1 /*
2 * Copyright (c) 2003-2008 Fabrice Bellard
3 * Copyright (C) 2016 Veertu Inc,
4 * Copyright (C) 2017 Google Inc,
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21
22 #include "x86hvf.h"
23 #include "vmx.h"
24 #include "vmcs.h"
25 #include "cpu.h"
26 #include "x86_descr.h"
27 #include "x86_decode.h"
28 #include "sysemu/hw_accel.h"
29
30 #include "hw/i386/apic_internal.h"
31
32 #include <Hypervisor/hv.h>
33 #include <Hypervisor/hv_vmx.h>
34
hvf_set_segment(CPUState * cs,struct vmx_segment * vmx_seg,SegmentCache * qseg,bool is_tr)35 void hvf_set_segment(CPUState *cs, struct vmx_segment *vmx_seg,
36 SegmentCache *qseg, bool is_tr)
37 {
38 vmx_seg->sel = qseg->selector;
39 vmx_seg->base = qseg->base;
40 vmx_seg->limit = qseg->limit;
41
42 if (!qseg->selector && !x86_is_real(cs) && !is_tr) {
43 /* the TR register is usable after processor reset despite
44 * having a null selector */
45 vmx_seg->ar = 1 << 16;
46 return;
47 }
48 vmx_seg->ar = (qseg->flags >> DESC_TYPE_SHIFT) & 0xf;
49 vmx_seg->ar |= ((qseg->flags >> DESC_G_SHIFT) & 1) << 15;
50 vmx_seg->ar |= ((qseg->flags >> DESC_B_SHIFT) & 1) << 14;
51 vmx_seg->ar |= ((qseg->flags >> DESC_L_SHIFT) & 1) << 13;
52 vmx_seg->ar |= ((qseg->flags >> DESC_AVL_SHIFT) & 1) << 12;
53 vmx_seg->ar |= ((qseg->flags >> DESC_P_SHIFT) & 1) << 7;
54 vmx_seg->ar |= ((qseg->flags >> DESC_DPL_SHIFT) & 3) << 5;
55 vmx_seg->ar |= ((qseg->flags >> DESC_S_SHIFT) & 1) << 4;
56 }
57
hvf_get_segment(SegmentCache * qseg,struct vmx_segment * vmx_seg)58 void hvf_get_segment(SegmentCache *qseg, struct vmx_segment *vmx_seg)
59 {
60 qseg->limit = vmx_seg->limit;
61 qseg->base = vmx_seg->base;
62 qseg->selector = vmx_seg->sel;
63 qseg->flags = ((vmx_seg->ar & 0xf) << DESC_TYPE_SHIFT) |
64 (((vmx_seg->ar >> 4) & 1) << DESC_S_SHIFT) |
65 (((vmx_seg->ar >> 5) & 3) << DESC_DPL_SHIFT) |
66 (((vmx_seg->ar >> 7) & 1) << DESC_P_SHIFT) |
67 (((vmx_seg->ar >> 12) & 1) << DESC_AVL_SHIFT) |
68 (((vmx_seg->ar >> 13) & 1) << DESC_L_SHIFT) |
69 (((vmx_seg->ar >> 14) & 1) << DESC_B_SHIFT) |
70 (((vmx_seg->ar >> 15) & 1) << DESC_G_SHIFT);
71 }
72
hvf_put_xsave(CPUState * cs)73 void hvf_put_xsave(CPUState *cs)
74 {
75 void *xsave = X86_CPU(cs)->env.xsave_buf;
76 uint32_t xsave_len = X86_CPU(cs)->env.xsave_buf_len;
77
78 x86_cpu_xsave_all_areas(X86_CPU(cs), xsave, xsave_len);
79
80 if (hv_vcpu_write_fpstate(cs->accel->fd, xsave, xsave_len)) {
81 abort();
82 }
83 }
84
hvf_put_segments(CPUState * cs)85 static void hvf_put_segments(CPUState *cs)
86 {
87 CPUX86State *env = &X86_CPU(cs)->env;
88 struct vmx_segment seg;
89
90 wvmcs(cs->accel->fd, VMCS_GUEST_IDTR_LIMIT, env->idt.limit);
91 wvmcs(cs->accel->fd, VMCS_GUEST_IDTR_BASE, env->idt.base);
92
93 wvmcs(cs->accel->fd, VMCS_GUEST_GDTR_LIMIT, env->gdt.limit);
94 wvmcs(cs->accel->fd, VMCS_GUEST_GDTR_BASE, env->gdt.base);
95
96 /* wvmcs(cs->accel->fd, VMCS_GUEST_CR2, env->cr[2]); */
97 wvmcs(cs->accel->fd, VMCS_GUEST_CR3, env->cr[3]);
98 vmx_update_tpr(cs);
99 wvmcs(cs->accel->fd, VMCS_GUEST_IA32_EFER, env->efer);
100
101 macvm_set_cr4(cs->accel->fd, env->cr[4]);
102 macvm_set_cr0(cs->accel->fd, env->cr[0]);
103
104 hvf_set_segment(cs, &seg, &env->segs[R_CS], false);
105 vmx_write_segment_descriptor(cs, &seg, R_CS);
106
107 hvf_set_segment(cs, &seg, &env->segs[R_DS], false);
108 vmx_write_segment_descriptor(cs, &seg, R_DS);
109
110 hvf_set_segment(cs, &seg, &env->segs[R_ES], false);
111 vmx_write_segment_descriptor(cs, &seg, R_ES);
112
113 hvf_set_segment(cs, &seg, &env->segs[R_SS], false);
114 vmx_write_segment_descriptor(cs, &seg, R_SS);
115
116 hvf_set_segment(cs, &seg, &env->segs[R_FS], false);
117 vmx_write_segment_descriptor(cs, &seg, R_FS);
118
119 hvf_set_segment(cs, &seg, &env->segs[R_GS], false);
120 vmx_write_segment_descriptor(cs, &seg, R_GS);
121
122 hvf_set_segment(cs, &seg, &env->tr, true);
123 vmx_write_segment_descriptor(cs, &seg, R_TR);
124
125 hvf_set_segment(cs, &seg, &env->ldt, false);
126 vmx_write_segment_descriptor(cs, &seg, R_LDTR);
127 }
128
hvf_put_msrs(CPUState * cs)129 void hvf_put_msrs(CPUState *cs)
130 {
131 CPUX86State *env = &X86_CPU(cs)->env;
132
133 hv_vcpu_write_msr(cs->accel->fd, MSR_IA32_SYSENTER_CS,
134 env->sysenter_cs);
135 hv_vcpu_write_msr(cs->accel->fd, MSR_IA32_SYSENTER_ESP,
136 env->sysenter_esp);
137 hv_vcpu_write_msr(cs->accel->fd, MSR_IA32_SYSENTER_EIP,
138 env->sysenter_eip);
139
140 hv_vcpu_write_msr(cs->accel->fd, MSR_STAR, env->star);
141
142 #ifdef TARGET_X86_64
143 hv_vcpu_write_msr(cs->accel->fd, MSR_CSTAR, env->cstar);
144 hv_vcpu_write_msr(cs->accel->fd, MSR_KERNELGSBASE, env->kernelgsbase);
145 hv_vcpu_write_msr(cs->accel->fd, MSR_FMASK, env->fmask);
146 hv_vcpu_write_msr(cs->accel->fd, MSR_LSTAR, env->lstar);
147 #endif
148
149 hv_vcpu_write_msr(cs->accel->fd, MSR_GSBASE, env->segs[R_GS].base);
150 hv_vcpu_write_msr(cs->accel->fd, MSR_FSBASE, env->segs[R_FS].base);
151 }
152
153
hvf_get_xsave(CPUState * cs)154 void hvf_get_xsave(CPUState *cs)
155 {
156 void *xsave = X86_CPU(cs)->env.xsave_buf;
157 uint32_t xsave_len = X86_CPU(cs)->env.xsave_buf_len;
158
159 if (hv_vcpu_read_fpstate(cs->accel->fd, xsave, xsave_len)) {
160 abort();
161 }
162
163 x86_cpu_xrstor_all_areas(X86_CPU(cs), xsave, xsave_len);
164 }
165
hvf_get_segments(CPUState * cs)166 static void hvf_get_segments(CPUState *cs)
167 {
168 CPUX86State *env = &X86_CPU(cs)->env;
169
170 struct vmx_segment seg;
171
172 env->interrupt_injected = -1;
173
174 vmx_read_segment_descriptor(cs, &seg, R_CS);
175 hvf_get_segment(&env->segs[R_CS], &seg);
176
177 vmx_read_segment_descriptor(cs, &seg, R_DS);
178 hvf_get_segment(&env->segs[R_DS], &seg);
179
180 vmx_read_segment_descriptor(cs, &seg, R_ES);
181 hvf_get_segment(&env->segs[R_ES], &seg);
182
183 vmx_read_segment_descriptor(cs, &seg, R_FS);
184 hvf_get_segment(&env->segs[R_FS], &seg);
185
186 vmx_read_segment_descriptor(cs, &seg, R_GS);
187 hvf_get_segment(&env->segs[R_GS], &seg);
188
189 vmx_read_segment_descriptor(cs, &seg, R_SS);
190 hvf_get_segment(&env->segs[R_SS], &seg);
191
192 vmx_read_segment_descriptor(cs, &seg, R_TR);
193 hvf_get_segment(&env->tr, &seg);
194
195 vmx_read_segment_descriptor(cs, &seg, R_LDTR);
196 hvf_get_segment(&env->ldt, &seg);
197
198 env->idt.limit = rvmcs(cs->accel->fd, VMCS_GUEST_IDTR_LIMIT);
199 env->idt.base = rvmcs(cs->accel->fd, VMCS_GUEST_IDTR_BASE);
200 env->gdt.limit = rvmcs(cs->accel->fd, VMCS_GUEST_GDTR_LIMIT);
201 env->gdt.base = rvmcs(cs->accel->fd, VMCS_GUEST_GDTR_BASE);
202
203 env->cr[0] = rvmcs(cs->accel->fd, VMCS_GUEST_CR0);
204 env->cr[2] = 0;
205 env->cr[3] = rvmcs(cs->accel->fd, VMCS_GUEST_CR3);
206 env->cr[4] = rvmcs(cs->accel->fd, VMCS_GUEST_CR4);
207
208 env->efer = rvmcs(cs->accel->fd, VMCS_GUEST_IA32_EFER);
209 }
210
hvf_get_msrs(CPUState * cs)211 void hvf_get_msrs(CPUState *cs)
212 {
213 CPUX86State *env = &X86_CPU(cs)->env;
214 uint64_t tmp;
215
216 hv_vcpu_read_msr(cs->accel->fd, MSR_IA32_SYSENTER_CS, &tmp);
217 env->sysenter_cs = tmp;
218
219 hv_vcpu_read_msr(cs->accel->fd, MSR_IA32_SYSENTER_ESP, &tmp);
220 env->sysenter_esp = tmp;
221
222 hv_vcpu_read_msr(cs->accel->fd, MSR_IA32_SYSENTER_EIP, &tmp);
223 env->sysenter_eip = tmp;
224
225 hv_vcpu_read_msr(cs->accel->fd, MSR_STAR, &env->star);
226
227 #ifdef TARGET_X86_64
228 hv_vcpu_read_msr(cs->accel->fd, MSR_CSTAR, &env->cstar);
229 hv_vcpu_read_msr(cs->accel->fd, MSR_KERNELGSBASE, &env->kernelgsbase);
230 hv_vcpu_read_msr(cs->accel->fd, MSR_FMASK, &env->fmask);
231 hv_vcpu_read_msr(cs->accel->fd, MSR_LSTAR, &env->lstar);
232 #endif
233
234 hv_vcpu_read_msr(cs->accel->fd, MSR_IA32_APICBASE, &tmp);
235
236 env->tsc = rdtscp() + rvmcs(cs->accel->fd, VMCS_TSC_OFFSET);
237 }
238
hvf_put_registers(CPUState * cs)239 int hvf_put_registers(CPUState *cs)
240 {
241 X86CPU *x86cpu = X86_CPU(cs);
242 CPUX86State *env = &x86cpu->env;
243
244 wreg(cs->accel->fd, HV_X86_RAX, env->regs[R_EAX]);
245 wreg(cs->accel->fd, HV_X86_RBX, env->regs[R_EBX]);
246 wreg(cs->accel->fd, HV_X86_RCX, env->regs[R_ECX]);
247 wreg(cs->accel->fd, HV_X86_RDX, env->regs[R_EDX]);
248 wreg(cs->accel->fd, HV_X86_RBP, env->regs[R_EBP]);
249 wreg(cs->accel->fd, HV_X86_RSP, env->regs[R_ESP]);
250 wreg(cs->accel->fd, HV_X86_RSI, env->regs[R_ESI]);
251 wreg(cs->accel->fd, HV_X86_RDI, env->regs[R_EDI]);
252 wreg(cs->accel->fd, HV_X86_R8, env->regs[8]);
253 wreg(cs->accel->fd, HV_X86_R9, env->regs[9]);
254 wreg(cs->accel->fd, HV_X86_R10, env->regs[10]);
255 wreg(cs->accel->fd, HV_X86_R11, env->regs[11]);
256 wreg(cs->accel->fd, HV_X86_R12, env->regs[12]);
257 wreg(cs->accel->fd, HV_X86_R13, env->regs[13]);
258 wreg(cs->accel->fd, HV_X86_R14, env->regs[14]);
259 wreg(cs->accel->fd, HV_X86_R15, env->regs[15]);
260 wreg(cs->accel->fd, HV_X86_RFLAGS, env->eflags);
261 wreg(cs->accel->fd, HV_X86_RIP, env->eip);
262
263 wreg(cs->accel->fd, HV_X86_XCR0, env->xcr0);
264
265 hvf_put_xsave(cs);
266
267 hvf_put_segments(cs);
268
269 hvf_put_msrs(cs);
270
271 wreg(cs->accel->fd, HV_X86_DR0, env->dr[0]);
272 wreg(cs->accel->fd, HV_X86_DR1, env->dr[1]);
273 wreg(cs->accel->fd, HV_X86_DR2, env->dr[2]);
274 wreg(cs->accel->fd, HV_X86_DR3, env->dr[3]);
275 wreg(cs->accel->fd, HV_X86_DR4, env->dr[4]);
276 wreg(cs->accel->fd, HV_X86_DR5, env->dr[5]);
277 wreg(cs->accel->fd, HV_X86_DR6, env->dr[6]);
278 wreg(cs->accel->fd, HV_X86_DR7, env->dr[7]);
279
280 return 0;
281 }
282
hvf_get_registers(CPUState * cs)283 int hvf_get_registers(CPUState *cs)
284 {
285 X86CPU *x86cpu = X86_CPU(cs);
286 CPUX86State *env = &x86cpu->env;
287
288 env->regs[R_EAX] = rreg(cs->accel->fd, HV_X86_RAX);
289 env->regs[R_EBX] = rreg(cs->accel->fd, HV_X86_RBX);
290 env->regs[R_ECX] = rreg(cs->accel->fd, HV_X86_RCX);
291 env->regs[R_EDX] = rreg(cs->accel->fd, HV_X86_RDX);
292 env->regs[R_EBP] = rreg(cs->accel->fd, HV_X86_RBP);
293 env->regs[R_ESP] = rreg(cs->accel->fd, HV_X86_RSP);
294 env->regs[R_ESI] = rreg(cs->accel->fd, HV_X86_RSI);
295 env->regs[R_EDI] = rreg(cs->accel->fd, HV_X86_RDI);
296 env->regs[8] = rreg(cs->accel->fd, HV_X86_R8);
297 env->regs[9] = rreg(cs->accel->fd, HV_X86_R9);
298 env->regs[10] = rreg(cs->accel->fd, HV_X86_R10);
299 env->regs[11] = rreg(cs->accel->fd, HV_X86_R11);
300 env->regs[12] = rreg(cs->accel->fd, HV_X86_R12);
301 env->regs[13] = rreg(cs->accel->fd, HV_X86_R13);
302 env->regs[14] = rreg(cs->accel->fd, HV_X86_R14);
303 env->regs[15] = rreg(cs->accel->fd, HV_X86_R15);
304
305 env->eflags = rreg(cs->accel->fd, HV_X86_RFLAGS);
306 env->eip = rreg(cs->accel->fd, HV_X86_RIP);
307
308 hvf_get_xsave(cs);
309 env->xcr0 = rreg(cs->accel->fd, HV_X86_XCR0);
310
311 hvf_get_segments(cs);
312 hvf_get_msrs(cs);
313
314 env->dr[0] = rreg(cs->accel->fd, HV_X86_DR0);
315 env->dr[1] = rreg(cs->accel->fd, HV_X86_DR1);
316 env->dr[2] = rreg(cs->accel->fd, HV_X86_DR2);
317 env->dr[3] = rreg(cs->accel->fd, HV_X86_DR3);
318 env->dr[4] = rreg(cs->accel->fd, HV_X86_DR4);
319 env->dr[5] = rreg(cs->accel->fd, HV_X86_DR5);
320 env->dr[6] = rreg(cs->accel->fd, HV_X86_DR6);
321 env->dr[7] = rreg(cs->accel->fd, HV_X86_DR7);
322
323 x86_update_hflags(env);
324 return 0;
325 }
326
vmx_set_int_window_exiting(CPUState * cs)327 static void vmx_set_int_window_exiting(CPUState *cs)
328 {
329 uint64_t val;
330 val = rvmcs(cs->accel->fd, VMCS_PRI_PROC_BASED_CTLS);
331 wvmcs(cs->accel->fd, VMCS_PRI_PROC_BASED_CTLS, val |
332 VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
333 }
334
vmx_clear_int_window_exiting(CPUState * cs)335 void vmx_clear_int_window_exiting(CPUState *cs)
336 {
337 uint64_t val;
338 val = rvmcs(cs->accel->fd, VMCS_PRI_PROC_BASED_CTLS);
339 wvmcs(cs->accel->fd, VMCS_PRI_PROC_BASED_CTLS, val &
340 ~VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
341 }
342
hvf_inject_interrupts(CPUState * cs)343 bool hvf_inject_interrupts(CPUState *cs)
344 {
345 X86CPU *x86cpu = X86_CPU(cs);
346 CPUX86State *env = &x86cpu->env;
347
348 uint8_t vector;
349 uint64_t intr_type;
350 bool have_event = true;
351 if (env->interrupt_injected != -1) {
352 vector = env->interrupt_injected;
353 if (env->ins_len) {
354 intr_type = VMCS_INTR_T_SWINTR;
355 } else {
356 intr_type = VMCS_INTR_T_HWINTR;
357 }
358 } else if (env->exception_nr != -1) {
359 vector = env->exception_nr;
360 if (vector == EXCP03_INT3 || vector == EXCP04_INTO) {
361 intr_type = VMCS_INTR_T_SWEXCEPTION;
362 } else {
363 intr_type = VMCS_INTR_T_HWEXCEPTION;
364 }
365 } else if (env->nmi_injected) {
366 vector = EXCP02_NMI;
367 intr_type = VMCS_INTR_T_NMI;
368 } else {
369 have_event = false;
370 }
371
372 uint64_t info = 0;
373 if (have_event) {
374 info = vector | intr_type | VMCS_INTR_VALID;
375 uint64_t reason = rvmcs(cs->accel->fd, VMCS_EXIT_REASON);
376 if (env->nmi_injected && reason != EXIT_REASON_TASK_SWITCH) {
377 vmx_clear_nmi_blocking(cs);
378 }
379
380 if (!(env->hflags2 & HF2_NMI_MASK) || intr_type != VMCS_INTR_T_NMI) {
381 info &= ~(1 << 12); /* clear undefined bit */
382 if (intr_type == VMCS_INTR_T_SWINTR ||
383 intr_type == VMCS_INTR_T_SWEXCEPTION) {
384 wvmcs(cs->accel->fd, VMCS_ENTRY_INST_LENGTH, env->ins_len);
385 }
386
387 if (env->has_error_code) {
388 wvmcs(cs->accel->fd, VMCS_ENTRY_EXCEPTION_ERROR,
389 env->error_code);
390 /* Indicate that VMCS_ENTRY_EXCEPTION_ERROR is valid */
391 info |= VMCS_INTR_DEL_ERRCODE;
392 }
393 /*printf("reinject %lx err %d\n", info, err);*/
394 wvmcs(cs->accel->fd, VMCS_ENTRY_INTR_INFO, info);
395 };
396 }
397
398 if (cs->interrupt_request & CPU_INTERRUPT_NMI) {
399 if (!(env->hflags2 & HF2_NMI_MASK) && !(info & VMCS_INTR_VALID)) {
400 cs->interrupt_request &= ~CPU_INTERRUPT_NMI;
401 info = VMCS_INTR_VALID | VMCS_INTR_T_NMI | EXCP02_NMI;
402 wvmcs(cs->accel->fd, VMCS_ENTRY_INTR_INFO, info);
403 } else {
404 vmx_set_nmi_window_exiting(cs);
405 }
406 }
407
408 if (!(env->hflags & HF_INHIBIT_IRQ_MASK) &&
409 (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
410 (env->eflags & IF_MASK) && !(info & VMCS_INTR_VALID)) {
411 int line = cpu_get_pic_interrupt(env);
412 cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
413 if (line >= 0) {
414 wvmcs(cs->accel->fd, VMCS_ENTRY_INTR_INFO, line |
415 VMCS_INTR_VALID | VMCS_INTR_T_HWINTR);
416 }
417 }
418 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
419 vmx_set_int_window_exiting(cs);
420 }
421 return (cs->interrupt_request
422 & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR));
423 }
424
hvf_process_events(CPUState * cs)425 int hvf_process_events(CPUState *cs)
426 {
427 X86CPU *cpu = X86_CPU(cs);
428 CPUX86State *env = &cpu->env;
429
430 if (!cs->accel->dirty) {
431 /* light weight sync for CPU_INTERRUPT_HARD and IF_MASK */
432 env->eflags = rreg(cs->accel->fd, HV_X86_RFLAGS);
433 }
434
435 if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
436 cpu_synchronize_state(cs);
437 do_cpu_init(cpu);
438 }
439
440 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
441 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
442 apic_poll_irq(cpu->apic_state);
443 }
444 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
445 (env->eflags & IF_MASK)) ||
446 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
447 cs->halted = 0;
448 }
449 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
450 cpu_synchronize_state(cs);
451 do_cpu_sipi(cpu);
452 }
453 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
454 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
455 cpu_synchronize_state(cs);
456 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
457 env->tpr_access_type);
458 }
459 return cs->halted;
460 }
461