
2959 }
2960
vtd_piotlb_pasid_invalidate(IntelIOMMUState * s,uint16_t domain_id,uint32_t pasid)2961 static void vtd_piotlb_pasid_invalidate(IntelIOMMUState *s,
2962 uint16_t domain_id, uint32_t pasid)
2963 {
2964 VTDIOTLBPageInvInfo info;
2965 VTDAddressSpace *vtd_as;
2966 VTDContextEntry ce;
2967
2968 info.domain_id = domain_id;
2969 info.pasid = pasid;
2970
2971 vtd_iommu_lock(s);
2972 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_pasid,
2973 &info);
2974 vtd_iommu_unlock(s);
2975
2976 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2977 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2978 vtd_as->devfn, &ce) &&
2979 domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2980 uint32_t rid2pasid = VTD_CE_GET_RID2PASID(&ce);
2981
2982 if ((vtd_as->pasid != PCI_NO_PASID || pasid != rid2pasid) &&
2983 vtd_as->pasid != pasid) {
2984 continue;
2985 }
2986
2987 if (!s->flts || !vtd_as_has_map_notifier(vtd_as)) {
2988 vtd_address_space_sync(vtd_as);
2989 }
2990 }
2991 }
2992 }
2993
vtd_piotlb_page_invalidate(IntelIOMMUState * s,uint16_t domain_id,uint32_t pasid,hwaddr addr,uint8_t am)2994 static void vtd_piotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2995 uint32_t pasid, hwaddr addr, uint8_t am)
2996 {
2997 VTDIOTLBPageInvInfo info;
2998
2999 info.domain_id = domain_id;
3000 info.pasid = pasid;
3001 info.addr = addr;
3002 info.mask = ~((1 << am) - 1);
3003
3004 vtd_iommu_lock(s);
3005 g_hash_table_foreach_remove(s->iotlb,
3006 vtd_hash_remove_by_page_piotlb, &info);
3007 vtd_iommu_unlock(s);
3008
3009 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, pasid);
3010 }
3011
vtd_process_piotlb_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)3012 static bool vtd_process_piotlb_desc(IntelIOMMUState *s,
3013 VTDInvDesc *inv_desc)
3014 {
3015 uint16_t domain_id;
3016 uint32_t pasid;
3017 hwaddr addr;
3018 uint8_t am;
3019 uint64_t mask[4] = {VTD_INV_DESC_PIOTLB_RSVD_VAL0,
3020 VTD_INV_DESC_PIOTLB_RSVD_VAL1,
3021 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
3022
3023 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, true,
3024 __func__, "piotlb inv")) {
3025 return false;
3026 }
3027
3028 domain_id = VTD_INV_DESC_PIOTLB_DID(inv_desc->val[0]);
3029 pasid = VTD_INV_DESC_PIOTLB_PASID(inv_desc->val[0]);
3030 switch (inv_desc->val[0] & VTD_INV_DESC_PIOTLB_G) {
3031 case VTD_INV_DESC_PIOTLB_ALL_IN_PASID:
3032 vtd_piotlb_pasid_invalidate(s, domain_id, pasid);
3033 break;
3034
3035 case VTD_INV_DESC_PIOTLB_PSI_IN_PASID:
3036 am = VTD_INV_DESC_PIOTLB_AM(inv_desc->val[1]);
3037 addr = (hwaddr) VTD_INV_DESC_PIOTLB_ADDR(inv_desc->val[1]);
3038 vtd_piotlb_page_invalidate(s, domain_id, pasid, addr, am);
3039 break;
3040
3041 default:
3042 error_report_once("%s: invalid piotlb inv desc: hi=0x%"PRIx64
3043 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
3044 __func__, inv_desc->val[1], inv_desc->val[0],
3045 inv_desc->val[0] & VTD_INV_DESC_IOTLB_G);
3046 return false;
3047 }
3048 return true;
3049 }
3050
vtd_process_inv_iec_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)3051 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
3052 VTDInvDesc *inv_desc)
3053 {
3054 uint64_t mask[4] = {VTD_INV_DESC_IEC_RSVD, VTD_INV_DESC_ALL_ONE,
3055 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
3056
3057 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
3058 __func__, "iec inv")) {
3059 return false;
3060 }
3061
3062 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
3063 inv_desc->iec.index,
3064 inv_desc->iec.index_mask);
3065
3066 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
3067 inv_desc->iec.index,
3068 inv_desc->iec.index_mask);
3069 return true;
3070 }
3071
do_invalidate_device_tlb(VTDAddressSpace * vtd_dev_as,bool size,hwaddr addr)3072 static void do_invalidate_device_tlb(VTDAddressSpace *vtd_dev_as,
3073 bool size, hwaddr addr)
3074 {
3075 /*
3076 * According to ATS spec table 2.4:
3077 * S = 0, bits 15:12 = xxxx range size: 4K
3078 * S = 1, bits 15:12 = xxx0 range size: 8K
3079 * S = 1, bits 15:12 = xx01 range size: 16K
3080 * S = 1, bits 15:12 = x011 range size: 32K
3081 * S = 1, bits 15:12 = 0111 range size: 64K
3082 * ...
3083 */
3084
3085 IOMMUTLBEvent event;
3086 uint64_t sz;
3087
3088 if (size) {
3089 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
3090 addr &= ~(sz - 1);
3091 } else {
3092 sz = VTD_PAGE_SIZE;
3093 }
3094
3095 event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
3096 event.entry.target_as = &vtd_dev_as->as;
3097 event.entry.addr_mask = sz - 1;
3098 event.entry.iova = addr;
3099 event.entry.perm = IOMMU_NONE;
3100 event.entry.translated_addr = 0;
3101 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
3102 }
3103
vtd_process_device_piotlb_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)3104 static bool vtd_process_device_piotlb_desc(IntelIOMMUState *s,
3105 VTDInvDesc *inv_desc)
3106 {
3107 uint16_t sid;
3108 VTDAddressSpace *vtd_dev_as;
3109 bool size;
3110 bool global;
3111 hwaddr addr;
3112 uint32_t pasid;
3113 uint64_t mask[4] = {VTD_INV_DESC_PASID_DEVICE_IOTLB_RSVD_VAL0,
3114 VTD_INV_DESC_PASID_DEVICE_IOTLB_RSVD_VAL1,
3115 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
3116
3117 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, true,
3118 __func__, "device piotlb inv")) {
3119 return false;
3120 }
3121
3122 global = VTD_INV_DESC_PASID_DEVICE_IOTLB_GLOBAL(inv_desc->hi);
3123 size = VTD_INV_DESC_PASID_DEVICE_IOTLB_SIZE(inv_desc->hi);
3124 addr = VTD_INV_DESC_PASID_DEVICE_IOTLB_ADDR(inv_desc->hi);
3125 sid = VTD_INV_DESC_PASID_DEVICE_IOTLB_SID(inv_desc->lo);
3126 if (global) {
3127 QLIST_FOREACH(vtd_dev_as, &s->vtd_as_with_notifiers, next) {
3128 if ((vtd_dev_as->pasid != PCI_NO_PASID) &&
3129 (PCI_BUILD_BDF(pci_bus_num(vtd_dev_as->bus),
3130 vtd_dev_as->devfn) == sid)) {
3131 do_invalidate_device_tlb(vtd_dev_as, size, addr);
3132 }
3133 }
3134 } else {
3135 pasid = VTD_INV_DESC_PASID_DEVICE_IOTLB_PASID(inv_desc->lo);
3136 vtd_dev_as = vtd_get_as_by_sid_and_pasid(s, sid, pasid);
3137 if (!vtd_dev_as) {
3138 return true;
3139 }
3140
3141 do_invalidate_device_tlb(vtd_dev_as, size, addr);
3142 }
3143
3144 return true;
3145 }
3146
vtd_process_device_iotlb_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)3147 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
3148 VTDInvDesc *inv_desc)
3149 {
3150 VTDAddressSpace *vtd_dev_as;
3151 hwaddr addr;
3152 uint16_t sid;
3153 bool size;
3154 uint64_t mask[4] = {VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO,
3155 VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI,
3156 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
3157
3158 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
3159 __func__, "dev-iotlb inv")) {
3160 return false;
3161 }
3162
3163 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
3164 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
3165 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
3166
3167 /*
3168 * Using sid is OK since the guest should have finished the
3169 * initialization of both the bus and device.
3170 */
3171 vtd_dev_as = vtd_get_as_by_sid(s, sid);
3172 if (!vtd_dev_as) {
3173 goto done;
3174 }
3175
3176 do_invalidate_device_tlb(vtd_dev_as, size, addr);
3177
3178 done:
3179 return true;
3180 }
3181
vtd_process_inv_desc(IntelIOMMUState * s)3182 static bool vtd_process_inv_desc(IntelIOMMUState *s)
3183 {
3184 VTDInvDesc inv_desc;
3185 uint8_t desc_type;
3186
3187 trace_vtd_inv_qi_head(s->iq_head);
3188 if (!vtd_get_inv_desc(s, &inv_desc)) {
3189 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3190 return false;
3191 }
3192
3193 desc_type = VTD_INV_DESC_TYPE(inv_desc.lo);
3194 /* FIXME: should update at first or at last? */
3195 s->iq_last_desc_type = desc_type;
3196
3197 switch (desc_type) {
3198 case VTD_INV_DESC_CC:
3199 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
3200 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
3201 return false;
3202 }
3203 break;
3204
3205 case VTD_INV_DESC_IOTLB:
3206 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
3207 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
3208 return false;
3209 }
3210 break;
3211
3212 case VTD_INV_DESC_PIOTLB:
3213 trace_vtd_inv_desc("p-iotlb", inv_desc.val[1], inv_desc.val[0]);
3214 if (!vtd_process_piotlb_desc(s, &inv_desc)) {
3215 return false;
3216 }
3217 break;
3218
3219 case VTD_INV_DESC_WAIT:
3220 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
3221 if (!vtd_process_wait_desc(s, &inv_desc)) {
3222 return false;
3223 }
3224 break;
3225
3226 case VTD_INV_DESC_IEC:
3227 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
3228 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
3229 return false;
3230 }
3231 break;
3232
3233 case VTD_INV_DESC_DEV_PIOTLB:
3234 trace_vtd_inv_desc("device-piotlb", inv_desc.hi, inv_desc.lo);
3235 if (!vtd_process_device_piotlb_desc(s, &inv_desc)) {
3236 return false;
3237 }
3238 break;
3239
3240 case VTD_INV_DESC_DEVICE:
3241 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
3242 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
3243 return false;
3244 }
3245 break;
3246
3247 /*
3248 * TODO: the entity of below two cases will be implemented in future series.
3249 * To make guest (which integrates scalable mode support patch set in
3250 * iommu driver) work, just return true is enough so far.
3251 */
3252 case VTD_INV_DESC_PC:
3253 if (s->scalable_mode) {
3254 break;
3255 }
3256 /* fallthrough */
3257 default:
3258 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
3259 " (unknown type)", __func__, inv_desc.hi,
3260 inv_desc.lo);
3261 return false;
3262 }
3263 s->iq_head++;
3264 if (s->iq_head == s->iq_size) {
3265 s->iq_head = 0;
3266 }
3267 return true;
3268 }
3269
3270 /* Try to fetch and process more Invalidation Descriptors */
vtd_fetch_inv_desc(IntelIOMMUState * s)3271 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
3272 {
3273 int qi_shift;
3274
3275 /* Refer to 10.4.23 of VT-d spec 3.0 */
3276 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
3277
3278 trace_vtd_inv_qi_fetch();
3279
3280 if (s->iq_tail >= s->iq_size) {
3281 /* Detects an invalid Tail pointer */
3282 error_report_once("%s: detected invalid QI tail "
3283 "(tail=0x%x, size=0x%x)",
3284 __func__, s->iq_tail, s->iq_size);
3285 vtd_handle_inv_queue_error(s);
3286 return;
3287 }
3288 while (s->iq_head != s->iq_tail) {
3289 if (!vtd_process_inv_desc(s)) {
3290 /* Invalidation Queue Errors */
3291 vtd_handle_inv_queue_error(s);
3292 break;
3293 }
3294 /* Must update the IQH_REG in time */
3295 vtd_set_quad_raw(s, DMAR_IQH_REG,
3296 (((uint64_t)(s->iq_head)) << qi_shift) &
3297 VTD_IQH_QH_MASK);
3298 }
3299 }
3300
3301 /* Handle write to Invalidation Queue Tail Register */
vtd_handle_iqt_write(IntelIOMMUState * s)3302 static void vtd_handle_iqt_write(IntelIOMMUState *s)
3303 {
3304 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
3305
3306 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
3307 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
3308 __func__, val);
3309 vtd_handle_inv_queue_error(s);
3310 return;
3311 }
3312 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
3313 trace_vtd_inv_qi_tail(s->iq_tail);
3314
3315 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
3316 /* Process Invalidation Queue here */
3317 vtd_fetch_inv_desc(s);
3318 }
3319 }
3320
vtd_handle_fsts_write(IntelIOMMUState * s)3321 static void vtd_handle_fsts_write(IntelIOMMUState *s)
3322 {
3323 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
3324 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
3325 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
3326
3327 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
3328 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
3329 trace_vtd_fsts_clear_ip();
3330 }
3331 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
3332 * Descriptors if there are any when Queued Invalidation is enabled?
3333 */
3334 }
3335
vtd_handle_fectl_write(IntelIOMMUState * s)3336 static void vtd_handle_fectl_write(IntelIOMMUState *s)
3337 {
3338 uint32_t fectl_reg;
3339 /* FIXME: when software clears the IM field, check the IP field. But do we
3340 * need to compare the old value and the new value to conclude that
3341 * software clears the IM field? Or just check if the IM field is zero?
3342 */
3343 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
3344
3345 trace_vtd_reg_write_fectl(fectl_reg);
3346
3347 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
3348 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
3349 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
3350 }
3351 }
3352
vtd_handle_ics_write(IntelIOMMUState * s)3353 static void vtd_handle_ics_write(IntelIOMMUState *s)
3354 {
3355 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
3356 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
3357
3358 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
3359 trace_vtd_reg_ics_clear_ip();
3360 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
3361 }
3362 }
3363
vtd_handle_iectl_write(IntelIOMMUState * s)3364 static void vtd_handle_iectl_write(IntelIOMMUState *s)
3365 {
3366 uint32_t iectl_reg;
3367 /* FIXME: when software clears the IM field, check the IP field. But do we
3368 * need to compare the old value and the new value to conclude that
3369 * software clears the IM field? Or just check if the IM field is zero?
3370 */
3371 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
3372
3373 trace_vtd_reg_write_iectl(iectl_reg);
3374
3375 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
3376 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
3377 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
3378 }
3379 }
3380
vtd_mem_read(void * opaque,hwaddr addr,unsigned size)3381 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
3382 {
3383 IntelIOMMUState *s = opaque;
3384 uint64_t val;
3385
3386 trace_vtd_reg_read(addr, size);
3387
3388 if (addr + size > DMAR_REG_SIZE) {
3389 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
3390 " size=0x%x", __func__, addr, size);
3391 return (uint64_t)-1;
3392 }
3393
3394 switch (addr) {
3395 /* Root Table Address Register, 64-bit */
3396 case DMAR_RTADDR_REG:
3397 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
3398 if (size == 4) {
3399 val = val & ((1ULL << 32) - 1);
3400 }
3401 break;
3402
3403 case DMAR_RTADDR_REG_HI:
3404 assert(size == 4);
3405 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
3406 break;
3407
3408 /* Invalidation Queue Address Register, 64-bit */
3409 case DMAR_IQA_REG:
3410 val = s->iq |
3411 (vtd_get_quad(s, DMAR_IQA_REG) &
3412 (VTD_IQA_QS | VTD_IQA_DW_MASK));
3413 if (size == 4) {
3414 val = val & ((1ULL << 32) - 1);
3415 }
3416 break;
3417
3418 case DMAR_IQA_REG_HI:
3419 assert(size == 4);
3420 val = s->iq >> 32;
3421 break;
3422
3423 default:
3424 if (size == 4) {
3425 val = vtd_get_long(s, addr);
3426 } else {
3427 val = vtd_get_quad(s, addr);
3428 }
3429 }
3430
3431 return val;
3432 }
3433
vtd_mem_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)3434 static void vtd_mem_write(void *opaque, hwaddr addr,
3435 uint64_t val, unsigned size)
3436 {
3437 IntelIOMMUState *s = opaque;
3438
3439 trace_vtd_reg_write(addr, size, val);
3440
3441 if (addr + size > DMAR_REG_SIZE) {
3442 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
3443 " size=0x%x", __func__, addr, size);
3444 return;
3445 }
3446
3447 switch (addr) {
3448 /* Global Command Register, 32-bit */
3449 case DMAR_GCMD_REG:
3450 vtd_set_long(s, addr, val);
3451 vtd_handle_gcmd_write(s);
3452 break;
3453
3454 /* Context Command Register, 64-bit */
3455 case DMAR_CCMD_REG:
3456 if (size == 4) {
3457 vtd_set_long(s, addr, val);
3458 } else {
3459 vtd_set_quad(s, addr, val);
3460 vtd_handle_ccmd_write(s);
3461 }
3462 break;
3463
3464 case DMAR_CCMD_REG_HI:
3465 assert(size == 4);
3466 vtd_set_long(s, addr, val);
3467 vtd_handle_ccmd_write(s);
3468 break;
3469
3470 /* IOTLB Invalidation Register, 64-bit */
3471 case DMAR_IOTLB_REG:
3472 if (size == 4) {
3473 vtd_set_long(s, addr, val);
3474 } else {
3475 vtd_set_quad(s, addr, val);
3476 vtd_handle_iotlb_write(s);
3477 }
3478 break;
3479
3480 case DMAR_IOTLB_REG_HI:
3481 assert(size == 4);
3482 vtd_set_long(s, addr, val);
3483 vtd_handle_iotlb_write(s);
3484 break;
3485
3486 /* Invalidate Address Register, 64-bit */
3487 case DMAR_IVA_REG:
3488 if (size == 4) {
3489 vtd_set_long(s, addr, val);
3490 } else {
3491 vtd_set_quad(s, addr, val);
3492 }
3493 break;
3494
3495 case DMAR_IVA_REG_HI:
3496 assert(size == 4);
3497 vtd_set_long(s, addr, val);
3498 break;
3499
3500 /* Fault Status Register, 32-bit */
3501 case DMAR_FSTS_REG:
3502 assert(size == 4);
3503 vtd_set_long(s, addr, val);
3504 vtd_handle_fsts_write(s);
3505 break;
3506
3507 /* Fault Event Control Register, 32-bit */
3508 case DMAR_FECTL_REG:
3509 assert(size == 4);
3510 vtd_set_long(s, addr, val);
3511 vtd_handle_fectl_write(s);
3512 break;
3513
3514 /* Fault Event Data Register, 32-bit */
3515 case DMAR_FEDATA_REG:
3516 assert(size == 4);
3517 vtd_set_long(s, addr, val);
3518 break;
3519
3520 /* Fault Event Address Register, 32-bit */
3521 case DMAR_FEADDR_REG:
3522 if (size == 4) {
3523 vtd_set_long(s, addr, val);
3524 } else {
3525 /*
3526 * While the register is 32-bit only, some guests (Xen...) write to
3527 * it with 64-bit.
3528 */
3529 vtd_set_quad(s, addr, val);
3530 }
3531 break;
3532
3533 /* Fault Event Upper Address Register, 32-bit */
3534 case DMAR_FEUADDR_REG:
3535 assert(size == 4);
3536 vtd_set_long(s, addr, val);
3537 break;
3538
3539 /* Protected Memory Enable Register, 32-bit */
3540 case DMAR_PMEN_REG:
3541 assert(size == 4);
3542 vtd_set_long(s, addr, val);
3543 break;
3544
3545 /* Root Table Address Register, 64-bit */
3546 case DMAR_RTADDR_REG:
3547 if (size == 4) {
3548 vtd_set_long(s, addr, val);
3549 } else {
3550 vtd_set_quad(s, addr, val);
3551 }
3552 break;
3553
3554 case DMAR_RTADDR_REG_HI:
3555 assert(size == 4);
3556 vtd_set_long(s, addr, val);
3557 break;
3558
3559 /* Invalidation Queue Tail Register, 64-bit */
3560 case DMAR_IQT_REG:
3561 if (size == 4) {
3562 vtd_set_long(s, addr, val);
3563 } else {
3564 vtd_set_quad(s, addr, val);
3565 }
3566 vtd_handle_iqt_write(s);
3567 break;
3568
3569 case DMAR_IQT_REG_HI:
3570 assert(size == 4);
3571 vtd_set_long(s, addr, val);
3572 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
3573 break;
3574
3575 /* Invalidation Queue Address Register, 64-bit */
3576 case DMAR_IQA_REG:
3577 if (size == 4) {
3578 vtd_set_long(s, addr, val);
3579 } else {
3580 vtd_set_quad(s, addr, val);
3581 }
3582 vtd_update_iq_dw(s);
3583 break;
3584
3585 case DMAR_IQA_REG_HI:
3586 assert(size == 4);
3587 vtd_set_long(s, addr, val);
3588 break;
3589
3590 /* Invalidation Completion Status Register, 32-bit */
3591 case DMAR_ICS_REG:
3592 assert(size == 4);
3593 vtd_set_long(s, addr, val);
3594 vtd_handle_ics_write(s);
3595 break;
3596
3597 /* Invalidation Event Control Register, 32-bit */
3598 case DMAR_IECTL_REG:
3599 assert(size == 4);
3600 vtd_set_long(s, addr, val);
3601 vtd_handle_iectl_write(s);
3602 break;
3603
3604 /* Invalidation Event Data Register, 32-bit */
3605 case DMAR_IEDATA_REG:
3606 assert(size == 4);
3607 vtd_set_long(s, addr, val);
3608 break;
3609
3610 /* Invalidation Event Address Register, 32-bit */
3611 case DMAR_IEADDR_REG:
3612 assert(size == 4);
3613 vtd_set_long(s, addr, val);
3614 break;
3615
3616 /* Invalidation Event Upper Address Register, 32-bit */
3617 case DMAR_IEUADDR_REG:
3618 assert(size == 4);
3619 vtd_set_long(s, addr, val);
3620 break;
3621
3622 /* Fault Recording Registers, 128-bit */
3623 case DMAR_FRCD_REG_0_0:
3624 if (size == 4) {
3625 vtd_set_long(s, addr, val);
3626 } else {
3627 vtd_set_quad(s, addr, val);
3628 }
3629 break;
3630
3631 case DMAR_FRCD_REG_0_1:
3632 assert(size == 4);
3633 vtd_set_long(s, addr, val);
3634 break;
3635
3636 case DMAR_FRCD_REG_0_2:
3637 if (size == 4) {
3638 vtd_set_long(s, addr, val);
3639 } else {
3640 vtd_set_quad(s, addr, val);
3641 /* May clear bit 127 (Fault), update PPF */
3642 vtd_update_fsts_ppf(s);
3643 }
3644 break;
3645
3646 case DMAR_FRCD_REG_0_3:
3647 assert(size == 4);
3648 vtd_set_long(s, addr, val);
3649 /* May clear bit 127 (Fault), update PPF */
3650 vtd_update_fsts_ppf(s);
3651 break;
3652
3653 case DMAR_IRTA_REG:
3654 if (size == 4) {
3655 vtd_set_long(s, addr, val);
3656 } else {
3657 vtd_set_quad(s, addr, val);
3658 }
3659 break;
3660
3661 case DMAR_IRTA_REG_HI:
3662 assert(size == 4);
3663 vtd_set_long(s, addr, val);
3664 break;
3665
3666 default:
3667 if (size == 4) {
3668 vtd_set_long(s, addr, val);
3669 } else {
3670 vtd_set_quad(s, addr, val);
3671 }
3672 }
3673 }
3674
vtd_iommu_translate(IOMMUMemoryRegion * iommu,hwaddr addr,IOMMUAccessFlags flag,int iommu_idx)3675 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
3676 IOMMUAccessFlags flag, int iommu_idx)
3677 {
3678 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3679 IntelIOMMUState *s = vtd_as->iommu_state;
3680 IOMMUTLBEntry iotlb = {
3681 /* We'll fill in the rest later. */
3682 .target_as = &address_space_memory,
3683 };
3684 bool success;
3685
3686 if (likely(s->dmar_enabled)) {
3687 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
3688 addr, flag & IOMMU_WO, &iotlb);
3689 } else {
3690 /* DMAR disabled, passthrough, use 4k-page*/
3691 iotlb.iova = addr & VTD_PAGE_MASK_4K;
3692 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
3693 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
3694 iotlb.perm = IOMMU_RW;
3695 success = true;
3696 }
3697
3698 if (likely(success)) {
3699 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
3700 VTD_PCI_SLOT(vtd_as->devfn),
3701 VTD_PCI_FUNC(vtd_as->devfn),
3702 iotlb.iova, iotlb.translated_addr,
3703 iotlb.addr_mask);
3704 } else {
3705 error_report_once("%s: detected translation failure "
3706 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3707 __func__, pci_bus_num(vtd_as->bus),
3708 VTD_PCI_SLOT(vtd_as->devfn),
3709 VTD_PCI_FUNC(vtd_as->devfn),
3710 addr);
3711 }
3712
3713 return iotlb;
3714 }
3715
vtd_iommu_notify_flag_changed(IOMMUMemoryRegion * iommu,IOMMUNotifierFlag old,IOMMUNotifierFlag new,Error ** errp)3716 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3717 IOMMUNotifierFlag old,
3718 IOMMUNotifierFlag new,
3719 Error **errp)
3720 {
3721 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3722 IntelIOMMUState *s = vtd_as->iommu_state;
3723 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3724
3725 /* TODO: add support for VFIO and vhost users */
3726 if (s->snoop_control) {
3727 error_setg_errno(errp, ENOTSUP,
3728 "Snoop Control with vhost or VFIO is not supported");
3729 return -ENOTSUP;
3730 }
3731 if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) {
3732 error_setg_errno(errp, ENOTSUP,
3733 "device %02x.%02x.%x requires caching mode",
3734 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3735 PCI_FUNC(vtd_as->devfn));
3736 return -ENOTSUP;
3737 }
3738 if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) {
3739 error_setg_errno(errp, ENOTSUP,
3740 "device %02x.%02x.%x requires device IOTLB mode",
3741 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3742 PCI_FUNC(vtd_as->devfn));
3743 return -ENOTSUP;
3744 }
3745
3746 /* Update per-address-space notifier flags */
3747 vtd_as->notifier_flags = new;
3748
3749 if (old == IOMMU_NOTIFIER_NONE) {
3750 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3751 } else if (new == IOMMU_NOTIFIER_NONE) {
3752 QLIST_REMOVE(vtd_as, next);
3753 }
3754 return 0;
3755 }
3756
vtd_post_load(void * opaque,int version_id)3757 static int vtd_post_load(void *opaque, int version_id)
3758 {
3759 IntelIOMMUState *iommu = opaque;
3760
3761 /*
3762 * We don't need to migrate the root_scalable because we can
3763 * simply do the calculation after the loading is complete. We
3764 * can actually do similar things with root, dmar_enabled, etc.
3765 * however since we've had them already so we'd better keep them
3766 * for compatibility of migration.
3767 */
3768 vtd_update_scalable_state(iommu);
3769
3770 vtd_update_iq_dw(iommu);
3771
3772 /*
3773 * Memory regions are dynamically turned on/off depending on
3774 * context entry configurations from the guest. After migration,
3775 * we need to make sure the memory regions are still correct.
3776 */
3777 vtd_switch_address_space_all(iommu);
3778
3779 return 0;
3780 }
3781
3782 static const VMStateDescription vtd_vmstate = {
3783 .name = "iommu-intel",
3784 .version_id = 1,
3785 .minimum_version_id = 1,
3786 .priority = MIG_PRI_IOMMU,
3787 .post_load = vtd_post_load,
3788 .fields = (const VMStateField[]) {
3789 VMSTATE_UINT64(root, IntelIOMMUState),
3790 VMSTATE_UINT64(intr_root, IntelIOMMUState),
3791 VMSTATE_UINT64(iq, IntelIOMMUState),
3792 VMSTATE_UINT32(intr_size, IntelIOMMUState),
3793 VMSTATE_UINT16(iq_head, IntelIOMMUState),
3794 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3795 VMSTATE_UINT16(iq_size, IntelIOMMUState),
3796 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3797 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3798 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3799 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
3800 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3801 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3802 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3803 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3804 VMSTATE_END_OF_LIST()
3805 }
3806 };
3807
3808 static const MemoryRegionOps vtd_mem_ops = {
3809 .read = vtd_mem_read,
3810 .write = vtd_mem_write,
3811 .endianness = DEVICE_LITTLE_ENDIAN,
3812 .impl = {
3813 .min_access_size = 4,
3814 .max_access_size = 8,
3815 },
3816 .valid = {
3817 .min_access_size = 4,
3818 .max_access_size = 8,
3819 },
3820 };
3821
3822 static const Property vtd_properties[] = {
3823 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3824 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3825 ON_OFF_AUTO_AUTO),
3826 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3827 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3828 VTD_HOST_ADDRESS_WIDTH),
3829 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3830 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3831 DEFINE_PROP_BOOL("x-flts", IntelIOMMUState, flts, FALSE),
3832 DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
3833 DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false),
3834 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3835 DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
3836 DEFINE_PROP_BOOL("stale-tm", IntelIOMMUState, stale_tm, false),
3837 DEFINE_PROP_BOOL("fs1gp", IntelIOMMUState, fs1gp, true),
3838 };
3839
3840 /* Read IRTE entry with specific index */
vtd_irte_get(IntelIOMMUState * iommu,uint16_t index,VTD_IR_TableEntry * entry,uint16_t sid,bool do_fault)3841 static bool vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3842 VTD_IR_TableEntry *entry, uint16_t sid,
3843 bool do_fault)
3844 {
3845 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3846 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3847 dma_addr_t addr = 0x00;
3848 uint16_t mask, source_id;
3849 uint8_t bus, bus_max, bus_min;
3850
3851 if (index >= iommu->intr_size) {
3852 error_report_once("%s: index too large: ind=0x%x",
3853 __func__, index);
3854 if (do_fault) {
3855 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_INDEX_OVER, index);
3856 }
3857 return false;
3858 }
3859
3860 addr = iommu->intr_root + index * sizeof(*entry);
3861 if (dma_memory_read(&address_space_memory, addr,
3862 entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
3863 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3864 __func__, index, addr);
3865 if (do_fault) {
3866 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ROOT_INVAL, index);
3867 }
3868 return false;
3869 }
3870
3871 entry->data[0] = le64_to_cpu(entry->data[0]);
3872 entry->data[1] = le64_to_cpu(entry->data[1]);
3873
3874 trace_vtd_ir_irte_get(index, entry->data[1], entry->data[0]);
3875
3876 /*
3877 * The remaining potential fault conditions are "qualified" by the
3878 * Fault Processing Disable bit in the IRTE. Even "not present".
3879 * So just clear the do_fault flag if PFD is set, which will
3880 * prevent faults being raised.
3881 */
3882 if (entry->irte.fault_disable) {
3883 do_fault = false;
3884 }
3885
3886 if (!entry->irte.present) {
3887 error_report_once("%s: detected non-present IRTE "
3888 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3889 __func__, index, entry->data[1], entry->data[0]);
3890 if (do_fault) {
3891 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ENTRY_P, index);
3892 }
3893 return false;
3894 }
3895
3896 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3897 entry->irte.__reserved_2) {
3898 error_report_once("%s: detected non-zero reserved IRTE "
3899 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3900 __func__, index, entry->data[1], entry->data[0]);
3901 if (do_fault) {
3902 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_IRTE_RSVD, index);
3903 }
3904 return false;
3905 }
3906
3907 if (sid != X86_IOMMU_SID_INVALID) {
3908 /* Validate IRTE SID */
3909 source_id = entry->irte.source_id;
3910 switch (entry->irte.sid_vtype) {
3911 case VTD_SVT_NONE:
3912 break;
3913
3914 case VTD_SVT_ALL:
3915 mask = vtd_svt_mask[entry->irte.sid_q];
3916 if ((source_id & mask) != (sid & mask)) {
3917 error_report_once("%s: invalid IRTE SID "
3918 "(index=%u, sid=%u, source_id=%u)",
3919 __func__, index, sid, source_id);
3920 if (do_fault) {
3921 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3922 }
3923 return false;
3924 }
3925 break;
3926
3927 case VTD_SVT_BUS:
3928 bus_max = source_id >> 8;
3929 bus_min = source_id & 0xff;
3930 bus = sid >> 8;
3931 if (bus > bus_max || bus < bus_min) {
3932 error_report_once("%s: invalid SVT_BUS "
3933 "(index=%u, bus=%u, min=%u, max=%u)",
3934 __func__, index, bus, bus_min, bus_max);
3935 if (do_fault) {
3936 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3937 }
3938 return false;
3939 }
3940 break;
3941
3942 default:
3943 error_report_once("%s: detected invalid IRTE SVT "
3944 "(index=%u, type=%d)", __func__,
3945 index, entry->irte.sid_vtype);
3946 /* Take this as verification failure. */
3947 if (do_fault) {
3948 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3949 }
3950 return false;
3951 }
3952 }
3953
3954 return true;
3955 }
3956
3957 /* Fetch IRQ information of specific IR index */
vtd_remap_irq_get(IntelIOMMUState * iommu,uint16_t index,X86IOMMUIrq * irq,uint16_t sid,bool do_fault)3958 static bool vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3959 X86IOMMUIrq *irq, uint16_t sid, bool do_fault)
3960 {
3961 VTD_IR_TableEntry irte = {};
3962
3963 if (!vtd_irte_get(iommu, index, &irte, sid, do_fault)) {
3964 return false;
3965 }
3966
3967 irq->trigger_mode = irte.irte.trigger_mode;
3968 irq->vector = irte.irte.vector;
3969 irq->delivery_mode = irte.irte.delivery_mode;
3970 irq->dest = irte.irte.dest_id;
3971 if (!iommu->intr_eime) {
3972 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3973 #define VTD_IR_APIC_DEST_SHIFT (8)
3974 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3975 VTD_IR_APIC_DEST_SHIFT;
3976 }
3977 irq->dest_mode = irte.irte.dest_mode;
3978 irq->redir_hint = irte.irte.redir_hint;
3979
3980 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3981 irq->delivery_mode, irq->dest, irq->dest_mode);
3982
3983 return true;
3984 }
3985
3986 /* Interrupt remapping for MSI/MSI-X entry */
vtd_interrupt_remap_msi(IntelIOMMUState * iommu,MSIMessage * origin,MSIMessage * translated,uint16_t sid,bool do_fault)3987 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3988 MSIMessage *origin,
3989 MSIMessage *translated,
3990 uint16_t sid, bool do_fault)
3991 {
3992 VTD_IR_MSIAddress addr;
3993 uint16_t index;
3994 X86IOMMUIrq irq = {};
3995
3996 assert(origin && translated);
3997
3998 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3999
4000 if (!iommu || !iommu->intr_enabled) {
4001 memcpy(translated, origin, sizeof(*origin));
4002 goto out;
4003 }
4004
4005 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
4006 error_report_once("%s: MSI address high 32 bits non-zero detected: "
4007 "address=0x%" PRIx64, __func__, origin->address);
4008 if (do_fault) {
4009 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
4010 }
4011 return -EINVAL;
4012 }
4013
4014 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
4015 if (addr.addr.__head != 0xfee) {
4016 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
4017 __func__, addr.data);
4018 if (do_fault) {
4019 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
4020 }
4021 return -EINVAL;
4022 }
4023
4024 /* This is compatible mode. */
4025 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
4026 memcpy(translated, origin, sizeof(*origin));
4027 goto out;
4028 }
4029
4030 index = addr.addr.index_h << 15 | addr.addr.index_l;
4031
4032 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
4033 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
4034
4035 if (addr.addr.sub_valid) {
4036 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
4037 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
4038 }
4039
4040 if (!vtd_remap_irq_get(iommu, index, &irq, sid, do_fault)) {
4041 return -EINVAL;
4042 }
4043
4044 if (addr.addr.sub_valid) {
4045 trace_vtd_ir_remap_type("MSI");
4046 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
4047 error_report_once("%s: invalid IR MSI "
4048 "(sid=%u, address=0x%" PRIx64
4049 ", data=0x%" PRIx32 ")",
4050 __func__, sid, origin->address, origin->data);
4051 if (do_fault) {
4052 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
4053 }
4054 return -EINVAL;
4055 }
4056 } else {
4057 uint8_t vector = origin->data & 0xff;
4058 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
4059
4060 trace_vtd_ir_remap_type("IOAPIC");
4061 /* IOAPIC entry vector should be aligned with IRTE vector
4062 * (see vt-d spec 5.1.5.1). */
4063 if (vector != irq.vector) {
4064 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
4065 }
4066
4067 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
4068 * (see vt-d spec 5.1.5.1). */
4069 if (trigger_mode != irq.trigger_mode) {
4070 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
4071 irq.trigger_mode);
4072 }
4073 }
4074
4075 /*
4076 * We'd better keep the last two bits, assuming that guest OS
4077 * might modify it. Keep it does not hurt after all.
4078 */
4079 irq.msi_addr_last_bits = addr.addr.__not_care;
4080
4081 /* Translate X86IOMMUIrq to MSI message */
4082 x86_iommu_irq_to_msi_message(&irq, translated);
4083
4084 out:
4085 trace_vtd_ir_remap_msi(origin->address, origin->data,
4086 translated->address, translated->data);
4087 return 0;
4088 }
4089
vtd_int_remap(X86IOMMUState * iommu,MSIMessage * src,MSIMessage * dst,uint16_t sid)4090 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
4091 MSIMessage *dst, uint16_t sid)
4092 {
4093 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
4094 src, dst, sid, false);
4095 }
4096
vtd_mem_ir_read(void * opaque,hwaddr addr,uint64_t * data,unsigned size,MemTxAttrs attrs)4097 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
4098 uint64_t *data, unsigned size,
4099 MemTxAttrs attrs)
4100 {
4101 return MEMTX_OK;
4102 }
4103
vtd_mem_ir_write(void * opaque,hwaddr addr,uint64_t value,unsigned size,MemTxAttrs attrs)4104 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
4105 uint64_t value, unsigned size,
4106 MemTxAttrs attrs)
4107 {
4108 int ret = 0;
4109 MSIMessage from = {}, to = {};
4110 uint16_t sid = X86_IOMMU_SID_INVALID;
4111
4112 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
4113 from.data = (uint32_t) value;
4114
4115 if (!attrs.unspecified) {
4116 /* We have explicit Source ID */
4117 sid = attrs.requester_id;
4118 }
4119
4120 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid, true);
4121 if (ret) {
4122 /* Drop this interrupt */
4123 return MEMTX_ERROR;
4124 }
4125
4126 apic_get_class(NULL)->send_msi(&to);
4127
4128 return MEMTX_OK;
4129 }
4130
4131 static const MemoryRegionOps vtd_mem_ir_ops = {
4132 .read_with_attrs = vtd_mem_ir_read,
4133 .write_with_attrs = vtd_mem_ir_write,
4134 .endianness = DEVICE_LITTLE_ENDIAN,
4135 .impl = {
4136 .min_access_size = 4,
4137 .max_access_size = 4,
4138 },
4139 .valid = {
4140 .min_access_size = 4,
4141 .max_access_size = 4,
4142 },
4143 };
4144
vtd_report_ir_illegal_access(VTDAddressSpace * vtd_as,hwaddr addr,bool is_write)4145 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as,
4146 hwaddr addr, bool is_write)
4147 {
4148 IntelIOMMUState *s = vtd_as->iommu_state;
4149 uint8_t bus_n = pci_bus_num(vtd_as->bus);
4150 uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn);
4151 bool is_fpd_set = false;
4152 VTDContextEntry ce;
4153
4154 assert(vtd_as->pasid != PCI_NO_PASID);
4155
4156 /* Try out best to fetch FPD, we can't do anything more */
4157 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
4158 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
4159 if (!is_fpd_set && s->root_scalable) {
4160 vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid);
4161 }
4162 }
4163
4164 vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR,
4165 is_fpd_set, sid, addr, is_write,
4166 true, vtd_as->pasid);
4167 }
4168
vtd_mem_ir_fault_read(void * opaque,hwaddr addr,uint64_t * data,unsigned size,MemTxAttrs attrs)4169 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr,
4170 uint64_t *data, unsigned size,
4171 MemTxAttrs attrs)
4172 {
4173 vtd_report_ir_illegal_access(opaque, addr, false);
4174
4175 return MEMTX_ERROR;
4176 }
4177
vtd_mem_ir_fault_write(void * opaque,hwaddr addr,uint64_t value,unsigned size,MemTxAttrs attrs)4178 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr,
4179 uint64_t value, unsigned size,
4180 MemTxAttrs attrs)
4181 {
4182 vtd_report_ir_illegal_access(opaque, addr, true);
4183
4184 return MEMTX_ERROR;
4185 }
4186
4187 static const MemoryRegionOps vtd_mem_ir_fault_ops = {
4188 .read_with_attrs = vtd_mem_ir_fault_read,
4189 .write_with_attrs = vtd_mem_ir_fault_write,
4190 .endianness = DEVICE_LITTLE_ENDIAN,
4191 .impl = {
4192 .min_access_size = 1,
4193 .max_access_size = 8,
4194 },
4195 .valid = {
4196 .min_access_size = 1,
4197 .max_access_size = 8,
4198 },
4199 };
4200
vtd_find_add_as(IntelIOMMUState * s,PCIBus * bus,int devfn,unsigned int pasid)4201 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus,
4202 int devfn, unsigned int pasid)
4203 {
4204 /*
4205 * We can't simply use sid here since the bus number might not be
4206 * initialized by the guest.
4207 */
4208 struct vtd_as_key key = {
4209 .bus = bus,
4210 .devfn = devfn,
4211 .pasid = pasid,
4212 };
4213 VTDAddressSpace *vtd_dev_as;
4214 char name[128];
4215
4216 vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
4217 if (!vtd_dev_as) {
4218 struct vtd_as_key *new_key = g_malloc(sizeof(*new_key));
4219
4220 new_key->bus = bus;
4221 new_key->devfn = devfn;
4222 new_key->pasid = pasid;
4223
4224 if (pasid == PCI_NO_PASID) {
4225 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
4226 PCI_FUNC(devfn));
4227 } else {
4228 snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn),
4229 PCI_FUNC(devfn), pasid);
4230 }
4231
4232 vtd_dev_as = g_new0(VTDAddressSpace, 1);
4233
4234 vtd_dev_as->bus = bus;
4235 vtd_dev_as->devfn = (uint8_t)devfn;
4236 vtd_dev_as->pasid = pasid;
4237 vtd_dev_as->iommu_state = s;
4238 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
4239 vtd_dev_as->iova_tree = iova_tree_new();
4240
4241 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
4242 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
4243
4244 /*
4245 * Build the DMAR-disabled container with aliases to the
4246 * shared MRs. Note that aliasing to a shared memory region
4247 * could help the memory API to detect same FlatViews so we
4248 * can have devices to share the same FlatView when DMAR is
4249 * disabled (either by not providing "intel_iommu=on" or with
4250 * "iommu=pt"). It will greatly reduce the total number of
4251 * FlatViews of the system hence VM runs faster.
4252 */
4253 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
4254 "vtd-nodmar", &s->mr_nodmar, 0,
4255 memory_region_size(&s->mr_nodmar));
4256
4257 /*
4258 * Build the per-device DMAR-enabled container.
4259 *
4260 * TODO: currently we have per-device IOMMU memory region only
4261 * because we have per-device IOMMU notifiers for devices. If
4262 * one day we can abstract the IOMMU notifiers out of the
4263 * memory regions then we can also share the same memory
4264 * region here just like what we've done above with the nodmar
4265 * region.
4266 */
4267 strcat(name, "-dmar");
4268 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
4269 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
4270 name, UINT64_MAX);
4271 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
4272 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
4273 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
4274 VTD_INTERRUPT_ADDR_FIRST,
4275 &vtd_dev_as->iommu_ir, 1);
4276
4277 /*
4278 * This region is used for catching fault to access interrupt
4279 * range via passthrough + PASID. See also
4280 * vtd_switch_address_space(). We can't use alias since we
4281 * need to know the sid which is valid for MSI who uses
4282 * bus_master_as (see msi_send_message()).
4283 */
4284 memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s),
4285 &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir",
4286 VTD_INTERRUPT_ADDR_SIZE);
4287 /*
4288 * Hook to root since when PT is enabled vtd_dev_as->iommu
4289 * will be disabled.
4290 */
4291 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root),
4292 VTD_INTERRUPT_ADDR_FIRST,
4293 &vtd_dev_as->iommu_ir_fault, 2);
4294
4295 /*
4296 * Hook both the containers under the root container, we
4297 * switch between DMAR & noDMAR by enable/disable
4298 * corresponding sub-containers
4299 */
4300 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
4301 MEMORY_REGION(&vtd_dev_as->iommu),
4302 0);
4303 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
4304 &vtd_dev_as->nodmar, 0);
4305
4306 vtd_switch_address_space(vtd_dev_as);
4307
4308 g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as);
4309 }
4310 return vtd_dev_as;
4311 }
4312
vtd_check_hiod(IntelIOMMUState * s,HostIOMMUDevice * hiod,Error ** errp)4313 static bool vtd_check_hiod(IntelIOMMUState *s, HostIOMMUDevice *hiod,
4314 Error **errp)
4315 {
4316 HostIOMMUDeviceClass *hiodc = HOST_IOMMU_DEVICE_GET_CLASS(hiod);
4317 int ret;
4318
4319 if (!hiodc->get_cap) {
4320 error_setg(errp, ".get_cap() not implemented");
4321 return false;
4322 }
4323
4324 /* Common checks */
4325 ret = hiodc->get_cap(hiod, HOST_IOMMU_DEVICE_CAP_AW_BITS, errp);
4326 if (ret < 0) {
4327 return false;
4328 }
4329 if (s->aw_bits > ret) {
4330 error_setg(errp, "aw-bits %d > host aw-bits %d", s->aw_bits, ret);
4331 return false;
4332 }
4333
4334 if (!s->flts) {
4335 /* All checks requested by VTD stage-2 translation pass */
4336 return true;
4337 }
4338
4339 error_setg(errp, "host device is uncompatible with stage-1 translation");
4340 return false;
4341 }
4342
vtd_dev_set_iommu_device(PCIBus * bus,void * opaque,int devfn,HostIOMMUDevice * hiod,Error ** errp)4343 static bool vtd_dev_set_iommu_device(PCIBus *bus, void *opaque, int devfn,
4344 HostIOMMUDevice *hiod, Error **errp)
4345 {
4346 IntelIOMMUState *s = opaque;
4347 struct vtd_as_key key = {
4348 .bus = bus,
4349 .devfn = devfn,
4350 };
4351 struct vtd_as_key *new_key;
4352
4353 assert(hiod);
4354
4355 vtd_iommu_lock(s);
4356
4357 if (g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) {
4358 error_setg(errp, "Host IOMMU device already exist");
4359 vtd_iommu_unlock(s);
4360 return false;
4361 }
4362
4363 if (!vtd_check_hiod(s, hiod, errp)) {
4364 vtd_iommu_unlock(s);
4365 return false;
4366 }
4367
4368 new_key = g_malloc(sizeof(*new_key));
4369 new_key->bus = bus;
4370 new_key->devfn = devfn;
4371
4372 object_ref(hiod);
4373 g_hash_table_insert(s->vtd_host_iommu_dev, new_key, hiod);
4374
4375 vtd_iommu_unlock(s);
4376
4377 return true;
4378 }
4379
vtd_dev_unset_iommu_device(PCIBus * bus,void * opaque,int devfn)4380 static void vtd_dev_unset_iommu_device(PCIBus *bus, void *opaque, int devfn)
4381 {
4382 IntelIOMMUState *s = opaque;
4383 struct vtd_as_key key = {
4384 .bus = bus,
4385 .devfn = devfn,
4386 };
4387
4388 vtd_iommu_lock(s);
4389
4390 if (!g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) {
4391 vtd_iommu_unlock(s);
4392 return;
4393 }
4394
4395 g_hash_table_remove(s->vtd_host_iommu_dev, &key);
4396
4397 vtd_iommu_unlock(s);
4398 }
4399
4400 /* Unmap the whole range in the notifier's scope. */
vtd_address_space_unmap(VTDAddressSpace * as,IOMMUNotifier * n)4401 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
4402 {
4403 hwaddr total, remain;
4404 hwaddr start = n->start;
4405 hwaddr end = n->end;
4406 IntelIOMMUState *s = as->iommu_state;
4407 DMAMap map;
4408
4409 /*
4410 * Note: all the codes in this function has a assumption that IOVA
4411 * bits are no more than VTD_MGAW bits (which is restricted by
4412 * VT-d spec), otherwise we need to consider overflow of 64 bits.
4413 */
4414
4415 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
4416 /*
4417 * Don't need to unmap regions that is bigger than the whole
4418 * VT-d supported address space size
4419 */
4420 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
4421 }
4422
4423 assert(start <= end);
4424 total = remain = end - start + 1;
4425
4426 while (remain >= VTD_PAGE_SIZE) {
4427 IOMMUTLBEvent event;
4428 uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
4429 uint64_t size = mask + 1;
4430
4431 assert(size);
4432
4433 event.type = IOMMU_NOTIFIER_UNMAP;
4434 event.entry.iova = start;
4435 event.entry.addr_mask = mask;
4436 event.entry.target_as = &address_space_memory;
4437 event.entry.perm = IOMMU_NONE;
4438 /* This field is meaningless for unmap */
4439 event.entry.translated_addr = 0;
4440
4441 memory_region_notify_iommu_one(n, &event);
4442
4443 start += size;
4444 remain -= size;
4445 }
4446
4447 assert(!remain);
4448
4449 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
4450 VTD_PCI_SLOT(as->devfn),
4451 VTD_PCI_FUNC(as->devfn),
4452 n->start, total);
4453
4454 map.iova = n->start;
4455 map.size = total - 1; /* Inclusive */
4456 iova_tree_remove(as->iova_tree, map);
4457 }
4458
vtd_address_space_unmap_all(IntelIOMMUState * s)4459 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
4460 {
4461 VTDAddressSpace *vtd_as;
4462 IOMMUNotifier *n;
4463
4464 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
4465 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
4466 vtd_address_space_unmap(vtd_as, n);
4467 }
4468 }
4469 }
4470
vtd_address_space_refresh_all(IntelIOMMUState * s)4471 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
4472 {
4473 vtd_address_space_unmap_all(s);
4474 vtd_switch_address_space_all(s);
4475 }
4476
vtd_replay_hook(const IOMMUTLBEvent * event,void * private)4477 static int vtd_replay_hook(const IOMMUTLBEvent *event, void *private)
4478 {
4479 memory_region_notify_iommu_one(private, event);
4480 return 0;
4481 }
4482
vtd_iommu_replay(IOMMUMemoryRegion * iommu_mr,IOMMUNotifier * n)4483 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
4484 {
4485 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
4486 IntelIOMMUState *s = vtd_as->iommu_state;
4487 uint8_t bus_n = pci_bus_num(vtd_as->bus);
4488 VTDContextEntry ce;
4489 DMAMap map = { .iova = 0, .size = HWADDR_MAX };
4490
4491 /* replay is protected by BQL, page walk will re-setup it safely */
4492 iova_tree_remove(vtd_as->iova_tree, map);
4493
4494 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
4495 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
4496 "legacy mode",
4497 bus_n, PCI_SLOT(vtd_as->devfn),
4498 PCI_FUNC(vtd_as->devfn),
4499 vtd_get_domain_id(s, &ce, vtd_as->pasid),
4500 ce.hi, ce.lo);
4501 if (n->notifier_flags & IOMMU_NOTIFIER_MAP) {
4502 /* This is required only for MAP typed notifiers */
4503 vtd_page_walk_info info = {
4504 .hook_fn = vtd_replay_hook,
4505 .private = (void *)n,
4506 .notify_unmap = false,
4507 .aw = s->aw_bits,
4508 .as = vtd_as,
4509 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid),
4510 };
4511
4512 vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid);
4513 }
4514 } else {
4515 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
4516 PCI_FUNC(vtd_as->devfn));
4517 }
4518
4519 return;
4520 }
4521
vtd_cap_init(IntelIOMMUState * s)4522 static void vtd_cap_init(IntelIOMMUState *s)
4523 {
4524 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4525
4526 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
4527 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
4528 VTD_CAP_MGAW(s->aw_bits);
4529 if (s->dma_drain) {
4530 s->cap |= VTD_CAP_DRAIN;
4531 }
4532 if (s->dma_translation) {
4533 if (s->aw_bits >= VTD_HOST_AW_39BIT) {
4534 s->cap |= VTD_CAP_SAGAW_39bit;
4535 }
4536 if (s->aw_bits >= VTD_HOST_AW_48BIT) {
4537 s->cap |= VTD_CAP_SAGAW_48bit;
4538 }
4539 }
4540 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
4541
4542 if (x86_iommu_ir_supported(x86_iommu)) {
4543 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
4544 if (s->intr_eim == ON_OFF_AUTO_ON) {
4545 s->ecap |= VTD_ECAP_EIM;
4546 }
4547 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
4548 }
4549
4550 if (x86_iommu->dt_supported) {
4551 s->ecap |= VTD_ECAP_DT;
4552 }
4553
4554 if (x86_iommu->pt_supported) {
4555 s->ecap |= VTD_ECAP_PT;
4556 }
4557
4558 if (s->caching_mode) {
4559 s->cap |= VTD_CAP_CM;
4560 }
4561
4562 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
4563 if (s->flts) {
4564 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_FLTS;
4565 if (s->fs1gp) {
4566 s->cap |= VTD_CAP_FS1GP;
4567 }
4568 } else if (s->scalable_mode) {
4569 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
4570 }
4571
4572 if (s->snoop_control) {
4573 s->ecap |= VTD_ECAP_SC;
4574 }
4575
4576 if (s->pasid) {
4577 s->ecap |= VTD_ECAP_PASID;
4578 }
4579 }
4580
4581 /*
4582 * Do the initialization. It will also be called when reset, so pay
4583 * attention when adding new initialization stuff.
4584 */
vtd_init(IntelIOMMUState * s)4585 static void vtd_init(IntelIOMMUState *s)
4586 {
4587 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4588
4589 memset(s->csr, 0, DMAR_REG_SIZE);
4590 memset(s->wmask, 0, DMAR_REG_SIZE);
4591 memset(s->w1cmask, 0, DMAR_REG_SIZE);
4592 memset(s->womask, 0, DMAR_REG_SIZE);
4593
4594 s->root = 0;
4595 s->root_scalable = false;
4596 s->dmar_enabled = false;
4597 s->intr_enabled = false;
4598 s->iq_head = 0;
4599 s->iq_tail = 0;
4600 s->iq = 0;
4601 s->iq_size = 0;
4602 s->qi_enabled = false;
4603 s->iq_last_desc_type = VTD_INV_DESC_NONE;
4604 s->iq_dw = false;
4605 s->next_frcd_reg = 0;
4606
4607 vtd_cap_init(s);
4608
4609 /*
4610 * Rsvd field masks for spte
4611 */
4612 vtd_spte_rsvd[0] = ~0ULL;
4613 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
4614 x86_iommu->dt_supported && s->stale_tm);
4615 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
4616 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
4617 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
4618
4619 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
4620 x86_iommu->dt_supported && s->stale_tm);
4621 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
4622 x86_iommu->dt_supported && s->stale_tm);
4623
4624 /*
4625 * Rsvd field masks for fpte
4626 */
4627 vtd_fpte_rsvd[0] = ~0ULL;
4628 vtd_fpte_rsvd[1] = VTD_FPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
4629 vtd_fpte_rsvd[2] = VTD_FPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
4630 vtd_fpte_rsvd[3] = VTD_FPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
4631 vtd_fpte_rsvd[4] = VTD_FPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
4632
4633 vtd_fpte_rsvd_large[2] = VTD_FPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
4634 vtd_fpte_rsvd_large[3] = VTD_FPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
4635
4636 if (s->scalable_mode || s->snoop_control) {
4637 vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
4638 vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
4639 vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
4640 }
4641
4642 vtd_reset_caches(s);
4643
4644 /* Define registers with default values and bit semantics */
4645 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
4646 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
4647 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
4648 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
4649 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
4650 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
4651 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
4652 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
4653 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
4654
4655 /* Advanced Fault Logging not supported */
4656 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
4657 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
4658 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
4659 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
4660
4661 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
4662 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
4663 */
4664 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
4665
4666 /* Treated as RO for implementations that PLMR and PHMR fields reported
4667 * as Clear in the CAP_REG.
4668 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
4669 */
4670 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
4671
4672 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
4673 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
4674 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
4675 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
4676 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
4677 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
4678 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
4679 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
4680 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
4681
4682 /* IOTLB registers */
4683 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
4684 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
4685 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
4686
4687 /* Fault Recording Registers, 128-bit */
4688 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
4689 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
4690
4691 /*
4692 * Interrupt remapping registers.
4693 */
4694 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
4695 }
4696
4697 /* Should not reset address_spaces when reset because devices will still use
4698 * the address space they got at first (won't ask the bus again).
4699 */
vtd_reset_exit(Object * obj,ResetType type)4700 static void vtd_reset_exit(Object *obj, ResetType type)
4701 {
4702 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(obj);
4703
4704 trace_vtd_reset_exit();
4705 vtd_init(s);
4706 vtd_address_space_refresh_all(s);
4707 }
4708
vtd_host_dma_iommu(PCIBus * bus,void * opaque,int devfn)4709 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
4710 {
4711 IntelIOMMUState *s = opaque;
4712 VTDAddressSpace *vtd_as;
4713
4714 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
4715
4716 vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID);
4717 return &vtd_as->as;
4718 }
4719
4720 static PCIIOMMUOps vtd_iommu_ops = {
4721 .get_address_space = vtd_host_dma_iommu,
4722 .set_iommu_device = vtd_dev_set_iommu_device,
4723 .unset_iommu_device = vtd_dev_unset_iommu_device,
4724 };
4725
vtd_decide_config(IntelIOMMUState * s,Error ** errp)4726 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
4727 {
4728 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4729
4730 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
4731 error_setg(errp, "eim=on cannot be selected without intremap=on");
4732 return false;
4733 }
4734
4735 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
4736 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
4737 && x86_iommu_ir_supported(x86_iommu) ?
4738 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
4739 }
4740 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
4741 if (kvm_irqchip_is_split() && !kvm_enable_x2apic()) {
4742 error_setg(errp, "eim=on requires support on the KVM side"
4743 "(X2APIC_API, first shipped in v4.7)");
4744 return false;
4745 }
4746 }
4747
4748 if (!s->scalable_mode && s->flts) {
4749 error_setg(errp, "x-flts is only available in scalable mode");
4750 return false;
4751 }
4752
4753 if (!s->flts && s->aw_bits != VTD_HOST_AW_39BIT &&
4754 s->aw_bits != VTD_HOST_AW_48BIT) {
4755 error_setg(errp, "%s: supported values for aw-bits are: %d, %d",
4756 s->scalable_mode ? "Scalable mode(flts=off)" : "Legacy mode",
4757 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
4758 return false;
4759 }
4760
4761 if (s->flts && s->aw_bits != VTD_HOST_AW_48BIT) {
4762 error_setg(errp,
4763 "Scalable mode(flts=on): supported value for aw-bits is: %d",
4764 VTD_HOST_AW_48BIT);
4765 return false;
4766 }
4767
4768 if (s->scalable_mode && !s->dma_drain) {
4769 error_setg(errp, "Need to set dma_drain for scalable mode");
4770 return false;
4771 }
4772
4773 if (s->pasid && !s->scalable_mode) {
4774 error_setg(errp, "Need to set scalable mode for PASID");
4775 return false;
4776 }
4777
4778 return true;
4779 }
4780
vtd_machine_done_notify_one(Object * child,void * unused)4781 static int vtd_machine_done_notify_one(Object *child, void *unused)
4782 {
4783 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
4784
4785 /*
4786 * We hard-coded here because vfio-pci is the only special case
4787 * here. Let's be more elegant in the future when we can, but so
4788 * far there seems to be no better way.
4789 */
4790 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
4791 vtd_panic_require_caching_mode();
4792 }
4793
4794 return 0;
4795 }
4796
vtd_machine_done_hook(Notifier * notifier,void * unused)4797 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
4798 {
4799 object_child_foreach_recursive(object_get_root(),
4800 vtd_machine_done_notify_one, NULL);
4801 }
4802
4803 static Notifier vtd_machine_done_notify = {
4804 .notify = vtd_machine_done_hook,
4805 };
4806
vtd_realize(DeviceState * dev,Error ** errp)4807 static void vtd_realize(DeviceState *dev, Error **errp)
4808 {
4809 MachineState *ms = MACHINE(qdev_get_machine());
4810 PCMachineState *pcms = PC_MACHINE(ms);
4811 X86MachineState *x86ms = X86_MACHINE(ms);
4812 PCIBus *bus = pcms->pcibus;
4813 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4814 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4815
4816 if (s->pasid && x86_iommu->dt_supported) {
4817 /*
4818 * PASID-based-Device-TLB Invalidate Descriptor is not
4819 * implemented and it requires support from vhost layer which
4820 * needs to be implemented in the future.
4821 */
4822 error_setg(errp, "PASID based device IOTLB is not supported");
4823 return;
4824 }
4825
4826 if (!vtd_decide_config(s, errp)) {
4827 return;
4828 }
4829
4830 QLIST_INIT(&s->vtd_as_with_notifiers);
4831 qemu_mutex_init(&s->iommu_lock);
4832 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
4833 "intel_iommu", DMAR_REG_SIZE);
4834 memory_region_add_subregion(get_system_memory(),
4835 Q35_HOST_BRIDGE_IOMMU_ADDR, &s->csrmem);
4836
4837 /* Create the shared memory regions by all devices */
4838 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
4839 UINT64_MAX);
4840 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
4841 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
4842 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
4843 "vtd-sys-alias", get_system_memory(), 0,
4844 memory_region_size(get_system_memory()));
4845 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
4846 &s->mr_sys_alias, 0);
4847 memory_region_add_subregion_overlap(&s->mr_nodmar,
4848 VTD_INTERRUPT_ADDR_FIRST,
4849 &s->mr_ir, 1);
4850 /* No corresponding destroy */
4851 s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal,
4852 g_free, g_free);
4853 s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal,
4854 g_free, g_free);
4855 s->vtd_host_iommu_dev = g_hash_table_new_full(vtd_hiod_hash, vtd_hiod_equal,
4856 g_free, vtd_hiod_destroy);
4857 vtd_init(s);
4858 pci_setup_iommu(bus, &vtd_iommu_ops, dev);
4859 /* Pseudo address space under root PCI bus. */
4860 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
4861 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
4862 }
4863
vtd_class_init(ObjectClass * klass,void * data)4864 static void vtd_class_init(ObjectClass *klass, void *data)
4865 {
4866 DeviceClass *dc = DEVICE_CLASS(klass);
4867 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
4868 ResettableClass *rc = RESETTABLE_CLASS(klass);
4869
4870 /*
4871 * Use 'exit' reset phase to make sure all DMA requests
4872 * have been quiesced during 'enter' or 'hold' phase
4873 */
4874 rc->phases.exit = vtd_reset_exit;
4875 dc->vmsd = &vtd_vmstate;
4876 device_class_set_props(dc, vtd_properties);
4877 dc->hotpluggable = false;
4878 x86_class->realize = vtd_realize;
4879 x86_class->int_remap = vtd_int_remap;
4880 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
4881 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
4882 }
4883
4884 static const TypeInfo vtd_info = {
4885 .name = TYPE_INTEL_IOMMU_DEVICE,
4886 .parent = TYPE_X86_IOMMU_DEVICE,
4887 .instance_size = sizeof(IntelIOMMUState),
4888 .class_init = vtd_class_init,
4889 };
4890
vtd_iommu_memory_region_class_init(ObjectClass * klass,void * data)4891 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
4892 void *data)
4893 {
4894 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
4895
4896 imrc->translate = vtd_iommu_translate;
4897 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
4898 imrc->replay = vtd_iommu_replay;
4899 }
4900
4901 static const TypeInfo vtd_iommu_memory_region_info = {
4902 .parent = TYPE_IOMMU_MEMORY_REGION,
4903 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
4904 .class_init = vtd_iommu_memory_region_class_init,
4905 };
4906
vtd_register_types(void)4907 static void vtd_register_types(void)
4908 {
4909 type_register_static(&vtd_info);
4910 type_register_static(&vtd_iommu_memory_region_info);
4911 }
4912
4913 type_init(vtd_register_types)
4914