xref: /openbmc/linux/mm/mempolicy.c (revision 278002edb19bce2c628fafb0af936e77000f3a5b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * preferred many Try a set of nodes first before normal fallback. This is
35  *                similar to preferred without the special case.
36  *
37  * default        Allocate on the local node first, or when on a VMA
38  *                use the process policy. This is what Linux always did
39  *		  in a NUMA aware kernel and still does by, ahem, default.
40  *
41  * The process policy is applied for most non interrupt memory allocations
42  * in that process' context. Interrupts ignore the policies and always
43  * try to allocate on the local CPU. The VMA policy is only applied for memory
44  * allocations for a VMA in the VM.
45  *
46  * Currently there are a few corner cases in swapping where the policy
47  * is not applied, but the majority should be handled. When process policy
48  * is used it is not remembered over swap outs/swap ins.
49  *
50  * Only the highest zone in the zone hierarchy gets policied. Allocations
51  * requesting a lower zone just use default policy. This implies that
52  * on systems with highmem kernel lowmem allocation don't get policied.
53  * Same with GFP_DMA allocations.
54  *
55  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56  * all users and remembered even when nobody has memory mapped.
57  */
58 
59 /* Notebook:
60    fix mmap readahead to honour policy and enable policy for any page cache
61    object
62    statistics for bigpages
63    global policy for page cache? currently it uses process policy. Requires
64    first item above.
65    handle mremap for shared memory (currently ignored for the policy)
66    grows down?
67    make bind policy root only? It can trigger oom much faster and the
68    kernel is not always grateful with that.
69 */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105 
106 #include <asm/tlbflush.h>
107 #include <asm/tlb.h>
108 #include <linux/uaccess.h>
109 
110 #include "internal.h"
111 
112 /* Internal flags */
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT       (MPOL_MF_INTERNAL << 1)	/* Invert check for nodemask */
115 #define MPOL_MF_WRLOCK       (MPOL_MF_INTERNAL << 2)	/* Write-lock walked vmas */
116 
117 static struct kmem_cache *policy_cache;
118 static struct kmem_cache *sn_cache;
119 
120 /* Highest zone. An specific allocation for a zone below that is not
121    policied. */
122 enum zone_type policy_zone = 0;
123 
124 /*
125  * run-time system-wide default policy => local allocation
126  */
127 static struct mempolicy default_policy = {
128 	.refcnt = ATOMIC_INIT(1), /* never free it */
129 	.mode = MPOL_LOCAL,
130 };
131 
132 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
133 
134 /**
135  * numa_nearest_node - Find nearest node by state
136  * @node: Node id to start the search
137  * @state: State to filter the search
138  *
139  * Lookup the closest node by distance if @nid is not in state.
140  *
141  * Return: this @node if it is in state, otherwise the closest node by distance
142  */
numa_nearest_node(int node,unsigned int state)143 int numa_nearest_node(int node, unsigned int state)
144 {
145 	int min_dist = INT_MAX, dist, n, min_node;
146 
147 	if (state >= NR_NODE_STATES)
148 		return -EINVAL;
149 
150 	if (node == NUMA_NO_NODE || node_state(node, state))
151 		return node;
152 
153 	min_node = node;
154 	for_each_node_state(n, state) {
155 		dist = node_distance(node, n);
156 		if (dist < min_dist) {
157 			min_dist = dist;
158 			min_node = n;
159 		}
160 	}
161 
162 	return min_node;
163 }
164 EXPORT_SYMBOL_GPL(numa_nearest_node);
165 
get_task_policy(struct task_struct * p)166 struct mempolicy *get_task_policy(struct task_struct *p)
167 {
168 	struct mempolicy *pol = p->mempolicy;
169 	int node;
170 
171 	if (pol)
172 		return pol;
173 
174 	node = numa_node_id();
175 	if (node != NUMA_NO_NODE) {
176 		pol = &preferred_node_policy[node];
177 		/* preferred_node_policy is not initialised early in boot */
178 		if (pol->mode)
179 			return pol;
180 	}
181 
182 	return &default_policy;
183 }
184 
185 static const struct mempolicy_operations {
186 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
187 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
188 } mpol_ops[MPOL_MAX];
189 
mpol_store_user_nodemask(const struct mempolicy * pol)190 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
191 {
192 	return pol->flags & MPOL_MODE_FLAGS;
193 }
194 
mpol_relative_nodemask(nodemask_t * ret,const nodemask_t * orig,const nodemask_t * rel)195 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
196 				   const nodemask_t *rel)
197 {
198 	nodemask_t tmp;
199 	nodes_fold(tmp, *orig, nodes_weight(*rel));
200 	nodes_onto(*ret, tmp, *rel);
201 }
202 
mpol_new_nodemask(struct mempolicy * pol,const nodemask_t * nodes)203 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
204 {
205 	if (nodes_empty(*nodes))
206 		return -EINVAL;
207 	pol->nodes = *nodes;
208 	return 0;
209 }
210 
mpol_new_preferred(struct mempolicy * pol,const nodemask_t * nodes)211 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
212 {
213 	if (nodes_empty(*nodes))
214 		return -EINVAL;
215 
216 	nodes_clear(pol->nodes);
217 	node_set(first_node(*nodes), pol->nodes);
218 	return 0;
219 }
220 
221 /*
222  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
223  * any, for the new policy.  mpol_new() has already validated the nodes
224  * parameter with respect to the policy mode and flags.
225  *
226  * Must be called holding task's alloc_lock to protect task's mems_allowed
227  * and mempolicy.  May also be called holding the mmap_lock for write.
228  */
mpol_set_nodemask(struct mempolicy * pol,const nodemask_t * nodes,struct nodemask_scratch * nsc)229 static int mpol_set_nodemask(struct mempolicy *pol,
230 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
231 {
232 	int ret;
233 
234 	/*
235 	 * Default (pol==NULL) resp. local memory policies are not a
236 	 * subject of any remapping. They also do not need any special
237 	 * constructor.
238 	 */
239 	if (!pol || pol->mode == MPOL_LOCAL)
240 		return 0;
241 
242 	/* Check N_MEMORY */
243 	nodes_and(nsc->mask1,
244 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
245 
246 	VM_BUG_ON(!nodes);
247 
248 	if (pol->flags & MPOL_F_RELATIVE_NODES)
249 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
250 	else
251 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
252 
253 	if (mpol_store_user_nodemask(pol))
254 		pol->w.user_nodemask = *nodes;
255 	else
256 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
257 
258 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
259 	return ret;
260 }
261 
262 /*
263  * This function just creates a new policy, does some check and simple
264  * initialization. You must invoke mpol_set_nodemask() to set nodes.
265  */
mpol_new(unsigned short mode,unsigned short flags,nodemask_t * nodes)266 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
267 				  nodemask_t *nodes)
268 {
269 	struct mempolicy *policy;
270 
271 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
272 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
273 
274 	if (mode == MPOL_DEFAULT) {
275 		if (nodes && !nodes_empty(*nodes))
276 			return ERR_PTR(-EINVAL);
277 		return NULL;
278 	}
279 	VM_BUG_ON(!nodes);
280 
281 	/*
282 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
283 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
284 	 * All other modes require a valid pointer to a non-empty nodemask.
285 	 */
286 	if (mode == MPOL_PREFERRED) {
287 		if (nodes_empty(*nodes)) {
288 			if (((flags & MPOL_F_STATIC_NODES) ||
289 			     (flags & MPOL_F_RELATIVE_NODES)))
290 				return ERR_PTR(-EINVAL);
291 
292 			mode = MPOL_LOCAL;
293 		}
294 	} else if (mode == MPOL_LOCAL) {
295 		if (!nodes_empty(*nodes) ||
296 		    (flags & MPOL_F_STATIC_NODES) ||
297 		    (flags & MPOL_F_RELATIVE_NODES))
298 			return ERR_PTR(-EINVAL);
299 	} else if (nodes_empty(*nodes))
300 		return ERR_PTR(-EINVAL);
301 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
302 	if (!policy)
303 		return ERR_PTR(-ENOMEM);
304 	atomic_set(&policy->refcnt, 1);
305 	policy->mode = mode;
306 	policy->flags = flags;
307 	policy->home_node = NUMA_NO_NODE;
308 
309 	return policy;
310 }
311 
312 /* Slow path of a mpol destructor. */
__mpol_put(struct mempolicy * p)313 void __mpol_put(struct mempolicy *p)
314 {
315 	if (!atomic_dec_and_test(&p->refcnt))
316 		return;
317 	kmem_cache_free(policy_cache, p);
318 }
319 
mpol_rebind_default(struct mempolicy * pol,const nodemask_t * nodes)320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
321 {
322 }
323 
mpol_rebind_nodemask(struct mempolicy * pol,const nodemask_t * nodes)324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
325 {
326 	nodemask_t tmp;
327 
328 	if (pol->flags & MPOL_F_STATIC_NODES)
329 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
330 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
331 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 	else {
333 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
334 								*nodes);
335 		pol->w.cpuset_mems_allowed = *nodes;
336 	}
337 
338 	if (nodes_empty(tmp))
339 		tmp = *nodes;
340 
341 	pol->nodes = tmp;
342 }
343 
mpol_rebind_preferred(struct mempolicy * pol,const nodemask_t * nodes)344 static void mpol_rebind_preferred(struct mempolicy *pol,
345 						const nodemask_t *nodes)
346 {
347 	pol->w.cpuset_mems_allowed = *nodes;
348 }
349 
350 /*
351  * mpol_rebind_policy - Migrate a policy to a different set of nodes
352  *
353  * Per-vma policies are protected by mmap_lock. Allocations using per-task
354  * policies are protected by task->mems_allowed_seq to prevent a premature
355  * OOM/allocation failure due to parallel nodemask modification.
356  */
mpol_rebind_policy(struct mempolicy * pol,const nodemask_t * newmask)357 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
358 {
359 	if (!pol || pol->mode == MPOL_LOCAL)
360 		return;
361 	if (!mpol_store_user_nodemask(pol) &&
362 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
363 		return;
364 
365 	mpol_ops[pol->mode].rebind(pol, newmask);
366 }
367 
368 /*
369  * Wrapper for mpol_rebind_policy() that just requires task
370  * pointer, and updates task mempolicy.
371  *
372  * Called with task's alloc_lock held.
373  */
374 
mpol_rebind_task(struct task_struct * tsk,const nodemask_t * new)375 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
376 {
377 	mpol_rebind_policy(tsk->mempolicy, new);
378 }
379 
380 /*
381  * Rebind each vma in mm to new nodemask.
382  *
383  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
384  */
385 
mpol_rebind_mm(struct mm_struct * mm,nodemask_t * new)386 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
387 {
388 	struct vm_area_struct *vma;
389 	VMA_ITERATOR(vmi, mm, 0);
390 
391 	mmap_write_lock(mm);
392 	for_each_vma(vmi, vma) {
393 		vma_start_write(vma);
394 		mpol_rebind_policy(vma->vm_policy, new);
395 	}
396 	mmap_write_unlock(mm);
397 }
398 
399 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
400 	[MPOL_DEFAULT] = {
401 		.rebind = mpol_rebind_default,
402 	},
403 	[MPOL_INTERLEAVE] = {
404 		.create = mpol_new_nodemask,
405 		.rebind = mpol_rebind_nodemask,
406 	},
407 	[MPOL_PREFERRED] = {
408 		.create = mpol_new_preferred,
409 		.rebind = mpol_rebind_preferred,
410 	},
411 	[MPOL_BIND] = {
412 		.create = mpol_new_nodemask,
413 		.rebind = mpol_rebind_nodemask,
414 	},
415 	[MPOL_LOCAL] = {
416 		.rebind = mpol_rebind_default,
417 	},
418 	[MPOL_PREFERRED_MANY] = {
419 		.create = mpol_new_nodemask,
420 		.rebind = mpol_rebind_preferred,
421 	},
422 };
423 
424 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
425 				unsigned long flags);
426 
strictly_unmovable(unsigned long flags)427 static bool strictly_unmovable(unsigned long flags)
428 {
429 	/*
430 	 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO
431 	 * if any misplaced page is found.
432 	 */
433 	return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ==
434 			 MPOL_MF_STRICT;
435 }
436 
437 struct queue_pages {
438 	struct list_head *pagelist;
439 	unsigned long flags;
440 	nodemask_t *nmask;
441 	unsigned long start;
442 	unsigned long end;
443 	struct vm_area_struct *first;
444 	struct folio *large;		/* note last large folio encountered */
445 	long nr_failed;			/* could not be isolated at this time */
446 };
447 
448 /*
449  * Check if the folio's nid is in qp->nmask.
450  *
451  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
452  * in the invert of qp->nmask.
453  */
queue_folio_required(struct folio * folio,struct queue_pages * qp)454 static inline bool queue_folio_required(struct folio *folio,
455 					struct queue_pages *qp)
456 {
457 	int nid = folio_nid(folio);
458 	unsigned long flags = qp->flags;
459 
460 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
461 }
462 
queue_folios_pmd(pmd_t * pmd,struct mm_walk * walk)463 static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk)
464 {
465 	struct folio *folio;
466 	struct queue_pages *qp = walk->private;
467 
468 	if (unlikely(is_pmd_migration_entry(*pmd))) {
469 		qp->nr_failed++;
470 		return;
471 	}
472 	folio = pfn_folio(pmd_pfn(*pmd));
473 	if (is_huge_zero_page(&folio->page)) {
474 		walk->action = ACTION_CONTINUE;
475 		return;
476 	}
477 	if (!queue_folio_required(folio, qp))
478 		return;
479 	if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
480 	    !vma_migratable(walk->vma) ||
481 	    !migrate_folio_add(folio, qp->pagelist, qp->flags))
482 		qp->nr_failed++;
483 }
484 
485 /*
486  * Scan through folios, checking if they satisfy the required conditions,
487  * moving them from LRU to local pagelist for migration if they do (or not).
488  *
489  * queue_folios_pte_range() has two possible return values:
490  * 0 - continue walking to scan for more, even if an existing folio on the
491  *     wrong node could not be isolated and queued for migration.
492  * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL,
493  *        and an existing folio was on a node that does not follow the policy.
494  */
queue_folios_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)495 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
496 			unsigned long end, struct mm_walk *walk)
497 {
498 	struct vm_area_struct *vma = walk->vma;
499 	struct folio *folio;
500 	struct queue_pages *qp = walk->private;
501 	unsigned long flags = qp->flags;
502 	pte_t *pte, *mapped_pte;
503 	pte_t ptent;
504 	spinlock_t *ptl;
505 
506 	ptl = pmd_trans_huge_lock(pmd, vma);
507 	if (ptl) {
508 		queue_folios_pmd(pmd, walk);
509 		spin_unlock(ptl);
510 		goto out;
511 	}
512 
513 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
514 	if (!pte) {
515 		walk->action = ACTION_AGAIN;
516 		return 0;
517 	}
518 	for (; addr != end; pte++, addr += PAGE_SIZE) {
519 		ptent = ptep_get(pte);
520 		if (pte_none(ptent))
521 			continue;
522 		if (!pte_present(ptent)) {
523 			if (is_migration_entry(pte_to_swp_entry(ptent)))
524 				qp->nr_failed++;
525 			continue;
526 		}
527 		folio = vm_normal_folio(vma, addr, ptent);
528 		if (!folio || folio_is_zone_device(folio))
529 			continue;
530 		/*
531 		 * vm_normal_folio() filters out zero pages, but there might
532 		 * still be reserved folios to skip, perhaps in a VDSO.
533 		 */
534 		if (folio_test_reserved(folio))
535 			continue;
536 		if (!queue_folio_required(folio, qp))
537 			continue;
538 		if (folio_test_large(folio)) {
539 			/*
540 			 * A large folio can only be isolated from LRU once,
541 			 * but may be mapped by many PTEs (and Copy-On-Write may
542 			 * intersperse PTEs of other, order 0, folios).  This is
543 			 * a common case, so don't mistake it for failure (but
544 			 * there can be other cases of multi-mapped pages which
545 			 * this quick check does not help to filter out - and a
546 			 * search of the pagelist might grow to be prohibitive).
547 			 *
548 			 * migrate_pages(&pagelist) returns nr_failed folios, so
549 			 * check "large" now so that queue_pages_range() returns
550 			 * a comparable nr_failed folios.  This does imply that
551 			 * if folio could not be isolated for some racy reason
552 			 * at its first PTE, later PTEs will not give it another
553 			 * chance of isolation; but keeps the accounting simple.
554 			 */
555 			if (folio == qp->large)
556 				continue;
557 			qp->large = folio;
558 		}
559 		if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
560 		    !vma_migratable(vma) ||
561 		    !migrate_folio_add(folio, qp->pagelist, flags)) {
562 			qp->nr_failed++;
563 			if (strictly_unmovable(flags))
564 				break;
565 		}
566 	}
567 	pte_unmap_unlock(mapped_pte, ptl);
568 	cond_resched();
569 out:
570 	if (qp->nr_failed && strictly_unmovable(flags))
571 		return -EIO;
572 	return 0;
573 }
574 
queue_folios_hugetlb(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)575 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
576 			       unsigned long addr, unsigned long end,
577 			       struct mm_walk *walk)
578 {
579 #ifdef CONFIG_HUGETLB_PAGE
580 	struct queue_pages *qp = walk->private;
581 	unsigned long flags = qp->flags;
582 	struct folio *folio;
583 	spinlock_t *ptl;
584 	pte_t entry;
585 
586 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
587 	entry = huge_ptep_get(pte);
588 	if (!pte_present(entry)) {
589 		if (unlikely(is_hugetlb_entry_migration(entry)))
590 			qp->nr_failed++;
591 		goto unlock;
592 	}
593 	folio = pfn_folio(pte_pfn(entry));
594 	if (!queue_folio_required(folio, qp))
595 		goto unlock;
596 	if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
597 	    !vma_migratable(walk->vma)) {
598 		qp->nr_failed++;
599 		goto unlock;
600 	}
601 	/*
602 	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
603 	 * Choosing not to migrate a shared folio is not counted as a failure.
604 	 *
605 	 * To check if the folio is shared, ideally we want to make sure
606 	 * every page is mapped to the same process. Doing that is very
607 	 * expensive, so check the estimated sharers of the folio instead.
608 	 */
609 	if ((flags & MPOL_MF_MOVE_ALL) ||
610 	    (folio_estimated_sharers(folio) == 1 && !hugetlb_pmd_shared(pte)))
611 		if (!isolate_hugetlb(folio, qp->pagelist))
612 			qp->nr_failed++;
613 unlock:
614 	spin_unlock(ptl);
615 	if (qp->nr_failed && strictly_unmovable(flags))
616 		return -EIO;
617 #endif
618 	return 0;
619 }
620 
621 #ifdef CONFIG_NUMA_BALANCING
622 /*
623  * This is used to mark a range of virtual addresses to be inaccessible.
624  * These are later cleared by a NUMA hinting fault. Depending on these
625  * faults, pages may be migrated for better NUMA placement.
626  *
627  * This is assuming that NUMA faults are handled using PROT_NONE. If
628  * an architecture makes a different choice, it will need further
629  * changes to the core.
630  */
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)631 unsigned long change_prot_numa(struct vm_area_struct *vma,
632 			unsigned long addr, unsigned long end)
633 {
634 	struct mmu_gather tlb;
635 	long nr_updated;
636 
637 	tlb_gather_mmu(&tlb, vma->vm_mm);
638 
639 	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
640 	if (nr_updated > 0)
641 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
642 
643 	tlb_finish_mmu(&tlb);
644 
645 	return nr_updated;
646 }
647 #else
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)648 static unsigned long change_prot_numa(struct vm_area_struct *vma,
649 			unsigned long addr, unsigned long end)
650 {
651 	return 0;
652 }
653 #endif /* CONFIG_NUMA_BALANCING */
654 
queue_pages_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)655 static int queue_pages_test_walk(unsigned long start, unsigned long end,
656 				struct mm_walk *walk)
657 {
658 	struct vm_area_struct *next, *vma = walk->vma;
659 	struct queue_pages *qp = walk->private;
660 	unsigned long endvma = vma->vm_end;
661 	unsigned long flags = qp->flags;
662 
663 	/* range check first */
664 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
665 
666 	if (!qp->first) {
667 		qp->first = vma;
668 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
669 			(qp->start < vma->vm_start))
670 			/* hole at head side of range */
671 			return -EFAULT;
672 	}
673 	next = find_vma(vma->vm_mm, vma->vm_end);
674 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
675 		((vma->vm_end < qp->end) &&
676 		(!next || vma->vm_end < next->vm_start)))
677 		/* hole at middle or tail of range */
678 		return -EFAULT;
679 
680 	/*
681 	 * Need check MPOL_MF_STRICT to return -EIO if possible
682 	 * regardless of vma_migratable
683 	 */
684 	if (!vma_migratable(vma) &&
685 	    !(flags & MPOL_MF_STRICT))
686 		return 1;
687 
688 	if (endvma > end)
689 		endvma = end;
690 
691 	if (flags & MPOL_MF_LAZY) {
692 		/* Similar to task_numa_work, skip inaccessible VMAs */
693 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
694 			!(vma->vm_flags & VM_MIXEDMAP))
695 			change_prot_numa(vma, start, endvma);
696 		return 1;
697 	}
698 
699 	/*
700 	 * Check page nodes, and queue pages to move, in the current vma.
701 	 * But if no moving, and no strict checking, the scan can be skipped.
702 	 */
703 	if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
704 		return 0;
705 	return 1;
706 }
707 
708 static const struct mm_walk_ops queue_pages_walk_ops = {
709 	.hugetlb_entry		= queue_folios_hugetlb,
710 	.pmd_entry		= queue_folios_pte_range,
711 	.test_walk		= queue_pages_test_walk,
712 	.walk_lock		= PGWALK_RDLOCK,
713 };
714 
715 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
716 	.hugetlb_entry		= queue_folios_hugetlb,
717 	.pmd_entry		= queue_folios_pte_range,
718 	.test_walk		= queue_pages_test_walk,
719 	.walk_lock		= PGWALK_WRLOCK,
720 };
721 
722 /*
723  * Walk through page tables and collect pages to be migrated.
724  *
725  * If pages found in a given range are not on the required set of @nodes,
726  * and migration is allowed, they are isolated and queued to @pagelist.
727  *
728  * queue_pages_range() may return:
729  * 0 - all pages already on the right node, or successfully queued for moving
730  *     (or neither strict checking nor moving requested: only range checking).
731  * >0 - this number of misplaced folios could not be queued for moving
732  *      (a hugetlbfs page or a transparent huge page being counted as 1).
733  * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs.
734  * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified.
735  */
736 static long
queue_pages_range(struct mm_struct * mm,unsigned long start,unsigned long end,nodemask_t * nodes,unsigned long flags,struct list_head * pagelist)737 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
738 		nodemask_t *nodes, unsigned long flags,
739 		struct list_head *pagelist)
740 {
741 	int err;
742 	struct queue_pages qp = {
743 		.pagelist = pagelist,
744 		.flags = flags,
745 		.nmask = nodes,
746 		.start = start,
747 		.end = end,
748 		.first = NULL,
749 	};
750 	const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ?
751 			&queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
752 
753 	err = walk_page_range(mm, start, end, ops, &qp);
754 
755 	if (!qp.first)
756 		/* whole range in hole */
757 		err = -EFAULT;
758 
759 	return err ? : qp.nr_failed;
760 }
761 
762 /*
763  * Apply policy to a single VMA
764  * This must be called with the mmap_lock held for writing.
765  */
vma_replace_policy(struct vm_area_struct * vma,struct mempolicy * pol)766 static int vma_replace_policy(struct vm_area_struct *vma,
767 						struct mempolicy *pol)
768 {
769 	int err;
770 	struct mempolicy *old;
771 	struct mempolicy *new;
772 
773 	vma_assert_write_locked(vma);
774 
775 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
776 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
777 		 vma->vm_ops, vma->vm_file,
778 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
779 
780 	new = mpol_dup(pol);
781 	if (IS_ERR(new))
782 		return PTR_ERR(new);
783 
784 	if (vma->vm_ops && vma->vm_ops->set_policy) {
785 		err = vma->vm_ops->set_policy(vma, new);
786 		if (err)
787 			goto err_out;
788 	}
789 
790 	old = vma->vm_policy;
791 	vma->vm_policy = new; /* protected by mmap_lock */
792 	mpol_put(old);
793 
794 	return 0;
795  err_out:
796 	mpol_put(new);
797 	return err;
798 }
799 
800 /* Split or merge the VMA (if required) and apply the new policy */
mbind_range(struct vma_iterator * vmi,struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,struct mempolicy * new_pol)801 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
802 		struct vm_area_struct **prev, unsigned long start,
803 		unsigned long end, struct mempolicy *new_pol)
804 {
805 	struct vm_area_struct *merged;
806 	unsigned long vmstart, vmend;
807 	pgoff_t pgoff;
808 	int err;
809 
810 	vmend = min(end, vma->vm_end);
811 	if (start > vma->vm_start) {
812 		*prev = vma;
813 		vmstart = start;
814 	} else {
815 		vmstart = vma->vm_start;
816 	}
817 
818 	if (mpol_equal(vma_policy(vma), new_pol)) {
819 		*prev = vma;
820 		return 0;
821 	}
822 
823 	pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT);
824 	merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags,
825 			 vma->anon_vma, vma->vm_file, pgoff, new_pol,
826 			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
827 	if (merged) {
828 		*prev = merged;
829 		return vma_replace_policy(merged, new_pol);
830 	}
831 
832 	if (vma->vm_start != vmstart) {
833 		err = split_vma(vmi, vma, vmstart, 1);
834 		if (err)
835 			return err;
836 	}
837 
838 	if (vma->vm_end != vmend) {
839 		err = split_vma(vmi, vma, vmend, 0);
840 		if (err)
841 			return err;
842 	}
843 
844 	*prev = vma;
845 	return vma_replace_policy(vma, new_pol);
846 }
847 
848 /* Set the process memory policy */
do_set_mempolicy(unsigned short mode,unsigned short flags,nodemask_t * nodes)849 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
850 			     nodemask_t *nodes)
851 {
852 	struct mempolicy *new, *old;
853 	NODEMASK_SCRATCH(scratch);
854 	int ret;
855 
856 	if (!scratch)
857 		return -ENOMEM;
858 
859 	new = mpol_new(mode, flags, nodes);
860 	if (IS_ERR(new)) {
861 		ret = PTR_ERR(new);
862 		goto out;
863 	}
864 
865 	task_lock(current);
866 	ret = mpol_set_nodemask(new, nodes, scratch);
867 	if (ret) {
868 		task_unlock(current);
869 		mpol_put(new);
870 		goto out;
871 	}
872 
873 	old = current->mempolicy;
874 	current->mempolicy = new;
875 	if (new && new->mode == MPOL_INTERLEAVE)
876 		current->il_prev = MAX_NUMNODES-1;
877 	task_unlock(current);
878 	mpol_put(old);
879 	ret = 0;
880 out:
881 	NODEMASK_SCRATCH_FREE(scratch);
882 	return ret;
883 }
884 
885 /*
886  * Return nodemask for policy for get_mempolicy() query
887  *
888  * Called with task's alloc_lock held
889  */
get_policy_nodemask(struct mempolicy * p,nodemask_t * nodes)890 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
891 {
892 	nodes_clear(*nodes);
893 	if (p == &default_policy)
894 		return;
895 
896 	switch (p->mode) {
897 	case MPOL_BIND:
898 	case MPOL_INTERLEAVE:
899 	case MPOL_PREFERRED:
900 	case MPOL_PREFERRED_MANY:
901 		*nodes = p->nodes;
902 		break;
903 	case MPOL_LOCAL:
904 		/* return empty node mask for local allocation */
905 		break;
906 	default:
907 		BUG();
908 	}
909 }
910 
lookup_node(struct mm_struct * mm,unsigned long addr)911 static int lookup_node(struct mm_struct *mm, unsigned long addr)
912 {
913 	struct page *p = NULL;
914 	int ret;
915 
916 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
917 	if (ret > 0) {
918 		ret = page_to_nid(p);
919 		put_page(p);
920 	}
921 	return ret;
922 }
923 
924 /* Retrieve NUMA policy */
do_get_mempolicy(int * policy,nodemask_t * nmask,unsigned long addr,unsigned long flags)925 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
926 			     unsigned long addr, unsigned long flags)
927 {
928 	int err;
929 	struct mm_struct *mm = current->mm;
930 	struct vm_area_struct *vma = NULL;
931 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
932 
933 	if (flags &
934 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
935 		return -EINVAL;
936 
937 	if (flags & MPOL_F_MEMS_ALLOWED) {
938 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
939 			return -EINVAL;
940 		*policy = 0;	/* just so it's initialized */
941 		task_lock(current);
942 		*nmask  = cpuset_current_mems_allowed;
943 		task_unlock(current);
944 		return 0;
945 	}
946 
947 	if (flags & MPOL_F_ADDR) {
948 		/*
949 		 * Do NOT fall back to task policy if the
950 		 * vma/shared policy at addr is NULL.  We
951 		 * want to return MPOL_DEFAULT in this case.
952 		 */
953 		mmap_read_lock(mm);
954 		vma = vma_lookup(mm, addr);
955 		if (!vma) {
956 			mmap_read_unlock(mm);
957 			return -EFAULT;
958 		}
959 		if (vma->vm_ops && vma->vm_ops->get_policy)
960 			pol = vma->vm_ops->get_policy(vma, addr);
961 		else
962 			pol = vma->vm_policy;
963 	} else if (addr)
964 		return -EINVAL;
965 
966 	if (!pol)
967 		pol = &default_policy;	/* indicates default behavior */
968 
969 	if (flags & MPOL_F_NODE) {
970 		if (flags & MPOL_F_ADDR) {
971 			/*
972 			 * Take a refcount on the mpol, because we are about to
973 			 * drop the mmap_lock, after which only "pol" remains
974 			 * valid, "vma" is stale.
975 			 */
976 			pol_refcount = pol;
977 			vma = NULL;
978 			mpol_get(pol);
979 			mmap_read_unlock(mm);
980 			err = lookup_node(mm, addr);
981 			if (err < 0)
982 				goto out;
983 			*policy = err;
984 		} else if (pol == current->mempolicy &&
985 				pol->mode == MPOL_INTERLEAVE) {
986 			*policy = next_node_in(current->il_prev, pol->nodes);
987 		} else {
988 			err = -EINVAL;
989 			goto out;
990 		}
991 	} else {
992 		*policy = pol == &default_policy ? MPOL_DEFAULT :
993 						pol->mode;
994 		/*
995 		 * Internal mempolicy flags must be masked off before exposing
996 		 * the policy to userspace.
997 		 */
998 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
999 	}
1000 
1001 	err = 0;
1002 	if (nmask) {
1003 		if (mpol_store_user_nodemask(pol)) {
1004 			*nmask = pol->w.user_nodemask;
1005 		} else {
1006 			task_lock(current);
1007 			get_policy_nodemask(pol, nmask);
1008 			task_unlock(current);
1009 		}
1010 	}
1011 
1012  out:
1013 	mpol_cond_put(pol);
1014 	if (vma)
1015 		mmap_read_unlock(mm);
1016 	if (pol_refcount)
1017 		mpol_put(pol_refcount);
1018 	return err;
1019 }
1020 
1021 #ifdef CONFIG_MIGRATION
migrate_folio_add(struct folio * folio,struct list_head * foliolist,unsigned long flags)1022 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1023 				unsigned long flags)
1024 {
1025 	/*
1026 	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
1027 	 * Choosing not to migrate a shared folio is not counted as a failure.
1028 	 *
1029 	 * To check if the folio is shared, ideally we want to make sure
1030 	 * every page is mapped to the same process. Doing that is very
1031 	 * expensive, so check the estimated sharers of the folio instead.
1032 	 */
1033 	if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
1034 		if (folio_isolate_lru(folio)) {
1035 			list_add_tail(&folio->lru, foliolist);
1036 			node_stat_mod_folio(folio,
1037 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1038 				folio_nr_pages(folio));
1039 		} else {
1040 			/*
1041 			 * Non-movable folio may reach here.  And, there may be
1042 			 * temporary off LRU folios or non-LRU movable folios.
1043 			 * Treat them as unmovable folios since they can't be
1044 			 * isolated, so they can't be moved at the moment.
1045 			 */
1046 			return false;
1047 		}
1048 	}
1049 	return true;
1050 }
1051 
1052 /*
1053  * Migrate pages from one node to a target node.
1054  * Returns error or the number of pages not migrated.
1055  */
migrate_to_node(struct mm_struct * mm,int source,int dest,int flags)1056 static long migrate_to_node(struct mm_struct *mm, int source, int dest,
1057 			    int flags)
1058 {
1059 	nodemask_t nmask;
1060 	struct vm_area_struct *vma;
1061 	LIST_HEAD(pagelist);
1062 	long nr_failed;
1063 	long err = 0;
1064 	struct migration_target_control mtc = {
1065 		.nid = dest,
1066 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1067 	};
1068 
1069 	nodes_clear(nmask);
1070 	node_set(source, nmask);
1071 
1072 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1073 	vma = find_vma(mm, 0);
1074 	if (unlikely(!vma)) {
1075 		mmap_read_unlock(mm);
1076 		return 0;
1077 	}
1078 
1079 	/*
1080 	 * This does not migrate the range, but isolates all pages that
1081 	 * need migration.  Between passing in the full user address
1082 	 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail,
1083 	 * but passes back the count of pages which could not be isolated.
1084 	 */
1085 	nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1086 				      flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1087 
1088 	if (!list_empty(&pagelist)) {
1089 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1090 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1091 		if (err)
1092 			putback_movable_pages(&pagelist);
1093 	}
1094 
1095 	if (err >= 0)
1096 		err += nr_failed;
1097 	return err;
1098 }
1099 
1100 /*
1101  * Move pages between the two nodesets so as to preserve the physical
1102  * layout as much as possible.
1103  *
1104  * Returns the number of page that could not be moved.
1105  */
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1106 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1107 		     const nodemask_t *to, int flags)
1108 {
1109 	long nr_failed = 0;
1110 	long err = 0;
1111 	nodemask_t tmp;
1112 
1113 	lru_cache_disable();
1114 
1115 	mmap_read_lock(mm);
1116 
1117 	/*
1118 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1119 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1120 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1121 	 * The pair of nodemasks 'to' and 'from' define the map.
1122 	 *
1123 	 * If no pair of bits is found that way, fallback to picking some
1124 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1125 	 * 'source' and 'dest' bits are the same, this represents a node
1126 	 * that will be migrating to itself, so no pages need move.
1127 	 *
1128 	 * If no bits are left in 'tmp', or if all remaining bits left
1129 	 * in 'tmp' correspond to the same bit in 'to', return false
1130 	 * (nothing left to migrate).
1131 	 *
1132 	 * This lets us pick a pair of nodes to migrate between, such that
1133 	 * if possible the dest node is not already occupied by some other
1134 	 * source node, minimizing the risk of overloading the memory on a
1135 	 * node that would happen if we migrated incoming memory to a node
1136 	 * before migrating outgoing memory source that same node.
1137 	 *
1138 	 * A single scan of tmp is sufficient.  As we go, we remember the
1139 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1140 	 * that not only moved, but what's better, moved to an empty slot
1141 	 * (d is not set in tmp), then we break out then, with that pair.
1142 	 * Otherwise when we finish scanning from_tmp, we at least have the
1143 	 * most recent <s, d> pair that moved.  If we get all the way through
1144 	 * the scan of tmp without finding any node that moved, much less
1145 	 * moved to an empty node, then there is nothing left worth migrating.
1146 	 */
1147 
1148 	tmp = *from;
1149 	while (!nodes_empty(tmp)) {
1150 		int s, d;
1151 		int source = NUMA_NO_NODE;
1152 		int dest = 0;
1153 
1154 		for_each_node_mask(s, tmp) {
1155 
1156 			/*
1157 			 * do_migrate_pages() tries to maintain the relative
1158 			 * node relationship of the pages established between
1159 			 * threads and memory areas.
1160                          *
1161 			 * However if the number of source nodes is not equal to
1162 			 * the number of destination nodes we can not preserve
1163 			 * this node relative relationship.  In that case, skip
1164 			 * copying memory from a node that is in the destination
1165 			 * mask.
1166 			 *
1167 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1168 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1169 			 */
1170 
1171 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1172 						(node_isset(s, *to)))
1173 				continue;
1174 
1175 			d = node_remap(s, *from, *to);
1176 			if (s == d)
1177 				continue;
1178 
1179 			source = s;	/* Node moved. Memorize */
1180 			dest = d;
1181 
1182 			/* dest not in remaining from nodes? */
1183 			if (!node_isset(dest, tmp))
1184 				break;
1185 		}
1186 		if (source == NUMA_NO_NODE)
1187 			break;
1188 
1189 		node_clear(source, tmp);
1190 		err = migrate_to_node(mm, source, dest, flags);
1191 		if (err > 0)
1192 			nr_failed += err;
1193 		if (err < 0)
1194 			break;
1195 	}
1196 	mmap_read_unlock(mm);
1197 
1198 	lru_cache_enable();
1199 	if (err < 0)
1200 		return err;
1201 	return (nr_failed < INT_MAX) ? nr_failed : INT_MAX;
1202 }
1203 
1204 /*
1205  * Allocate a new page for page migration based on vma policy.
1206  * Start by assuming the page is mapped by the same vma as contains @start.
1207  * Search forward from there, if not.  N.B., this assumes that the
1208  * list of pages handed to migrate_pages()--which is how we get here--
1209  * is in virtual address order.
1210  */
new_folio(struct folio * src,unsigned long start)1211 static struct folio *new_folio(struct folio *src, unsigned long start)
1212 {
1213 	struct vm_area_struct *vma;
1214 	unsigned long address;
1215 	VMA_ITERATOR(vmi, current->mm, start);
1216 	gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1217 
1218 	for_each_vma(vmi, vma) {
1219 		address = page_address_in_vma(&src->page, vma);
1220 		if (address != -EFAULT)
1221 			break;
1222 	}
1223 
1224 	if (folio_test_hugetlb(src)) {
1225 		return alloc_hugetlb_folio_vma(folio_hstate(src),
1226 				vma, address);
1227 	}
1228 
1229 	if (folio_test_large(src))
1230 		gfp = GFP_TRANSHUGE;
1231 
1232 	/*
1233 	 * if !vma, vma_alloc_folio() will use task or system default policy
1234 	 */
1235 	return vma_alloc_folio(gfp, folio_order(src), vma, address,
1236 			folio_test_large(src));
1237 }
1238 #else
1239 
migrate_folio_add(struct folio * folio,struct list_head * foliolist,unsigned long flags)1240 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1241 				unsigned long flags)
1242 {
1243 	return false;
1244 }
1245 
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1246 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1247 		     const nodemask_t *to, int flags)
1248 {
1249 	return -ENOSYS;
1250 }
1251 
new_folio(struct folio * src,unsigned long start)1252 static struct folio *new_folio(struct folio *src, unsigned long start)
1253 {
1254 	return NULL;
1255 }
1256 #endif
1257 
do_mbind(unsigned long start,unsigned long len,unsigned short mode,unsigned short mode_flags,nodemask_t * nmask,unsigned long flags)1258 static long do_mbind(unsigned long start, unsigned long len,
1259 		     unsigned short mode, unsigned short mode_flags,
1260 		     nodemask_t *nmask, unsigned long flags)
1261 {
1262 	struct mm_struct *mm = current->mm;
1263 	struct vm_area_struct *vma, *prev;
1264 	struct vma_iterator vmi;
1265 	struct mempolicy *new;
1266 	unsigned long end;
1267 	long err;
1268 	long nr_failed;
1269 	LIST_HEAD(pagelist);
1270 
1271 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1272 		return -EINVAL;
1273 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1274 		return -EPERM;
1275 
1276 	if (start & ~PAGE_MASK)
1277 		return -EINVAL;
1278 
1279 	if (mode == MPOL_DEFAULT)
1280 		flags &= ~MPOL_MF_STRICT;
1281 
1282 	len = PAGE_ALIGN(len);
1283 	end = start + len;
1284 
1285 	if (end < start)
1286 		return -EINVAL;
1287 	if (end == start)
1288 		return 0;
1289 
1290 	new = mpol_new(mode, mode_flags, nmask);
1291 	if (IS_ERR(new))
1292 		return PTR_ERR(new);
1293 
1294 	if (flags & MPOL_MF_LAZY)
1295 		new->flags |= MPOL_F_MOF;
1296 
1297 	/*
1298 	 * If we are using the default policy then operation
1299 	 * on discontinuous address spaces is okay after all
1300 	 */
1301 	if (!new)
1302 		flags |= MPOL_MF_DISCONTIG_OK;
1303 
1304 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1305 		 start, start + len, mode, mode_flags,
1306 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1307 
1308 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1309 		lru_cache_disable();
1310 	{
1311 		NODEMASK_SCRATCH(scratch);
1312 		if (scratch) {
1313 			mmap_write_lock(mm);
1314 			err = mpol_set_nodemask(new, nmask, scratch);
1315 			if (err)
1316 				mmap_write_unlock(mm);
1317 		} else
1318 			err = -ENOMEM;
1319 		NODEMASK_SCRATCH_FREE(scratch);
1320 	}
1321 	if (err)
1322 		goto mpol_out;
1323 
1324 	/*
1325 	 * Lock the VMAs before scanning for pages to migrate,
1326 	 * to ensure we don't miss a concurrently inserted page.
1327 	 */
1328 	nr_failed = queue_pages_range(mm, start, end, nmask,
1329 			flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist);
1330 
1331 	if (nr_failed < 0) {
1332 		err = nr_failed;
1333 	} else {
1334 		vma_iter_init(&vmi, mm, start);
1335 		prev = vma_prev(&vmi);
1336 		for_each_vma_range(vmi, vma, end) {
1337 			err = mbind_range(&vmi, vma, &prev, start, end, new);
1338 			if (err)
1339 				break;
1340 		}
1341 	}
1342 
1343 	if (!err) {
1344 		if (!list_empty(&pagelist)) {
1345 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1346 			nr_failed |= migrate_pages(&pagelist, new_folio, NULL,
1347 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1348 		}
1349 		if (nr_failed && (flags & MPOL_MF_STRICT))
1350 			err = -EIO;
1351 	}
1352 
1353 	if (!list_empty(&pagelist))
1354 		putback_movable_pages(&pagelist);
1355 
1356 	mmap_write_unlock(mm);
1357 mpol_out:
1358 	mpol_put(new);
1359 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1360 		lru_cache_enable();
1361 	return err;
1362 }
1363 
1364 /*
1365  * User space interface with variable sized bitmaps for nodelists.
1366  */
get_bitmap(unsigned long * mask,const unsigned long __user * nmask,unsigned long maxnode)1367 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1368 		      unsigned long maxnode)
1369 {
1370 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1371 	int ret;
1372 
1373 	if (in_compat_syscall())
1374 		ret = compat_get_bitmap(mask,
1375 					(const compat_ulong_t __user *)nmask,
1376 					maxnode);
1377 	else
1378 		ret = copy_from_user(mask, nmask,
1379 				     nlongs * sizeof(unsigned long));
1380 
1381 	if (ret)
1382 		return -EFAULT;
1383 
1384 	if (maxnode % BITS_PER_LONG)
1385 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1386 
1387 	return 0;
1388 }
1389 
1390 /* Copy a node mask from user space. */
get_nodes(nodemask_t * nodes,const unsigned long __user * nmask,unsigned long maxnode)1391 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1392 		     unsigned long maxnode)
1393 {
1394 	--maxnode;
1395 	nodes_clear(*nodes);
1396 	if (maxnode == 0 || !nmask)
1397 		return 0;
1398 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1399 		return -EINVAL;
1400 
1401 	/*
1402 	 * When the user specified more nodes than supported just check
1403 	 * if the non supported part is all zero, one word at a time,
1404 	 * starting at the end.
1405 	 */
1406 	while (maxnode > MAX_NUMNODES) {
1407 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1408 		unsigned long t;
1409 
1410 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1411 			return -EFAULT;
1412 
1413 		if (maxnode - bits >= MAX_NUMNODES) {
1414 			maxnode -= bits;
1415 		} else {
1416 			maxnode = MAX_NUMNODES;
1417 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1418 		}
1419 		if (t)
1420 			return -EINVAL;
1421 	}
1422 
1423 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1424 }
1425 
1426 /* Copy a kernel node mask to user space */
copy_nodes_to_user(unsigned long __user * mask,unsigned long maxnode,nodemask_t * nodes)1427 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1428 			      nodemask_t *nodes)
1429 {
1430 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1431 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1432 	bool compat = in_compat_syscall();
1433 
1434 	if (compat)
1435 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1436 
1437 	if (copy > nbytes) {
1438 		if (copy > PAGE_SIZE)
1439 			return -EINVAL;
1440 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1441 			return -EFAULT;
1442 		copy = nbytes;
1443 		maxnode = nr_node_ids;
1444 	}
1445 
1446 	if (compat)
1447 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1448 					 nodes_addr(*nodes), maxnode);
1449 
1450 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1451 }
1452 
1453 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
sanitize_mpol_flags(int * mode,unsigned short * flags)1454 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1455 {
1456 	*flags = *mode & MPOL_MODE_FLAGS;
1457 	*mode &= ~MPOL_MODE_FLAGS;
1458 
1459 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1460 		return -EINVAL;
1461 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1462 		return -EINVAL;
1463 	if (*flags & MPOL_F_NUMA_BALANCING) {
1464 		if (*mode != MPOL_BIND)
1465 			return -EINVAL;
1466 		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1467 	}
1468 	return 0;
1469 }
1470 
kernel_mbind(unsigned long start,unsigned long len,unsigned long mode,const unsigned long __user * nmask,unsigned long maxnode,unsigned int flags)1471 static long kernel_mbind(unsigned long start, unsigned long len,
1472 			 unsigned long mode, const unsigned long __user *nmask,
1473 			 unsigned long maxnode, unsigned int flags)
1474 {
1475 	unsigned short mode_flags;
1476 	nodemask_t nodes;
1477 	int lmode = mode;
1478 	int err;
1479 
1480 	start = untagged_addr(start);
1481 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1482 	if (err)
1483 		return err;
1484 
1485 	err = get_nodes(&nodes, nmask, maxnode);
1486 	if (err)
1487 		return err;
1488 
1489 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1490 }
1491 
SYSCALL_DEFINE4(set_mempolicy_home_node,unsigned long,start,unsigned long,len,unsigned long,home_node,unsigned long,flags)1492 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1493 		unsigned long, home_node, unsigned long, flags)
1494 {
1495 	struct mm_struct *mm = current->mm;
1496 	struct vm_area_struct *vma, *prev;
1497 	struct mempolicy *new, *old;
1498 	unsigned long end;
1499 	int err = -ENOENT;
1500 	VMA_ITERATOR(vmi, mm, start);
1501 
1502 	start = untagged_addr(start);
1503 	if (start & ~PAGE_MASK)
1504 		return -EINVAL;
1505 	/*
1506 	 * flags is used for future extension if any.
1507 	 */
1508 	if (flags != 0)
1509 		return -EINVAL;
1510 
1511 	/*
1512 	 * Check home_node is online to avoid accessing uninitialized
1513 	 * NODE_DATA.
1514 	 */
1515 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1516 		return -EINVAL;
1517 
1518 	len = PAGE_ALIGN(len);
1519 	end = start + len;
1520 
1521 	if (end < start)
1522 		return -EINVAL;
1523 	if (end == start)
1524 		return 0;
1525 	mmap_write_lock(mm);
1526 	prev = vma_prev(&vmi);
1527 	for_each_vma_range(vmi, vma, end) {
1528 		/*
1529 		 * If any vma in the range got policy other than MPOL_BIND
1530 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1531 		 * the home node for vmas we already updated before.
1532 		 */
1533 		old = vma_policy(vma);
1534 		if (!old) {
1535 			prev = vma;
1536 			continue;
1537 		}
1538 		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1539 			err = -EOPNOTSUPP;
1540 			break;
1541 		}
1542 		new = mpol_dup(old);
1543 		if (IS_ERR(new)) {
1544 			err = PTR_ERR(new);
1545 			break;
1546 		}
1547 
1548 		vma_start_write(vma);
1549 		new->home_node = home_node;
1550 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1551 		mpol_put(new);
1552 		if (err)
1553 			break;
1554 	}
1555 	mmap_write_unlock(mm);
1556 	return err;
1557 }
1558 
SYSCALL_DEFINE6(mbind,unsigned long,start,unsigned long,len,unsigned long,mode,const unsigned long __user *,nmask,unsigned long,maxnode,unsigned int,flags)1559 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1560 		unsigned long, mode, const unsigned long __user *, nmask,
1561 		unsigned long, maxnode, unsigned int, flags)
1562 {
1563 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1564 }
1565 
1566 /* Set the process memory policy */
kernel_set_mempolicy(int mode,const unsigned long __user * nmask,unsigned long maxnode)1567 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1568 				 unsigned long maxnode)
1569 {
1570 	unsigned short mode_flags;
1571 	nodemask_t nodes;
1572 	int lmode = mode;
1573 	int err;
1574 
1575 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1576 	if (err)
1577 		return err;
1578 
1579 	err = get_nodes(&nodes, nmask, maxnode);
1580 	if (err)
1581 		return err;
1582 
1583 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1584 }
1585 
SYSCALL_DEFINE3(set_mempolicy,int,mode,const unsigned long __user *,nmask,unsigned long,maxnode)1586 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1587 		unsigned long, maxnode)
1588 {
1589 	return kernel_set_mempolicy(mode, nmask, maxnode);
1590 }
1591 
kernel_migrate_pages(pid_t pid,unsigned long maxnode,const unsigned long __user * old_nodes,const unsigned long __user * new_nodes)1592 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1593 				const unsigned long __user *old_nodes,
1594 				const unsigned long __user *new_nodes)
1595 {
1596 	struct mm_struct *mm = NULL;
1597 	struct task_struct *task;
1598 	nodemask_t task_nodes;
1599 	int err;
1600 	nodemask_t *old;
1601 	nodemask_t *new;
1602 	NODEMASK_SCRATCH(scratch);
1603 
1604 	if (!scratch)
1605 		return -ENOMEM;
1606 
1607 	old = &scratch->mask1;
1608 	new = &scratch->mask2;
1609 
1610 	err = get_nodes(old, old_nodes, maxnode);
1611 	if (err)
1612 		goto out;
1613 
1614 	err = get_nodes(new, new_nodes, maxnode);
1615 	if (err)
1616 		goto out;
1617 
1618 	/* Find the mm_struct */
1619 	rcu_read_lock();
1620 	task = pid ? find_task_by_vpid(pid) : current;
1621 	if (!task) {
1622 		rcu_read_unlock();
1623 		err = -ESRCH;
1624 		goto out;
1625 	}
1626 	get_task_struct(task);
1627 
1628 	err = -EINVAL;
1629 
1630 	/*
1631 	 * Check if this process has the right to modify the specified process.
1632 	 * Use the regular "ptrace_may_access()" checks.
1633 	 */
1634 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1635 		rcu_read_unlock();
1636 		err = -EPERM;
1637 		goto out_put;
1638 	}
1639 	rcu_read_unlock();
1640 
1641 	task_nodes = cpuset_mems_allowed(task);
1642 	/* Is the user allowed to access the target nodes? */
1643 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1644 		err = -EPERM;
1645 		goto out_put;
1646 	}
1647 
1648 	task_nodes = cpuset_mems_allowed(current);
1649 	nodes_and(*new, *new, task_nodes);
1650 	if (nodes_empty(*new))
1651 		goto out_put;
1652 
1653 	err = security_task_movememory(task);
1654 	if (err)
1655 		goto out_put;
1656 
1657 	mm = get_task_mm(task);
1658 	put_task_struct(task);
1659 
1660 	if (!mm) {
1661 		err = -EINVAL;
1662 		goto out;
1663 	}
1664 
1665 	err = do_migrate_pages(mm, old, new,
1666 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1667 
1668 	mmput(mm);
1669 out:
1670 	NODEMASK_SCRATCH_FREE(scratch);
1671 
1672 	return err;
1673 
1674 out_put:
1675 	put_task_struct(task);
1676 	goto out;
1677 
1678 }
1679 
SYSCALL_DEFINE4(migrate_pages,pid_t,pid,unsigned long,maxnode,const unsigned long __user *,old_nodes,const unsigned long __user *,new_nodes)1680 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1681 		const unsigned long __user *, old_nodes,
1682 		const unsigned long __user *, new_nodes)
1683 {
1684 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1685 }
1686 
1687 
1688 /* Retrieve NUMA policy */
kernel_get_mempolicy(int __user * policy,unsigned long __user * nmask,unsigned long maxnode,unsigned long addr,unsigned long flags)1689 static int kernel_get_mempolicy(int __user *policy,
1690 				unsigned long __user *nmask,
1691 				unsigned long maxnode,
1692 				unsigned long addr,
1693 				unsigned long flags)
1694 {
1695 	int err;
1696 	int pval;
1697 	nodemask_t nodes;
1698 
1699 	if (nmask != NULL && maxnode < nr_node_ids)
1700 		return -EINVAL;
1701 
1702 	addr = untagged_addr(addr);
1703 
1704 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1705 
1706 	if (err)
1707 		return err;
1708 
1709 	if (policy && put_user(pval, policy))
1710 		return -EFAULT;
1711 
1712 	if (nmask)
1713 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1714 
1715 	return err;
1716 }
1717 
SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,unsigned long __user *,nmask,unsigned long,maxnode,unsigned long,addr,unsigned long,flags)1718 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1719 		unsigned long __user *, nmask, unsigned long, maxnode,
1720 		unsigned long, addr, unsigned long, flags)
1721 {
1722 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1723 }
1724 
vma_migratable(struct vm_area_struct * vma)1725 bool vma_migratable(struct vm_area_struct *vma)
1726 {
1727 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1728 		return false;
1729 
1730 	/*
1731 	 * DAX device mappings require predictable access latency, so avoid
1732 	 * incurring periodic faults.
1733 	 */
1734 	if (vma_is_dax(vma))
1735 		return false;
1736 
1737 	if (is_vm_hugetlb_page(vma) &&
1738 		!hugepage_migration_supported(hstate_vma(vma)))
1739 		return false;
1740 
1741 	/*
1742 	 * Migration allocates pages in the highest zone. If we cannot
1743 	 * do so then migration (at least from node to node) is not
1744 	 * possible.
1745 	 */
1746 	if (vma->vm_file &&
1747 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1748 			< policy_zone)
1749 		return false;
1750 	return true;
1751 }
1752 
__get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1753 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1754 						unsigned long addr)
1755 {
1756 	struct mempolicy *pol = NULL;
1757 
1758 	if (vma) {
1759 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1760 			pol = vma->vm_ops->get_policy(vma, addr);
1761 		} else if (vma->vm_policy) {
1762 			pol = vma->vm_policy;
1763 
1764 			/*
1765 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1766 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1767 			 * count on these policies which will be dropped by
1768 			 * mpol_cond_put() later
1769 			 */
1770 			if (mpol_needs_cond_ref(pol))
1771 				mpol_get(pol);
1772 		}
1773 	}
1774 
1775 	return pol;
1776 }
1777 
1778 /*
1779  * get_vma_policy(@vma, @addr)
1780  * @vma: virtual memory area whose policy is sought
1781  * @addr: address in @vma for shared policy lookup
1782  *
1783  * Returns effective policy for a VMA at specified address.
1784  * Falls back to current->mempolicy or system default policy, as necessary.
1785  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1786  * count--added by the get_policy() vm_op, as appropriate--to protect against
1787  * freeing by another task.  It is the caller's responsibility to free the
1788  * extra reference for shared policies.
1789  */
get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1790 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1791 						unsigned long addr)
1792 {
1793 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1794 
1795 	if (!pol)
1796 		pol = get_task_policy(current);
1797 
1798 	return pol;
1799 }
1800 
vma_policy_mof(struct vm_area_struct * vma)1801 bool vma_policy_mof(struct vm_area_struct *vma)
1802 {
1803 	struct mempolicy *pol;
1804 
1805 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1806 		bool ret = false;
1807 
1808 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1809 		if (pol && (pol->flags & MPOL_F_MOF))
1810 			ret = true;
1811 		mpol_cond_put(pol);
1812 
1813 		return ret;
1814 	}
1815 
1816 	pol = vma->vm_policy;
1817 	if (!pol)
1818 		pol = get_task_policy(current);
1819 
1820 	return pol->flags & MPOL_F_MOF;
1821 }
1822 
apply_policy_zone(struct mempolicy * policy,enum zone_type zone)1823 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1824 {
1825 	enum zone_type dynamic_policy_zone = policy_zone;
1826 
1827 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1828 
1829 	/*
1830 	 * if policy->nodes has movable memory only,
1831 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1832 	 *
1833 	 * policy->nodes is intersect with node_states[N_MEMORY].
1834 	 * so if the following test fails, it implies
1835 	 * policy->nodes has movable memory only.
1836 	 */
1837 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1838 		dynamic_policy_zone = ZONE_MOVABLE;
1839 
1840 	return zone >= dynamic_policy_zone;
1841 }
1842 
1843 /*
1844  * Return a nodemask representing a mempolicy for filtering nodes for
1845  * page allocation
1846  */
policy_nodemask(gfp_t gfp,struct mempolicy * policy)1847 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1848 {
1849 	int mode = policy->mode;
1850 
1851 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1852 	if (unlikely(mode == MPOL_BIND) &&
1853 		apply_policy_zone(policy, gfp_zone(gfp)) &&
1854 		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1855 		return &policy->nodes;
1856 
1857 	if (mode == MPOL_PREFERRED_MANY)
1858 		return &policy->nodes;
1859 
1860 	return NULL;
1861 }
1862 
1863 /*
1864  * Return the  preferred node id for 'prefer' mempolicy, and return
1865  * the given id for all other policies.
1866  *
1867  * policy_node() is always coupled with policy_nodemask(), which
1868  * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1869  */
policy_node(gfp_t gfp,struct mempolicy * policy,int nd)1870 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1871 {
1872 	if (policy->mode == MPOL_PREFERRED) {
1873 		nd = first_node(policy->nodes);
1874 	} else {
1875 		/*
1876 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1877 		 * because we might easily break the expectation to stay on the
1878 		 * requested node and not break the policy.
1879 		 */
1880 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1881 	}
1882 
1883 	if ((policy->mode == MPOL_BIND ||
1884 	     policy->mode == MPOL_PREFERRED_MANY) &&
1885 	    policy->home_node != NUMA_NO_NODE)
1886 		return policy->home_node;
1887 
1888 	return nd;
1889 }
1890 
1891 /* Do dynamic interleaving for a process */
interleave_nodes(struct mempolicy * policy)1892 static unsigned interleave_nodes(struct mempolicy *policy)
1893 {
1894 	unsigned next;
1895 	struct task_struct *me = current;
1896 
1897 	next = next_node_in(me->il_prev, policy->nodes);
1898 	if (next < MAX_NUMNODES)
1899 		me->il_prev = next;
1900 	return next;
1901 }
1902 
1903 /*
1904  * Depending on the memory policy provide a node from which to allocate the
1905  * next slab entry.
1906  */
mempolicy_slab_node(void)1907 unsigned int mempolicy_slab_node(void)
1908 {
1909 	struct mempolicy *policy;
1910 	int node = numa_mem_id();
1911 
1912 	if (!in_task())
1913 		return node;
1914 
1915 	policy = current->mempolicy;
1916 	if (!policy)
1917 		return node;
1918 
1919 	switch (policy->mode) {
1920 	case MPOL_PREFERRED:
1921 		return first_node(policy->nodes);
1922 
1923 	case MPOL_INTERLEAVE:
1924 		return interleave_nodes(policy);
1925 
1926 	case MPOL_BIND:
1927 	case MPOL_PREFERRED_MANY:
1928 	{
1929 		struct zoneref *z;
1930 
1931 		/*
1932 		 * Follow bind policy behavior and start allocation at the
1933 		 * first node.
1934 		 */
1935 		struct zonelist *zonelist;
1936 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1937 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1938 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1939 							&policy->nodes);
1940 		return z->zone ? zone_to_nid(z->zone) : node;
1941 	}
1942 	case MPOL_LOCAL:
1943 		return node;
1944 
1945 	default:
1946 		BUG();
1947 	}
1948 }
1949 
1950 /*
1951  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1952  * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1953  * number of present nodes.
1954  */
offset_il_node(struct mempolicy * pol,unsigned long n)1955 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1956 {
1957 	nodemask_t nodemask = pol->nodes;
1958 	unsigned int target, nnodes;
1959 	int i;
1960 	int nid;
1961 	/*
1962 	 * The barrier will stabilize the nodemask in a register or on
1963 	 * the stack so that it will stop changing under the code.
1964 	 *
1965 	 * Between first_node() and next_node(), pol->nodes could be changed
1966 	 * by other threads. So we put pol->nodes in a local stack.
1967 	 */
1968 	barrier();
1969 
1970 	nnodes = nodes_weight(nodemask);
1971 	if (!nnodes)
1972 		return numa_node_id();
1973 	target = (unsigned int)n % nnodes;
1974 	nid = first_node(nodemask);
1975 	for (i = 0; i < target; i++)
1976 		nid = next_node(nid, nodemask);
1977 	return nid;
1978 }
1979 
1980 /* Determine a node number for interleave */
interleave_nid(struct mempolicy * pol,struct vm_area_struct * vma,unsigned long addr,int shift)1981 static inline unsigned interleave_nid(struct mempolicy *pol,
1982 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1983 {
1984 	if (vma) {
1985 		unsigned long off;
1986 
1987 		/*
1988 		 * for small pages, there is no difference between
1989 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1990 		 * for huge pages, since vm_pgoff is in units of small
1991 		 * pages, we need to shift off the always 0 bits to get
1992 		 * a useful offset.
1993 		 */
1994 		BUG_ON(shift < PAGE_SHIFT);
1995 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1996 		off += (addr - vma->vm_start) >> shift;
1997 		return offset_il_node(pol, off);
1998 	} else
1999 		return interleave_nodes(pol);
2000 }
2001 
2002 #ifdef CONFIG_HUGETLBFS
2003 /*
2004  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2005  * @vma: virtual memory area whose policy is sought
2006  * @addr: address in @vma for shared policy lookup and interleave policy
2007  * @gfp_flags: for requested zone
2008  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2009  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2010  *
2011  * Returns a nid suitable for a huge page allocation and a pointer
2012  * to the struct mempolicy for conditional unref after allocation.
2013  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2014  * to the mempolicy's @nodemask for filtering the zonelist.
2015  *
2016  * Must be protected by read_mems_allowed_begin()
2017  */
huge_node(struct vm_area_struct * vma,unsigned long addr,gfp_t gfp_flags,struct mempolicy ** mpol,nodemask_t ** nodemask)2018 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2019 				struct mempolicy **mpol, nodemask_t **nodemask)
2020 {
2021 	int nid;
2022 	int mode;
2023 
2024 	*mpol = get_vma_policy(vma, addr);
2025 	*nodemask = NULL;
2026 	mode = (*mpol)->mode;
2027 
2028 	if (unlikely(mode == MPOL_INTERLEAVE)) {
2029 		nid = interleave_nid(*mpol, vma, addr,
2030 					huge_page_shift(hstate_vma(vma)));
2031 	} else {
2032 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2033 		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2034 			*nodemask = &(*mpol)->nodes;
2035 	}
2036 	return nid;
2037 }
2038 
2039 /*
2040  * init_nodemask_of_mempolicy
2041  *
2042  * If the current task's mempolicy is "default" [NULL], return 'false'
2043  * to indicate default policy.  Otherwise, extract the policy nodemask
2044  * for 'bind' or 'interleave' policy into the argument nodemask, or
2045  * initialize the argument nodemask to contain the single node for
2046  * 'preferred' or 'local' policy and return 'true' to indicate presence
2047  * of non-default mempolicy.
2048  *
2049  * We don't bother with reference counting the mempolicy [mpol_get/put]
2050  * because the current task is examining it's own mempolicy and a task's
2051  * mempolicy is only ever changed by the task itself.
2052  *
2053  * N.B., it is the caller's responsibility to free a returned nodemask.
2054  */
init_nodemask_of_mempolicy(nodemask_t * mask)2055 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2056 {
2057 	struct mempolicy *mempolicy;
2058 
2059 	if (!(mask && current->mempolicy))
2060 		return false;
2061 
2062 	task_lock(current);
2063 	mempolicy = current->mempolicy;
2064 	switch (mempolicy->mode) {
2065 	case MPOL_PREFERRED:
2066 	case MPOL_PREFERRED_MANY:
2067 	case MPOL_BIND:
2068 	case MPOL_INTERLEAVE:
2069 		*mask = mempolicy->nodes;
2070 		break;
2071 
2072 	case MPOL_LOCAL:
2073 		init_nodemask_of_node(mask, numa_node_id());
2074 		break;
2075 
2076 	default:
2077 		BUG();
2078 	}
2079 	task_unlock(current);
2080 
2081 	return true;
2082 }
2083 #endif
2084 
2085 /*
2086  * mempolicy_in_oom_domain
2087  *
2088  * If tsk's mempolicy is "bind", check for intersection between mask and
2089  * the policy nodemask. Otherwise, return true for all other policies
2090  * including "interleave", as a tsk with "interleave" policy may have
2091  * memory allocated from all nodes in system.
2092  *
2093  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2094  */
mempolicy_in_oom_domain(struct task_struct * tsk,const nodemask_t * mask)2095 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2096 					const nodemask_t *mask)
2097 {
2098 	struct mempolicy *mempolicy;
2099 	bool ret = true;
2100 
2101 	if (!mask)
2102 		return ret;
2103 
2104 	task_lock(tsk);
2105 	mempolicy = tsk->mempolicy;
2106 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2107 		ret = nodes_intersects(mempolicy->nodes, *mask);
2108 	task_unlock(tsk);
2109 
2110 	return ret;
2111 }
2112 
2113 /* Allocate a page in interleaved policy.
2114    Own path because it needs to do special accounting. */
alloc_page_interleave(gfp_t gfp,unsigned order,unsigned nid)2115 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2116 					unsigned nid)
2117 {
2118 	struct page *page;
2119 
2120 	page = __alloc_pages(gfp, order, nid, NULL);
2121 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2122 	if (!static_branch_likely(&vm_numa_stat_key))
2123 		return page;
2124 	if (page && page_to_nid(page) == nid) {
2125 		preempt_disable();
2126 		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2127 		preempt_enable();
2128 	}
2129 	return page;
2130 }
2131 
alloc_pages_preferred_many(gfp_t gfp,unsigned int order,int nid,struct mempolicy * pol)2132 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2133 						int nid, struct mempolicy *pol)
2134 {
2135 	struct page *page;
2136 	gfp_t preferred_gfp;
2137 
2138 	/*
2139 	 * This is a two pass approach. The first pass will only try the
2140 	 * preferred nodes but skip the direct reclaim and allow the
2141 	 * allocation to fail, while the second pass will try all the
2142 	 * nodes in system.
2143 	 */
2144 	preferred_gfp = gfp | __GFP_NOWARN;
2145 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2146 	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2147 	if (!page)
2148 		page = __alloc_pages(gfp, order, nid, NULL);
2149 
2150 	return page;
2151 }
2152 
2153 /**
2154  * vma_alloc_folio - Allocate a folio for a VMA.
2155  * @gfp: GFP flags.
2156  * @order: Order of the folio.
2157  * @vma: Pointer to VMA or NULL if not available.
2158  * @addr: Virtual address of the allocation.  Must be inside @vma.
2159  * @hugepage: For hugepages try only the preferred node if possible.
2160  *
2161  * Allocate a folio for a specific address in @vma, using the appropriate
2162  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2163  * of the mm_struct of the VMA to prevent it from going away.  Should be
2164  * used for all allocations for folios that will be mapped into user space.
2165  *
2166  * Return: The folio on success or NULL if allocation fails.
2167  */
vma_alloc_folio(gfp_t gfp,int order,struct vm_area_struct * vma,unsigned long addr,bool hugepage)2168 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2169 		unsigned long addr, bool hugepage)
2170 {
2171 	struct mempolicy *pol;
2172 	int node = numa_node_id();
2173 	struct folio *folio;
2174 	int preferred_nid;
2175 	nodemask_t *nmask;
2176 
2177 	pol = get_vma_policy(vma, addr);
2178 
2179 	if (pol->mode == MPOL_INTERLEAVE) {
2180 		struct page *page;
2181 		unsigned nid;
2182 
2183 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2184 		mpol_cond_put(pol);
2185 		gfp |= __GFP_COMP;
2186 		page = alloc_page_interleave(gfp, order, nid);
2187 		return page_rmappable_folio(page);
2188 	}
2189 
2190 	if (pol->mode == MPOL_PREFERRED_MANY) {
2191 		struct page *page;
2192 
2193 		node = policy_node(gfp, pol, node);
2194 		gfp |= __GFP_COMP;
2195 		page = alloc_pages_preferred_many(gfp, order, node, pol);
2196 		mpol_cond_put(pol);
2197 		return page_rmappable_folio(page);
2198 	}
2199 
2200 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2201 		int hpage_node = node;
2202 
2203 		/*
2204 		 * For hugepage allocation and non-interleave policy which
2205 		 * allows the current node (or other explicitly preferred
2206 		 * node) we only try to allocate from the current/preferred
2207 		 * node and don't fall back to other nodes, as the cost of
2208 		 * remote accesses would likely offset THP benefits.
2209 		 *
2210 		 * If the policy is interleave or does not allow the current
2211 		 * node in its nodemask, we allocate the standard way.
2212 		 */
2213 		if (pol->mode == MPOL_PREFERRED)
2214 			hpage_node = first_node(pol->nodes);
2215 
2216 		nmask = policy_nodemask(gfp, pol);
2217 		if (!nmask || node_isset(hpage_node, *nmask)) {
2218 			mpol_cond_put(pol);
2219 			/*
2220 			 * First, try to allocate THP only on local node, but
2221 			 * don't reclaim unnecessarily, just compact.
2222 			 */
2223 			folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2224 					__GFP_NORETRY, order, hpage_node);
2225 
2226 			/*
2227 			 * If hugepage allocations are configured to always
2228 			 * synchronous compact or the vma has been madvised
2229 			 * to prefer hugepage backing, retry allowing remote
2230 			 * memory with both reclaim and compact as well.
2231 			 */
2232 			if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2233 				folio = __folio_alloc(gfp, order, hpage_node,
2234 						      nmask);
2235 
2236 			goto out;
2237 		}
2238 	}
2239 
2240 	nmask = policy_nodemask(gfp, pol);
2241 	preferred_nid = policy_node(gfp, pol, node);
2242 	folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2243 	mpol_cond_put(pol);
2244 out:
2245 	return folio;
2246 }
2247 EXPORT_SYMBOL(vma_alloc_folio);
2248 
2249 /**
2250  * alloc_pages - Allocate pages.
2251  * @gfp: GFP flags.
2252  * @order: Power of two of number of pages to allocate.
2253  *
2254  * Allocate 1 << @order contiguous pages.  The physical address of the
2255  * first page is naturally aligned (eg an order-3 allocation will be aligned
2256  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2257  * process is honoured when in process context.
2258  *
2259  * Context: Can be called from any context, providing the appropriate GFP
2260  * flags are used.
2261  * Return: The page on success or NULL if allocation fails.
2262  */
alloc_pages(gfp_t gfp,unsigned order)2263 struct page *alloc_pages(gfp_t gfp, unsigned order)
2264 {
2265 	struct mempolicy *pol = &default_policy;
2266 	struct page *page;
2267 
2268 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2269 		pol = get_task_policy(current);
2270 
2271 	/*
2272 	 * No reference counting needed for current->mempolicy
2273 	 * nor system default_policy
2274 	 */
2275 	if (pol->mode == MPOL_INTERLEAVE)
2276 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2277 	else if (pol->mode == MPOL_PREFERRED_MANY)
2278 		page = alloc_pages_preferred_many(gfp, order,
2279 				  policy_node(gfp, pol, numa_node_id()), pol);
2280 	else
2281 		page = __alloc_pages(gfp, order,
2282 				policy_node(gfp, pol, numa_node_id()),
2283 				policy_nodemask(gfp, pol));
2284 
2285 	return page;
2286 }
2287 EXPORT_SYMBOL(alloc_pages);
2288 
folio_alloc(gfp_t gfp,unsigned order)2289 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2290 {
2291 	return page_rmappable_folio(alloc_pages(gfp | __GFP_COMP, order));
2292 }
2293 EXPORT_SYMBOL(folio_alloc);
2294 
alloc_pages_bulk_array_interleave(gfp_t gfp,struct mempolicy * pol,unsigned long nr_pages,struct page ** page_array)2295 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2296 		struct mempolicy *pol, unsigned long nr_pages,
2297 		struct page **page_array)
2298 {
2299 	int nodes;
2300 	unsigned long nr_pages_per_node;
2301 	int delta;
2302 	int i;
2303 	unsigned long nr_allocated;
2304 	unsigned long total_allocated = 0;
2305 
2306 	nodes = nodes_weight(pol->nodes);
2307 	nr_pages_per_node = nr_pages / nodes;
2308 	delta = nr_pages - nodes * nr_pages_per_node;
2309 
2310 	for (i = 0; i < nodes; i++) {
2311 		if (delta) {
2312 			nr_allocated = __alloc_pages_bulk(gfp,
2313 					interleave_nodes(pol), NULL,
2314 					nr_pages_per_node + 1, NULL,
2315 					page_array);
2316 			delta--;
2317 		} else {
2318 			nr_allocated = __alloc_pages_bulk(gfp,
2319 					interleave_nodes(pol), NULL,
2320 					nr_pages_per_node, NULL, page_array);
2321 		}
2322 
2323 		page_array += nr_allocated;
2324 		total_allocated += nr_allocated;
2325 	}
2326 
2327 	return total_allocated;
2328 }
2329 
alloc_pages_bulk_array_preferred_many(gfp_t gfp,int nid,struct mempolicy * pol,unsigned long nr_pages,struct page ** page_array)2330 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2331 		struct mempolicy *pol, unsigned long nr_pages,
2332 		struct page **page_array)
2333 {
2334 	gfp_t preferred_gfp;
2335 	unsigned long nr_allocated = 0;
2336 
2337 	preferred_gfp = gfp | __GFP_NOWARN;
2338 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2339 
2340 	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2341 					   nr_pages, NULL, page_array);
2342 
2343 	if (nr_allocated < nr_pages)
2344 		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2345 				nr_pages - nr_allocated, NULL,
2346 				page_array + nr_allocated);
2347 	return nr_allocated;
2348 }
2349 
2350 /* alloc pages bulk and mempolicy should be considered at the
2351  * same time in some situation such as vmalloc.
2352  *
2353  * It can accelerate memory allocation especially interleaving
2354  * allocate memory.
2355  */
alloc_pages_bulk_array_mempolicy(gfp_t gfp,unsigned long nr_pages,struct page ** page_array)2356 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2357 		unsigned long nr_pages, struct page **page_array)
2358 {
2359 	struct mempolicy *pol = &default_policy;
2360 
2361 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2362 		pol = get_task_policy(current);
2363 
2364 	if (pol->mode == MPOL_INTERLEAVE)
2365 		return alloc_pages_bulk_array_interleave(gfp, pol,
2366 							 nr_pages, page_array);
2367 
2368 	if (pol->mode == MPOL_PREFERRED_MANY)
2369 		return alloc_pages_bulk_array_preferred_many(gfp,
2370 				numa_node_id(), pol, nr_pages, page_array);
2371 
2372 	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2373 				  policy_nodemask(gfp, pol), nr_pages, NULL,
2374 				  page_array);
2375 }
2376 
vma_dup_policy(struct vm_area_struct * src,struct vm_area_struct * dst)2377 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2378 {
2379 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2380 
2381 	if (IS_ERR(pol))
2382 		return PTR_ERR(pol);
2383 	dst->vm_policy = pol;
2384 	return 0;
2385 }
2386 
2387 /*
2388  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2389  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2390  * with the mems_allowed returned by cpuset_mems_allowed().  This
2391  * keeps mempolicies cpuset relative after its cpuset moves.  See
2392  * further kernel/cpuset.c update_nodemask().
2393  *
2394  * current's mempolicy may be rebinded by the other task(the task that changes
2395  * cpuset's mems), so we needn't do rebind work for current task.
2396  */
2397 
2398 /* Slow path of a mempolicy duplicate */
__mpol_dup(struct mempolicy * old)2399 struct mempolicy *__mpol_dup(struct mempolicy *old)
2400 {
2401 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2402 
2403 	if (!new)
2404 		return ERR_PTR(-ENOMEM);
2405 
2406 	/* task's mempolicy is protected by alloc_lock */
2407 	if (old == current->mempolicy) {
2408 		task_lock(current);
2409 		*new = *old;
2410 		task_unlock(current);
2411 	} else
2412 		*new = *old;
2413 
2414 	if (current_cpuset_is_being_rebound()) {
2415 		nodemask_t mems = cpuset_mems_allowed(current);
2416 		mpol_rebind_policy(new, &mems);
2417 	}
2418 	atomic_set(&new->refcnt, 1);
2419 	return new;
2420 }
2421 
2422 /* Slow path of a mempolicy comparison */
__mpol_equal(struct mempolicy * a,struct mempolicy * b)2423 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2424 {
2425 	if (!a || !b)
2426 		return false;
2427 	if (a->mode != b->mode)
2428 		return false;
2429 	if (a->flags != b->flags)
2430 		return false;
2431 	if (a->home_node != b->home_node)
2432 		return false;
2433 	if (mpol_store_user_nodemask(a))
2434 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2435 			return false;
2436 
2437 	switch (a->mode) {
2438 	case MPOL_BIND:
2439 	case MPOL_INTERLEAVE:
2440 	case MPOL_PREFERRED:
2441 	case MPOL_PREFERRED_MANY:
2442 		return !!nodes_equal(a->nodes, b->nodes);
2443 	case MPOL_LOCAL:
2444 		return true;
2445 	default:
2446 		BUG();
2447 		return false;
2448 	}
2449 }
2450 
2451 /*
2452  * Shared memory backing store policy support.
2453  *
2454  * Remember policies even when nobody has shared memory mapped.
2455  * The policies are kept in Red-Black tree linked from the inode.
2456  * They are protected by the sp->lock rwlock, which should be held
2457  * for any accesses to the tree.
2458  */
2459 
2460 /*
2461  * lookup first element intersecting start-end.  Caller holds sp->lock for
2462  * reading or for writing
2463  */
2464 static struct sp_node *
sp_lookup(struct shared_policy * sp,unsigned long start,unsigned long end)2465 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2466 {
2467 	struct rb_node *n = sp->root.rb_node;
2468 
2469 	while (n) {
2470 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2471 
2472 		if (start >= p->end)
2473 			n = n->rb_right;
2474 		else if (end <= p->start)
2475 			n = n->rb_left;
2476 		else
2477 			break;
2478 	}
2479 	if (!n)
2480 		return NULL;
2481 	for (;;) {
2482 		struct sp_node *w = NULL;
2483 		struct rb_node *prev = rb_prev(n);
2484 		if (!prev)
2485 			break;
2486 		w = rb_entry(prev, struct sp_node, nd);
2487 		if (w->end <= start)
2488 			break;
2489 		n = prev;
2490 	}
2491 	return rb_entry(n, struct sp_node, nd);
2492 }
2493 
2494 /*
2495  * Insert a new shared policy into the list.  Caller holds sp->lock for
2496  * writing.
2497  */
sp_insert(struct shared_policy * sp,struct sp_node * new)2498 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2499 {
2500 	struct rb_node **p = &sp->root.rb_node;
2501 	struct rb_node *parent = NULL;
2502 	struct sp_node *nd;
2503 
2504 	while (*p) {
2505 		parent = *p;
2506 		nd = rb_entry(parent, struct sp_node, nd);
2507 		if (new->start < nd->start)
2508 			p = &(*p)->rb_left;
2509 		else if (new->end > nd->end)
2510 			p = &(*p)->rb_right;
2511 		else
2512 			BUG();
2513 	}
2514 	rb_link_node(&new->nd, parent, p);
2515 	rb_insert_color(&new->nd, &sp->root);
2516 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2517 		 new->policy ? new->policy->mode : 0);
2518 }
2519 
2520 /* Find shared policy intersecting idx */
2521 struct mempolicy *
mpol_shared_policy_lookup(struct shared_policy * sp,unsigned long idx)2522 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2523 {
2524 	struct mempolicy *pol = NULL;
2525 	struct sp_node *sn;
2526 
2527 	if (!sp->root.rb_node)
2528 		return NULL;
2529 	read_lock(&sp->lock);
2530 	sn = sp_lookup(sp, idx, idx+1);
2531 	if (sn) {
2532 		mpol_get(sn->policy);
2533 		pol = sn->policy;
2534 	}
2535 	read_unlock(&sp->lock);
2536 	return pol;
2537 }
2538 
sp_free(struct sp_node * n)2539 static void sp_free(struct sp_node *n)
2540 {
2541 	mpol_put(n->policy);
2542 	kmem_cache_free(sn_cache, n);
2543 }
2544 
2545 /**
2546  * mpol_misplaced - check whether current page node is valid in policy
2547  *
2548  * @page: page to be checked
2549  * @vma: vm area where page mapped
2550  * @addr: virtual address where page mapped
2551  *
2552  * Lookup current policy node id for vma,addr and "compare to" page's
2553  * node id.  Policy determination "mimics" alloc_page_vma().
2554  * Called from fault path where we know the vma and faulting address.
2555  *
2556  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2557  * policy, or a suitable node ID to allocate a replacement page from.
2558  */
mpol_misplaced(struct page * page,struct vm_area_struct * vma,unsigned long addr)2559 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2560 {
2561 	struct mempolicy *pol;
2562 	struct zoneref *z;
2563 	int curnid = page_to_nid(page);
2564 	unsigned long pgoff;
2565 	int thiscpu = raw_smp_processor_id();
2566 	int thisnid = cpu_to_node(thiscpu);
2567 	int polnid = NUMA_NO_NODE;
2568 	int ret = NUMA_NO_NODE;
2569 
2570 	pol = get_vma_policy(vma, addr);
2571 	if (!(pol->flags & MPOL_F_MOF))
2572 		goto out;
2573 
2574 	switch (pol->mode) {
2575 	case MPOL_INTERLEAVE:
2576 		pgoff = vma->vm_pgoff;
2577 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2578 		polnid = offset_il_node(pol, pgoff);
2579 		break;
2580 
2581 	case MPOL_PREFERRED:
2582 		if (node_isset(curnid, pol->nodes))
2583 			goto out;
2584 		polnid = first_node(pol->nodes);
2585 		break;
2586 
2587 	case MPOL_LOCAL:
2588 		polnid = numa_node_id();
2589 		break;
2590 
2591 	case MPOL_BIND:
2592 		/* Optimize placement among multiple nodes via NUMA balancing */
2593 		if (pol->flags & MPOL_F_MORON) {
2594 			if (node_isset(thisnid, pol->nodes))
2595 				break;
2596 			goto out;
2597 		}
2598 		fallthrough;
2599 
2600 	case MPOL_PREFERRED_MANY:
2601 		/*
2602 		 * use current page if in policy nodemask,
2603 		 * else select nearest allowed node, if any.
2604 		 * If no allowed nodes, use current [!misplaced].
2605 		 */
2606 		if (node_isset(curnid, pol->nodes))
2607 			goto out;
2608 		z = first_zones_zonelist(
2609 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2610 				gfp_zone(GFP_HIGHUSER),
2611 				&pol->nodes);
2612 		polnid = zone_to_nid(z->zone);
2613 		break;
2614 
2615 	default:
2616 		BUG();
2617 	}
2618 
2619 	/* Migrate the page towards the node whose CPU is referencing it */
2620 	if (pol->flags & MPOL_F_MORON) {
2621 		polnid = thisnid;
2622 
2623 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2624 			goto out;
2625 	}
2626 
2627 	if (curnid != polnid)
2628 		ret = polnid;
2629 out:
2630 	mpol_cond_put(pol);
2631 
2632 	return ret;
2633 }
2634 
2635 /*
2636  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2637  * dropped after task->mempolicy is set to NULL so that any allocation done as
2638  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2639  * policy.
2640  */
mpol_put_task_policy(struct task_struct * task)2641 void mpol_put_task_policy(struct task_struct *task)
2642 {
2643 	struct mempolicy *pol;
2644 
2645 	task_lock(task);
2646 	pol = task->mempolicy;
2647 	task->mempolicy = NULL;
2648 	task_unlock(task);
2649 	mpol_put(pol);
2650 }
2651 
sp_delete(struct shared_policy * sp,struct sp_node * n)2652 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2653 {
2654 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2655 	rb_erase(&n->nd, &sp->root);
2656 	sp_free(n);
2657 }
2658 
sp_node_init(struct sp_node * node,unsigned long start,unsigned long end,struct mempolicy * pol)2659 static void sp_node_init(struct sp_node *node, unsigned long start,
2660 			unsigned long end, struct mempolicy *pol)
2661 {
2662 	node->start = start;
2663 	node->end = end;
2664 	node->policy = pol;
2665 }
2666 
sp_alloc(unsigned long start,unsigned long end,struct mempolicy * pol)2667 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2668 				struct mempolicy *pol)
2669 {
2670 	struct sp_node *n;
2671 	struct mempolicy *newpol;
2672 
2673 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2674 	if (!n)
2675 		return NULL;
2676 
2677 	newpol = mpol_dup(pol);
2678 	if (IS_ERR(newpol)) {
2679 		kmem_cache_free(sn_cache, n);
2680 		return NULL;
2681 	}
2682 	newpol->flags |= MPOL_F_SHARED;
2683 	sp_node_init(n, start, end, newpol);
2684 
2685 	return n;
2686 }
2687 
2688 /* Replace a policy range. */
shared_policy_replace(struct shared_policy * sp,unsigned long start,unsigned long end,struct sp_node * new)2689 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2690 				 unsigned long end, struct sp_node *new)
2691 {
2692 	struct sp_node *n;
2693 	struct sp_node *n_new = NULL;
2694 	struct mempolicy *mpol_new = NULL;
2695 	int ret = 0;
2696 
2697 restart:
2698 	write_lock(&sp->lock);
2699 	n = sp_lookup(sp, start, end);
2700 	/* Take care of old policies in the same range. */
2701 	while (n && n->start < end) {
2702 		struct rb_node *next = rb_next(&n->nd);
2703 		if (n->start >= start) {
2704 			if (n->end <= end)
2705 				sp_delete(sp, n);
2706 			else
2707 				n->start = end;
2708 		} else {
2709 			/* Old policy spanning whole new range. */
2710 			if (n->end > end) {
2711 				if (!n_new)
2712 					goto alloc_new;
2713 
2714 				*mpol_new = *n->policy;
2715 				atomic_set(&mpol_new->refcnt, 1);
2716 				sp_node_init(n_new, end, n->end, mpol_new);
2717 				n->end = start;
2718 				sp_insert(sp, n_new);
2719 				n_new = NULL;
2720 				mpol_new = NULL;
2721 				break;
2722 			} else
2723 				n->end = start;
2724 		}
2725 		if (!next)
2726 			break;
2727 		n = rb_entry(next, struct sp_node, nd);
2728 	}
2729 	if (new)
2730 		sp_insert(sp, new);
2731 	write_unlock(&sp->lock);
2732 	ret = 0;
2733 
2734 err_out:
2735 	if (mpol_new)
2736 		mpol_put(mpol_new);
2737 	if (n_new)
2738 		kmem_cache_free(sn_cache, n_new);
2739 
2740 	return ret;
2741 
2742 alloc_new:
2743 	write_unlock(&sp->lock);
2744 	ret = -ENOMEM;
2745 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2746 	if (!n_new)
2747 		goto err_out;
2748 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2749 	if (!mpol_new)
2750 		goto err_out;
2751 	atomic_set(&mpol_new->refcnt, 1);
2752 	goto restart;
2753 }
2754 
2755 /**
2756  * mpol_shared_policy_init - initialize shared policy for inode
2757  * @sp: pointer to inode shared policy
2758  * @mpol:  struct mempolicy to install
2759  *
2760  * Install non-NULL @mpol in inode's shared policy rb-tree.
2761  * On entry, the current task has a reference on a non-NULL @mpol.
2762  * This must be released on exit.
2763  * This is called at get_inode() calls and we can use GFP_KERNEL.
2764  */
mpol_shared_policy_init(struct shared_policy * sp,struct mempolicy * mpol)2765 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2766 {
2767 	int ret;
2768 
2769 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2770 	rwlock_init(&sp->lock);
2771 
2772 	if (mpol) {
2773 		struct vm_area_struct pvma;
2774 		struct mempolicy *new;
2775 		NODEMASK_SCRATCH(scratch);
2776 
2777 		if (!scratch)
2778 			goto put_mpol;
2779 		/* contextualize the tmpfs mount point mempolicy */
2780 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2781 		if (IS_ERR(new))
2782 			goto free_scratch; /* no valid nodemask intersection */
2783 
2784 		task_lock(current);
2785 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2786 		task_unlock(current);
2787 		if (ret)
2788 			goto put_new;
2789 
2790 		/* Create pseudo-vma that contains just the policy */
2791 		vma_init(&pvma, NULL);
2792 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2793 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2794 
2795 put_new:
2796 		mpol_put(new);			/* drop initial ref */
2797 free_scratch:
2798 		NODEMASK_SCRATCH_FREE(scratch);
2799 put_mpol:
2800 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2801 	}
2802 }
2803 
mpol_set_shared_policy(struct shared_policy * info,struct vm_area_struct * vma,struct mempolicy * npol)2804 int mpol_set_shared_policy(struct shared_policy *info,
2805 			struct vm_area_struct *vma, struct mempolicy *npol)
2806 {
2807 	int err;
2808 	struct sp_node *new = NULL;
2809 	unsigned long sz = vma_pages(vma);
2810 
2811 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2812 		 vma->vm_pgoff,
2813 		 sz, npol ? npol->mode : -1,
2814 		 npol ? npol->flags : -1,
2815 		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2816 
2817 	if (npol) {
2818 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2819 		if (!new)
2820 			return -ENOMEM;
2821 	}
2822 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2823 	if (err && new)
2824 		sp_free(new);
2825 	return err;
2826 }
2827 
2828 /* Free a backing policy store on inode delete. */
mpol_free_shared_policy(struct shared_policy * p)2829 void mpol_free_shared_policy(struct shared_policy *p)
2830 {
2831 	struct sp_node *n;
2832 	struct rb_node *next;
2833 
2834 	if (!p->root.rb_node)
2835 		return;
2836 	write_lock(&p->lock);
2837 	next = rb_first(&p->root);
2838 	while (next) {
2839 		n = rb_entry(next, struct sp_node, nd);
2840 		next = rb_next(&n->nd);
2841 		sp_delete(p, n);
2842 	}
2843 	write_unlock(&p->lock);
2844 }
2845 
2846 #ifdef CONFIG_NUMA_BALANCING
2847 static int __initdata numabalancing_override;
2848 
check_numabalancing_enable(void)2849 static void __init check_numabalancing_enable(void)
2850 {
2851 	bool numabalancing_default = false;
2852 
2853 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2854 		numabalancing_default = true;
2855 
2856 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2857 	if (numabalancing_override)
2858 		set_numabalancing_state(numabalancing_override == 1);
2859 
2860 	if (num_online_nodes() > 1 && !numabalancing_override) {
2861 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2862 			numabalancing_default ? "Enabling" : "Disabling");
2863 		set_numabalancing_state(numabalancing_default);
2864 	}
2865 }
2866 
setup_numabalancing(char * str)2867 static int __init setup_numabalancing(char *str)
2868 {
2869 	int ret = 0;
2870 	if (!str)
2871 		goto out;
2872 
2873 	if (!strcmp(str, "enable")) {
2874 		numabalancing_override = 1;
2875 		ret = 1;
2876 	} else if (!strcmp(str, "disable")) {
2877 		numabalancing_override = -1;
2878 		ret = 1;
2879 	}
2880 out:
2881 	if (!ret)
2882 		pr_warn("Unable to parse numa_balancing=\n");
2883 
2884 	return ret;
2885 }
2886 __setup("numa_balancing=", setup_numabalancing);
2887 #else
check_numabalancing_enable(void)2888 static inline void __init check_numabalancing_enable(void)
2889 {
2890 }
2891 #endif /* CONFIG_NUMA_BALANCING */
2892 
2893 /* assumes fs == KERNEL_DS */
numa_policy_init(void)2894 void __init numa_policy_init(void)
2895 {
2896 	nodemask_t interleave_nodes;
2897 	unsigned long largest = 0;
2898 	int nid, prefer = 0;
2899 
2900 	policy_cache = kmem_cache_create("numa_policy",
2901 					 sizeof(struct mempolicy),
2902 					 0, SLAB_PANIC, NULL);
2903 
2904 	sn_cache = kmem_cache_create("shared_policy_node",
2905 				     sizeof(struct sp_node),
2906 				     0, SLAB_PANIC, NULL);
2907 
2908 	for_each_node(nid) {
2909 		preferred_node_policy[nid] = (struct mempolicy) {
2910 			.refcnt = ATOMIC_INIT(1),
2911 			.mode = MPOL_PREFERRED,
2912 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2913 			.nodes = nodemask_of_node(nid),
2914 		};
2915 	}
2916 
2917 	/*
2918 	 * Set interleaving policy for system init. Interleaving is only
2919 	 * enabled across suitably sized nodes (default is >= 16MB), or
2920 	 * fall back to the largest node if they're all smaller.
2921 	 */
2922 	nodes_clear(interleave_nodes);
2923 	for_each_node_state(nid, N_MEMORY) {
2924 		unsigned long total_pages = node_present_pages(nid);
2925 
2926 		/* Preserve the largest node */
2927 		if (largest < total_pages) {
2928 			largest = total_pages;
2929 			prefer = nid;
2930 		}
2931 
2932 		/* Interleave this node? */
2933 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2934 			node_set(nid, interleave_nodes);
2935 	}
2936 
2937 	/* All too small, use the largest */
2938 	if (unlikely(nodes_empty(interleave_nodes)))
2939 		node_set(prefer, interleave_nodes);
2940 
2941 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2942 		pr_err("%s: interleaving failed\n", __func__);
2943 
2944 	check_numabalancing_enable();
2945 }
2946 
2947 /* Reset policy of current process to default */
numa_default_policy(void)2948 void numa_default_policy(void)
2949 {
2950 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2951 }
2952 
2953 /*
2954  * Parse and format mempolicy from/to strings
2955  */
2956 
2957 static const char * const policy_modes[] =
2958 {
2959 	[MPOL_DEFAULT]    = "default",
2960 	[MPOL_PREFERRED]  = "prefer",
2961 	[MPOL_BIND]       = "bind",
2962 	[MPOL_INTERLEAVE] = "interleave",
2963 	[MPOL_LOCAL]      = "local",
2964 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2965 };
2966 
2967 
2968 #ifdef CONFIG_TMPFS
2969 /**
2970  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2971  * @str:  string containing mempolicy to parse
2972  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2973  *
2974  * Format of input:
2975  *	<mode>[=<flags>][:<nodelist>]
2976  *
2977  * Return: %0 on success, else %1
2978  */
mpol_parse_str(char * str,struct mempolicy ** mpol)2979 int mpol_parse_str(char *str, struct mempolicy **mpol)
2980 {
2981 	struct mempolicy *new = NULL;
2982 	unsigned short mode_flags;
2983 	nodemask_t nodes;
2984 	char *nodelist = strchr(str, ':');
2985 	char *flags = strchr(str, '=');
2986 	int err = 1, mode;
2987 
2988 	if (flags)
2989 		*flags++ = '\0';	/* terminate mode string */
2990 
2991 	if (nodelist) {
2992 		/* NUL-terminate mode or flags string */
2993 		*nodelist++ = '\0';
2994 		if (nodelist_parse(nodelist, nodes))
2995 			goto out;
2996 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2997 			goto out;
2998 	} else
2999 		nodes_clear(nodes);
3000 
3001 	mode = match_string(policy_modes, MPOL_MAX, str);
3002 	if (mode < 0)
3003 		goto out;
3004 
3005 	switch (mode) {
3006 	case MPOL_PREFERRED:
3007 		/*
3008 		 * Insist on a nodelist of one node only, although later
3009 		 * we use first_node(nodes) to grab a single node, so here
3010 		 * nodelist (or nodes) cannot be empty.
3011 		 */
3012 		if (nodelist) {
3013 			char *rest = nodelist;
3014 			while (isdigit(*rest))
3015 				rest++;
3016 			if (*rest)
3017 				goto out;
3018 			if (nodes_empty(nodes))
3019 				goto out;
3020 		}
3021 		break;
3022 	case MPOL_INTERLEAVE:
3023 		/*
3024 		 * Default to online nodes with memory if no nodelist
3025 		 */
3026 		if (!nodelist)
3027 			nodes = node_states[N_MEMORY];
3028 		break;
3029 	case MPOL_LOCAL:
3030 		/*
3031 		 * Don't allow a nodelist;  mpol_new() checks flags
3032 		 */
3033 		if (nodelist)
3034 			goto out;
3035 		break;
3036 	case MPOL_DEFAULT:
3037 		/*
3038 		 * Insist on a empty nodelist
3039 		 */
3040 		if (!nodelist)
3041 			err = 0;
3042 		goto out;
3043 	case MPOL_PREFERRED_MANY:
3044 	case MPOL_BIND:
3045 		/*
3046 		 * Insist on a nodelist
3047 		 */
3048 		if (!nodelist)
3049 			goto out;
3050 	}
3051 
3052 	mode_flags = 0;
3053 	if (flags) {
3054 		/*
3055 		 * Currently, we only support two mutually exclusive
3056 		 * mode flags.
3057 		 */
3058 		if (!strcmp(flags, "static"))
3059 			mode_flags |= MPOL_F_STATIC_NODES;
3060 		else if (!strcmp(flags, "relative"))
3061 			mode_flags |= MPOL_F_RELATIVE_NODES;
3062 		else
3063 			goto out;
3064 	}
3065 
3066 	new = mpol_new(mode, mode_flags, &nodes);
3067 	if (IS_ERR(new))
3068 		goto out;
3069 
3070 	/*
3071 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3072 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3073 	 */
3074 	if (mode != MPOL_PREFERRED) {
3075 		new->nodes = nodes;
3076 	} else if (nodelist) {
3077 		nodes_clear(new->nodes);
3078 		node_set(first_node(nodes), new->nodes);
3079 	} else {
3080 		new->mode = MPOL_LOCAL;
3081 	}
3082 
3083 	/*
3084 	 * Save nodes for contextualization: this will be used to "clone"
3085 	 * the mempolicy in a specific context [cpuset] at a later time.
3086 	 */
3087 	new->w.user_nodemask = nodes;
3088 
3089 	err = 0;
3090 
3091 out:
3092 	/* Restore string for error message */
3093 	if (nodelist)
3094 		*--nodelist = ':';
3095 	if (flags)
3096 		*--flags = '=';
3097 	if (!err)
3098 		*mpol = new;
3099 	return err;
3100 }
3101 #endif /* CONFIG_TMPFS */
3102 
3103 /**
3104  * mpol_to_str - format a mempolicy structure for printing
3105  * @buffer:  to contain formatted mempolicy string
3106  * @maxlen:  length of @buffer
3107  * @pol:  pointer to mempolicy to be formatted
3108  *
3109  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3110  * Recommend a @maxlen of at least 51 for the longest mode, "weighted
3111  * interleave", plus the longest flag flags, "relative|balancing", and to
3112  * display at least a few node ids.
3113  */
mpol_to_str(char * buffer,int maxlen,struct mempolicy * pol)3114 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3115 {
3116 	char *p = buffer;
3117 	nodemask_t nodes = NODE_MASK_NONE;
3118 	unsigned short mode = MPOL_DEFAULT;
3119 	unsigned short flags = 0;
3120 
3121 	if (pol &&
3122 	    pol != &default_policy &&
3123 	    !(pol >= &preferred_node_policy[0] &&
3124 	      pol <= &preferred_node_policy[ARRAY_SIZE(preferred_node_policy) - 1])) {
3125 		mode = pol->mode;
3126 		flags = pol->flags;
3127 	}
3128 
3129 	switch (mode) {
3130 	case MPOL_DEFAULT:
3131 	case MPOL_LOCAL:
3132 		break;
3133 	case MPOL_PREFERRED:
3134 	case MPOL_PREFERRED_MANY:
3135 	case MPOL_BIND:
3136 	case MPOL_INTERLEAVE:
3137 		nodes = pol->nodes;
3138 		break;
3139 	default:
3140 		WARN_ON_ONCE(1);
3141 		snprintf(p, maxlen, "unknown");
3142 		return;
3143 	}
3144 
3145 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3146 
3147 	if (flags & MPOL_MODE_FLAGS) {
3148 		p += snprintf(p, buffer + maxlen - p, "=");
3149 
3150 		/*
3151 		 * Static and relative are mutually exclusive.
3152 		 */
3153 		if (flags & MPOL_F_STATIC_NODES)
3154 			p += snprintf(p, buffer + maxlen - p, "static");
3155 		else if (flags & MPOL_F_RELATIVE_NODES)
3156 			p += snprintf(p, buffer + maxlen - p, "relative");
3157 
3158 		if (flags & MPOL_F_NUMA_BALANCING) {
3159 			if (!is_power_of_2(flags & MPOL_MODE_FLAGS))
3160 				p += snprintf(p, buffer + maxlen - p, "|");
3161 			p += snprintf(p, buffer + maxlen - p, "balancing");
3162 		}
3163 	}
3164 
3165 	if (!nodes_empty(nodes))
3166 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3167 			       nodemask_pr_args(&nodes));
3168 }
3169