1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/tlb.h>
42
43 #include <linux/io.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
48 #include "internal.h"
49 #include "hugetlb_vmemmap.h"
50
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
54
55 #ifdef CONFIG_CMA
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
hugetlb_cma_folio(struct folio * folio,unsigned int order)58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 {
60 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61 1 << order);
62 }
63 #else
hugetlb_cma_folio(struct folio * folio,unsigned int order)64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65 {
66 return false;
67 }
68 #endif
69 static unsigned long hugetlb_cma_size __initdata;
70
71 __initdata LIST_HEAD(huge_boot_pages);
72
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79
80 /*
81 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82 * free_huge_pages, and surplus_huge_pages.
83 */
84 DEFINE_SPINLOCK(hugetlb_lock);
85
86 /*
87 * Serializes faults on the same logical page. This is used to
88 * prevent spurious OOMs when the hugepage pool is fully utilized.
89 */
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99 unsigned long start, unsigned long end, bool take_locks);
100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
101
subpool_is_free(struct hugepage_subpool * spool)102 static inline bool subpool_is_free(struct hugepage_subpool *spool)
103 {
104 if (spool->count)
105 return false;
106 if (spool->max_hpages != -1)
107 return spool->used_hpages == 0;
108 if (spool->min_hpages != -1)
109 return spool->rsv_hpages == spool->min_hpages;
110
111 return true;
112 }
113
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
115 unsigned long irq_flags)
116 {
117 spin_unlock_irqrestore(&spool->lock, irq_flags);
118
119 /* If no pages are used, and no other handles to the subpool
120 * remain, give up any reservations based on minimum size and
121 * free the subpool */
122 if (subpool_is_free(spool)) {
123 if (spool->min_hpages != -1)
124 hugetlb_acct_memory(spool->hstate,
125 -spool->min_hpages);
126 kfree(spool);
127 }
128 }
129
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131 long min_hpages)
132 {
133 struct hugepage_subpool *spool;
134
135 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
136 if (!spool)
137 return NULL;
138
139 spin_lock_init(&spool->lock);
140 spool->count = 1;
141 spool->max_hpages = max_hpages;
142 spool->hstate = h;
143 spool->min_hpages = min_hpages;
144
145 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
146 kfree(spool);
147 return NULL;
148 }
149 spool->rsv_hpages = min_hpages;
150
151 return spool;
152 }
153
hugepage_put_subpool(struct hugepage_subpool * spool)154 void hugepage_put_subpool(struct hugepage_subpool *spool)
155 {
156 unsigned long flags;
157
158 spin_lock_irqsave(&spool->lock, flags);
159 BUG_ON(!spool->count);
160 spool->count--;
161 unlock_or_release_subpool(spool, flags);
162 }
163
164 /*
165 * Subpool accounting for allocating and reserving pages.
166 * Return -ENOMEM if there are not enough resources to satisfy the
167 * request. Otherwise, return the number of pages by which the
168 * global pools must be adjusted (upward). The returned value may
169 * only be different than the passed value (delta) in the case where
170 * a subpool minimum size must be maintained.
171 */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
173 long delta)
174 {
175 long ret = delta;
176
177 if (!spool)
178 return ret;
179
180 spin_lock_irq(&spool->lock);
181
182 if (spool->max_hpages != -1) { /* maximum size accounting */
183 if ((spool->used_hpages + delta) <= spool->max_hpages)
184 spool->used_hpages += delta;
185 else {
186 ret = -ENOMEM;
187 goto unlock_ret;
188 }
189 }
190
191 /* minimum size accounting */
192 if (spool->min_hpages != -1 && spool->rsv_hpages) {
193 if (delta > spool->rsv_hpages) {
194 /*
195 * Asking for more reserves than those already taken on
196 * behalf of subpool. Return difference.
197 */
198 ret = delta - spool->rsv_hpages;
199 spool->rsv_hpages = 0;
200 } else {
201 ret = 0; /* reserves already accounted for */
202 spool->rsv_hpages -= delta;
203 }
204 }
205
206 unlock_ret:
207 spin_unlock_irq(&spool->lock);
208 return ret;
209 }
210
211 /*
212 * Subpool accounting for freeing and unreserving pages.
213 * Return the number of global page reservations that must be dropped.
214 * The return value may only be different than the passed value (delta)
215 * in the case where a subpool minimum size must be maintained.
216 */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
218 long delta)
219 {
220 long ret = delta;
221 unsigned long flags;
222
223 if (!spool)
224 return delta;
225
226 spin_lock_irqsave(&spool->lock, flags);
227
228 if (spool->max_hpages != -1) /* maximum size accounting */
229 spool->used_hpages -= delta;
230
231 /* minimum size accounting */
232 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
233 if (spool->rsv_hpages + delta <= spool->min_hpages)
234 ret = 0;
235 else
236 ret = spool->rsv_hpages + delta - spool->min_hpages;
237
238 spool->rsv_hpages += delta;
239 if (spool->rsv_hpages > spool->min_hpages)
240 spool->rsv_hpages = spool->min_hpages;
241 }
242
243 /*
244 * If hugetlbfs_put_super couldn't free spool due to an outstanding
245 * quota reference, free it now.
246 */
247 unlock_or_release_subpool(spool, flags);
248
249 return ret;
250 }
251
subpool_inode(struct inode * inode)252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
253 {
254 return HUGETLBFS_SB(inode->i_sb)->spool;
255 }
256
subpool_vma(struct vm_area_struct * vma)257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
258 {
259 return subpool_inode(file_inode(vma->vm_file));
260 }
261
262 /*
263 * hugetlb vma_lock helper routines
264 */
hugetlb_vma_lock_read(struct vm_area_struct * vma)265 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
266 {
267 if (__vma_shareable_lock(vma)) {
268 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
269
270 down_read(&vma_lock->rw_sema);
271 } else if (__vma_private_lock(vma)) {
272 struct resv_map *resv_map = vma_resv_map(vma);
273
274 down_read(&resv_map->rw_sema);
275 }
276 }
277
hugetlb_vma_unlock_read(struct vm_area_struct * vma)278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279 {
280 if (__vma_shareable_lock(vma)) {
281 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282
283 up_read(&vma_lock->rw_sema);
284 } else if (__vma_private_lock(vma)) {
285 struct resv_map *resv_map = vma_resv_map(vma);
286
287 up_read(&resv_map->rw_sema);
288 }
289 }
290
hugetlb_vma_lock_write(struct vm_area_struct * vma)291 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
292 {
293 if (__vma_shareable_lock(vma)) {
294 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295
296 down_write(&vma_lock->rw_sema);
297 } else if (__vma_private_lock(vma)) {
298 struct resv_map *resv_map = vma_resv_map(vma);
299
300 down_write(&resv_map->rw_sema);
301 }
302 }
303
hugetlb_vma_unlock_write(struct vm_area_struct * vma)304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
305 {
306 if (__vma_shareable_lock(vma)) {
307 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308
309 up_write(&vma_lock->rw_sema);
310 } else if (__vma_private_lock(vma)) {
311 struct resv_map *resv_map = vma_resv_map(vma);
312
313 up_write(&resv_map->rw_sema);
314 }
315 }
316
hugetlb_vma_trylock_write(struct vm_area_struct * vma)317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
318 {
319
320 if (__vma_shareable_lock(vma)) {
321 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
322
323 return down_write_trylock(&vma_lock->rw_sema);
324 } else if (__vma_private_lock(vma)) {
325 struct resv_map *resv_map = vma_resv_map(vma);
326
327 return down_write_trylock(&resv_map->rw_sema);
328 }
329
330 return 1;
331 }
332
hugetlb_vma_assert_locked(struct vm_area_struct * vma)333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
334 {
335 if (__vma_shareable_lock(vma)) {
336 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
337
338 lockdep_assert_held(&vma_lock->rw_sema);
339 } else if (__vma_private_lock(vma)) {
340 struct resv_map *resv_map = vma_resv_map(vma);
341
342 lockdep_assert_held(&resv_map->rw_sema);
343 }
344 }
345
hugetlb_vma_lock_release(struct kref * kref)346 void hugetlb_vma_lock_release(struct kref *kref)
347 {
348 struct hugetlb_vma_lock *vma_lock = container_of(kref,
349 struct hugetlb_vma_lock, refs);
350
351 kfree(vma_lock);
352 }
353
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
355 {
356 struct vm_area_struct *vma = vma_lock->vma;
357
358 /*
359 * vma_lock structure may or not be released as a result of put,
360 * it certainly will no longer be attached to vma so clear pointer.
361 * Semaphore synchronizes access to vma_lock->vma field.
362 */
363 vma_lock->vma = NULL;
364 vma->vm_private_data = NULL;
365 up_write(&vma_lock->rw_sema);
366 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
367 }
368
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
370 {
371 if (__vma_shareable_lock(vma)) {
372 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
373
374 __hugetlb_vma_unlock_write_put(vma_lock);
375 } else if (__vma_private_lock(vma)) {
376 struct resv_map *resv_map = vma_resv_map(vma);
377
378 /* no free for anon vmas, but still need to unlock */
379 up_write(&resv_map->rw_sema);
380 }
381 }
382
hugetlb_vma_lock_free(struct vm_area_struct * vma)383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
384 {
385 /*
386 * Only present in sharable vmas.
387 */
388 if (!vma || !__vma_shareable_lock(vma))
389 return;
390
391 if (vma->vm_private_data) {
392 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
393
394 down_write(&vma_lock->rw_sema);
395 __hugetlb_vma_unlock_write_put(vma_lock);
396 }
397 }
398
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
400 {
401 struct hugetlb_vma_lock *vma_lock;
402
403 /* Only establish in (flags) sharable vmas */
404 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
405 return;
406
407 /* Should never get here with non-NULL vm_private_data */
408 if (vma->vm_private_data)
409 return;
410
411 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
412 if (!vma_lock) {
413 /*
414 * If we can not allocate structure, then vma can not
415 * participate in pmd sharing. This is only a possible
416 * performance enhancement and memory saving issue.
417 * However, the lock is also used to synchronize page
418 * faults with truncation. If the lock is not present,
419 * unlikely races could leave pages in a file past i_size
420 * until the file is removed. Warn in the unlikely case of
421 * allocation failure.
422 */
423 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
424 return;
425 }
426
427 kref_init(&vma_lock->refs);
428 init_rwsem(&vma_lock->rw_sema);
429 vma_lock->vma = vma;
430 vma->vm_private_data = vma_lock;
431 }
432
433 /* Helper that removes a struct file_region from the resv_map cache and returns
434 * it for use.
435 */
436 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
438 {
439 struct file_region *nrg;
440
441 VM_BUG_ON(resv->region_cache_count <= 0);
442
443 resv->region_cache_count--;
444 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
445 list_del(&nrg->link);
446
447 nrg->from = from;
448 nrg->to = to;
449
450 return nrg;
451 }
452
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
454 struct file_region *rg)
455 {
456 #ifdef CONFIG_CGROUP_HUGETLB
457 nrg->reservation_counter = rg->reservation_counter;
458 nrg->css = rg->css;
459 if (rg->css)
460 css_get(rg->css);
461 #endif
462 }
463
464 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
466 struct hstate *h,
467 struct resv_map *resv,
468 struct file_region *nrg)
469 {
470 #ifdef CONFIG_CGROUP_HUGETLB
471 if (h_cg) {
472 nrg->reservation_counter =
473 &h_cg->rsvd_hugepage[hstate_index(h)];
474 nrg->css = &h_cg->css;
475 /*
476 * The caller will hold exactly one h_cg->css reference for the
477 * whole contiguous reservation region. But this area might be
478 * scattered when there are already some file_regions reside in
479 * it. As a result, many file_regions may share only one css
480 * reference. In order to ensure that one file_region must hold
481 * exactly one h_cg->css reference, we should do css_get for
482 * each file_region and leave the reference held by caller
483 * untouched.
484 */
485 css_get(&h_cg->css);
486 if (!resv->pages_per_hpage)
487 resv->pages_per_hpage = pages_per_huge_page(h);
488 /* pages_per_hpage should be the same for all entries in
489 * a resv_map.
490 */
491 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
492 } else {
493 nrg->reservation_counter = NULL;
494 nrg->css = NULL;
495 }
496 #endif
497 }
498
put_uncharge_info(struct file_region * rg)499 static void put_uncharge_info(struct file_region *rg)
500 {
501 #ifdef CONFIG_CGROUP_HUGETLB
502 if (rg->css)
503 css_put(rg->css);
504 #endif
505 }
506
has_same_uncharge_info(struct file_region * rg,struct file_region * org)507 static bool has_same_uncharge_info(struct file_region *rg,
508 struct file_region *org)
509 {
510 #ifdef CONFIG_CGROUP_HUGETLB
511 return rg->reservation_counter == org->reservation_counter &&
512 rg->css == org->css;
513
514 #else
515 return true;
516 #endif
517 }
518
coalesce_file_region(struct resv_map * resv,struct file_region * rg)519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
520 {
521 struct file_region *nrg, *prg;
522
523 prg = list_prev_entry(rg, link);
524 if (&prg->link != &resv->regions && prg->to == rg->from &&
525 has_same_uncharge_info(prg, rg)) {
526 prg->to = rg->to;
527
528 list_del(&rg->link);
529 put_uncharge_info(rg);
530 kfree(rg);
531
532 rg = prg;
533 }
534
535 nrg = list_next_entry(rg, link);
536 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
537 has_same_uncharge_info(nrg, rg)) {
538 nrg->from = rg->from;
539
540 list_del(&rg->link);
541 put_uncharge_info(rg);
542 kfree(rg);
543 }
544 }
545
546 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
548 long to, struct hstate *h, struct hugetlb_cgroup *cg,
549 long *regions_needed)
550 {
551 struct file_region *nrg;
552
553 if (!regions_needed) {
554 nrg = get_file_region_entry_from_cache(map, from, to);
555 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
556 list_add(&nrg->link, rg);
557 coalesce_file_region(map, nrg);
558 } else
559 *regions_needed += 1;
560
561 return to - from;
562 }
563
564 /*
565 * Must be called with resv->lock held.
566 *
567 * Calling this with regions_needed != NULL will count the number of pages
568 * to be added but will not modify the linked list. And regions_needed will
569 * indicate the number of file_regions needed in the cache to carry out to add
570 * the regions for this range.
571 */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)572 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
573 struct hugetlb_cgroup *h_cg,
574 struct hstate *h, long *regions_needed)
575 {
576 long add = 0;
577 struct list_head *head = &resv->regions;
578 long last_accounted_offset = f;
579 struct file_region *iter, *trg = NULL;
580 struct list_head *rg = NULL;
581
582 if (regions_needed)
583 *regions_needed = 0;
584
585 /* In this loop, we essentially handle an entry for the range
586 * [last_accounted_offset, iter->from), at every iteration, with some
587 * bounds checking.
588 */
589 list_for_each_entry_safe(iter, trg, head, link) {
590 /* Skip irrelevant regions that start before our range. */
591 if (iter->from < f) {
592 /* If this region ends after the last accounted offset,
593 * then we need to update last_accounted_offset.
594 */
595 if (iter->to > last_accounted_offset)
596 last_accounted_offset = iter->to;
597 continue;
598 }
599
600 /* When we find a region that starts beyond our range, we've
601 * finished.
602 */
603 if (iter->from >= t) {
604 rg = iter->link.prev;
605 break;
606 }
607
608 /* Add an entry for last_accounted_offset -> iter->from, and
609 * update last_accounted_offset.
610 */
611 if (iter->from > last_accounted_offset)
612 add += hugetlb_resv_map_add(resv, iter->link.prev,
613 last_accounted_offset,
614 iter->from, h, h_cg,
615 regions_needed);
616
617 last_accounted_offset = iter->to;
618 }
619
620 /* Handle the case where our range extends beyond
621 * last_accounted_offset.
622 */
623 if (!rg)
624 rg = head->prev;
625 if (last_accounted_offset < t)
626 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
627 t, h, h_cg, regions_needed);
628
629 return add;
630 }
631
632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
633 */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)634 static int allocate_file_region_entries(struct resv_map *resv,
635 int regions_needed)
636 __must_hold(&resv->lock)
637 {
638 LIST_HEAD(allocated_regions);
639 int to_allocate = 0, i = 0;
640 struct file_region *trg = NULL, *rg = NULL;
641
642 VM_BUG_ON(regions_needed < 0);
643
644 /*
645 * Check for sufficient descriptors in the cache to accommodate
646 * the number of in progress add operations plus regions_needed.
647 *
648 * This is a while loop because when we drop the lock, some other call
649 * to region_add or region_del may have consumed some region_entries,
650 * so we keep looping here until we finally have enough entries for
651 * (adds_in_progress + regions_needed).
652 */
653 while (resv->region_cache_count <
654 (resv->adds_in_progress + regions_needed)) {
655 to_allocate = resv->adds_in_progress + regions_needed -
656 resv->region_cache_count;
657
658 /* At this point, we should have enough entries in the cache
659 * for all the existing adds_in_progress. We should only be
660 * needing to allocate for regions_needed.
661 */
662 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
663
664 spin_unlock(&resv->lock);
665 for (i = 0; i < to_allocate; i++) {
666 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
667 if (!trg)
668 goto out_of_memory;
669 list_add(&trg->link, &allocated_regions);
670 }
671
672 spin_lock(&resv->lock);
673
674 list_splice(&allocated_regions, &resv->region_cache);
675 resv->region_cache_count += to_allocate;
676 }
677
678 return 0;
679
680 out_of_memory:
681 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
682 list_del(&rg->link);
683 kfree(rg);
684 }
685 return -ENOMEM;
686 }
687
688 /*
689 * Add the huge page range represented by [f, t) to the reserve
690 * map. Regions will be taken from the cache to fill in this range.
691 * Sufficient regions should exist in the cache due to the previous
692 * call to region_chg with the same range, but in some cases the cache will not
693 * have sufficient entries due to races with other code doing region_add or
694 * region_del. The extra needed entries will be allocated.
695 *
696 * regions_needed is the out value provided by a previous call to region_chg.
697 *
698 * Return the number of new huge pages added to the map. This number is greater
699 * than or equal to zero. If file_region entries needed to be allocated for
700 * this operation and we were not able to allocate, it returns -ENOMEM.
701 * region_add of regions of length 1 never allocate file_regions and cannot
702 * fail; region_chg will always allocate at least 1 entry and a region_add for
703 * 1 page will only require at most 1 entry.
704 */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)705 static long region_add(struct resv_map *resv, long f, long t,
706 long in_regions_needed, struct hstate *h,
707 struct hugetlb_cgroup *h_cg)
708 {
709 long add = 0, actual_regions_needed = 0;
710
711 spin_lock(&resv->lock);
712 retry:
713
714 /* Count how many regions are actually needed to execute this add. */
715 add_reservation_in_range(resv, f, t, NULL, NULL,
716 &actual_regions_needed);
717
718 /*
719 * Check for sufficient descriptors in the cache to accommodate
720 * this add operation. Note that actual_regions_needed may be greater
721 * than in_regions_needed, as the resv_map may have been modified since
722 * the region_chg call. In this case, we need to make sure that we
723 * allocate extra entries, such that we have enough for all the
724 * existing adds_in_progress, plus the excess needed for this
725 * operation.
726 */
727 if (actual_regions_needed > in_regions_needed &&
728 resv->region_cache_count <
729 resv->adds_in_progress +
730 (actual_regions_needed - in_regions_needed)) {
731 /* region_add operation of range 1 should never need to
732 * allocate file_region entries.
733 */
734 VM_BUG_ON(t - f <= 1);
735
736 if (allocate_file_region_entries(
737 resv, actual_regions_needed - in_regions_needed)) {
738 return -ENOMEM;
739 }
740
741 goto retry;
742 }
743
744 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
745
746 resv->adds_in_progress -= in_regions_needed;
747
748 spin_unlock(&resv->lock);
749 return add;
750 }
751
752 /*
753 * Examine the existing reserve map and determine how many
754 * huge pages in the specified range [f, t) are NOT currently
755 * represented. This routine is called before a subsequent
756 * call to region_add that will actually modify the reserve
757 * map to add the specified range [f, t). region_chg does
758 * not change the number of huge pages represented by the
759 * map. A number of new file_region structures is added to the cache as a
760 * placeholder, for the subsequent region_add call to use. At least 1
761 * file_region structure is added.
762 *
763 * out_regions_needed is the number of regions added to the
764 * resv->adds_in_progress. This value needs to be provided to a follow up call
765 * to region_add or region_abort for proper accounting.
766 *
767 * Returns the number of huge pages that need to be added to the existing
768 * reservation map for the range [f, t). This number is greater or equal to
769 * zero. -ENOMEM is returned if a new file_region structure or cache entry
770 * is needed and can not be allocated.
771 */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)772 static long region_chg(struct resv_map *resv, long f, long t,
773 long *out_regions_needed)
774 {
775 long chg = 0;
776
777 spin_lock(&resv->lock);
778
779 /* Count how many hugepages in this range are NOT represented. */
780 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
781 out_regions_needed);
782
783 if (*out_regions_needed == 0)
784 *out_regions_needed = 1;
785
786 if (allocate_file_region_entries(resv, *out_regions_needed))
787 return -ENOMEM;
788
789 resv->adds_in_progress += *out_regions_needed;
790
791 spin_unlock(&resv->lock);
792 return chg;
793 }
794
795 /*
796 * Abort the in progress add operation. The adds_in_progress field
797 * of the resv_map keeps track of the operations in progress between
798 * calls to region_chg and region_add. Operations are sometimes
799 * aborted after the call to region_chg. In such cases, region_abort
800 * is called to decrement the adds_in_progress counter. regions_needed
801 * is the value returned by the region_chg call, it is used to decrement
802 * the adds_in_progress counter.
803 *
804 * NOTE: The range arguments [f, t) are not needed or used in this
805 * routine. They are kept to make reading the calling code easier as
806 * arguments will match the associated region_chg call.
807 */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)808 static void region_abort(struct resv_map *resv, long f, long t,
809 long regions_needed)
810 {
811 spin_lock(&resv->lock);
812 VM_BUG_ON(!resv->region_cache_count);
813 resv->adds_in_progress -= regions_needed;
814 spin_unlock(&resv->lock);
815 }
816
817 /*
818 * Delete the specified range [f, t) from the reserve map. If the
819 * t parameter is LONG_MAX, this indicates that ALL regions after f
820 * should be deleted. Locate the regions which intersect [f, t)
821 * and either trim, delete or split the existing regions.
822 *
823 * Returns the number of huge pages deleted from the reserve map.
824 * In the normal case, the return value is zero or more. In the
825 * case where a region must be split, a new region descriptor must
826 * be allocated. If the allocation fails, -ENOMEM will be returned.
827 * NOTE: If the parameter t == LONG_MAX, then we will never split
828 * a region and possibly return -ENOMEM. Callers specifying
829 * t == LONG_MAX do not need to check for -ENOMEM error.
830 */
region_del(struct resv_map * resv,long f,long t)831 static long region_del(struct resv_map *resv, long f, long t)
832 {
833 struct list_head *head = &resv->regions;
834 struct file_region *rg, *trg;
835 struct file_region *nrg = NULL;
836 long del = 0;
837
838 retry:
839 spin_lock(&resv->lock);
840 list_for_each_entry_safe(rg, trg, head, link) {
841 /*
842 * Skip regions before the range to be deleted. file_region
843 * ranges are normally of the form [from, to). However, there
844 * may be a "placeholder" entry in the map which is of the form
845 * (from, to) with from == to. Check for placeholder entries
846 * at the beginning of the range to be deleted.
847 */
848 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
849 continue;
850
851 if (rg->from >= t)
852 break;
853
854 if (f > rg->from && t < rg->to) { /* Must split region */
855 /*
856 * Check for an entry in the cache before dropping
857 * lock and attempting allocation.
858 */
859 if (!nrg &&
860 resv->region_cache_count > resv->adds_in_progress) {
861 nrg = list_first_entry(&resv->region_cache,
862 struct file_region,
863 link);
864 list_del(&nrg->link);
865 resv->region_cache_count--;
866 }
867
868 if (!nrg) {
869 spin_unlock(&resv->lock);
870 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
871 if (!nrg)
872 return -ENOMEM;
873 goto retry;
874 }
875
876 del += t - f;
877 hugetlb_cgroup_uncharge_file_region(
878 resv, rg, t - f, false);
879
880 /* New entry for end of split region */
881 nrg->from = t;
882 nrg->to = rg->to;
883
884 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
885
886 INIT_LIST_HEAD(&nrg->link);
887
888 /* Original entry is trimmed */
889 rg->to = f;
890
891 list_add(&nrg->link, &rg->link);
892 nrg = NULL;
893 break;
894 }
895
896 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
897 del += rg->to - rg->from;
898 hugetlb_cgroup_uncharge_file_region(resv, rg,
899 rg->to - rg->from, true);
900 list_del(&rg->link);
901 kfree(rg);
902 continue;
903 }
904
905 if (f <= rg->from) { /* Trim beginning of region */
906 hugetlb_cgroup_uncharge_file_region(resv, rg,
907 t - rg->from, false);
908
909 del += t - rg->from;
910 rg->from = t;
911 } else { /* Trim end of region */
912 hugetlb_cgroup_uncharge_file_region(resv, rg,
913 rg->to - f, false);
914
915 del += rg->to - f;
916 rg->to = f;
917 }
918 }
919
920 spin_unlock(&resv->lock);
921 kfree(nrg);
922 return del;
923 }
924
925 /*
926 * A rare out of memory error was encountered which prevented removal of
927 * the reserve map region for a page. The huge page itself was free'ed
928 * and removed from the page cache. This routine will adjust the subpool
929 * usage count, and the global reserve count if needed. By incrementing
930 * these counts, the reserve map entry which could not be deleted will
931 * appear as a "reserved" entry instead of simply dangling with incorrect
932 * counts.
933 */
hugetlb_fix_reserve_counts(struct inode * inode)934 void hugetlb_fix_reserve_counts(struct inode *inode)
935 {
936 struct hugepage_subpool *spool = subpool_inode(inode);
937 long rsv_adjust;
938 bool reserved = false;
939
940 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
941 if (rsv_adjust > 0) {
942 struct hstate *h = hstate_inode(inode);
943
944 if (!hugetlb_acct_memory(h, 1))
945 reserved = true;
946 } else if (!rsv_adjust) {
947 reserved = true;
948 }
949
950 if (!reserved)
951 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
952 }
953
954 /*
955 * Count and return the number of huge pages in the reserve map
956 * that intersect with the range [f, t).
957 */
region_count(struct resv_map * resv,long f,long t)958 static long region_count(struct resv_map *resv, long f, long t)
959 {
960 struct list_head *head = &resv->regions;
961 struct file_region *rg;
962 long chg = 0;
963
964 spin_lock(&resv->lock);
965 /* Locate each segment we overlap with, and count that overlap. */
966 list_for_each_entry(rg, head, link) {
967 long seg_from;
968 long seg_to;
969
970 if (rg->to <= f)
971 continue;
972 if (rg->from >= t)
973 break;
974
975 seg_from = max(rg->from, f);
976 seg_to = min(rg->to, t);
977
978 chg += seg_to - seg_from;
979 }
980 spin_unlock(&resv->lock);
981
982 return chg;
983 }
984
985 /*
986 * Convert the address within this vma to the page offset within
987 * the mapping, in pagecache page units; huge pages here.
988 */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)989 static pgoff_t vma_hugecache_offset(struct hstate *h,
990 struct vm_area_struct *vma, unsigned long address)
991 {
992 return ((address - vma->vm_start) >> huge_page_shift(h)) +
993 (vma->vm_pgoff >> huge_page_order(h));
994 }
995
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)996 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
997 unsigned long address)
998 {
999 return vma_hugecache_offset(hstate_vma(vma), vma, address);
1000 }
1001 EXPORT_SYMBOL_GPL(linear_hugepage_index);
1002
1003 /**
1004 * vma_kernel_pagesize - Page size granularity for this VMA.
1005 * @vma: The user mapping.
1006 *
1007 * Folios in this VMA will be aligned to, and at least the size of the
1008 * number of bytes returned by this function.
1009 *
1010 * Return: The default size of the folios allocated when backing a VMA.
1011 */
vma_kernel_pagesize(struct vm_area_struct * vma)1012 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1013 {
1014 if (vma->vm_ops && vma->vm_ops->pagesize)
1015 return vma->vm_ops->pagesize(vma);
1016 return PAGE_SIZE;
1017 }
1018 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1019
1020 /*
1021 * Return the page size being used by the MMU to back a VMA. In the majority
1022 * of cases, the page size used by the kernel matches the MMU size. On
1023 * architectures where it differs, an architecture-specific 'strong'
1024 * version of this symbol is required.
1025 */
vma_mmu_pagesize(struct vm_area_struct * vma)1026 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1027 {
1028 return vma_kernel_pagesize(vma);
1029 }
1030
1031 /*
1032 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1033 * bits of the reservation map pointer, which are always clear due to
1034 * alignment.
1035 */
1036 #define HPAGE_RESV_OWNER (1UL << 0)
1037 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1038 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1039
1040 /*
1041 * These helpers are used to track how many pages are reserved for
1042 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1043 * is guaranteed to have their future faults succeed.
1044 *
1045 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1046 * the reserve counters are updated with the hugetlb_lock held. It is safe
1047 * to reset the VMA at fork() time as it is not in use yet and there is no
1048 * chance of the global counters getting corrupted as a result of the values.
1049 *
1050 * The private mapping reservation is represented in a subtly different
1051 * manner to a shared mapping. A shared mapping has a region map associated
1052 * with the underlying file, this region map represents the backing file
1053 * pages which have ever had a reservation assigned which this persists even
1054 * after the page is instantiated. A private mapping has a region map
1055 * associated with the original mmap which is attached to all VMAs which
1056 * reference it, this region map represents those offsets which have consumed
1057 * reservation ie. where pages have been instantiated.
1058 */
get_vma_private_data(struct vm_area_struct * vma)1059 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1060 {
1061 return (unsigned long)vma->vm_private_data;
1062 }
1063
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1064 static void set_vma_private_data(struct vm_area_struct *vma,
1065 unsigned long value)
1066 {
1067 vma->vm_private_data = (void *)value;
1068 }
1069
1070 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1071 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1072 struct hugetlb_cgroup *h_cg,
1073 struct hstate *h)
1074 {
1075 #ifdef CONFIG_CGROUP_HUGETLB
1076 if (!h_cg || !h) {
1077 resv_map->reservation_counter = NULL;
1078 resv_map->pages_per_hpage = 0;
1079 resv_map->css = NULL;
1080 } else {
1081 resv_map->reservation_counter =
1082 &h_cg->rsvd_hugepage[hstate_index(h)];
1083 resv_map->pages_per_hpage = pages_per_huge_page(h);
1084 resv_map->css = &h_cg->css;
1085 }
1086 #endif
1087 }
1088
resv_map_alloc(void)1089 struct resv_map *resv_map_alloc(void)
1090 {
1091 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1092 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1093
1094 if (!resv_map || !rg) {
1095 kfree(resv_map);
1096 kfree(rg);
1097 return NULL;
1098 }
1099
1100 kref_init(&resv_map->refs);
1101 spin_lock_init(&resv_map->lock);
1102 INIT_LIST_HEAD(&resv_map->regions);
1103 init_rwsem(&resv_map->rw_sema);
1104
1105 resv_map->adds_in_progress = 0;
1106 /*
1107 * Initialize these to 0. On shared mappings, 0's here indicate these
1108 * fields don't do cgroup accounting. On private mappings, these will be
1109 * re-initialized to the proper values, to indicate that hugetlb cgroup
1110 * reservations are to be un-charged from here.
1111 */
1112 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1113
1114 INIT_LIST_HEAD(&resv_map->region_cache);
1115 list_add(&rg->link, &resv_map->region_cache);
1116 resv_map->region_cache_count = 1;
1117
1118 return resv_map;
1119 }
1120
resv_map_release(struct kref * ref)1121 void resv_map_release(struct kref *ref)
1122 {
1123 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1124 struct list_head *head = &resv_map->region_cache;
1125 struct file_region *rg, *trg;
1126
1127 /* Clear out any active regions before we release the map. */
1128 region_del(resv_map, 0, LONG_MAX);
1129
1130 /* ... and any entries left in the cache */
1131 list_for_each_entry_safe(rg, trg, head, link) {
1132 list_del(&rg->link);
1133 kfree(rg);
1134 }
1135
1136 VM_BUG_ON(resv_map->adds_in_progress);
1137
1138 kfree(resv_map);
1139 }
1140
inode_resv_map(struct inode * inode)1141 static inline struct resv_map *inode_resv_map(struct inode *inode)
1142 {
1143 /*
1144 * At inode evict time, i_mapping may not point to the original
1145 * address space within the inode. This original address space
1146 * contains the pointer to the resv_map. So, always use the
1147 * address space embedded within the inode.
1148 * The VERY common case is inode->mapping == &inode->i_data but,
1149 * this may not be true for device special inodes.
1150 */
1151 return (struct resv_map *)(&inode->i_data)->private_data;
1152 }
1153
vma_resv_map(struct vm_area_struct * vma)1154 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1155 {
1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157 if (vma->vm_flags & VM_MAYSHARE) {
1158 struct address_space *mapping = vma->vm_file->f_mapping;
1159 struct inode *inode = mapping->host;
1160
1161 return inode_resv_map(inode);
1162
1163 } else {
1164 return (struct resv_map *)(get_vma_private_data(vma) &
1165 ~HPAGE_RESV_MASK);
1166 }
1167 }
1168
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)1169 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1170 {
1171 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1172 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1173
1174 set_vma_private_data(vma, (unsigned long)map);
1175 }
1176
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1177 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1178 {
1179 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1180 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1181
1182 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1183 }
1184
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1185 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1186 {
1187 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1188
1189 return (get_vma_private_data(vma) & flag) != 0;
1190 }
1191
__vma_private_lock(struct vm_area_struct * vma)1192 bool __vma_private_lock(struct vm_area_struct *vma)
1193 {
1194 return !(vma->vm_flags & VM_MAYSHARE) &&
1195 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1196 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1197 }
1198
hugetlb_dup_vma_private(struct vm_area_struct * vma)1199 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1200 {
1201 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1202 /*
1203 * Clear vm_private_data
1204 * - For shared mappings this is a per-vma semaphore that may be
1205 * allocated in a subsequent call to hugetlb_vm_op_open.
1206 * Before clearing, make sure pointer is not associated with vma
1207 * as this will leak the structure. This is the case when called
1208 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1209 * been called to allocate a new structure.
1210 * - For MAP_PRIVATE mappings, this is the reserve map which does
1211 * not apply to children. Faults generated by the children are
1212 * not guaranteed to succeed, even if read-only.
1213 */
1214 if (vma->vm_flags & VM_MAYSHARE) {
1215 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1216
1217 if (vma_lock && vma_lock->vma != vma)
1218 vma->vm_private_data = NULL;
1219 } else
1220 vma->vm_private_data = NULL;
1221 }
1222
1223 /*
1224 * Reset and decrement one ref on hugepage private reservation.
1225 * Called with mm->mmap_lock writer semaphore held.
1226 * This function should be only used by move_vma() and operate on
1227 * same sized vma. It should never come here with last ref on the
1228 * reservation.
1229 */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1230 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1231 {
1232 /*
1233 * Clear the old hugetlb private page reservation.
1234 * It has already been transferred to new_vma.
1235 *
1236 * During a mremap() operation of a hugetlb vma we call move_vma()
1237 * which copies vma into new_vma and unmaps vma. After the copy
1238 * operation both new_vma and vma share a reference to the resv_map
1239 * struct, and at that point vma is about to be unmapped. We don't
1240 * want to return the reservation to the pool at unmap of vma because
1241 * the reservation still lives on in new_vma, so simply decrement the
1242 * ref here and remove the resv_map reference from this vma.
1243 */
1244 struct resv_map *reservations = vma_resv_map(vma);
1245
1246 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1247 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1248 kref_put(&reservations->refs, resv_map_release);
1249 }
1250
1251 hugetlb_dup_vma_private(vma);
1252 }
1253
1254 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)1255 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1256 {
1257 if (vma->vm_flags & VM_NORESERVE) {
1258 /*
1259 * This address is already reserved by other process(chg == 0),
1260 * so, we should decrement reserved count. Without decrementing,
1261 * reserve count remains after releasing inode, because this
1262 * allocated page will go into page cache and is regarded as
1263 * coming from reserved pool in releasing step. Currently, we
1264 * don't have any other solution to deal with this situation
1265 * properly, so add work-around here.
1266 */
1267 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1268 return true;
1269 else
1270 return false;
1271 }
1272
1273 /* Shared mappings always use reserves */
1274 if (vma->vm_flags & VM_MAYSHARE) {
1275 /*
1276 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1277 * be a region map for all pages. The only situation where
1278 * there is no region map is if a hole was punched via
1279 * fallocate. In this case, there really are no reserves to
1280 * use. This situation is indicated if chg != 0.
1281 */
1282 if (chg)
1283 return false;
1284 else
1285 return true;
1286 }
1287
1288 /*
1289 * Only the process that called mmap() has reserves for
1290 * private mappings.
1291 */
1292 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1293 /*
1294 * Like the shared case above, a hole punch or truncate
1295 * could have been performed on the private mapping.
1296 * Examine the value of chg to determine if reserves
1297 * actually exist or were previously consumed.
1298 * Very Subtle - The value of chg comes from a previous
1299 * call to vma_needs_reserves(). The reserve map for
1300 * private mappings has different (opposite) semantics
1301 * than that of shared mappings. vma_needs_reserves()
1302 * has already taken this difference in semantics into
1303 * account. Therefore, the meaning of chg is the same
1304 * as in the shared case above. Code could easily be
1305 * combined, but keeping it separate draws attention to
1306 * subtle differences.
1307 */
1308 if (chg)
1309 return false;
1310 else
1311 return true;
1312 }
1313
1314 return false;
1315 }
1316
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1317 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1318 {
1319 int nid = folio_nid(folio);
1320
1321 lockdep_assert_held(&hugetlb_lock);
1322 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1323
1324 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1325 h->free_huge_pages++;
1326 h->free_huge_pages_node[nid]++;
1327 folio_set_hugetlb_freed(folio);
1328 }
1329
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1330 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1331 int nid)
1332 {
1333 struct folio *folio;
1334 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1335
1336 lockdep_assert_held(&hugetlb_lock);
1337 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1338 if (pin && !folio_is_longterm_pinnable(folio))
1339 continue;
1340
1341 if (folio_test_hwpoison(folio))
1342 continue;
1343
1344 list_move(&folio->lru, &h->hugepage_activelist);
1345 folio_ref_unfreeze(folio, 1);
1346 folio_clear_hugetlb_freed(folio);
1347 h->free_huge_pages--;
1348 h->free_huge_pages_node[nid]--;
1349 return folio;
1350 }
1351
1352 return NULL;
1353 }
1354
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1355 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1356 int nid, nodemask_t *nmask)
1357 {
1358 unsigned int cpuset_mems_cookie;
1359 struct zonelist *zonelist;
1360 struct zone *zone;
1361 struct zoneref *z;
1362 int node = NUMA_NO_NODE;
1363
1364 zonelist = node_zonelist(nid, gfp_mask);
1365
1366 retry_cpuset:
1367 cpuset_mems_cookie = read_mems_allowed_begin();
1368 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1369 struct folio *folio;
1370
1371 if (!cpuset_zone_allowed(zone, gfp_mask))
1372 continue;
1373 /*
1374 * no need to ask again on the same node. Pool is node rather than
1375 * zone aware
1376 */
1377 if (zone_to_nid(zone) == node)
1378 continue;
1379 node = zone_to_nid(zone);
1380
1381 folio = dequeue_hugetlb_folio_node_exact(h, node);
1382 if (folio)
1383 return folio;
1384 }
1385 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1386 goto retry_cpuset;
1387
1388 return NULL;
1389 }
1390
available_huge_pages(struct hstate * h)1391 static unsigned long available_huge_pages(struct hstate *h)
1392 {
1393 return h->free_huge_pages - h->resv_huge_pages;
1394 }
1395
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)1396 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1397 struct vm_area_struct *vma,
1398 unsigned long address, int avoid_reserve,
1399 long chg)
1400 {
1401 struct folio *folio = NULL;
1402 struct mempolicy *mpol;
1403 gfp_t gfp_mask;
1404 nodemask_t *nodemask;
1405 int nid;
1406
1407 /*
1408 * A child process with MAP_PRIVATE mappings created by their parent
1409 * have no page reserves. This check ensures that reservations are
1410 * not "stolen". The child may still get SIGKILLed
1411 */
1412 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1413 goto err;
1414
1415 /* If reserves cannot be used, ensure enough pages are in the pool */
1416 if (avoid_reserve && !available_huge_pages(h))
1417 goto err;
1418
1419 gfp_mask = htlb_alloc_mask(h);
1420 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1421
1422 if (mpol_is_preferred_many(mpol)) {
1423 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1424 nid, nodemask);
1425
1426 /* Fallback to all nodes if page==NULL */
1427 nodemask = NULL;
1428 }
1429
1430 if (!folio)
1431 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1432 nid, nodemask);
1433
1434 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1435 folio_set_hugetlb_restore_reserve(folio);
1436 h->resv_huge_pages--;
1437 }
1438
1439 mpol_cond_put(mpol);
1440 return folio;
1441
1442 err:
1443 return NULL;
1444 }
1445
1446 /*
1447 * common helper functions for hstate_next_node_to_{alloc|free}.
1448 * We may have allocated or freed a huge page based on a different
1449 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1450 * be outside of *nodes_allowed. Ensure that we use an allowed
1451 * node for alloc or free.
1452 */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1453 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1454 {
1455 nid = next_node_in(nid, *nodes_allowed);
1456 VM_BUG_ON(nid >= MAX_NUMNODES);
1457
1458 return nid;
1459 }
1460
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1461 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1462 {
1463 if (!node_isset(nid, *nodes_allowed))
1464 nid = next_node_allowed(nid, nodes_allowed);
1465 return nid;
1466 }
1467
1468 /*
1469 * returns the previously saved node ["this node"] from which to
1470 * allocate a persistent huge page for the pool and advance the
1471 * next node from which to allocate, handling wrap at end of node
1472 * mask.
1473 */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)1474 static int hstate_next_node_to_alloc(struct hstate *h,
1475 nodemask_t *nodes_allowed)
1476 {
1477 int nid;
1478
1479 VM_BUG_ON(!nodes_allowed);
1480
1481 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1482 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1483
1484 return nid;
1485 }
1486
1487 /*
1488 * helper for remove_pool_huge_page() - return the previously saved
1489 * node ["this node"] from which to free a huge page. Advance the
1490 * next node id whether or not we find a free huge page to free so
1491 * that the next attempt to free addresses the next node.
1492 */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1493 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1494 {
1495 int nid;
1496
1497 VM_BUG_ON(!nodes_allowed);
1498
1499 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1500 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1501
1502 return nid;
1503 }
1504
1505 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1506 for (nr_nodes = nodes_weight(*mask); \
1507 nr_nodes > 0 && \
1508 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1509 nr_nodes--)
1510
1511 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1512 for (nr_nodes = nodes_weight(*mask); \
1513 nr_nodes > 0 && \
1514 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1515 nr_nodes--)
1516
1517 /* used to demote non-gigantic_huge pages as well */
__destroy_compound_gigantic_folio(struct folio * folio,unsigned int order,bool demote)1518 static void __destroy_compound_gigantic_folio(struct folio *folio,
1519 unsigned int order, bool demote)
1520 {
1521 int i;
1522 int nr_pages = 1 << order;
1523 struct page *p;
1524
1525 atomic_set(&folio->_entire_mapcount, 0);
1526 atomic_set(&folio->_nr_pages_mapped, 0);
1527 atomic_set(&folio->_pincount, 0);
1528
1529 for (i = 1; i < nr_pages; i++) {
1530 p = folio_page(folio, i);
1531 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1532 p->mapping = NULL;
1533 clear_compound_head(p);
1534 if (!demote)
1535 set_page_refcounted(p);
1536 }
1537
1538 __folio_clear_head(folio);
1539 }
1540
destroy_compound_hugetlb_folio_for_demote(struct folio * folio,unsigned int order)1541 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1542 unsigned int order)
1543 {
1544 __destroy_compound_gigantic_folio(folio, order, true);
1545 }
1546
1547 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
destroy_compound_gigantic_folio(struct folio * folio,unsigned int order)1548 static void destroy_compound_gigantic_folio(struct folio *folio,
1549 unsigned int order)
1550 {
1551 __destroy_compound_gigantic_folio(folio, order, false);
1552 }
1553
free_gigantic_folio(struct folio * folio,unsigned int order)1554 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1555 {
1556 /*
1557 * If the page isn't allocated using the cma allocator,
1558 * cma_release() returns false.
1559 */
1560 #ifdef CONFIG_CMA
1561 int nid = folio_nid(folio);
1562
1563 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1564 return;
1565 #endif
1566
1567 free_contig_range(folio_pfn(folio), 1 << order);
1568 }
1569
1570 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1571 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1572 int nid, nodemask_t *nodemask)
1573 {
1574 struct page *page;
1575 unsigned long nr_pages = pages_per_huge_page(h);
1576 if (nid == NUMA_NO_NODE)
1577 nid = numa_mem_id();
1578
1579 #ifdef CONFIG_CMA
1580 {
1581 int node;
1582
1583 if (hugetlb_cma[nid]) {
1584 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1585 huge_page_order(h), true);
1586 if (page)
1587 return page_folio(page);
1588 }
1589
1590 if (!(gfp_mask & __GFP_THISNODE)) {
1591 for_each_node_mask(node, *nodemask) {
1592 if (node == nid || !hugetlb_cma[node])
1593 continue;
1594
1595 page = cma_alloc(hugetlb_cma[node], nr_pages,
1596 huge_page_order(h), true);
1597 if (page)
1598 return page_folio(page);
1599 }
1600 }
1601 }
1602 #endif
1603
1604 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1605 return page ? page_folio(page) : NULL;
1606 }
1607
1608 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1609 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1610 int nid, nodemask_t *nodemask)
1611 {
1612 return NULL;
1613 }
1614 #endif /* CONFIG_CONTIG_ALLOC */
1615
1616 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1617 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1618 int nid, nodemask_t *nodemask)
1619 {
1620 return NULL;
1621 }
free_gigantic_folio(struct folio * folio,unsigned int order)1622 static inline void free_gigantic_folio(struct folio *folio,
1623 unsigned int order) { }
destroy_compound_gigantic_folio(struct folio * folio,unsigned int order)1624 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1625 unsigned int order) { }
1626 #endif
1627
__clear_hugetlb_destructor(struct hstate * h,struct folio * folio)1628 static inline void __clear_hugetlb_destructor(struct hstate *h,
1629 struct folio *folio)
1630 {
1631 lockdep_assert_held(&hugetlb_lock);
1632
1633 __folio_clear_hugetlb(folio);
1634 }
1635
1636 /*
1637 * Remove hugetlb folio from lists.
1638 * If vmemmap exists for the folio, update dtor so that the folio appears
1639 * as just a compound page. Otherwise, wait until after allocating vmemmap
1640 * to update dtor.
1641 *
1642 * A reference is held on the folio, except in the case of demote.
1643 *
1644 * Must be called with hugetlb lock held.
1645 */
__remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus,bool demote)1646 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1647 bool adjust_surplus,
1648 bool demote)
1649 {
1650 int nid = folio_nid(folio);
1651
1652 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1653 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1654
1655 lockdep_assert_held(&hugetlb_lock);
1656 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1657 return;
1658
1659 list_del(&folio->lru);
1660
1661 if (folio_test_hugetlb_freed(folio)) {
1662 h->free_huge_pages--;
1663 h->free_huge_pages_node[nid]--;
1664 }
1665 if (adjust_surplus) {
1666 h->surplus_huge_pages--;
1667 h->surplus_huge_pages_node[nid]--;
1668 }
1669
1670 /*
1671 * We can only clear the hugetlb destructor after allocating vmemmap
1672 * pages. Otherwise, someone (memory error handling) may try to write
1673 * to tail struct pages.
1674 */
1675 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1676 __clear_hugetlb_destructor(h, folio);
1677
1678 /*
1679 * In the case of demote we do not ref count the page as it will soon
1680 * be turned into a page of smaller size.
1681 */
1682 if (!demote)
1683 folio_ref_unfreeze(folio, 1);
1684
1685 h->nr_huge_pages--;
1686 h->nr_huge_pages_node[nid]--;
1687 }
1688
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1689 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1690 bool adjust_surplus)
1691 {
1692 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1693 }
1694
remove_hugetlb_folio_for_demote(struct hstate * h,struct folio * folio,bool adjust_surplus)1695 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1696 bool adjust_surplus)
1697 {
1698 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1699 }
1700
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1701 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1702 bool adjust_surplus)
1703 {
1704 int zeroed;
1705 int nid = folio_nid(folio);
1706
1707 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1708
1709 lockdep_assert_held(&hugetlb_lock);
1710
1711 INIT_LIST_HEAD(&folio->lru);
1712 h->nr_huge_pages++;
1713 h->nr_huge_pages_node[nid]++;
1714
1715 if (adjust_surplus) {
1716 h->surplus_huge_pages++;
1717 h->surplus_huge_pages_node[nid]++;
1718 }
1719
1720 __folio_set_hugetlb(folio);
1721 folio_change_private(folio, NULL);
1722 /*
1723 * We have to set hugetlb_vmemmap_optimized again as above
1724 * folio_change_private(folio, NULL) cleared it.
1725 */
1726 folio_set_hugetlb_vmemmap_optimized(folio);
1727
1728 /*
1729 * This folio is about to be managed by the hugetlb allocator and
1730 * should have no users. Drop our reference, and check for others
1731 * just in case.
1732 */
1733 zeroed = folio_put_testzero(folio);
1734 if (unlikely(!zeroed))
1735 /*
1736 * It is VERY unlikely soneone else has taken a ref
1737 * on the folio. In this case, we simply return as
1738 * free_huge_folio() will be called when this other ref
1739 * is dropped.
1740 */
1741 return;
1742
1743 arch_clear_hugepage_flags(&folio->page);
1744 enqueue_hugetlb_folio(h, folio);
1745 }
1746
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1747 static void __update_and_free_hugetlb_folio(struct hstate *h,
1748 struct folio *folio)
1749 {
1750 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1751 return;
1752
1753 /*
1754 * If we don't know which subpages are hwpoisoned, we can't free
1755 * the hugepage, so it's leaked intentionally.
1756 */
1757 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1758 return;
1759
1760 if (hugetlb_vmemmap_restore(h, &folio->page)) {
1761 spin_lock_irq(&hugetlb_lock);
1762 /*
1763 * If we cannot allocate vmemmap pages, just refuse to free the
1764 * page and put the page back on the hugetlb free list and treat
1765 * as a surplus page.
1766 */
1767 add_hugetlb_folio(h, folio, true);
1768 spin_unlock_irq(&hugetlb_lock);
1769 return;
1770 }
1771
1772 /*
1773 * If vmemmap pages were allocated above, then we need to clear the
1774 * hugetlb destructor under the hugetlb lock.
1775 */
1776 if (folio_test_hugetlb(folio)) {
1777 spin_lock_irq(&hugetlb_lock);
1778 __clear_hugetlb_destructor(h, folio);
1779 spin_unlock_irq(&hugetlb_lock);
1780 }
1781
1782 /*
1783 * Move PageHWPoison flag from head page to the raw error pages,
1784 * which makes any healthy subpages reusable.
1785 */
1786 if (unlikely(folio_test_hwpoison(folio)))
1787 folio_clear_hugetlb_hwpoison(folio);
1788
1789 /*
1790 * Non-gigantic pages demoted from CMA allocated gigantic pages
1791 * need to be given back to CMA in free_gigantic_folio.
1792 */
1793 if (hstate_is_gigantic(h) ||
1794 hugetlb_cma_folio(folio, huge_page_order(h))) {
1795 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1796 free_gigantic_folio(folio, huge_page_order(h));
1797 } else {
1798 INIT_LIST_HEAD(&folio->_deferred_list);
1799 __free_pages(&folio->page, huge_page_order(h));
1800 }
1801 }
1802
1803 /*
1804 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1805 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1806 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1807 * the vmemmap pages.
1808 *
1809 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1810 * freed and frees them one-by-one. As the page->mapping pointer is going
1811 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1812 * structure of a lockless linked list of huge pages to be freed.
1813 */
1814 static LLIST_HEAD(hpage_freelist);
1815
free_hpage_workfn(struct work_struct * work)1816 static void free_hpage_workfn(struct work_struct *work)
1817 {
1818 struct llist_node *node;
1819
1820 node = llist_del_all(&hpage_freelist);
1821
1822 while (node) {
1823 struct page *page;
1824 struct hstate *h;
1825
1826 page = container_of((struct address_space **)node,
1827 struct page, mapping);
1828 node = node->next;
1829 page->mapping = NULL;
1830 /*
1831 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1832 * folio_hstate() is going to trigger because a previous call to
1833 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1834 * not use folio_hstate() directly.
1835 */
1836 h = size_to_hstate(page_size(page));
1837
1838 __update_and_free_hugetlb_folio(h, page_folio(page));
1839
1840 cond_resched();
1841 }
1842 }
1843 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1844
flush_free_hpage_work(struct hstate * h)1845 static inline void flush_free_hpage_work(struct hstate *h)
1846 {
1847 if (hugetlb_vmemmap_optimizable(h))
1848 flush_work(&free_hpage_work);
1849 }
1850
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1851 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1852 bool atomic)
1853 {
1854 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1855 __update_and_free_hugetlb_folio(h, folio);
1856 return;
1857 }
1858
1859 /*
1860 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1861 *
1862 * Only call schedule_work() if hpage_freelist is previously
1863 * empty. Otherwise, schedule_work() had been called but the workfn
1864 * hasn't retrieved the list yet.
1865 */
1866 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1867 schedule_work(&free_hpage_work);
1868 }
1869
update_and_free_pages_bulk(struct hstate * h,struct list_head * list)1870 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1871 {
1872 struct page *page, *t_page;
1873 struct folio *folio;
1874
1875 list_for_each_entry_safe(page, t_page, list, lru) {
1876 folio = page_folio(page);
1877 update_and_free_hugetlb_folio(h, folio, false);
1878 cond_resched();
1879 }
1880 }
1881
size_to_hstate(unsigned long size)1882 struct hstate *size_to_hstate(unsigned long size)
1883 {
1884 struct hstate *h;
1885
1886 for_each_hstate(h) {
1887 if (huge_page_size(h) == size)
1888 return h;
1889 }
1890 return NULL;
1891 }
1892
free_huge_folio(struct folio * folio)1893 void free_huge_folio(struct folio *folio)
1894 {
1895 /*
1896 * Can't pass hstate in here because it is called from the
1897 * compound page destructor.
1898 */
1899 struct hstate *h = folio_hstate(folio);
1900 int nid = folio_nid(folio);
1901 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1902 bool restore_reserve;
1903 unsigned long flags;
1904
1905 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1906 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1907
1908 hugetlb_set_folio_subpool(folio, NULL);
1909 if (folio_test_anon(folio))
1910 __ClearPageAnonExclusive(&folio->page);
1911 folio->mapping = NULL;
1912 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1913 folio_clear_hugetlb_restore_reserve(folio);
1914
1915 /*
1916 * If HPageRestoreReserve was set on page, page allocation consumed a
1917 * reservation. If the page was associated with a subpool, there
1918 * would have been a page reserved in the subpool before allocation
1919 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1920 * reservation, do not call hugepage_subpool_put_pages() as this will
1921 * remove the reserved page from the subpool.
1922 */
1923 if (!restore_reserve) {
1924 /*
1925 * A return code of zero implies that the subpool will be
1926 * under its minimum size if the reservation is not restored
1927 * after page is free. Therefore, force restore_reserve
1928 * operation.
1929 */
1930 if (hugepage_subpool_put_pages(spool, 1) == 0)
1931 restore_reserve = true;
1932 }
1933
1934 spin_lock_irqsave(&hugetlb_lock, flags);
1935 folio_clear_hugetlb_migratable(folio);
1936 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1937 pages_per_huge_page(h), folio);
1938 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1939 pages_per_huge_page(h), folio);
1940 if (restore_reserve)
1941 h->resv_huge_pages++;
1942
1943 if (folio_test_hugetlb_temporary(folio)) {
1944 remove_hugetlb_folio(h, folio, false);
1945 spin_unlock_irqrestore(&hugetlb_lock, flags);
1946 update_and_free_hugetlb_folio(h, folio, true);
1947 } else if (h->surplus_huge_pages_node[nid]) {
1948 /* remove the page from active list */
1949 remove_hugetlb_folio(h, folio, true);
1950 spin_unlock_irqrestore(&hugetlb_lock, flags);
1951 update_and_free_hugetlb_folio(h, folio, true);
1952 } else {
1953 arch_clear_hugepage_flags(&folio->page);
1954 enqueue_hugetlb_folio(h, folio);
1955 spin_unlock_irqrestore(&hugetlb_lock, flags);
1956 }
1957 }
1958
1959 /*
1960 * Must be called with the hugetlb lock held
1961 */
__prep_account_new_huge_page(struct hstate * h,int nid)1962 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1963 {
1964 lockdep_assert_held(&hugetlb_lock);
1965 h->nr_huge_pages++;
1966 h->nr_huge_pages_node[nid]++;
1967 }
1968
__prep_new_hugetlb_folio(struct hstate * h,struct folio * folio)1969 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1970 {
1971 hugetlb_vmemmap_optimize(h, &folio->page);
1972 INIT_LIST_HEAD(&folio->lru);
1973 __folio_set_hugetlb(folio);
1974 hugetlb_set_folio_subpool(folio, NULL);
1975 set_hugetlb_cgroup(folio, NULL);
1976 set_hugetlb_cgroup_rsvd(folio, NULL);
1977 }
1978
prep_new_hugetlb_folio(struct hstate * h,struct folio * folio,int nid)1979 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1980 {
1981 __prep_new_hugetlb_folio(h, folio);
1982 spin_lock_irq(&hugetlb_lock);
1983 __prep_account_new_huge_page(h, nid);
1984 spin_unlock_irq(&hugetlb_lock);
1985 }
1986
__prep_compound_gigantic_folio(struct folio * folio,unsigned int order,bool demote)1987 static bool __prep_compound_gigantic_folio(struct folio *folio,
1988 unsigned int order, bool demote)
1989 {
1990 int i, j;
1991 int nr_pages = 1 << order;
1992 struct page *p;
1993
1994 __folio_clear_reserved(folio);
1995 for (i = 0; i < nr_pages; i++) {
1996 p = folio_page(folio, i);
1997
1998 /*
1999 * For gigantic hugepages allocated through bootmem at
2000 * boot, it's safer to be consistent with the not-gigantic
2001 * hugepages and clear the PG_reserved bit from all tail pages
2002 * too. Otherwise drivers using get_user_pages() to access tail
2003 * pages may get the reference counting wrong if they see
2004 * PG_reserved set on a tail page (despite the head page not
2005 * having PG_reserved set). Enforcing this consistency between
2006 * head and tail pages allows drivers to optimize away a check
2007 * on the head page when they need know if put_page() is needed
2008 * after get_user_pages().
2009 */
2010 if (i != 0) /* head page cleared above */
2011 __ClearPageReserved(p);
2012 /*
2013 * Subtle and very unlikely
2014 *
2015 * Gigantic 'page allocators' such as memblock or cma will
2016 * return a set of pages with each page ref counted. We need
2017 * to turn this set of pages into a compound page with tail
2018 * page ref counts set to zero. Code such as speculative page
2019 * cache adding could take a ref on a 'to be' tail page.
2020 * We need to respect any increased ref count, and only set
2021 * the ref count to zero if count is currently 1. If count
2022 * is not 1, we return an error. An error return indicates
2023 * the set of pages can not be converted to a gigantic page.
2024 * The caller who allocated the pages should then discard the
2025 * pages using the appropriate free interface.
2026 *
2027 * In the case of demote, the ref count will be zero.
2028 */
2029 if (!demote) {
2030 if (!page_ref_freeze(p, 1)) {
2031 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2032 goto out_error;
2033 }
2034 } else {
2035 VM_BUG_ON_PAGE(page_count(p), p);
2036 }
2037 if (i != 0)
2038 set_compound_head(p, &folio->page);
2039 }
2040 __folio_set_head(folio);
2041 /* we rely on prep_new_hugetlb_folio to set the destructor */
2042 folio_set_order(folio, order);
2043 atomic_set(&folio->_entire_mapcount, -1);
2044 atomic_set(&folio->_nr_pages_mapped, 0);
2045 atomic_set(&folio->_pincount, 0);
2046 return true;
2047
2048 out_error:
2049 /* undo page modifications made above */
2050 for (j = 0; j < i; j++) {
2051 p = folio_page(folio, j);
2052 if (j != 0)
2053 clear_compound_head(p);
2054 set_page_refcounted(p);
2055 }
2056 /* need to clear PG_reserved on remaining tail pages */
2057 for (; j < nr_pages; j++) {
2058 p = folio_page(folio, j);
2059 __ClearPageReserved(p);
2060 }
2061 return false;
2062 }
2063
prep_compound_gigantic_folio(struct folio * folio,unsigned int order)2064 static bool prep_compound_gigantic_folio(struct folio *folio,
2065 unsigned int order)
2066 {
2067 return __prep_compound_gigantic_folio(folio, order, false);
2068 }
2069
prep_compound_gigantic_folio_for_demote(struct folio * folio,unsigned int order)2070 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2071 unsigned int order)
2072 {
2073 return __prep_compound_gigantic_folio(folio, order, true);
2074 }
2075
2076 /*
2077 * Find and lock address space (mapping) in write mode.
2078 *
2079 * Upon entry, the page is locked which means that page_mapping() is
2080 * stable. Due to locking order, we can only trylock_write. If we can
2081 * not get the lock, simply return NULL to caller.
2082 */
hugetlb_page_mapping_lock_write(struct page * hpage)2083 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2084 {
2085 struct address_space *mapping = page_mapping(hpage);
2086
2087 if (!mapping)
2088 return mapping;
2089
2090 if (i_mmap_trylock_write(mapping))
2091 return mapping;
2092
2093 return NULL;
2094 }
2095
hugetlb_basepage_index(struct page * page)2096 pgoff_t hugetlb_basepage_index(struct page *page)
2097 {
2098 struct page *page_head = compound_head(page);
2099 pgoff_t index = page_index(page_head);
2100 unsigned long compound_idx;
2101
2102 if (compound_order(page_head) > MAX_ORDER)
2103 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2104 else
2105 compound_idx = page - page_head;
2106
2107 return (index << compound_order(page_head)) + compound_idx;
2108 }
2109
alloc_buddy_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2110 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2111 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2112 nodemask_t *node_alloc_noretry)
2113 {
2114 int order = huge_page_order(h);
2115 struct page *page;
2116 bool alloc_try_hard = true;
2117 bool retry = true;
2118
2119 /*
2120 * By default we always try hard to allocate the page with
2121 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2122 * a loop (to adjust global huge page counts) and previous allocation
2123 * failed, do not continue to try hard on the same node. Use the
2124 * node_alloc_noretry bitmap to manage this state information.
2125 */
2126 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2127 alloc_try_hard = false;
2128 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2129 if (alloc_try_hard)
2130 gfp_mask |= __GFP_RETRY_MAYFAIL;
2131 if (nid == NUMA_NO_NODE)
2132 nid = numa_mem_id();
2133 retry:
2134 page = __alloc_pages(gfp_mask, order, nid, nmask);
2135
2136 /* Freeze head page */
2137 if (page && !page_ref_freeze(page, 1)) {
2138 __free_pages(page, order);
2139 if (retry) { /* retry once */
2140 retry = false;
2141 goto retry;
2142 }
2143 /* WOW! twice in a row. */
2144 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2145 page = NULL;
2146 }
2147
2148 /*
2149 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2150 * indicates an overall state change. Clear bit so that we resume
2151 * normal 'try hard' allocations.
2152 */
2153 if (node_alloc_noretry && page && !alloc_try_hard)
2154 node_clear(nid, *node_alloc_noretry);
2155
2156 /*
2157 * If we tried hard to get a page but failed, set bit so that
2158 * subsequent attempts will not try as hard until there is an
2159 * overall state change.
2160 */
2161 if (node_alloc_noretry && !page && alloc_try_hard)
2162 node_set(nid, *node_alloc_noretry);
2163
2164 if (!page) {
2165 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2166 return NULL;
2167 }
2168
2169 __count_vm_event(HTLB_BUDDY_PGALLOC);
2170 return page_folio(page);
2171 }
2172
2173 /*
2174 * Common helper to allocate a fresh hugetlb page. All specific allocators
2175 * should use this function to get new hugetlb pages
2176 *
2177 * Note that returned page is 'frozen': ref count of head page and all tail
2178 * pages is zero.
2179 */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2180 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2181 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2182 nodemask_t *node_alloc_noretry)
2183 {
2184 struct folio *folio;
2185 bool retry = false;
2186
2187 retry:
2188 if (hstate_is_gigantic(h))
2189 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2190 else
2191 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2192 nid, nmask, node_alloc_noretry);
2193 if (!folio)
2194 return NULL;
2195 if (hstate_is_gigantic(h)) {
2196 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2197 /*
2198 * Rare failure to convert pages to compound page.
2199 * Free pages and try again - ONCE!
2200 */
2201 free_gigantic_folio(folio, huge_page_order(h));
2202 if (!retry) {
2203 retry = true;
2204 goto retry;
2205 }
2206 return NULL;
2207 }
2208 }
2209 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2210
2211 return folio;
2212 }
2213
2214 /*
2215 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2216 * manner.
2217 */
alloc_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry)2218 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2219 nodemask_t *node_alloc_noretry)
2220 {
2221 struct folio *folio;
2222 int nr_nodes, node;
2223 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2224
2225 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2226 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2227 nodes_allowed, node_alloc_noretry);
2228 if (folio) {
2229 free_huge_folio(folio); /* free it into the hugepage allocator */
2230 return 1;
2231 }
2232 }
2233
2234 return 0;
2235 }
2236
2237 /*
2238 * Remove huge page from pool from next node to free. Attempt to keep
2239 * persistent huge pages more or less balanced over allowed nodes.
2240 * This routine only 'removes' the hugetlb page. The caller must make
2241 * an additional call to free the page to low level allocators.
2242 * Called with hugetlb_lock locked.
2243 */
remove_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2244 static struct page *remove_pool_huge_page(struct hstate *h,
2245 nodemask_t *nodes_allowed,
2246 bool acct_surplus)
2247 {
2248 int nr_nodes, node;
2249 struct page *page = NULL;
2250 struct folio *folio;
2251
2252 lockdep_assert_held(&hugetlb_lock);
2253 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2254 /*
2255 * If we're returning unused surplus pages, only examine
2256 * nodes with surplus pages.
2257 */
2258 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2259 !list_empty(&h->hugepage_freelists[node])) {
2260 page = list_entry(h->hugepage_freelists[node].next,
2261 struct page, lru);
2262 folio = page_folio(page);
2263 remove_hugetlb_folio(h, folio, acct_surplus);
2264 break;
2265 }
2266 }
2267
2268 return page;
2269 }
2270
2271 /*
2272 * Dissolve a given free hugepage into free buddy pages. This function does
2273 * nothing for in-use hugepages and non-hugepages.
2274 * This function returns values like below:
2275 *
2276 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2277 * when the system is under memory pressure and the feature of
2278 * freeing unused vmemmap pages associated with each hugetlb page
2279 * is enabled.
2280 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2281 * (allocated or reserved.)
2282 * 0: successfully dissolved free hugepages or the page is not a
2283 * hugepage (considered as already dissolved)
2284 */
dissolve_free_huge_page(struct page * page)2285 int dissolve_free_huge_page(struct page *page)
2286 {
2287 int rc = -EBUSY;
2288 struct folio *folio = page_folio(page);
2289
2290 retry:
2291 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2292 if (!folio_test_hugetlb(folio))
2293 return 0;
2294
2295 spin_lock_irq(&hugetlb_lock);
2296 if (!folio_test_hugetlb(folio)) {
2297 rc = 0;
2298 goto out;
2299 }
2300
2301 if (!folio_ref_count(folio)) {
2302 struct hstate *h = folio_hstate(folio);
2303 if (!available_huge_pages(h))
2304 goto out;
2305
2306 /*
2307 * We should make sure that the page is already on the free list
2308 * when it is dissolved.
2309 */
2310 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2311 spin_unlock_irq(&hugetlb_lock);
2312 cond_resched();
2313
2314 /*
2315 * Theoretically, we should return -EBUSY when we
2316 * encounter this race. In fact, we have a chance
2317 * to successfully dissolve the page if we do a
2318 * retry. Because the race window is quite small.
2319 * If we seize this opportunity, it is an optimization
2320 * for increasing the success rate of dissolving page.
2321 */
2322 goto retry;
2323 }
2324
2325 remove_hugetlb_folio(h, folio, false);
2326 h->max_huge_pages--;
2327 spin_unlock_irq(&hugetlb_lock);
2328
2329 /*
2330 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2331 * before freeing the page. update_and_free_hugtlb_folio will fail to
2332 * free the page if it can not allocate required vmemmap. We
2333 * need to adjust max_huge_pages if the page is not freed.
2334 * Attempt to allocate vmemmmap here so that we can take
2335 * appropriate action on failure.
2336 */
2337 rc = hugetlb_vmemmap_restore(h, &folio->page);
2338 if (!rc) {
2339 update_and_free_hugetlb_folio(h, folio, false);
2340 } else {
2341 spin_lock_irq(&hugetlb_lock);
2342 add_hugetlb_folio(h, folio, false);
2343 h->max_huge_pages++;
2344 spin_unlock_irq(&hugetlb_lock);
2345 }
2346
2347 return rc;
2348 }
2349 out:
2350 spin_unlock_irq(&hugetlb_lock);
2351 return rc;
2352 }
2353
2354 /*
2355 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2356 * make specified memory blocks removable from the system.
2357 * Note that this will dissolve a free gigantic hugepage completely, if any
2358 * part of it lies within the given range.
2359 * Also note that if dissolve_free_huge_page() returns with an error, all
2360 * free hugepages that were dissolved before that error are lost.
2361 */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)2362 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2363 {
2364 unsigned long pfn;
2365 struct page *page;
2366 int rc = 0;
2367 unsigned int order;
2368 struct hstate *h;
2369
2370 if (!hugepages_supported())
2371 return rc;
2372
2373 order = huge_page_order(&default_hstate);
2374 for_each_hstate(h)
2375 order = min(order, huge_page_order(h));
2376
2377 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2378 page = pfn_to_page(pfn);
2379 rc = dissolve_free_huge_page(page);
2380 if (rc)
2381 break;
2382 }
2383
2384 return rc;
2385 }
2386
2387 /*
2388 * Allocates a fresh surplus page from the page allocator.
2389 */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2390 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2391 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2392 {
2393 struct folio *folio = NULL;
2394
2395 if (hstate_is_gigantic(h))
2396 return NULL;
2397
2398 spin_lock_irq(&hugetlb_lock);
2399 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2400 goto out_unlock;
2401 spin_unlock_irq(&hugetlb_lock);
2402
2403 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2404 if (!folio)
2405 return NULL;
2406
2407 spin_lock_irq(&hugetlb_lock);
2408 /*
2409 * We could have raced with the pool size change.
2410 * Double check that and simply deallocate the new page
2411 * if we would end up overcommiting the surpluses. Abuse
2412 * temporary page to workaround the nasty free_huge_folio
2413 * codeflow
2414 */
2415 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2416 folio_set_hugetlb_temporary(folio);
2417 spin_unlock_irq(&hugetlb_lock);
2418 free_huge_folio(folio);
2419 return NULL;
2420 }
2421
2422 h->surplus_huge_pages++;
2423 h->surplus_huge_pages_node[folio_nid(folio)]++;
2424
2425 out_unlock:
2426 spin_unlock_irq(&hugetlb_lock);
2427
2428 return folio;
2429 }
2430
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2431 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2432 int nid, nodemask_t *nmask)
2433 {
2434 struct folio *folio;
2435
2436 if (hstate_is_gigantic(h))
2437 return NULL;
2438
2439 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2440 if (!folio)
2441 return NULL;
2442
2443 /* fresh huge pages are frozen */
2444 folio_ref_unfreeze(folio, 1);
2445 /*
2446 * We do not account these pages as surplus because they are only
2447 * temporary and will be released properly on the last reference
2448 */
2449 folio_set_hugetlb_temporary(folio);
2450
2451 return folio;
2452 }
2453
2454 /*
2455 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2456 */
2457 static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2458 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2459 struct vm_area_struct *vma, unsigned long addr)
2460 {
2461 struct folio *folio = NULL;
2462 struct mempolicy *mpol;
2463 gfp_t gfp_mask = htlb_alloc_mask(h);
2464 int nid;
2465 nodemask_t *nodemask;
2466
2467 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2468 if (mpol_is_preferred_many(mpol)) {
2469 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2470
2471 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2472 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2473
2474 /* Fallback to all nodes if page==NULL */
2475 nodemask = NULL;
2476 }
2477
2478 if (!folio)
2479 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2480 mpol_cond_put(mpol);
2481 return folio;
2482 }
2483
2484 /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2485 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2486 nodemask_t *nmask, gfp_t gfp_mask)
2487 {
2488 spin_lock_irq(&hugetlb_lock);
2489 if (available_huge_pages(h)) {
2490 struct folio *folio;
2491
2492 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2493 preferred_nid, nmask);
2494 if (folio) {
2495 spin_unlock_irq(&hugetlb_lock);
2496 return folio;
2497 }
2498 }
2499 spin_unlock_irq(&hugetlb_lock);
2500
2501 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2502 }
2503
2504 /* mempolicy aware migration callback */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)2505 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2506 unsigned long address)
2507 {
2508 struct mempolicy *mpol;
2509 nodemask_t *nodemask;
2510 struct folio *folio;
2511 gfp_t gfp_mask;
2512 int node;
2513
2514 gfp_mask = htlb_alloc_mask(h);
2515 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2516 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2517 mpol_cond_put(mpol);
2518
2519 return folio;
2520 }
2521
policy_mbind_nodemask(gfp_t gfp)2522 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2523 {
2524 #ifdef CONFIG_NUMA
2525 struct mempolicy *mpol = get_task_policy(current);
2526
2527 /*
2528 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2529 * (from policy_nodemask) specifically for hugetlb case
2530 */
2531 if (mpol->mode == MPOL_BIND &&
2532 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
2533 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2534 return &mpol->nodes;
2535 #endif
2536 return NULL;
2537 }
2538
2539 /*
2540 * Increase the hugetlb pool such that it can accommodate a reservation
2541 * of size 'delta'.
2542 */
gather_surplus_pages(struct hstate * h,long delta)2543 static int gather_surplus_pages(struct hstate *h, long delta)
2544 __must_hold(&hugetlb_lock)
2545 {
2546 LIST_HEAD(surplus_list);
2547 struct folio *folio, *tmp;
2548 int ret;
2549 long i;
2550 long needed, allocated;
2551 bool alloc_ok = true;
2552 int node;
2553 nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2554
2555 lockdep_assert_held(&hugetlb_lock);
2556 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2557 if (needed <= 0) {
2558 h->resv_huge_pages += delta;
2559 return 0;
2560 }
2561
2562 allocated = 0;
2563
2564 ret = -ENOMEM;
2565 retry:
2566 spin_unlock_irq(&hugetlb_lock);
2567 for (i = 0; i < needed; i++) {
2568 folio = NULL;
2569 for_each_node_mask(node, cpuset_current_mems_allowed) {
2570 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) {
2571 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2572 node, NULL);
2573 if (folio)
2574 break;
2575 }
2576 }
2577 if (!folio) {
2578 alloc_ok = false;
2579 break;
2580 }
2581 list_add(&folio->lru, &surplus_list);
2582 cond_resched();
2583 }
2584 allocated += i;
2585
2586 /*
2587 * After retaking hugetlb_lock, we need to recalculate 'needed'
2588 * because either resv_huge_pages or free_huge_pages may have changed.
2589 */
2590 spin_lock_irq(&hugetlb_lock);
2591 needed = (h->resv_huge_pages + delta) -
2592 (h->free_huge_pages + allocated);
2593 if (needed > 0) {
2594 if (alloc_ok)
2595 goto retry;
2596 /*
2597 * We were not able to allocate enough pages to
2598 * satisfy the entire reservation so we free what
2599 * we've allocated so far.
2600 */
2601 goto free;
2602 }
2603 /*
2604 * The surplus_list now contains _at_least_ the number of extra pages
2605 * needed to accommodate the reservation. Add the appropriate number
2606 * of pages to the hugetlb pool and free the extras back to the buddy
2607 * allocator. Commit the entire reservation here to prevent another
2608 * process from stealing the pages as they are added to the pool but
2609 * before they are reserved.
2610 */
2611 needed += allocated;
2612 h->resv_huge_pages += delta;
2613 ret = 0;
2614
2615 /* Free the needed pages to the hugetlb pool */
2616 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2617 if ((--needed) < 0)
2618 break;
2619 /* Add the page to the hugetlb allocator */
2620 enqueue_hugetlb_folio(h, folio);
2621 }
2622 free:
2623 spin_unlock_irq(&hugetlb_lock);
2624
2625 /*
2626 * Free unnecessary surplus pages to the buddy allocator.
2627 * Pages have no ref count, call free_huge_folio directly.
2628 */
2629 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2630 free_huge_folio(folio);
2631 spin_lock_irq(&hugetlb_lock);
2632
2633 return ret;
2634 }
2635
2636 /*
2637 * This routine has two main purposes:
2638 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2639 * in unused_resv_pages. This corresponds to the prior adjustments made
2640 * to the associated reservation map.
2641 * 2) Free any unused surplus pages that may have been allocated to satisfy
2642 * the reservation. As many as unused_resv_pages may be freed.
2643 */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2644 static void return_unused_surplus_pages(struct hstate *h,
2645 unsigned long unused_resv_pages)
2646 {
2647 unsigned long nr_pages;
2648 struct page *page;
2649 LIST_HEAD(page_list);
2650
2651 lockdep_assert_held(&hugetlb_lock);
2652 /* Uncommit the reservation */
2653 h->resv_huge_pages -= unused_resv_pages;
2654
2655 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2656 goto out;
2657
2658 /*
2659 * Part (or even all) of the reservation could have been backed
2660 * by pre-allocated pages. Only free surplus pages.
2661 */
2662 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2663
2664 /*
2665 * We want to release as many surplus pages as possible, spread
2666 * evenly across all nodes with memory. Iterate across these nodes
2667 * until we can no longer free unreserved surplus pages. This occurs
2668 * when the nodes with surplus pages have no free pages.
2669 * remove_pool_huge_page() will balance the freed pages across the
2670 * on-line nodes with memory and will handle the hstate accounting.
2671 */
2672 while (nr_pages--) {
2673 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2674 if (!page)
2675 goto out;
2676
2677 list_add(&page->lru, &page_list);
2678 }
2679
2680 out:
2681 spin_unlock_irq(&hugetlb_lock);
2682 update_and_free_pages_bulk(h, &page_list);
2683 spin_lock_irq(&hugetlb_lock);
2684 }
2685
2686
2687 /*
2688 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2689 * are used by the huge page allocation routines to manage reservations.
2690 *
2691 * vma_needs_reservation is called to determine if the huge page at addr
2692 * within the vma has an associated reservation. If a reservation is
2693 * needed, the value 1 is returned. The caller is then responsible for
2694 * managing the global reservation and subpool usage counts. After
2695 * the huge page has been allocated, vma_commit_reservation is called
2696 * to add the page to the reservation map. If the page allocation fails,
2697 * the reservation must be ended instead of committed. vma_end_reservation
2698 * is called in such cases.
2699 *
2700 * In the normal case, vma_commit_reservation returns the same value
2701 * as the preceding vma_needs_reservation call. The only time this
2702 * is not the case is if a reserve map was changed between calls. It
2703 * is the responsibility of the caller to notice the difference and
2704 * take appropriate action.
2705 *
2706 * vma_add_reservation is used in error paths where a reservation must
2707 * be restored when a newly allocated huge page must be freed. It is
2708 * to be called after calling vma_needs_reservation to determine if a
2709 * reservation exists.
2710 *
2711 * vma_del_reservation is used in error paths where an entry in the reserve
2712 * map was created during huge page allocation and must be removed. It is to
2713 * be called after calling vma_needs_reservation to determine if a reservation
2714 * exists.
2715 */
2716 enum vma_resv_mode {
2717 VMA_NEEDS_RESV,
2718 VMA_COMMIT_RESV,
2719 VMA_END_RESV,
2720 VMA_ADD_RESV,
2721 VMA_DEL_RESV,
2722 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2723 static long __vma_reservation_common(struct hstate *h,
2724 struct vm_area_struct *vma, unsigned long addr,
2725 enum vma_resv_mode mode)
2726 {
2727 struct resv_map *resv;
2728 pgoff_t idx;
2729 long ret;
2730 long dummy_out_regions_needed;
2731
2732 resv = vma_resv_map(vma);
2733 if (!resv)
2734 return 1;
2735
2736 idx = vma_hugecache_offset(h, vma, addr);
2737 switch (mode) {
2738 case VMA_NEEDS_RESV:
2739 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2740 /* We assume that vma_reservation_* routines always operate on
2741 * 1 page, and that adding to resv map a 1 page entry can only
2742 * ever require 1 region.
2743 */
2744 VM_BUG_ON(dummy_out_regions_needed != 1);
2745 break;
2746 case VMA_COMMIT_RESV:
2747 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2748 /* region_add calls of range 1 should never fail. */
2749 VM_BUG_ON(ret < 0);
2750 break;
2751 case VMA_END_RESV:
2752 region_abort(resv, idx, idx + 1, 1);
2753 ret = 0;
2754 break;
2755 case VMA_ADD_RESV:
2756 if (vma->vm_flags & VM_MAYSHARE) {
2757 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2758 /* region_add calls of range 1 should never fail. */
2759 VM_BUG_ON(ret < 0);
2760 } else {
2761 region_abort(resv, idx, idx + 1, 1);
2762 ret = region_del(resv, idx, idx + 1);
2763 }
2764 break;
2765 case VMA_DEL_RESV:
2766 if (vma->vm_flags & VM_MAYSHARE) {
2767 region_abort(resv, idx, idx + 1, 1);
2768 ret = region_del(resv, idx, idx + 1);
2769 } else {
2770 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2771 /* region_add calls of range 1 should never fail. */
2772 VM_BUG_ON(ret < 0);
2773 }
2774 break;
2775 default:
2776 BUG();
2777 }
2778
2779 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2780 return ret;
2781 /*
2782 * We know private mapping must have HPAGE_RESV_OWNER set.
2783 *
2784 * In most cases, reserves always exist for private mappings.
2785 * However, a file associated with mapping could have been
2786 * hole punched or truncated after reserves were consumed.
2787 * As subsequent fault on such a range will not use reserves.
2788 * Subtle - The reserve map for private mappings has the
2789 * opposite meaning than that of shared mappings. If NO
2790 * entry is in the reserve map, it means a reservation exists.
2791 * If an entry exists in the reserve map, it means the
2792 * reservation has already been consumed. As a result, the
2793 * return value of this routine is the opposite of the
2794 * value returned from reserve map manipulation routines above.
2795 */
2796 if (ret > 0)
2797 return 0;
2798 if (ret == 0)
2799 return 1;
2800 return ret;
2801 }
2802
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2803 static long vma_needs_reservation(struct hstate *h,
2804 struct vm_area_struct *vma, unsigned long addr)
2805 {
2806 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2807 }
2808
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2809 static long vma_commit_reservation(struct hstate *h,
2810 struct vm_area_struct *vma, unsigned long addr)
2811 {
2812 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2813 }
2814
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2815 static void vma_end_reservation(struct hstate *h,
2816 struct vm_area_struct *vma, unsigned long addr)
2817 {
2818 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2819 }
2820
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2821 static long vma_add_reservation(struct hstate *h,
2822 struct vm_area_struct *vma, unsigned long addr)
2823 {
2824 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2825 }
2826
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2827 static long vma_del_reservation(struct hstate *h,
2828 struct vm_area_struct *vma, unsigned long addr)
2829 {
2830 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2831 }
2832
2833 /*
2834 * This routine is called to restore reservation information on error paths.
2835 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2836 * and the hugetlb mutex should remain held when calling this routine.
2837 *
2838 * It handles two specific cases:
2839 * 1) A reservation was in place and the folio consumed the reservation.
2840 * hugetlb_restore_reserve is set in the folio.
2841 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2842 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2843 *
2844 * In case 1, free_huge_folio later in the error path will increment the
2845 * global reserve count. But, free_huge_folio does not have enough context
2846 * to adjust the reservation map. This case deals primarily with private
2847 * mappings. Adjust the reserve map here to be consistent with global
2848 * reserve count adjustments to be made by free_huge_folio. Make sure the
2849 * reserve map indicates there is a reservation present.
2850 *
2851 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2852 */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2853 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2854 unsigned long address, struct folio *folio)
2855 {
2856 long rc = vma_needs_reservation(h, vma, address);
2857
2858 if (folio_test_hugetlb_restore_reserve(folio)) {
2859 if (unlikely(rc < 0))
2860 /*
2861 * Rare out of memory condition in reserve map
2862 * manipulation. Clear hugetlb_restore_reserve so
2863 * that global reserve count will not be incremented
2864 * by free_huge_folio. This will make it appear
2865 * as though the reservation for this folio was
2866 * consumed. This may prevent the task from
2867 * faulting in the folio at a later time. This
2868 * is better than inconsistent global huge page
2869 * accounting of reserve counts.
2870 */
2871 folio_clear_hugetlb_restore_reserve(folio);
2872 else if (rc)
2873 (void)vma_add_reservation(h, vma, address);
2874 else
2875 vma_end_reservation(h, vma, address);
2876 } else {
2877 if (!rc) {
2878 /*
2879 * This indicates there is an entry in the reserve map
2880 * not added by alloc_hugetlb_folio. We know it was added
2881 * before the alloc_hugetlb_folio call, otherwise
2882 * hugetlb_restore_reserve would be set on the folio.
2883 * Remove the entry so that a subsequent allocation
2884 * does not consume a reservation.
2885 */
2886 rc = vma_del_reservation(h, vma, address);
2887 if (rc < 0)
2888 /*
2889 * VERY rare out of memory condition. Since
2890 * we can not delete the entry, set
2891 * hugetlb_restore_reserve so that the reserve
2892 * count will be incremented when the folio
2893 * is freed. This reserve will be consumed
2894 * on a subsequent allocation.
2895 */
2896 folio_set_hugetlb_restore_reserve(folio);
2897 } else if (rc < 0) {
2898 /*
2899 * Rare out of memory condition from
2900 * vma_needs_reservation call. Memory allocation is
2901 * only attempted if a new entry is needed. Therefore,
2902 * this implies there is not an entry in the
2903 * reserve map.
2904 *
2905 * For shared mappings, no entry in the map indicates
2906 * no reservation. We are done.
2907 */
2908 if (!(vma->vm_flags & VM_MAYSHARE))
2909 /*
2910 * For private mappings, no entry indicates
2911 * a reservation is present. Since we can
2912 * not add an entry, set hugetlb_restore_reserve
2913 * on the folio so reserve count will be
2914 * incremented when freed. This reserve will
2915 * be consumed on a subsequent allocation.
2916 */
2917 folio_set_hugetlb_restore_reserve(folio);
2918 } else
2919 /*
2920 * No reservation present, do nothing
2921 */
2922 vma_end_reservation(h, vma, address);
2923 }
2924 }
2925
2926 /*
2927 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2928 * the old one
2929 * @h: struct hstate old page belongs to
2930 * @old_folio: Old folio to dissolve
2931 * @list: List to isolate the page in case we need to
2932 * Returns 0 on success, otherwise negated error.
2933 */
alloc_and_dissolve_hugetlb_folio(struct hstate * h,struct folio * old_folio,struct list_head * list)2934 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2935 struct folio *old_folio, struct list_head *list)
2936 {
2937 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2938 int nid = folio_nid(old_folio);
2939 struct folio *new_folio;
2940 int ret = 0;
2941
2942 /*
2943 * Before dissolving the folio, we need to allocate a new one for the
2944 * pool to remain stable. Here, we allocate the folio and 'prep' it
2945 * by doing everything but actually updating counters and adding to
2946 * the pool. This simplifies and let us do most of the processing
2947 * under the lock.
2948 */
2949 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2950 if (!new_folio)
2951 return -ENOMEM;
2952 __prep_new_hugetlb_folio(h, new_folio);
2953
2954 retry:
2955 spin_lock_irq(&hugetlb_lock);
2956 if (!folio_test_hugetlb(old_folio)) {
2957 /*
2958 * Freed from under us. Drop new_folio too.
2959 */
2960 goto free_new;
2961 } else if (folio_ref_count(old_folio)) {
2962 bool isolated;
2963
2964 /*
2965 * Someone has grabbed the folio, try to isolate it here.
2966 * Fail with -EBUSY if not possible.
2967 */
2968 spin_unlock_irq(&hugetlb_lock);
2969 isolated = isolate_hugetlb(old_folio, list);
2970 ret = isolated ? 0 : -EBUSY;
2971 spin_lock_irq(&hugetlb_lock);
2972 goto free_new;
2973 } else if (!folio_test_hugetlb_freed(old_folio)) {
2974 /*
2975 * Folio's refcount is 0 but it has not been enqueued in the
2976 * freelist yet. Race window is small, so we can succeed here if
2977 * we retry.
2978 */
2979 spin_unlock_irq(&hugetlb_lock);
2980 cond_resched();
2981 goto retry;
2982 } else {
2983 /*
2984 * Ok, old_folio is still a genuine free hugepage. Remove it from
2985 * the freelist and decrease the counters. These will be
2986 * incremented again when calling __prep_account_new_huge_page()
2987 * and enqueue_hugetlb_folio() for new_folio. The counters will
2988 * remain stable since this happens under the lock.
2989 */
2990 remove_hugetlb_folio(h, old_folio, false);
2991
2992 /*
2993 * Ref count on new_folio is already zero as it was dropped
2994 * earlier. It can be directly added to the pool free list.
2995 */
2996 __prep_account_new_huge_page(h, nid);
2997 enqueue_hugetlb_folio(h, new_folio);
2998
2999 /*
3000 * Folio has been replaced, we can safely free the old one.
3001 */
3002 spin_unlock_irq(&hugetlb_lock);
3003 update_and_free_hugetlb_folio(h, old_folio, false);
3004 }
3005
3006 return ret;
3007
3008 free_new:
3009 spin_unlock_irq(&hugetlb_lock);
3010 /* Folio has a zero ref count, but needs a ref to be freed */
3011 folio_ref_unfreeze(new_folio, 1);
3012 update_and_free_hugetlb_folio(h, new_folio, false);
3013
3014 return ret;
3015 }
3016
isolate_or_dissolve_huge_page(struct page * page,struct list_head * list)3017 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3018 {
3019 struct hstate *h;
3020 struct folio *folio = page_folio(page);
3021 int ret = -EBUSY;
3022
3023 /*
3024 * The page might have been dissolved from under our feet, so make sure
3025 * to carefully check the state under the lock.
3026 * Return success when racing as if we dissolved the page ourselves.
3027 */
3028 spin_lock_irq(&hugetlb_lock);
3029 if (folio_test_hugetlb(folio)) {
3030 h = folio_hstate(folio);
3031 } else {
3032 spin_unlock_irq(&hugetlb_lock);
3033 return 0;
3034 }
3035 spin_unlock_irq(&hugetlb_lock);
3036
3037 /*
3038 * Fence off gigantic pages as there is a cyclic dependency between
3039 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3040 * of bailing out right away without further retrying.
3041 */
3042 if (hstate_is_gigantic(h))
3043 return -ENOMEM;
3044
3045 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3046 ret = 0;
3047 else if (!folio_ref_count(folio))
3048 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3049
3050 return ret;
3051 }
3052
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)3053 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3054 unsigned long addr, int avoid_reserve)
3055 {
3056 struct hugepage_subpool *spool = subpool_vma(vma);
3057 struct hstate *h = hstate_vma(vma);
3058 struct folio *folio;
3059 long map_chg, map_commit;
3060 long gbl_chg;
3061 int ret, idx;
3062 struct hugetlb_cgroup *h_cg = NULL;
3063 bool deferred_reserve;
3064
3065 idx = hstate_index(h);
3066 /*
3067 * Examine the region/reserve map to determine if the process
3068 * has a reservation for the page to be allocated. A return
3069 * code of zero indicates a reservation exists (no change).
3070 */
3071 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3072 if (map_chg < 0)
3073 return ERR_PTR(-ENOMEM);
3074
3075 /*
3076 * Processes that did not create the mapping will have no
3077 * reserves as indicated by the region/reserve map. Check
3078 * that the allocation will not exceed the subpool limit.
3079 * Allocations for MAP_NORESERVE mappings also need to be
3080 * checked against any subpool limit.
3081 */
3082 if (map_chg || avoid_reserve) {
3083 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3084 if (gbl_chg < 0) {
3085 vma_end_reservation(h, vma, addr);
3086 return ERR_PTR(-ENOSPC);
3087 }
3088
3089 /*
3090 * Even though there was no reservation in the region/reserve
3091 * map, there could be reservations associated with the
3092 * subpool that can be used. This would be indicated if the
3093 * return value of hugepage_subpool_get_pages() is zero.
3094 * However, if avoid_reserve is specified we still avoid even
3095 * the subpool reservations.
3096 */
3097 if (avoid_reserve)
3098 gbl_chg = 1;
3099 }
3100
3101 /* If this allocation is not consuming a reservation, charge it now.
3102 */
3103 deferred_reserve = map_chg || avoid_reserve;
3104 if (deferred_reserve) {
3105 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3106 idx, pages_per_huge_page(h), &h_cg);
3107 if (ret)
3108 goto out_subpool_put;
3109 }
3110
3111 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3112 if (ret)
3113 goto out_uncharge_cgroup_reservation;
3114
3115 spin_lock_irq(&hugetlb_lock);
3116 /*
3117 * glb_chg is passed to indicate whether or not a page must be taken
3118 * from the global free pool (global change). gbl_chg == 0 indicates
3119 * a reservation exists for the allocation.
3120 */
3121 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3122 if (!folio) {
3123 spin_unlock_irq(&hugetlb_lock);
3124 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3125 if (!folio)
3126 goto out_uncharge_cgroup;
3127 spin_lock_irq(&hugetlb_lock);
3128 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3129 folio_set_hugetlb_restore_reserve(folio);
3130 h->resv_huge_pages--;
3131 }
3132 list_add(&folio->lru, &h->hugepage_activelist);
3133 folio_ref_unfreeze(folio, 1);
3134 /* Fall through */
3135 }
3136
3137 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3138 /* If allocation is not consuming a reservation, also store the
3139 * hugetlb_cgroup pointer on the page.
3140 */
3141 if (deferred_reserve) {
3142 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3143 h_cg, folio);
3144 }
3145
3146 spin_unlock_irq(&hugetlb_lock);
3147
3148 hugetlb_set_folio_subpool(folio, spool);
3149
3150 map_commit = vma_commit_reservation(h, vma, addr);
3151 if (unlikely(map_chg > map_commit)) {
3152 /*
3153 * The page was added to the reservation map between
3154 * vma_needs_reservation and vma_commit_reservation.
3155 * This indicates a race with hugetlb_reserve_pages.
3156 * Adjust for the subpool count incremented above AND
3157 * in hugetlb_reserve_pages for the same page. Also,
3158 * the reservation count added in hugetlb_reserve_pages
3159 * no longer applies.
3160 */
3161 long rsv_adjust;
3162
3163 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3164 hugetlb_acct_memory(h, -rsv_adjust);
3165 if (deferred_reserve) {
3166 spin_lock_irq(&hugetlb_lock);
3167 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3168 pages_per_huge_page(h), folio);
3169 spin_unlock_irq(&hugetlb_lock);
3170 }
3171 }
3172 return folio;
3173
3174 out_uncharge_cgroup:
3175 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3176 out_uncharge_cgroup_reservation:
3177 if (deferred_reserve)
3178 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3179 h_cg);
3180 out_subpool_put:
3181 if (map_chg || avoid_reserve)
3182 hugepage_subpool_put_pages(spool, 1);
3183 vma_end_reservation(h, vma, addr);
3184 return ERR_PTR(-ENOSPC);
3185 }
3186
3187 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3188 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3189 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3190 {
3191 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3192 int nr_nodes, node;
3193
3194 /* do node specific alloc */
3195 if (nid != NUMA_NO_NODE) {
3196 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3197 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3198 if (!m)
3199 return 0;
3200 goto found;
3201 }
3202 /* allocate from next node when distributing huge pages */
3203 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3204 m = memblock_alloc_try_nid_raw(
3205 huge_page_size(h), huge_page_size(h),
3206 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3207 /*
3208 * Use the beginning of the huge page to store the
3209 * huge_bootmem_page struct (until gather_bootmem
3210 * puts them into the mem_map).
3211 */
3212 if (!m)
3213 return 0;
3214 goto found;
3215 }
3216
3217 found:
3218 /* Put them into a private list first because mem_map is not up yet */
3219 INIT_LIST_HEAD(&m->list);
3220 list_add(&m->list, &huge_boot_pages);
3221 m->hstate = h;
3222 return 1;
3223 }
3224
3225 /*
3226 * Put bootmem huge pages into the standard lists after mem_map is up.
3227 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3228 */
gather_bootmem_prealloc(void)3229 static void __init gather_bootmem_prealloc(void)
3230 {
3231 struct huge_bootmem_page *m;
3232
3233 list_for_each_entry(m, &huge_boot_pages, list) {
3234 struct page *page = virt_to_page(m);
3235 struct folio *folio = page_folio(page);
3236 struct hstate *h = m->hstate;
3237
3238 VM_BUG_ON(!hstate_is_gigantic(h));
3239 WARN_ON(folio_ref_count(folio) != 1);
3240 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3241 WARN_ON(folio_test_reserved(folio));
3242 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3243 free_huge_folio(folio); /* add to the hugepage allocator */
3244 } else {
3245 /* VERY unlikely inflated ref count on a tail page */
3246 free_gigantic_folio(folio, huge_page_order(h));
3247 }
3248
3249 /*
3250 * We need to restore the 'stolen' pages to totalram_pages
3251 * in order to fix confusing memory reports from free(1) and
3252 * other side-effects, like CommitLimit going negative.
3253 */
3254 adjust_managed_page_count(page, pages_per_huge_page(h));
3255 cond_resched();
3256 }
3257 }
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3258 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3259 {
3260 unsigned long i;
3261 char buf[32];
3262
3263 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3264 if (hstate_is_gigantic(h)) {
3265 if (!alloc_bootmem_huge_page(h, nid))
3266 break;
3267 } else {
3268 struct folio *folio;
3269 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3270
3271 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3272 &node_states[N_MEMORY], NULL);
3273 if (!folio)
3274 break;
3275 free_huge_folio(folio); /* free it into the hugepage allocator */
3276 }
3277 cond_resched();
3278 }
3279 if (i == h->max_huge_pages_node[nid])
3280 return;
3281
3282 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3283 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3284 h->max_huge_pages_node[nid], buf, nid, i);
3285 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3286 h->max_huge_pages_node[nid] = i;
3287 }
3288
hugetlb_hstate_alloc_pages(struct hstate * h)3289 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3290 {
3291 unsigned long i;
3292 nodemask_t *node_alloc_noretry;
3293 bool node_specific_alloc = false;
3294
3295 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3296 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3297 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3298 return;
3299 }
3300
3301 /* do node specific alloc */
3302 for_each_online_node(i) {
3303 if (h->max_huge_pages_node[i] > 0) {
3304 hugetlb_hstate_alloc_pages_onenode(h, i);
3305 node_specific_alloc = true;
3306 }
3307 }
3308
3309 if (node_specific_alloc)
3310 return;
3311
3312 /* below will do all node balanced alloc */
3313 if (!hstate_is_gigantic(h)) {
3314 /*
3315 * Bit mask controlling how hard we retry per-node allocations.
3316 * Ignore errors as lower level routines can deal with
3317 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3318 * time, we are likely in bigger trouble.
3319 */
3320 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3321 GFP_KERNEL);
3322 } else {
3323 /* allocations done at boot time */
3324 node_alloc_noretry = NULL;
3325 }
3326
3327 /* bit mask controlling how hard we retry per-node allocations */
3328 if (node_alloc_noretry)
3329 nodes_clear(*node_alloc_noretry);
3330
3331 for (i = 0; i < h->max_huge_pages; ++i) {
3332 if (hstate_is_gigantic(h)) {
3333 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3334 break;
3335 } else if (!alloc_pool_huge_page(h,
3336 &node_states[N_MEMORY],
3337 node_alloc_noretry))
3338 break;
3339 cond_resched();
3340 }
3341 if (i < h->max_huge_pages) {
3342 char buf[32];
3343
3344 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3345 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3346 h->max_huge_pages, buf, i);
3347 h->max_huge_pages = i;
3348 }
3349 kfree(node_alloc_noretry);
3350 }
3351
hugetlb_init_hstates(void)3352 static void __init hugetlb_init_hstates(void)
3353 {
3354 struct hstate *h, *h2;
3355
3356 for_each_hstate(h) {
3357 /* oversize hugepages were init'ed in early boot */
3358 if (!hstate_is_gigantic(h))
3359 hugetlb_hstate_alloc_pages(h);
3360
3361 /*
3362 * Set demote order for each hstate. Note that
3363 * h->demote_order is initially 0.
3364 * - We can not demote gigantic pages if runtime freeing
3365 * is not supported, so skip this.
3366 * - If CMA allocation is possible, we can not demote
3367 * HUGETLB_PAGE_ORDER or smaller size pages.
3368 */
3369 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3370 continue;
3371 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3372 continue;
3373 for_each_hstate(h2) {
3374 if (h2 == h)
3375 continue;
3376 if (h2->order < h->order &&
3377 h2->order > h->demote_order)
3378 h->demote_order = h2->order;
3379 }
3380 }
3381 }
3382
report_hugepages(void)3383 static void __init report_hugepages(void)
3384 {
3385 struct hstate *h;
3386
3387 for_each_hstate(h) {
3388 char buf[32];
3389
3390 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3391 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3392 buf, h->free_huge_pages);
3393 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3394 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3395 }
3396 }
3397
3398 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3399 static void try_to_free_low(struct hstate *h, unsigned long count,
3400 nodemask_t *nodes_allowed)
3401 {
3402 int i;
3403 LIST_HEAD(page_list);
3404
3405 lockdep_assert_held(&hugetlb_lock);
3406 if (hstate_is_gigantic(h))
3407 return;
3408
3409 /*
3410 * Collect pages to be freed on a list, and free after dropping lock
3411 */
3412 for_each_node_mask(i, *nodes_allowed) {
3413 struct page *page, *next;
3414 struct list_head *freel = &h->hugepage_freelists[i];
3415 list_for_each_entry_safe(page, next, freel, lru) {
3416 if (count >= h->nr_huge_pages)
3417 goto out;
3418 if (PageHighMem(page))
3419 continue;
3420 remove_hugetlb_folio(h, page_folio(page), false);
3421 list_add(&page->lru, &page_list);
3422 }
3423 }
3424
3425 out:
3426 spin_unlock_irq(&hugetlb_lock);
3427 update_and_free_pages_bulk(h, &page_list);
3428 spin_lock_irq(&hugetlb_lock);
3429 }
3430 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3431 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3432 nodemask_t *nodes_allowed)
3433 {
3434 }
3435 #endif
3436
3437 /*
3438 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3439 * balanced by operating on them in a round-robin fashion.
3440 * Returns 1 if an adjustment was made.
3441 */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3442 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3443 int delta)
3444 {
3445 int nr_nodes, node;
3446
3447 lockdep_assert_held(&hugetlb_lock);
3448 VM_BUG_ON(delta != -1 && delta != 1);
3449
3450 if (delta < 0) {
3451 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3452 if (h->surplus_huge_pages_node[node])
3453 goto found;
3454 }
3455 } else {
3456 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3457 if (h->surplus_huge_pages_node[node] <
3458 h->nr_huge_pages_node[node])
3459 goto found;
3460 }
3461 }
3462 return 0;
3463
3464 found:
3465 h->surplus_huge_pages += delta;
3466 h->surplus_huge_pages_node[node] += delta;
3467 return 1;
3468 }
3469
3470 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3471 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3472 nodemask_t *nodes_allowed)
3473 {
3474 unsigned long min_count, ret;
3475 struct page *page;
3476 LIST_HEAD(page_list);
3477 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3478
3479 /*
3480 * Bit mask controlling how hard we retry per-node allocations.
3481 * If we can not allocate the bit mask, do not attempt to allocate
3482 * the requested huge pages.
3483 */
3484 if (node_alloc_noretry)
3485 nodes_clear(*node_alloc_noretry);
3486 else
3487 return -ENOMEM;
3488
3489 /*
3490 * resize_lock mutex prevents concurrent adjustments to number of
3491 * pages in hstate via the proc/sysfs interfaces.
3492 */
3493 mutex_lock(&h->resize_lock);
3494 flush_free_hpage_work(h);
3495 spin_lock_irq(&hugetlb_lock);
3496
3497 /*
3498 * Check for a node specific request.
3499 * Changing node specific huge page count may require a corresponding
3500 * change to the global count. In any case, the passed node mask
3501 * (nodes_allowed) will restrict alloc/free to the specified node.
3502 */
3503 if (nid != NUMA_NO_NODE) {
3504 unsigned long old_count = count;
3505
3506 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3507 /*
3508 * User may have specified a large count value which caused the
3509 * above calculation to overflow. In this case, they wanted
3510 * to allocate as many huge pages as possible. Set count to
3511 * largest possible value to align with their intention.
3512 */
3513 if (count < old_count)
3514 count = ULONG_MAX;
3515 }
3516
3517 /*
3518 * Gigantic pages runtime allocation depend on the capability for large
3519 * page range allocation.
3520 * If the system does not provide this feature, return an error when
3521 * the user tries to allocate gigantic pages but let the user free the
3522 * boottime allocated gigantic pages.
3523 */
3524 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3525 if (count > persistent_huge_pages(h)) {
3526 spin_unlock_irq(&hugetlb_lock);
3527 mutex_unlock(&h->resize_lock);
3528 NODEMASK_FREE(node_alloc_noretry);
3529 return -EINVAL;
3530 }
3531 /* Fall through to decrease pool */
3532 }
3533
3534 /*
3535 * Increase the pool size
3536 * First take pages out of surplus state. Then make up the
3537 * remaining difference by allocating fresh huge pages.
3538 *
3539 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3540 * to convert a surplus huge page to a normal huge page. That is
3541 * not critical, though, it just means the overall size of the
3542 * pool might be one hugepage larger than it needs to be, but
3543 * within all the constraints specified by the sysctls.
3544 */
3545 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3546 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3547 break;
3548 }
3549
3550 while (count > persistent_huge_pages(h)) {
3551 /*
3552 * If this allocation races such that we no longer need the
3553 * page, free_huge_folio will handle it by freeing the page
3554 * and reducing the surplus.
3555 */
3556 spin_unlock_irq(&hugetlb_lock);
3557
3558 /* yield cpu to avoid soft lockup */
3559 cond_resched();
3560
3561 ret = alloc_pool_huge_page(h, nodes_allowed,
3562 node_alloc_noretry);
3563 spin_lock_irq(&hugetlb_lock);
3564 if (!ret)
3565 goto out;
3566
3567 /* Bail for signals. Probably ctrl-c from user */
3568 if (signal_pending(current))
3569 goto out;
3570 }
3571
3572 /*
3573 * Decrease the pool size
3574 * First return free pages to the buddy allocator (being careful
3575 * to keep enough around to satisfy reservations). Then place
3576 * pages into surplus state as needed so the pool will shrink
3577 * to the desired size as pages become free.
3578 *
3579 * By placing pages into the surplus state independent of the
3580 * overcommit value, we are allowing the surplus pool size to
3581 * exceed overcommit. There are few sane options here. Since
3582 * alloc_surplus_hugetlb_folio() is checking the global counter,
3583 * though, we'll note that we're not allowed to exceed surplus
3584 * and won't grow the pool anywhere else. Not until one of the
3585 * sysctls are changed, or the surplus pages go out of use.
3586 */
3587 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3588 min_count = max(count, min_count);
3589 try_to_free_low(h, min_count, nodes_allowed);
3590
3591 /*
3592 * Collect pages to be removed on list without dropping lock
3593 */
3594 while (min_count < persistent_huge_pages(h)) {
3595 page = remove_pool_huge_page(h, nodes_allowed, 0);
3596 if (!page)
3597 break;
3598
3599 list_add(&page->lru, &page_list);
3600 }
3601 /* free the pages after dropping lock */
3602 spin_unlock_irq(&hugetlb_lock);
3603 update_and_free_pages_bulk(h, &page_list);
3604 flush_free_hpage_work(h);
3605 spin_lock_irq(&hugetlb_lock);
3606
3607 while (count < persistent_huge_pages(h)) {
3608 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3609 break;
3610 }
3611 out:
3612 h->max_huge_pages = persistent_huge_pages(h);
3613 spin_unlock_irq(&hugetlb_lock);
3614 mutex_unlock(&h->resize_lock);
3615
3616 NODEMASK_FREE(node_alloc_noretry);
3617
3618 return 0;
3619 }
3620
demote_free_hugetlb_folio(struct hstate * h,struct folio * folio)3621 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3622 {
3623 int i, nid = folio_nid(folio);
3624 struct hstate *target_hstate;
3625 struct page *subpage;
3626 struct folio *inner_folio;
3627 int rc = 0;
3628
3629 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3630
3631 remove_hugetlb_folio_for_demote(h, folio, false);
3632 spin_unlock_irq(&hugetlb_lock);
3633
3634 rc = hugetlb_vmemmap_restore(h, &folio->page);
3635 if (rc) {
3636 /* Allocation of vmemmmap failed, we can not demote folio */
3637 spin_lock_irq(&hugetlb_lock);
3638 folio_ref_unfreeze(folio, 1);
3639 add_hugetlb_folio(h, folio, false);
3640 return rc;
3641 }
3642
3643 /*
3644 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3645 * sizes as it will not ref count folios.
3646 */
3647 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3648
3649 /*
3650 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3651 * Without the mutex, pages added to target hstate could be marked
3652 * as surplus.
3653 *
3654 * Note that we already hold h->resize_lock. To prevent deadlock,
3655 * use the convention of always taking larger size hstate mutex first.
3656 */
3657 mutex_lock(&target_hstate->resize_lock);
3658 for (i = 0; i < pages_per_huge_page(h);
3659 i += pages_per_huge_page(target_hstate)) {
3660 subpage = folio_page(folio, i);
3661 inner_folio = page_folio(subpage);
3662 if (hstate_is_gigantic(target_hstate))
3663 prep_compound_gigantic_folio_for_demote(inner_folio,
3664 target_hstate->order);
3665 else
3666 prep_compound_page(subpage, target_hstate->order);
3667 folio_change_private(inner_folio, NULL);
3668 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3669 free_huge_folio(inner_folio);
3670 }
3671 mutex_unlock(&target_hstate->resize_lock);
3672
3673 spin_lock_irq(&hugetlb_lock);
3674
3675 /*
3676 * Not absolutely necessary, but for consistency update max_huge_pages
3677 * based on pool changes for the demoted page.
3678 */
3679 h->max_huge_pages--;
3680 target_hstate->max_huge_pages +=
3681 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3682
3683 return rc;
3684 }
3685
demote_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed)3686 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3687 __must_hold(&hugetlb_lock)
3688 {
3689 int nr_nodes, node;
3690 struct folio *folio;
3691
3692 lockdep_assert_held(&hugetlb_lock);
3693
3694 /* We should never get here if no demote order */
3695 if (!h->demote_order) {
3696 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3697 return -EINVAL; /* internal error */
3698 }
3699
3700 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3701 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3702 if (folio_test_hwpoison(folio))
3703 continue;
3704 return demote_free_hugetlb_folio(h, folio);
3705 }
3706 }
3707
3708 /*
3709 * Only way to get here is if all pages on free lists are poisoned.
3710 * Return -EBUSY so that caller will not retry.
3711 */
3712 return -EBUSY;
3713 }
3714
3715 #define HSTATE_ATTR_RO(_name) \
3716 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3717
3718 #define HSTATE_ATTR_WO(_name) \
3719 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3720
3721 #define HSTATE_ATTR(_name) \
3722 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3723
3724 static struct kobject *hugepages_kobj;
3725 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3726
3727 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3728
kobj_to_hstate(struct kobject * kobj,int * nidp)3729 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3730 {
3731 int i;
3732
3733 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3734 if (hstate_kobjs[i] == kobj) {
3735 if (nidp)
3736 *nidp = NUMA_NO_NODE;
3737 return &hstates[i];
3738 }
3739
3740 return kobj_to_node_hstate(kobj, nidp);
3741 }
3742
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3743 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3744 struct kobj_attribute *attr, char *buf)
3745 {
3746 struct hstate *h;
3747 unsigned long nr_huge_pages;
3748 int nid;
3749
3750 h = kobj_to_hstate(kobj, &nid);
3751 if (nid == NUMA_NO_NODE)
3752 nr_huge_pages = h->nr_huge_pages;
3753 else
3754 nr_huge_pages = h->nr_huge_pages_node[nid];
3755
3756 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3757 }
3758
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)3759 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3760 struct hstate *h, int nid,
3761 unsigned long count, size_t len)
3762 {
3763 int err;
3764 nodemask_t nodes_allowed, *n_mask;
3765
3766 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3767 return -EINVAL;
3768
3769 if (nid == NUMA_NO_NODE) {
3770 /*
3771 * global hstate attribute
3772 */
3773 if (!(obey_mempolicy &&
3774 init_nodemask_of_mempolicy(&nodes_allowed)))
3775 n_mask = &node_states[N_MEMORY];
3776 else
3777 n_mask = &nodes_allowed;
3778 } else {
3779 /*
3780 * Node specific request. count adjustment happens in
3781 * set_max_huge_pages() after acquiring hugetlb_lock.
3782 */
3783 init_nodemask_of_node(&nodes_allowed, nid);
3784 n_mask = &nodes_allowed;
3785 }
3786
3787 err = set_max_huge_pages(h, count, nid, n_mask);
3788
3789 return err ? err : len;
3790 }
3791
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)3792 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3793 struct kobject *kobj, const char *buf,
3794 size_t len)
3795 {
3796 struct hstate *h;
3797 unsigned long count;
3798 int nid;
3799 int err;
3800
3801 err = kstrtoul(buf, 10, &count);
3802 if (err)
3803 return err;
3804
3805 h = kobj_to_hstate(kobj, &nid);
3806 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3807 }
3808
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3809 static ssize_t nr_hugepages_show(struct kobject *kobj,
3810 struct kobj_attribute *attr, char *buf)
3811 {
3812 return nr_hugepages_show_common(kobj, attr, buf);
3813 }
3814
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3815 static ssize_t nr_hugepages_store(struct kobject *kobj,
3816 struct kobj_attribute *attr, const char *buf, size_t len)
3817 {
3818 return nr_hugepages_store_common(false, kobj, buf, len);
3819 }
3820 HSTATE_ATTR(nr_hugepages);
3821
3822 #ifdef CONFIG_NUMA
3823
3824 /*
3825 * hstate attribute for optionally mempolicy-based constraint on persistent
3826 * huge page alloc/free.
3827 */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3828 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3829 struct kobj_attribute *attr,
3830 char *buf)
3831 {
3832 return nr_hugepages_show_common(kobj, attr, buf);
3833 }
3834
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3835 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3836 struct kobj_attribute *attr, const char *buf, size_t len)
3837 {
3838 return nr_hugepages_store_common(true, kobj, buf, len);
3839 }
3840 HSTATE_ATTR(nr_hugepages_mempolicy);
3841 #endif
3842
3843
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3844 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3845 struct kobj_attribute *attr, char *buf)
3846 {
3847 struct hstate *h = kobj_to_hstate(kobj, NULL);
3848 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3849 }
3850
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3851 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3852 struct kobj_attribute *attr, const char *buf, size_t count)
3853 {
3854 int err;
3855 unsigned long input;
3856 struct hstate *h = kobj_to_hstate(kobj, NULL);
3857
3858 if (hstate_is_gigantic(h))
3859 return -EINVAL;
3860
3861 err = kstrtoul(buf, 10, &input);
3862 if (err)
3863 return err;
3864
3865 spin_lock_irq(&hugetlb_lock);
3866 h->nr_overcommit_huge_pages = input;
3867 spin_unlock_irq(&hugetlb_lock);
3868
3869 return count;
3870 }
3871 HSTATE_ATTR(nr_overcommit_hugepages);
3872
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3873 static ssize_t free_hugepages_show(struct kobject *kobj,
3874 struct kobj_attribute *attr, char *buf)
3875 {
3876 struct hstate *h;
3877 unsigned long free_huge_pages;
3878 int nid;
3879
3880 h = kobj_to_hstate(kobj, &nid);
3881 if (nid == NUMA_NO_NODE)
3882 free_huge_pages = h->free_huge_pages;
3883 else
3884 free_huge_pages = h->free_huge_pages_node[nid];
3885
3886 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3887 }
3888 HSTATE_ATTR_RO(free_hugepages);
3889
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3890 static ssize_t resv_hugepages_show(struct kobject *kobj,
3891 struct kobj_attribute *attr, char *buf)
3892 {
3893 struct hstate *h = kobj_to_hstate(kobj, NULL);
3894 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3895 }
3896 HSTATE_ATTR_RO(resv_hugepages);
3897
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3898 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3899 struct kobj_attribute *attr, char *buf)
3900 {
3901 struct hstate *h;
3902 unsigned long surplus_huge_pages;
3903 int nid;
3904
3905 h = kobj_to_hstate(kobj, &nid);
3906 if (nid == NUMA_NO_NODE)
3907 surplus_huge_pages = h->surplus_huge_pages;
3908 else
3909 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3910
3911 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3912 }
3913 HSTATE_ATTR_RO(surplus_hugepages);
3914
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3915 static ssize_t demote_store(struct kobject *kobj,
3916 struct kobj_attribute *attr, const char *buf, size_t len)
3917 {
3918 unsigned long nr_demote;
3919 unsigned long nr_available;
3920 nodemask_t nodes_allowed, *n_mask;
3921 struct hstate *h;
3922 int err;
3923 int nid;
3924
3925 err = kstrtoul(buf, 10, &nr_demote);
3926 if (err)
3927 return err;
3928 h = kobj_to_hstate(kobj, &nid);
3929
3930 if (nid != NUMA_NO_NODE) {
3931 init_nodemask_of_node(&nodes_allowed, nid);
3932 n_mask = &nodes_allowed;
3933 } else {
3934 n_mask = &node_states[N_MEMORY];
3935 }
3936
3937 /* Synchronize with other sysfs operations modifying huge pages */
3938 mutex_lock(&h->resize_lock);
3939 spin_lock_irq(&hugetlb_lock);
3940
3941 while (nr_demote) {
3942 /*
3943 * Check for available pages to demote each time thorough the
3944 * loop as demote_pool_huge_page will drop hugetlb_lock.
3945 */
3946 if (nid != NUMA_NO_NODE)
3947 nr_available = h->free_huge_pages_node[nid];
3948 else
3949 nr_available = h->free_huge_pages;
3950 nr_available -= h->resv_huge_pages;
3951 if (!nr_available)
3952 break;
3953
3954 err = demote_pool_huge_page(h, n_mask);
3955 if (err)
3956 break;
3957
3958 nr_demote--;
3959 }
3960
3961 spin_unlock_irq(&hugetlb_lock);
3962 mutex_unlock(&h->resize_lock);
3963
3964 if (err)
3965 return err;
3966 return len;
3967 }
3968 HSTATE_ATTR_WO(demote);
3969
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3970 static ssize_t demote_size_show(struct kobject *kobj,
3971 struct kobj_attribute *attr, char *buf)
3972 {
3973 struct hstate *h = kobj_to_hstate(kobj, NULL);
3974 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3975
3976 return sysfs_emit(buf, "%lukB\n", demote_size);
3977 }
3978
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3979 static ssize_t demote_size_store(struct kobject *kobj,
3980 struct kobj_attribute *attr,
3981 const char *buf, size_t count)
3982 {
3983 struct hstate *h, *demote_hstate;
3984 unsigned long demote_size;
3985 unsigned int demote_order;
3986
3987 demote_size = (unsigned long)memparse(buf, NULL);
3988
3989 demote_hstate = size_to_hstate(demote_size);
3990 if (!demote_hstate)
3991 return -EINVAL;
3992 demote_order = demote_hstate->order;
3993 if (demote_order < HUGETLB_PAGE_ORDER)
3994 return -EINVAL;
3995
3996 /* demote order must be smaller than hstate order */
3997 h = kobj_to_hstate(kobj, NULL);
3998 if (demote_order >= h->order)
3999 return -EINVAL;
4000
4001 /* resize_lock synchronizes access to demote size and writes */
4002 mutex_lock(&h->resize_lock);
4003 h->demote_order = demote_order;
4004 mutex_unlock(&h->resize_lock);
4005
4006 return count;
4007 }
4008 HSTATE_ATTR(demote_size);
4009
4010 static struct attribute *hstate_attrs[] = {
4011 &nr_hugepages_attr.attr,
4012 &nr_overcommit_hugepages_attr.attr,
4013 &free_hugepages_attr.attr,
4014 &resv_hugepages_attr.attr,
4015 &surplus_hugepages_attr.attr,
4016 #ifdef CONFIG_NUMA
4017 &nr_hugepages_mempolicy_attr.attr,
4018 #endif
4019 NULL,
4020 };
4021
4022 static const struct attribute_group hstate_attr_group = {
4023 .attrs = hstate_attrs,
4024 };
4025
4026 static struct attribute *hstate_demote_attrs[] = {
4027 &demote_size_attr.attr,
4028 &demote_attr.attr,
4029 NULL,
4030 };
4031
4032 static const struct attribute_group hstate_demote_attr_group = {
4033 .attrs = hstate_demote_attrs,
4034 };
4035
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)4036 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4037 struct kobject **hstate_kobjs,
4038 const struct attribute_group *hstate_attr_group)
4039 {
4040 int retval;
4041 int hi = hstate_index(h);
4042
4043 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4044 if (!hstate_kobjs[hi])
4045 return -ENOMEM;
4046
4047 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4048 if (retval) {
4049 kobject_put(hstate_kobjs[hi]);
4050 hstate_kobjs[hi] = NULL;
4051 return retval;
4052 }
4053
4054 if (h->demote_order) {
4055 retval = sysfs_create_group(hstate_kobjs[hi],
4056 &hstate_demote_attr_group);
4057 if (retval) {
4058 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4059 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4060 kobject_put(hstate_kobjs[hi]);
4061 hstate_kobjs[hi] = NULL;
4062 return retval;
4063 }
4064 }
4065
4066 return 0;
4067 }
4068
4069 #ifdef CONFIG_NUMA
4070 static bool hugetlb_sysfs_initialized __ro_after_init;
4071
4072 /*
4073 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4074 * with node devices in node_devices[] using a parallel array. The array
4075 * index of a node device or _hstate == node id.
4076 * This is here to avoid any static dependency of the node device driver, in
4077 * the base kernel, on the hugetlb module.
4078 */
4079 struct node_hstate {
4080 struct kobject *hugepages_kobj;
4081 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4082 };
4083 static struct node_hstate node_hstates[MAX_NUMNODES];
4084
4085 /*
4086 * A subset of global hstate attributes for node devices
4087 */
4088 static struct attribute *per_node_hstate_attrs[] = {
4089 &nr_hugepages_attr.attr,
4090 &free_hugepages_attr.attr,
4091 &surplus_hugepages_attr.attr,
4092 NULL,
4093 };
4094
4095 static const struct attribute_group per_node_hstate_attr_group = {
4096 .attrs = per_node_hstate_attrs,
4097 };
4098
4099 /*
4100 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4101 * Returns node id via non-NULL nidp.
4102 */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4103 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4104 {
4105 int nid;
4106
4107 for (nid = 0; nid < nr_node_ids; nid++) {
4108 struct node_hstate *nhs = &node_hstates[nid];
4109 int i;
4110 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4111 if (nhs->hstate_kobjs[i] == kobj) {
4112 if (nidp)
4113 *nidp = nid;
4114 return &hstates[i];
4115 }
4116 }
4117
4118 BUG();
4119 return NULL;
4120 }
4121
4122 /*
4123 * Unregister hstate attributes from a single node device.
4124 * No-op if no hstate attributes attached.
4125 */
hugetlb_unregister_node(struct node * node)4126 void hugetlb_unregister_node(struct node *node)
4127 {
4128 struct hstate *h;
4129 struct node_hstate *nhs = &node_hstates[node->dev.id];
4130
4131 if (!nhs->hugepages_kobj)
4132 return; /* no hstate attributes */
4133
4134 for_each_hstate(h) {
4135 int idx = hstate_index(h);
4136 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4137
4138 if (!hstate_kobj)
4139 continue;
4140 if (h->demote_order)
4141 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4142 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4143 kobject_put(hstate_kobj);
4144 nhs->hstate_kobjs[idx] = NULL;
4145 }
4146
4147 kobject_put(nhs->hugepages_kobj);
4148 nhs->hugepages_kobj = NULL;
4149 }
4150
4151
4152 /*
4153 * Register hstate attributes for a single node device.
4154 * No-op if attributes already registered.
4155 */
hugetlb_register_node(struct node * node)4156 void hugetlb_register_node(struct node *node)
4157 {
4158 struct hstate *h;
4159 struct node_hstate *nhs = &node_hstates[node->dev.id];
4160 int err;
4161
4162 if (!hugetlb_sysfs_initialized)
4163 return;
4164
4165 if (nhs->hugepages_kobj)
4166 return; /* already allocated */
4167
4168 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4169 &node->dev.kobj);
4170 if (!nhs->hugepages_kobj)
4171 return;
4172
4173 for_each_hstate(h) {
4174 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4175 nhs->hstate_kobjs,
4176 &per_node_hstate_attr_group);
4177 if (err) {
4178 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4179 h->name, node->dev.id);
4180 hugetlb_unregister_node(node);
4181 break;
4182 }
4183 }
4184 }
4185
4186 /*
4187 * hugetlb init time: register hstate attributes for all registered node
4188 * devices of nodes that have memory. All on-line nodes should have
4189 * registered their associated device by this time.
4190 */
hugetlb_register_all_nodes(void)4191 static void __init hugetlb_register_all_nodes(void)
4192 {
4193 int nid;
4194
4195 for_each_online_node(nid)
4196 hugetlb_register_node(node_devices[nid]);
4197 }
4198 #else /* !CONFIG_NUMA */
4199
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4200 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4201 {
4202 BUG();
4203 if (nidp)
4204 *nidp = -1;
4205 return NULL;
4206 }
4207
hugetlb_register_all_nodes(void)4208 static void hugetlb_register_all_nodes(void) { }
4209
4210 #endif
4211
4212 #ifdef CONFIG_CMA
4213 static void __init hugetlb_cma_check(void);
4214 #else
hugetlb_cma_check(void)4215 static inline __init void hugetlb_cma_check(void)
4216 {
4217 }
4218 #endif
4219
hugetlb_sysfs_init(void)4220 static void __init hugetlb_sysfs_init(void)
4221 {
4222 struct hstate *h;
4223 int err;
4224
4225 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4226 if (!hugepages_kobj)
4227 return;
4228
4229 for_each_hstate(h) {
4230 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4231 hstate_kobjs, &hstate_attr_group);
4232 if (err)
4233 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4234 }
4235
4236 #ifdef CONFIG_NUMA
4237 hugetlb_sysfs_initialized = true;
4238 #endif
4239 hugetlb_register_all_nodes();
4240 }
4241
4242 #ifdef CONFIG_SYSCTL
4243 static void hugetlb_sysctl_init(void);
4244 #else
hugetlb_sysctl_init(void)4245 static inline void hugetlb_sysctl_init(void) { }
4246 #endif
4247
hugetlb_init(void)4248 static int __init hugetlb_init(void)
4249 {
4250 int i;
4251
4252 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4253 __NR_HPAGEFLAGS);
4254
4255 if (!hugepages_supported()) {
4256 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4257 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4258 return 0;
4259 }
4260
4261 /*
4262 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4263 * architectures depend on setup being done here.
4264 */
4265 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4266 if (!parsed_default_hugepagesz) {
4267 /*
4268 * If we did not parse a default huge page size, set
4269 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4270 * number of huge pages for this default size was implicitly
4271 * specified, set that here as well.
4272 * Note that the implicit setting will overwrite an explicit
4273 * setting. A warning will be printed in this case.
4274 */
4275 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4276 if (default_hstate_max_huge_pages) {
4277 if (default_hstate.max_huge_pages) {
4278 char buf[32];
4279
4280 string_get_size(huge_page_size(&default_hstate),
4281 1, STRING_UNITS_2, buf, 32);
4282 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4283 default_hstate.max_huge_pages, buf);
4284 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4285 default_hstate_max_huge_pages);
4286 }
4287 default_hstate.max_huge_pages =
4288 default_hstate_max_huge_pages;
4289
4290 for_each_online_node(i)
4291 default_hstate.max_huge_pages_node[i] =
4292 default_hugepages_in_node[i];
4293 }
4294 }
4295
4296 hugetlb_cma_check();
4297 hugetlb_init_hstates();
4298 gather_bootmem_prealloc();
4299 report_hugepages();
4300
4301 hugetlb_sysfs_init();
4302 hugetlb_cgroup_file_init();
4303 hugetlb_sysctl_init();
4304
4305 #ifdef CONFIG_SMP
4306 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4307 #else
4308 num_fault_mutexes = 1;
4309 #endif
4310 hugetlb_fault_mutex_table =
4311 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4312 GFP_KERNEL);
4313 BUG_ON(!hugetlb_fault_mutex_table);
4314
4315 for (i = 0; i < num_fault_mutexes; i++)
4316 mutex_init(&hugetlb_fault_mutex_table[i]);
4317 return 0;
4318 }
4319 subsys_initcall(hugetlb_init);
4320
4321 /* Overwritten by architectures with more huge page sizes */
__init(weak)4322 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4323 {
4324 return size == HPAGE_SIZE;
4325 }
4326
hugetlb_add_hstate(unsigned int order)4327 void __init hugetlb_add_hstate(unsigned int order)
4328 {
4329 struct hstate *h;
4330 unsigned long i;
4331
4332 if (size_to_hstate(PAGE_SIZE << order)) {
4333 return;
4334 }
4335 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4336 BUG_ON(order == 0);
4337 h = &hstates[hugetlb_max_hstate++];
4338 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4339 h->order = order;
4340 h->mask = ~(huge_page_size(h) - 1);
4341 for (i = 0; i < MAX_NUMNODES; ++i)
4342 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4343 INIT_LIST_HEAD(&h->hugepage_activelist);
4344 h->next_nid_to_alloc = first_memory_node;
4345 h->next_nid_to_free = first_memory_node;
4346 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4347 huge_page_size(h)/SZ_1K);
4348
4349 parsed_hstate = h;
4350 }
4351
hugetlb_node_alloc_supported(void)4352 bool __init __weak hugetlb_node_alloc_supported(void)
4353 {
4354 return true;
4355 }
4356
hugepages_clear_pages_in_node(void)4357 static void __init hugepages_clear_pages_in_node(void)
4358 {
4359 if (!hugetlb_max_hstate) {
4360 default_hstate_max_huge_pages = 0;
4361 memset(default_hugepages_in_node, 0,
4362 sizeof(default_hugepages_in_node));
4363 } else {
4364 parsed_hstate->max_huge_pages = 0;
4365 memset(parsed_hstate->max_huge_pages_node, 0,
4366 sizeof(parsed_hstate->max_huge_pages_node));
4367 }
4368 }
4369
4370 /*
4371 * hugepages command line processing
4372 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4373 * specification. If not, ignore the hugepages value. hugepages can also
4374 * be the first huge page command line option in which case it implicitly
4375 * specifies the number of huge pages for the default size.
4376 */
hugepages_setup(char * s)4377 static int __init hugepages_setup(char *s)
4378 {
4379 unsigned long *mhp;
4380 static unsigned long *last_mhp;
4381 int node = NUMA_NO_NODE;
4382 int count;
4383 unsigned long tmp;
4384 char *p = s;
4385
4386 if (!parsed_valid_hugepagesz) {
4387 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4388 parsed_valid_hugepagesz = true;
4389 return 1;
4390 }
4391
4392 /*
4393 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4394 * yet, so this hugepages= parameter goes to the "default hstate".
4395 * Otherwise, it goes with the previously parsed hugepagesz or
4396 * default_hugepagesz.
4397 */
4398 else if (!hugetlb_max_hstate)
4399 mhp = &default_hstate_max_huge_pages;
4400 else
4401 mhp = &parsed_hstate->max_huge_pages;
4402
4403 if (mhp == last_mhp) {
4404 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4405 return 1;
4406 }
4407
4408 while (*p) {
4409 count = 0;
4410 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4411 goto invalid;
4412 /* Parameter is node format */
4413 if (p[count] == ':') {
4414 if (!hugetlb_node_alloc_supported()) {
4415 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4416 return 1;
4417 }
4418 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4419 goto invalid;
4420 node = array_index_nospec(tmp, MAX_NUMNODES);
4421 p += count + 1;
4422 /* Parse hugepages */
4423 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4424 goto invalid;
4425 if (!hugetlb_max_hstate)
4426 default_hugepages_in_node[node] = tmp;
4427 else
4428 parsed_hstate->max_huge_pages_node[node] = tmp;
4429 *mhp += tmp;
4430 /* Go to parse next node*/
4431 if (p[count] == ',')
4432 p += count + 1;
4433 else
4434 break;
4435 } else {
4436 if (p != s)
4437 goto invalid;
4438 *mhp = tmp;
4439 break;
4440 }
4441 }
4442
4443 /*
4444 * Global state is always initialized later in hugetlb_init.
4445 * But we need to allocate gigantic hstates here early to still
4446 * use the bootmem allocator.
4447 */
4448 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4449 hugetlb_hstate_alloc_pages(parsed_hstate);
4450
4451 last_mhp = mhp;
4452
4453 return 1;
4454
4455 invalid:
4456 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4457 hugepages_clear_pages_in_node();
4458 return 1;
4459 }
4460 __setup("hugepages=", hugepages_setup);
4461
4462 /*
4463 * hugepagesz command line processing
4464 * A specific huge page size can only be specified once with hugepagesz.
4465 * hugepagesz is followed by hugepages on the command line. The global
4466 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4467 * hugepagesz argument was valid.
4468 */
hugepagesz_setup(char * s)4469 static int __init hugepagesz_setup(char *s)
4470 {
4471 unsigned long size;
4472 struct hstate *h;
4473
4474 parsed_valid_hugepagesz = false;
4475 size = (unsigned long)memparse(s, NULL);
4476
4477 if (!arch_hugetlb_valid_size(size)) {
4478 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4479 return 1;
4480 }
4481
4482 h = size_to_hstate(size);
4483 if (h) {
4484 /*
4485 * hstate for this size already exists. This is normally
4486 * an error, but is allowed if the existing hstate is the
4487 * default hstate. More specifically, it is only allowed if
4488 * the number of huge pages for the default hstate was not
4489 * previously specified.
4490 */
4491 if (!parsed_default_hugepagesz || h != &default_hstate ||
4492 default_hstate.max_huge_pages) {
4493 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4494 return 1;
4495 }
4496
4497 /*
4498 * No need to call hugetlb_add_hstate() as hstate already
4499 * exists. But, do set parsed_hstate so that a following
4500 * hugepages= parameter will be applied to this hstate.
4501 */
4502 parsed_hstate = h;
4503 parsed_valid_hugepagesz = true;
4504 return 1;
4505 }
4506
4507 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4508 parsed_valid_hugepagesz = true;
4509 return 1;
4510 }
4511 __setup("hugepagesz=", hugepagesz_setup);
4512
4513 /*
4514 * default_hugepagesz command line input
4515 * Only one instance of default_hugepagesz allowed on command line.
4516 */
default_hugepagesz_setup(char * s)4517 static int __init default_hugepagesz_setup(char *s)
4518 {
4519 unsigned long size;
4520 int i;
4521
4522 parsed_valid_hugepagesz = false;
4523 if (parsed_default_hugepagesz) {
4524 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4525 return 1;
4526 }
4527
4528 size = (unsigned long)memparse(s, NULL);
4529
4530 if (!arch_hugetlb_valid_size(size)) {
4531 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4532 return 1;
4533 }
4534
4535 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4536 parsed_valid_hugepagesz = true;
4537 parsed_default_hugepagesz = true;
4538 default_hstate_idx = hstate_index(size_to_hstate(size));
4539
4540 /*
4541 * The number of default huge pages (for this size) could have been
4542 * specified as the first hugetlb parameter: hugepages=X. If so,
4543 * then default_hstate_max_huge_pages is set. If the default huge
4544 * page size is gigantic (> MAX_ORDER), then the pages must be
4545 * allocated here from bootmem allocator.
4546 */
4547 if (default_hstate_max_huge_pages) {
4548 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4549 for_each_online_node(i)
4550 default_hstate.max_huge_pages_node[i] =
4551 default_hugepages_in_node[i];
4552 if (hstate_is_gigantic(&default_hstate))
4553 hugetlb_hstate_alloc_pages(&default_hstate);
4554 default_hstate_max_huge_pages = 0;
4555 }
4556
4557 return 1;
4558 }
4559 __setup("default_hugepagesz=", default_hugepagesz_setup);
4560
allowed_mems_nr(struct hstate * h)4561 static unsigned int allowed_mems_nr(struct hstate *h)
4562 {
4563 int node;
4564 unsigned int nr = 0;
4565 nodemask_t *mbind_nodemask;
4566 unsigned int *array = h->free_huge_pages_node;
4567 gfp_t gfp_mask = htlb_alloc_mask(h);
4568
4569 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4570 for_each_node_mask(node, cpuset_current_mems_allowed) {
4571 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4572 nr += array[node];
4573 }
4574
4575 return nr;
4576 }
4577
4578 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)4579 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4580 void *buffer, size_t *length,
4581 loff_t *ppos, unsigned long *out)
4582 {
4583 struct ctl_table dup_table;
4584
4585 /*
4586 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4587 * can duplicate the @table and alter the duplicate of it.
4588 */
4589 dup_table = *table;
4590 dup_table.data = out;
4591
4592 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4593 }
4594
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4595 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4596 struct ctl_table *table, int write,
4597 void *buffer, size_t *length, loff_t *ppos)
4598 {
4599 struct hstate *h = &default_hstate;
4600 unsigned long tmp = h->max_huge_pages;
4601 int ret;
4602
4603 if (!hugepages_supported())
4604 return -EOPNOTSUPP;
4605
4606 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4607 &tmp);
4608 if (ret)
4609 goto out;
4610
4611 if (write)
4612 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4613 NUMA_NO_NODE, tmp, *length);
4614 out:
4615 return ret;
4616 }
4617
hugetlb_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4618 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4619 void *buffer, size_t *length, loff_t *ppos)
4620 {
4621
4622 return hugetlb_sysctl_handler_common(false, table, write,
4623 buffer, length, ppos);
4624 }
4625
4626 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4627 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4628 void *buffer, size_t *length, loff_t *ppos)
4629 {
4630 return hugetlb_sysctl_handler_common(true, table, write,
4631 buffer, length, ppos);
4632 }
4633 #endif /* CONFIG_NUMA */
4634
hugetlb_overcommit_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4635 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4636 void *buffer, size_t *length, loff_t *ppos)
4637 {
4638 struct hstate *h = &default_hstate;
4639 unsigned long tmp;
4640 int ret;
4641
4642 if (!hugepages_supported())
4643 return -EOPNOTSUPP;
4644
4645 tmp = h->nr_overcommit_huge_pages;
4646
4647 if (write && hstate_is_gigantic(h))
4648 return -EINVAL;
4649
4650 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4651 &tmp);
4652 if (ret)
4653 goto out;
4654
4655 if (write) {
4656 spin_lock_irq(&hugetlb_lock);
4657 h->nr_overcommit_huge_pages = tmp;
4658 spin_unlock_irq(&hugetlb_lock);
4659 }
4660 out:
4661 return ret;
4662 }
4663
4664 static struct ctl_table hugetlb_table[] = {
4665 {
4666 .procname = "nr_hugepages",
4667 .data = NULL,
4668 .maxlen = sizeof(unsigned long),
4669 .mode = 0644,
4670 .proc_handler = hugetlb_sysctl_handler,
4671 },
4672 #ifdef CONFIG_NUMA
4673 {
4674 .procname = "nr_hugepages_mempolicy",
4675 .data = NULL,
4676 .maxlen = sizeof(unsigned long),
4677 .mode = 0644,
4678 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4679 },
4680 #endif
4681 {
4682 .procname = "hugetlb_shm_group",
4683 .data = &sysctl_hugetlb_shm_group,
4684 .maxlen = sizeof(gid_t),
4685 .mode = 0644,
4686 .proc_handler = proc_dointvec,
4687 },
4688 {
4689 .procname = "nr_overcommit_hugepages",
4690 .data = NULL,
4691 .maxlen = sizeof(unsigned long),
4692 .mode = 0644,
4693 .proc_handler = hugetlb_overcommit_handler,
4694 },
4695 { }
4696 };
4697
hugetlb_sysctl_init(void)4698 static void __init hugetlb_sysctl_init(void)
4699 {
4700 register_sysctl_init("vm", hugetlb_table);
4701 }
4702 #endif /* CONFIG_SYSCTL */
4703
hugetlb_report_meminfo(struct seq_file * m)4704 void hugetlb_report_meminfo(struct seq_file *m)
4705 {
4706 struct hstate *h;
4707 unsigned long total = 0;
4708
4709 if (!hugepages_supported())
4710 return;
4711
4712 for_each_hstate(h) {
4713 unsigned long count = h->nr_huge_pages;
4714
4715 total += huge_page_size(h) * count;
4716
4717 if (h == &default_hstate)
4718 seq_printf(m,
4719 "HugePages_Total: %5lu\n"
4720 "HugePages_Free: %5lu\n"
4721 "HugePages_Rsvd: %5lu\n"
4722 "HugePages_Surp: %5lu\n"
4723 "Hugepagesize: %8lu kB\n",
4724 count,
4725 h->free_huge_pages,
4726 h->resv_huge_pages,
4727 h->surplus_huge_pages,
4728 huge_page_size(h) / SZ_1K);
4729 }
4730
4731 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4732 }
4733
hugetlb_report_node_meminfo(char * buf,int len,int nid)4734 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4735 {
4736 struct hstate *h = &default_hstate;
4737
4738 if (!hugepages_supported())
4739 return 0;
4740
4741 return sysfs_emit_at(buf, len,
4742 "Node %d HugePages_Total: %5u\n"
4743 "Node %d HugePages_Free: %5u\n"
4744 "Node %d HugePages_Surp: %5u\n",
4745 nid, h->nr_huge_pages_node[nid],
4746 nid, h->free_huge_pages_node[nid],
4747 nid, h->surplus_huge_pages_node[nid]);
4748 }
4749
hugetlb_show_meminfo_node(int nid)4750 void hugetlb_show_meminfo_node(int nid)
4751 {
4752 struct hstate *h;
4753
4754 if (!hugepages_supported())
4755 return;
4756
4757 for_each_hstate(h)
4758 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4759 nid,
4760 h->nr_huge_pages_node[nid],
4761 h->free_huge_pages_node[nid],
4762 h->surplus_huge_pages_node[nid],
4763 huge_page_size(h) / SZ_1K);
4764 }
4765
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)4766 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4767 {
4768 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4769 K(atomic_long_read(&mm->hugetlb_usage)));
4770 }
4771
4772 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)4773 unsigned long hugetlb_total_pages(void)
4774 {
4775 struct hstate *h;
4776 unsigned long nr_total_pages = 0;
4777
4778 for_each_hstate(h)
4779 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4780 return nr_total_pages;
4781 }
4782
hugetlb_acct_memory(struct hstate * h,long delta)4783 static int hugetlb_acct_memory(struct hstate *h, long delta)
4784 {
4785 int ret = -ENOMEM;
4786
4787 if (!delta)
4788 return 0;
4789
4790 spin_lock_irq(&hugetlb_lock);
4791 /*
4792 * When cpuset is configured, it breaks the strict hugetlb page
4793 * reservation as the accounting is done on a global variable. Such
4794 * reservation is completely rubbish in the presence of cpuset because
4795 * the reservation is not checked against page availability for the
4796 * current cpuset. Application can still potentially OOM'ed by kernel
4797 * with lack of free htlb page in cpuset that the task is in.
4798 * Attempt to enforce strict accounting with cpuset is almost
4799 * impossible (or too ugly) because cpuset is too fluid that
4800 * task or memory node can be dynamically moved between cpusets.
4801 *
4802 * The change of semantics for shared hugetlb mapping with cpuset is
4803 * undesirable. However, in order to preserve some of the semantics,
4804 * we fall back to check against current free page availability as
4805 * a best attempt and hopefully to minimize the impact of changing
4806 * semantics that cpuset has.
4807 *
4808 * Apart from cpuset, we also have memory policy mechanism that
4809 * also determines from which node the kernel will allocate memory
4810 * in a NUMA system. So similar to cpuset, we also should consider
4811 * the memory policy of the current task. Similar to the description
4812 * above.
4813 */
4814 if (delta > 0) {
4815 if (gather_surplus_pages(h, delta) < 0)
4816 goto out;
4817
4818 if (delta > allowed_mems_nr(h)) {
4819 return_unused_surplus_pages(h, delta);
4820 goto out;
4821 }
4822 }
4823
4824 ret = 0;
4825 if (delta < 0)
4826 return_unused_surplus_pages(h, (unsigned long) -delta);
4827
4828 out:
4829 spin_unlock_irq(&hugetlb_lock);
4830 return ret;
4831 }
4832
hugetlb_vm_op_open(struct vm_area_struct * vma)4833 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4834 {
4835 struct resv_map *resv = vma_resv_map(vma);
4836
4837 /*
4838 * HPAGE_RESV_OWNER indicates a private mapping.
4839 * This new VMA should share its siblings reservation map if present.
4840 * The VMA will only ever have a valid reservation map pointer where
4841 * it is being copied for another still existing VMA. As that VMA
4842 * has a reference to the reservation map it cannot disappear until
4843 * after this open call completes. It is therefore safe to take a
4844 * new reference here without additional locking.
4845 */
4846 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4847 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4848 kref_get(&resv->refs);
4849 }
4850
4851 /*
4852 * vma_lock structure for sharable mappings is vma specific.
4853 * Clear old pointer (if copied via vm_area_dup) and allocate
4854 * new structure. Before clearing, make sure vma_lock is not
4855 * for this vma.
4856 */
4857 if (vma->vm_flags & VM_MAYSHARE) {
4858 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4859
4860 if (vma_lock) {
4861 if (vma_lock->vma != vma) {
4862 vma->vm_private_data = NULL;
4863 hugetlb_vma_lock_alloc(vma);
4864 } else
4865 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4866 } else
4867 hugetlb_vma_lock_alloc(vma);
4868 }
4869 }
4870
hugetlb_vm_op_close(struct vm_area_struct * vma)4871 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4872 {
4873 struct hstate *h = hstate_vma(vma);
4874 struct resv_map *resv;
4875 struct hugepage_subpool *spool = subpool_vma(vma);
4876 unsigned long reserve, start, end;
4877 long gbl_reserve;
4878
4879 hugetlb_vma_lock_free(vma);
4880
4881 resv = vma_resv_map(vma);
4882 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4883 return;
4884
4885 start = vma_hugecache_offset(h, vma, vma->vm_start);
4886 end = vma_hugecache_offset(h, vma, vma->vm_end);
4887
4888 reserve = (end - start) - region_count(resv, start, end);
4889 hugetlb_cgroup_uncharge_counter(resv, start, end);
4890 if (reserve) {
4891 /*
4892 * Decrement reserve counts. The global reserve count may be
4893 * adjusted if the subpool has a minimum size.
4894 */
4895 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4896 hugetlb_acct_memory(h, -gbl_reserve);
4897 }
4898
4899 kref_put(&resv->refs, resv_map_release);
4900 }
4901
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)4902 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4903 {
4904 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4905 return -EINVAL;
4906 return 0;
4907 }
4908
hugetlb_split(struct vm_area_struct * vma,unsigned long addr)4909 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr)
4910 {
4911 /*
4912 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4913 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4914 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4915 * This function is called in the middle of a VMA split operation, with
4916 * MM, VMA and rmap all write-locked to prevent concurrent page table
4917 * walks (except hardware and gup_fast()).
4918 */
4919 vma_assert_write_locked(vma);
4920 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
4921
4922 if (addr & ~PUD_MASK) {
4923 unsigned long floor = addr & PUD_MASK;
4924 unsigned long ceil = floor + PUD_SIZE;
4925
4926 if (floor >= vma->vm_start && ceil <= vma->vm_end) {
4927 /*
4928 * Locking:
4929 * Use take_locks=false here.
4930 * The file rmap lock is already held.
4931 * The hugetlb VMA lock can't be taken when we already
4932 * hold the file rmap lock, and we don't need it because
4933 * its purpose is to synchronize against concurrent page
4934 * table walks, which are not possible thanks to the
4935 * locks held by our caller.
4936 */
4937 hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false);
4938 }
4939 }
4940 }
4941
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)4942 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4943 {
4944 return huge_page_size(hstate_vma(vma));
4945 }
4946
4947 /*
4948 * We cannot handle pagefaults against hugetlb pages at all. They cause
4949 * handle_mm_fault() to try to instantiate regular-sized pages in the
4950 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4951 * this far.
4952 */
hugetlb_vm_op_fault(struct vm_fault * vmf)4953 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4954 {
4955 BUG();
4956 return 0;
4957 }
4958
4959 /*
4960 * When a new function is introduced to vm_operations_struct and added
4961 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4962 * This is because under System V memory model, mappings created via
4963 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4964 * their original vm_ops are overwritten with shm_vm_ops.
4965 */
4966 const struct vm_operations_struct hugetlb_vm_ops = {
4967 .fault = hugetlb_vm_op_fault,
4968 .open = hugetlb_vm_op_open,
4969 .close = hugetlb_vm_op_close,
4970 .may_split = hugetlb_vm_op_split,
4971 .pagesize = hugetlb_vm_op_pagesize,
4972 };
4973
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)4974 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4975 int writable)
4976 {
4977 pte_t entry;
4978 unsigned int shift = huge_page_shift(hstate_vma(vma));
4979
4980 if (writable) {
4981 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4982 vma->vm_page_prot)));
4983 } else {
4984 entry = huge_pte_wrprotect(mk_huge_pte(page,
4985 vma->vm_page_prot));
4986 }
4987 entry = pte_mkyoung(entry);
4988 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4989
4990 return entry;
4991 }
4992
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)4993 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4994 unsigned long address, pte_t *ptep)
4995 {
4996 pte_t entry;
4997
4998 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4999 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5000 update_mmu_cache(vma, address, ptep);
5001 }
5002
is_hugetlb_entry_migration(pte_t pte)5003 bool is_hugetlb_entry_migration(pte_t pte)
5004 {
5005 swp_entry_t swp;
5006
5007 if (huge_pte_none(pte) || pte_present(pte))
5008 return false;
5009 swp = pte_to_swp_entry(pte);
5010 if (is_migration_entry(swp))
5011 return true;
5012 else
5013 return false;
5014 }
5015
is_hugetlb_entry_hwpoisoned(pte_t pte)5016 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5017 {
5018 swp_entry_t swp;
5019
5020 if (huge_pte_none(pte) || pte_present(pte))
5021 return false;
5022 swp = pte_to_swp_entry(pte);
5023 if (is_hwpoison_entry(swp))
5024 return true;
5025 else
5026 return false;
5027 }
5028
5029 static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)5030 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5031 struct folio *new_folio, pte_t old, unsigned long sz)
5032 {
5033 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5034
5035 __folio_mark_uptodate(new_folio);
5036 hugepage_add_new_anon_rmap(new_folio, vma, addr);
5037 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5038 newpte = huge_pte_mkuffd_wp(newpte);
5039 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5040 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5041 folio_set_hugetlb_migratable(new_folio);
5042 }
5043
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)5044 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5045 struct vm_area_struct *dst_vma,
5046 struct vm_area_struct *src_vma)
5047 {
5048 pte_t *src_pte, *dst_pte, entry;
5049 struct folio *pte_folio;
5050 unsigned long addr;
5051 bool cow = is_cow_mapping(src_vma->vm_flags);
5052 struct hstate *h = hstate_vma(src_vma);
5053 unsigned long sz = huge_page_size(h);
5054 unsigned long npages = pages_per_huge_page(h);
5055 struct mmu_notifier_range range;
5056 unsigned long last_addr_mask;
5057 int ret = 0;
5058
5059 if (cow) {
5060 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5061 src_vma->vm_start,
5062 src_vma->vm_end);
5063 mmu_notifier_invalidate_range_start(&range);
5064 vma_assert_write_locked(src_vma);
5065 raw_write_seqcount_begin(&src->write_protect_seq);
5066 } else {
5067 /*
5068 * For shared mappings the vma lock must be held before
5069 * calling hugetlb_walk() in the src vma. Otherwise, the
5070 * returned ptep could go away if part of a shared pmd and
5071 * another thread calls huge_pmd_unshare.
5072 */
5073 hugetlb_vma_lock_read(src_vma);
5074 }
5075
5076 last_addr_mask = hugetlb_mask_last_page(h);
5077 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5078 spinlock_t *src_ptl, *dst_ptl;
5079 src_pte = hugetlb_walk(src_vma, addr, sz);
5080 if (!src_pte) {
5081 addr |= last_addr_mask;
5082 continue;
5083 }
5084 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5085 if (!dst_pte) {
5086 ret = -ENOMEM;
5087 break;
5088 }
5089
5090 /*
5091 * If the pagetables are shared don't copy or take references.
5092 *
5093 * dst_pte == src_pte is the common case of src/dest sharing.
5094 * However, src could have 'unshared' and dst shares with
5095 * another vma. So page_count of ptep page is checked instead
5096 * to reliably determine whether pte is shared.
5097 */
5098 if (page_count(virt_to_page(dst_pte)) > 1) {
5099 addr |= last_addr_mask;
5100 continue;
5101 }
5102
5103 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5104 src_ptl = huge_pte_lockptr(h, src, src_pte);
5105 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5106 entry = huge_ptep_get(src_pte);
5107 again:
5108 if (huge_pte_none(entry)) {
5109 /*
5110 * Skip if src entry none.
5111 */
5112 ;
5113 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5114 if (!userfaultfd_wp(dst_vma))
5115 entry = huge_pte_clear_uffd_wp(entry);
5116 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5117 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5118 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5119 bool uffd_wp = pte_swp_uffd_wp(entry);
5120
5121 if (!is_readable_migration_entry(swp_entry) && cow) {
5122 /*
5123 * COW mappings require pages in both
5124 * parent and child to be set to read.
5125 */
5126 swp_entry = make_readable_migration_entry(
5127 swp_offset(swp_entry));
5128 entry = swp_entry_to_pte(swp_entry);
5129 if (userfaultfd_wp(src_vma) && uffd_wp)
5130 entry = pte_swp_mkuffd_wp(entry);
5131 set_huge_pte_at(src, addr, src_pte, entry, sz);
5132 }
5133 if (!userfaultfd_wp(dst_vma))
5134 entry = huge_pte_clear_uffd_wp(entry);
5135 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5136 } else if (unlikely(is_pte_marker(entry))) {
5137 pte_marker marker = copy_pte_marker(
5138 pte_to_swp_entry(entry), dst_vma);
5139
5140 if (marker)
5141 set_huge_pte_at(dst, addr, dst_pte,
5142 make_pte_marker(marker), sz);
5143 } else {
5144 entry = huge_ptep_get(src_pte);
5145 pte_folio = page_folio(pte_page(entry));
5146 folio_get(pte_folio);
5147
5148 /*
5149 * Failing to duplicate the anon rmap is a rare case
5150 * where we see pinned hugetlb pages while they're
5151 * prone to COW. We need to do the COW earlier during
5152 * fork.
5153 *
5154 * When pre-allocating the page or copying data, we
5155 * need to be without the pgtable locks since we could
5156 * sleep during the process.
5157 */
5158 if (!folio_test_anon(pte_folio)) {
5159 page_dup_file_rmap(&pte_folio->page, true);
5160 } else if (page_try_dup_anon_rmap(&pte_folio->page,
5161 true, src_vma)) {
5162 pte_t src_pte_old = entry;
5163 struct folio *new_folio;
5164
5165 spin_unlock(src_ptl);
5166 spin_unlock(dst_ptl);
5167 /* Do not use reserve as it's private owned */
5168 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5169 if (IS_ERR(new_folio)) {
5170 folio_put(pte_folio);
5171 ret = PTR_ERR(new_folio);
5172 break;
5173 }
5174 ret = copy_user_large_folio(new_folio,
5175 pte_folio,
5176 addr, dst_vma);
5177 folio_put(pte_folio);
5178 if (ret) {
5179 folio_put(new_folio);
5180 break;
5181 }
5182
5183 /* Install the new hugetlb folio if src pte stable */
5184 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5185 src_ptl = huge_pte_lockptr(h, src, src_pte);
5186 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5187 entry = huge_ptep_get(src_pte);
5188 if (!pte_same(src_pte_old, entry)) {
5189 restore_reserve_on_error(h, dst_vma, addr,
5190 new_folio);
5191 folio_put(new_folio);
5192 /* huge_ptep of dst_pte won't change as in child */
5193 goto again;
5194 }
5195 hugetlb_install_folio(dst_vma, dst_pte, addr,
5196 new_folio, src_pte_old, sz);
5197 spin_unlock(src_ptl);
5198 spin_unlock(dst_ptl);
5199 continue;
5200 }
5201
5202 if (cow) {
5203 /*
5204 * No need to notify as we are downgrading page
5205 * table protection not changing it to point
5206 * to a new page.
5207 *
5208 * See Documentation/mm/mmu_notifier.rst
5209 */
5210 huge_ptep_set_wrprotect(src, addr, src_pte);
5211 entry = huge_pte_wrprotect(entry);
5212 }
5213
5214 if (!userfaultfd_wp(dst_vma))
5215 entry = huge_pte_clear_uffd_wp(entry);
5216
5217 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5218 hugetlb_count_add(npages, dst);
5219 }
5220 spin_unlock(src_ptl);
5221 spin_unlock(dst_ptl);
5222 }
5223
5224 if (cow) {
5225 raw_write_seqcount_end(&src->write_protect_seq);
5226 mmu_notifier_invalidate_range_end(&range);
5227 } else {
5228 hugetlb_vma_unlock_read(src_vma);
5229 }
5230
5231 return ret;
5232 }
5233
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5234 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5235 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5236 unsigned long sz)
5237 {
5238 struct hstate *h = hstate_vma(vma);
5239 struct mm_struct *mm = vma->vm_mm;
5240 spinlock_t *src_ptl, *dst_ptl;
5241 pte_t pte;
5242
5243 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5244 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5245
5246 /*
5247 * We don't have to worry about the ordering of src and dst ptlocks
5248 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5249 */
5250 if (src_ptl != dst_ptl)
5251 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5252
5253 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
5254 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5255
5256 if (src_ptl != dst_ptl)
5257 spin_unlock(src_ptl);
5258 spin_unlock(dst_ptl);
5259 }
5260
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5261 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5262 struct vm_area_struct *new_vma,
5263 unsigned long old_addr, unsigned long new_addr,
5264 unsigned long len)
5265 {
5266 struct hstate *h = hstate_vma(vma);
5267 struct address_space *mapping = vma->vm_file->f_mapping;
5268 unsigned long sz = huge_page_size(h);
5269 struct mm_struct *mm = vma->vm_mm;
5270 unsigned long old_end = old_addr + len;
5271 unsigned long last_addr_mask;
5272 pte_t *src_pte, *dst_pte;
5273 struct mmu_notifier_range range;
5274 bool shared_pmd = false;
5275
5276 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5277 old_end);
5278 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5279 /*
5280 * In case of shared PMDs, we should cover the maximum possible
5281 * range.
5282 */
5283 flush_cache_range(vma, range.start, range.end);
5284
5285 mmu_notifier_invalidate_range_start(&range);
5286 last_addr_mask = hugetlb_mask_last_page(h);
5287 /* Prevent race with file truncation */
5288 hugetlb_vma_lock_write(vma);
5289 i_mmap_lock_write(mapping);
5290 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5291 src_pte = hugetlb_walk(vma, old_addr, sz);
5292 if (!src_pte) {
5293 old_addr |= last_addr_mask;
5294 new_addr |= last_addr_mask;
5295 continue;
5296 }
5297 if (huge_pte_none(huge_ptep_get(src_pte)))
5298 continue;
5299
5300 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5301 shared_pmd = true;
5302 old_addr |= last_addr_mask;
5303 new_addr |= last_addr_mask;
5304 continue;
5305 }
5306
5307 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5308 if (!dst_pte)
5309 break;
5310
5311 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5312 }
5313
5314 if (shared_pmd)
5315 flush_hugetlb_tlb_range(vma, range.start, range.end);
5316 else
5317 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5318 mmu_notifier_invalidate_range_end(&range);
5319 i_mmap_unlock_write(mapping);
5320 hugetlb_vma_unlock_write(vma);
5321
5322 return len + old_addr - old_end;
5323 }
5324
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5325 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5326 unsigned long start, unsigned long end,
5327 struct page *ref_page, zap_flags_t zap_flags)
5328 {
5329 struct mm_struct *mm = vma->vm_mm;
5330 unsigned long address;
5331 pte_t *ptep;
5332 pte_t pte;
5333 spinlock_t *ptl;
5334 struct page *page;
5335 struct hstate *h = hstate_vma(vma);
5336 unsigned long sz = huge_page_size(h);
5337 unsigned long last_addr_mask;
5338 bool force_flush = false;
5339
5340 WARN_ON(!is_vm_hugetlb_page(vma));
5341 BUG_ON(start & ~huge_page_mask(h));
5342 BUG_ON(end & ~huge_page_mask(h));
5343
5344 /*
5345 * This is a hugetlb vma, all the pte entries should point
5346 * to huge page.
5347 */
5348 tlb_change_page_size(tlb, sz);
5349 tlb_start_vma(tlb, vma);
5350
5351 last_addr_mask = hugetlb_mask_last_page(h);
5352 address = start;
5353 for (; address < end; address += sz) {
5354 ptep = hugetlb_walk(vma, address, sz);
5355 if (!ptep) {
5356 address |= last_addr_mask;
5357 continue;
5358 }
5359
5360 ptl = huge_pte_lock(h, mm, ptep);
5361 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5362 spin_unlock(ptl);
5363 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5364 force_flush = true;
5365 address |= last_addr_mask;
5366 continue;
5367 }
5368
5369 pte = huge_ptep_get(ptep);
5370 if (huge_pte_none(pte)) {
5371 spin_unlock(ptl);
5372 continue;
5373 }
5374
5375 /*
5376 * Migrating hugepage or HWPoisoned hugepage is already
5377 * unmapped and its refcount is dropped, so just clear pte here.
5378 */
5379 if (unlikely(!pte_present(pte))) {
5380 /*
5381 * If the pte was wr-protected by uffd-wp in any of the
5382 * swap forms, meanwhile the caller does not want to
5383 * drop the uffd-wp bit in this zap, then replace the
5384 * pte with a marker.
5385 */
5386 if (pte_swp_uffd_wp_any(pte) &&
5387 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5388 set_huge_pte_at(mm, address, ptep,
5389 make_pte_marker(PTE_MARKER_UFFD_WP),
5390 sz);
5391 else
5392 huge_pte_clear(mm, address, ptep, sz);
5393 spin_unlock(ptl);
5394 continue;
5395 }
5396
5397 page = pte_page(pte);
5398 /*
5399 * If a reference page is supplied, it is because a specific
5400 * page is being unmapped, not a range. Ensure the page we
5401 * are about to unmap is the actual page of interest.
5402 */
5403 if (ref_page) {
5404 if (page != ref_page) {
5405 spin_unlock(ptl);
5406 continue;
5407 }
5408 /*
5409 * Mark the VMA as having unmapped its page so that
5410 * future faults in this VMA will fail rather than
5411 * looking like data was lost
5412 */
5413 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5414 }
5415
5416 pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
5417 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5418 if (huge_pte_dirty(pte))
5419 set_page_dirty(page);
5420 /* Leave a uffd-wp pte marker if needed */
5421 if (huge_pte_uffd_wp(pte) &&
5422 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5423 set_huge_pte_at(mm, address, ptep,
5424 make_pte_marker(PTE_MARKER_UFFD_WP),
5425 sz);
5426 hugetlb_count_sub(pages_per_huge_page(h), mm);
5427 page_remove_rmap(page, vma, true);
5428
5429 spin_unlock(ptl);
5430 tlb_remove_page_size(tlb, page, huge_page_size(h));
5431 /*
5432 * Bail out after unmapping reference page if supplied
5433 */
5434 if (ref_page)
5435 break;
5436 }
5437 tlb_end_vma(tlb, vma);
5438
5439 /*
5440 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5441 * could defer the flush until now, since by holding i_mmap_rwsem we
5442 * guaranteed that the last refernece would not be dropped. But we must
5443 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5444 * dropped and the last reference to the shared PMDs page might be
5445 * dropped as well.
5446 *
5447 * In theory we could defer the freeing of the PMD pages as well, but
5448 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5449 * detect sharing, so we cannot defer the release of the page either.
5450 * Instead, do flush now.
5451 */
5452 if (force_flush)
5453 tlb_flush_mmu_tlbonly(tlb);
5454 }
5455
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5456 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5457 unsigned long *start, unsigned long *end)
5458 {
5459 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5460 return;
5461
5462 adjust_range_if_pmd_sharing_possible(vma, start, end);
5463 hugetlb_vma_lock_write(vma);
5464 if (vma->vm_file)
5465 i_mmap_lock_write(vma->vm_file->f_mapping);
5466 }
5467
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)5468 void __hugetlb_zap_end(struct vm_area_struct *vma,
5469 struct zap_details *details)
5470 {
5471 zap_flags_t zap_flags = details ? details->zap_flags : 0;
5472
5473 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5474 return;
5475
5476 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5477 /*
5478 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5479 * When the vma_lock is freed, this makes the vma ineligible
5480 * for pmd sharing. And, i_mmap_rwsem is required to set up
5481 * pmd sharing. This is important as page tables for this
5482 * unmapped range will be asynchrously deleted. If the page
5483 * tables are shared, there will be issues when accessed by
5484 * someone else.
5485 */
5486 __hugetlb_vma_unlock_write_free(vma);
5487 } else {
5488 hugetlb_vma_unlock_write(vma);
5489 }
5490
5491 if (vma->vm_file)
5492 i_mmap_unlock_write(vma->vm_file->f_mapping);
5493 }
5494
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5495 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5496 unsigned long end, struct page *ref_page,
5497 zap_flags_t zap_flags)
5498 {
5499 struct mmu_notifier_range range;
5500 struct mmu_gather tlb;
5501
5502 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5503 start, end);
5504 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5505 mmu_notifier_invalidate_range_start(&range);
5506 tlb_gather_mmu(&tlb, vma->vm_mm);
5507
5508 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5509
5510 mmu_notifier_invalidate_range_end(&range);
5511 tlb_finish_mmu(&tlb);
5512 }
5513
5514 /*
5515 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5516 * mapping it owns the reserve page for. The intention is to unmap the page
5517 * from other VMAs and let the children be SIGKILLed if they are faulting the
5518 * same region.
5519 */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)5520 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5521 struct page *page, unsigned long address)
5522 {
5523 struct hstate *h = hstate_vma(vma);
5524 struct vm_area_struct *iter_vma;
5525 struct address_space *mapping;
5526 pgoff_t pgoff;
5527
5528 /*
5529 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5530 * from page cache lookup which is in HPAGE_SIZE units.
5531 */
5532 address = address & huge_page_mask(h);
5533 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5534 vma->vm_pgoff;
5535 mapping = vma->vm_file->f_mapping;
5536
5537 /*
5538 * Take the mapping lock for the duration of the table walk. As
5539 * this mapping should be shared between all the VMAs,
5540 * __unmap_hugepage_range() is called as the lock is already held
5541 */
5542 i_mmap_lock_write(mapping);
5543 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5544 /* Do not unmap the current VMA */
5545 if (iter_vma == vma)
5546 continue;
5547
5548 /*
5549 * Shared VMAs have their own reserves and do not affect
5550 * MAP_PRIVATE accounting but it is possible that a shared
5551 * VMA is using the same page so check and skip such VMAs.
5552 */
5553 if (iter_vma->vm_flags & VM_MAYSHARE)
5554 continue;
5555
5556 /*
5557 * Unmap the page from other VMAs without their own reserves.
5558 * They get marked to be SIGKILLed if they fault in these
5559 * areas. This is because a future no-page fault on this VMA
5560 * could insert a zeroed page instead of the data existing
5561 * from the time of fork. This would look like data corruption
5562 */
5563 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5564 unmap_hugepage_range(iter_vma, address,
5565 address + huge_page_size(h), page, 0);
5566 }
5567 i_mmap_unlock_write(mapping);
5568 }
5569
5570 /*
5571 * hugetlb_wp() should be called with page lock of the original hugepage held.
5572 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5573 * cannot race with other handlers or page migration.
5574 * Keep the pte_same checks anyway to make transition from the mutex easier.
5575 */
hugetlb_wp(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,unsigned int flags,struct folio * pagecache_folio,spinlock_t * ptl)5576 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5577 unsigned long address, pte_t *ptep, unsigned int flags,
5578 struct folio *pagecache_folio, spinlock_t *ptl)
5579 {
5580 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5581 pte_t pte = huge_ptep_get(ptep);
5582 struct hstate *h = hstate_vma(vma);
5583 struct folio *old_folio;
5584 struct folio *new_folio;
5585 int outside_reserve = 0;
5586 vm_fault_t ret = 0;
5587 unsigned long haddr = address & huge_page_mask(h);
5588 struct mmu_notifier_range range;
5589
5590 /*
5591 * Never handle CoW for uffd-wp protected pages. It should be only
5592 * handled when the uffd-wp protection is removed.
5593 *
5594 * Note that only the CoW optimization path (in hugetlb_no_page())
5595 * can trigger this, because hugetlb_fault() will always resolve
5596 * uffd-wp bit first.
5597 */
5598 if (!unshare && huge_pte_uffd_wp(pte))
5599 return 0;
5600
5601 /*
5602 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5603 * PTE mapped R/O such as maybe_mkwrite() would do.
5604 */
5605 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5606 return VM_FAULT_SIGSEGV;
5607
5608 /* Let's take out MAP_SHARED mappings first. */
5609 if (vma->vm_flags & VM_MAYSHARE) {
5610 set_huge_ptep_writable(vma, haddr, ptep);
5611 return 0;
5612 }
5613
5614 old_folio = page_folio(pte_page(pte));
5615
5616 delayacct_wpcopy_start();
5617
5618 retry_avoidcopy:
5619 /*
5620 * If no-one else is actually using this page, we're the exclusive
5621 * owner and can reuse this page.
5622 */
5623 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5624 if (!PageAnonExclusive(&old_folio->page))
5625 page_move_anon_rmap(&old_folio->page, vma);
5626 if (likely(!unshare))
5627 set_huge_ptep_writable(vma, haddr, ptep);
5628
5629 delayacct_wpcopy_end();
5630 return 0;
5631 }
5632 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5633 PageAnonExclusive(&old_folio->page), &old_folio->page);
5634
5635 /*
5636 * If the process that created a MAP_PRIVATE mapping is about to
5637 * perform a COW due to a shared page count, attempt to satisfy
5638 * the allocation without using the existing reserves. The pagecache
5639 * page is used to determine if the reserve at this address was
5640 * consumed or not. If reserves were used, a partial faulted mapping
5641 * at the time of fork() could consume its reserves on COW instead
5642 * of the full address range.
5643 */
5644 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5645 old_folio != pagecache_folio)
5646 outside_reserve = 1;
5647
5648 folio_get(old_folio);
5649
5650 /*
5651 * Drop page table lock as buddy allocator may be called. It will
5652 * be acquired again before returning to the caller, as expected.
5653 */
5654 spin_unlock(ptl);
5655 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5656
5657 if (IS_ERR(new_folio)) {
5658 /*
5659 * If a process owning a MAP_PRIVATE mapping fails to COW,
5660 * it is due to references held by a child and an insufficient
5661 * huge page pool. To guarantee the original mappers
5662 * reliability, unmap the page from child processes. The child
5663 * may get SIGKILLed if it later faults.
5664 */
5665 if (outside_reserve) {
5666 struct address_space *mapping = vma->vm_file->f_mapping;
5667 pgoff_t idx;
5668 u32 hash;
5669
5670 folio_put(old_folio);
5671 /*
5672 * Drop hugetlb_fault_mutex and vma_lock before
5673 * unmapping. unmapping needs to hold vma_lock
5674 * in write mode. Dropping vma_lock in read mode
5675 * here is OK as COW mappings do not interact with
5676 * PMD sharing.
5677 *
5678 * Reacquire both after unmap operation.
5679 */
5680 idx = vma_hugecache_offset(h, vma, haddr);
5681 hash = hugetlb_fault_mutex_hash(mapping, idx);
5682 hugetlb_vma_unlock_read(vma);
5683 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5684
5685 unmap_ref_private(mm, vma, &old_folio->page, haddr);
5686
5687 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5688 hugetlb_vma_lock_read(vma);
5689 spin_lock(ptl);
5690 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5691 if (likely(ptep &&
5692 pte_same(huge_ptep_get(ptep), pte)))
5693 goto retry_avoidcopy;
5694 /*
5695 * race occurs while re-acquiring page table
5696 * lock, and our job is done.
5697 */
5698 delayacct_wpcopy_end();
5699 return 0;
5700 }
5701
5702 ret = vmf_error(PTR_ERR(new_folio));
5703 goto out_release_old;
5704 }
5705
5706 /*
5707 * When the original hugepage is shared one, it does not have
5708 * anon_vma prepared.
5709 */
5710 if (unlikely(anon_vma_prepare(vma))) {
5711 ret = VM_FAULT_OOM;
5712 goto out_release_all;
5713 }
5714
5715 if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5716 ret = VM_FAULT_HWPOISON_LARGE;
5717 goto out_release_all;
5718 }
5719 __folio_mark_uptodate(new_folio);
5720
5721 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5722 haddr + huge_page_size(h));
5723 mmu_notifier_invalidate_range_start(&range);
5724
5725 /*
5726 * Retake the page table lock to check for racing updates
5727 * before the page tables are altered
5728 */
5729 spin_lock(ptl);
5730 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5731 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5732 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5733
5734 /* Break COW or unshare */
5735 huge_ptep_clear_flush(vma, haddr, ptep);
5736 page_remove_rmap(&old_folio->page, vma, true);
5737 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5738 if (huge_pte_uffd_wp(pte))
5739 newpte = huge_pte_mkuffd_wp(newpte);
5740 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
5741 folio_set_hugetlb_migratable(new_folio);
5742 /* Make the old page be freed below */
5743 new_folio = old_folio;
5744 }
5745 spin_unlock(ptl);
5746 mmu_notifier_invalidate_range_end(&range);
5747 out_release_all:
5748 /*
5749 * No restore in case of successful pagetable update (Break COW or
5750 * unshare)
5751 */
5752 if (new_folio != old_folio)
5753 restore_reserve_on_error(h, vma, haddr, new_folio);
5754 folio_put(new_folio);
5755 out_release_old:
5756 folio_put(old_folio);
5757
5758 spin_lock(ptl); /* Caller expects lock to be held */
5759
5760 delayacct_wpcopy_end();
5761 return ret;
5762 }
5763
5764 /*
5765 * Return whether there is a pagecache page to back given address within VMA.
5766 */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)5767 static bool hugetlbfs_pagecache_present(struct hstate *h,
5768 struct vm_area_struct *vma, unsigned long address)
5769 {
5770 struct address_space *mapping = vma->vm_file->f_mapping;
5771 pgoff_t idx = vma_hugecache_offset(h, vma, address);
5772 struct folio *folio;
5773
5774 folio = filemap_get_folio(mapping, idx);
5775 if (IS_ERR(folio))
5776 return false;
5777 folio_put(folio);
5778 return true;
5779 }
5780
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)5781 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5782 pgoff_t idx)
5783 {
5784 struct inode *inode = mapping->host;
5785 struct hstate *h = hstate_inode(inode);
5786 int err;
5787
5788 __folio_set_locked(folio);
5789 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5790
5791 if (unlikely(err)) {
5792 __folio_clear_locked(folio);
5793 return err;
5794 }
5795 folio_clear_hugetlb_restore_reserve(folio);
5796
5797 /*
5798 * mark folio dirty so that it will not be removed from cache/file
5799 * by non-hugetlbfs specific code paths.
5800 */
5801 folio_mark_dirty(folio);
5802
5803 spin_lock(&inode->i_lock);
5804 inode->i_blocks += blocks_per_huge_page(h);
5805 spin_unlock(&inode->i_lock);
5806 return 0;
5807 }
5808
hugetlb_handle_userfault(struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned int flags,unsigned long haddr,unsigned long addr,unsigned long reason)5809 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5810 struct address_space *mapping,
5811 pgoff_t idx,
5812 unsigned int flags,
5813 unsigned long haddr,
5814 unsigned long addr,
5815 unsigned long reason)
5816 {
5817 u32 hash;
5818 struct vm_fault vmf = {
5819 .vma = vma,
5820 .address = haddr,
5821 .real_address = addr,
5822 .flags = flags,
5823
5824 /*
5825 * Hard to debug if it ends up being
5826 * used by a callee that assumes
5827 * something about the other
5828 * uninitialized fields... same as in
5829 * memory.c
5830 */
5831 };
5832
5833 /*
5834 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5835 * userfault. Also mmap_lock could be dropped due to handling
5836 * userfault, any vma operation should be careful from here.
5837 */
5838 hugetlb_vma_unlock_read(vma);
5839 hash = hugetlb_fault_mutex_hash(mapping, idx);
5840 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5841 return handle_userfault(&vmf, reason);
5842 }
5843
5844 /*
5845 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5846 * false if pte changed or is changing.
5847 */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,pte_t * ptep,pte_t old_pte)5848 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5849 pte_t *ptep, pte_t old_pte)
5850 {
5851 spinlock_t *ptl;
5852 bool same;
5853
5854 ptl = huge_pte_lock(h, mm, ptep);
5855 same = pte_same(huge_ptep_get(ptep), old_pte);
5856 spin_unlock(ptl);
5857
5858 return same;
5859 }
5860
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,pte_t old_pte,unsigned int flags)5861 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5862 struct vm_area_struct *vma,
5863 struct address_space *mapping, pgoff_t idx,
5864 unsigned long address, pte_t *ptep,
5865 pte_t old_pte, unsigned int flags)
5866 {
5867 struct hstate *h = hstate_vma(vma);
5868 vm_fault_t ret = VM_FAULT_SIGBUS;
5869 int anon_rmap = 0;
5870 unsigned long size;
5871 struct folio *folio;
5872 pte_t new_pte;
5873 spinlock_t *ptl;
5874 unsigned long haddr = address & huge_page_mask(h);
5875 bool new_folio, new_pagecache_folio = false;
5876 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5877
5878 /*
5879 * Currently, we are forced to kill the process in the event the
5880 * original mapper has unmapped pages from the child due to a failed
5881 * COW/unsharing. Warn that such a situation has occurred as it may not
5882 * be obvious.
5883 */
5884 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5885 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5886 current->pid);
5887 goto out;
5888 }
5889
5890 /*
5891 * Use page lock to guard against racing truncation
5892 * before we get page_table_lock.
5893 */
5894 new_folio = false;
5895 folio = filemap_lock_folio(mapping, idx);
5896 if (IS_ERR(folio)) {
5897 size = i_size_read(mapping->host) >> huge_page_shift(h);
5898 if (idx >= size)
5899 goto out;
5900 /* Check for page in userfault range */
5901 if (userfaultfd_missing(vma)) {
5902 /*
5903 * Since hugetlb_no_page() was examining pte
5904 * without pgtable lock, we need to re-test under
5905 * lock because the pte may not be stable and could
5906 * have changed from under us. Try to detect
5907 * either changed or during-changing ptes and retry
5908 * properly when needed.
5909 *
5910 * Note that userfaultfd is actually fine with
5911 * false positives (e.g. caused by pte changed),
5912 * but not wrong logical events (e.g. caused by
5913 * reading a pte during changing). The latter can
5914 * confuse the userspace, so the strictness is very
5915 * much preferred. E.g., MISSING event should
5916 * never happen on the page after UFFDIO_COPY has
5917 * correctly installed the page and returned.
5918 */
5919 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5920 ret = 0;
5921 goto out;
5922 }
5923
5924 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5925 haddr, address,
5926 VM_UFFD_MISSING);
5927 }
5928
5929 folio = alloc_hugetlb_folio(vma, haddr, 0);
5930 if (IS_ERR(folio)) {
5931 /*
5932 * Returning error will result in faulting task being
5933 * sent SIGBUS. The hugetlb fault mutex prevents two
5934 * tasks from racing to fault in the same page which
5935 * could result in false unable to allocate errors.
5936 * Page migration does not take the fault mutex, but
5937 * does a clear then write of pte's under page table
5938 * lock. Page fault code could race with migration,
5939 * notice the clear pte and try to allocate a page
5940 * here. Before returning error, get ptl and make
5941 * sure there really is no pte entry.
5942 */
5943 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5944 ret = vmf_error(PTR_ERR(folio));
5945 else
5946 ret = 0;
5947 goto out;
5948 }
5949 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5950 __folio_mark_uptodate(folio);
5951 new_folio = true;
5952
5953 if (vma->vm_flags & VM_MAYSHARE) {
5954 int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5955 if (err) {
5956 /*
5957 * err can't be -EEXIST which implies someone
5958 * else consumed the reservation since hugetlb
5959 * fault mutex is held when add a hugetlb page
5960 * to the page cache. So it's safe to call
5961 * restore_reserve_on_error() here.
5962 */
5963 restore_reserve_on_error(h, vma, haddr, folio);
5964 folio_put(folio);
5965 goto out;
5966 }
5967 new_pagecache_folio = true;
5968 } else {
5969 folio_lock(folio);
5970 if (unlikely(anon_vma_prepare(vma))) {
5971 ret = VM_FAULT_OOM;
5972 goto backout_unlocked;
5973 }
5974 anon_rmap = 1;
5975 }
5976 } else {
5977 /*
5978 * If memory error occurs between mmap() and fault, some process
5979 * don't have hwpoisoned swap entry for errored virtual address.
5980 * So we need to block hugepage fault by PG_hwpoison bit check.
5981 */
5982 if (unlikely(folio_test_hwpoison(folio))) {
5983 ret = VM_FAULT_HWPOISON_LARGE |
5984 VM_FAULT_SET_HINDEX(hstate_index(h));
5985 goto backout_unlocked;
5986 }
5987
5988 /* Check for page in userfault range. */
5989 if (userfaultfd_minor(vma)) {
5990 folio_unlock(folio);
5991 folio_put(folio);
5992 /* See comment in userfaultfd_missing() block above */
5993 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5994 ret = 0;
5995 goto out;
5996 }
5997 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5998 haddr, address,
5999 VM_UFFD_MINOR);
6000 }
6001 }
6002
6003 /*
6004 * If we are going to COW a private mapping later, we examine the
6005 * pending reservations for this page now. This will ensure that
6006 * any allocations necessary to record that reservation occur outside
6007 * the spinlock.
6008 */
6009 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6010 if (vma_needs_reservation(h, vma, haddr) < 0) {
6011 ret = VM_FAULT_OOM;
6012 goto backout_unlocked;
6013 }
6014 /* Just decrements count, does not deallocate */
6015 vma_end_reservation(h, vma, haddr);
6016 }
6017
6018 ptl = huge_pte_lock(h, mm, ptep);
6019 ret = 0;
6020 /* If pte changed from under us, retry */
6021 if (!pte_same(huge_ptep_get(ptep), old_pte))
6022 goto backout;
6023
6024 if (anon_rmap)
6025 hugepage_add_new_anon_rmap(folio, vma, haddr);
6026 else
6027 page_dup_file_rmap(&folio->page, true);
6028 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6029 && (vma->vm_flags & VM_SHARED)));
6030 /*
6031 * If this pte was previously wr-protected, keep it wr-protected even
6032 * if populated.
6033 */
6034 if (unlikely(pte_marker_uffd_wp(old_pte)))
6035 new_pte = huge_pte_mkuffd_wp(new_pte);
6036 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6037
6038 hugetlb_count_add(pages_per_huge_page(h), mm);
6039 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6040 /* Optimization, do the COW without a second fault */
6041 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6042 }
6043
6044 spin_unlock(ptl);
6045
6046 /*
6047 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6048 * found in the pagecache may not have hugetlb_migratable if they have
6049 * been isolated for migration.
6050 */
6051 if (new_folio)
6052 folio_set_hugetlb_migratable(folio);
6053
6054 folio_unlock(folio);
6055 out:
6056 hugetlb_vma_unlock_read(vma);
6057 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6058 return ret;
6059
6060 backout:
6061 spin_unlock(ptl);
6062 backout_unlocked:
6063 if (new_folio && !new_pagecache_folio)
6064 restore_reserve_on_error(h, vma, haddr, folio);
6065
6066 folio_unlock(folio);
6067 folio_put(folio);
6068 goto out;
6069 }
6070
6071 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6072 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6073 {
6074 unsigned long key[2];
6075 u32 hash;
6076
6077 key[0] = (unsigned long) mapping;
6078 key[1] = idx;
6079
6080 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6081
6082 return hash & (num_fault_mutexes - 1);
6083 }
6084 #else
6085 /*
6086 * For uniprocessor systems we always use a single mutex, so just
6087 * return 0 and avoid the hashing overhead.
6088 */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6089 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6090 {
6091 return 0;
6092 }
6093 #endif
6094
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)6095 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6096 unsigned long address, unsigned int flags)
6097 {
6098 pte_t *ptep, entry;
6099 spinlock_t *ptl;
6100 vm_fault_t ret;
6101 u32 hash;
6102 pgoff_t idx;
6103 struct folio *folio = NULL;
6104 struct folio *pagecache_folio = NULL;
6105 struct hstate *h = hstate_vma(vma);
6106 struct address_space *mapping;
6107 int need_wait_lock = 0;
6108 unsigned long haddr = address & huge_page_mask(h);
6109
6110 /* TODO: Handle faults under the VMA lock */
6111 if (flags & FAULT_FLAG_VMA_LOCK) {
6112 vma_end_read(vma);
6113 return VM_FAULT_RETRY;
6114 }
6115
6116 /*
6117 * Serialize hugepage allocation and instantiation, so that we don't
6118 * get spurious allocation failures if two CPUs race to instantiate
6119 * the same page in the page cache.
6120 */
6121 mapping = vma->vm_file->f_mapping;
6122 idx = vma_hugecache_offset(h, vma, haddr);
6123 hash = hugetlb_fault_mutex_hash(mapping, idx);
6124 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6125
6126 /*
6127 * Acquire vma lock before calling huge_pte_alloc and hold
6128 * until finished with ptep. This prevents huge_pmd_unshare from
6129 * being called elsewhere and making the ptep no longer valid.
6130 */
6131 hugetlb_vma_lock_read(vma);
6132 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6133 if (!ptep) {
6134 hugetlb_vma_unlock_read(vma);
6135 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6136 return VM_FAULT_OOM;
6137 }
6138
6139 entry = huge_ptep_get(ptep);
6140 if (huge_pte_none_mostly(entry)) {
6141 if (is_pte_marker(entry)) {
6142 pte_marker marker =
6143 pte_marker_get(pte_to_swp_entry(entry));
6144
6145 if (marker & PTE_MARKER_POISONED) {
6146 ret = VM_FAULT_HWPOISON_LARGE;
6147 goto out_mutex;
6148 }
6149 }
6150
6151 /*
6152 * Other PTE markers should be handled the same way as none PTE.
6153 *
6154 * hugetlb_no_page will drop vma lock and hugetlb fault
6155 * mutex internally, which make us return immediately.
6156 */
6157 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6158 entry, flags);
6159 }
6160
6161 ret = 0;
6162
6163 /*
6164 * entry could be a migration/hwpoison entry at this point, so this
6165 * check prevents the kernel from going below assuming that we have
6166 * an active hugepage in pagecache. This goto expects the 2nd page
6167 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6168 * properly handle it.
6169 */
6170 if (!pte_present(entry)) {
6171 if (unlikely(is_hugetlb_entry_migration(entry))) {
6172 /*
6173 * Release the hugetlb fault lock now, but retain
6174 * the vma lock, because it is needed to guard the
6175 * huge_pte_lockptr() later in
6176 * migration_entry_wait_huge(). The vma lock will
6177 * be released there.
6178 */
6179 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6180 migration_entry_wait_huge(vma, ptep);
6181 return 0;
6182 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6183 ret = VM_FAULT_HWPOISON_LARGE |
6184 VM_FAULT_SET_HINDEX(hstate_index(h));
6185 goto out_mutex;
6186 }
6187
6188 /*
6189 * If we are going to COW/unshare the mapping later, we examine the
6190 * pending reservations for this page now. This will ensure that any
6191 * allocations necessary to record that reservation occur outside the
6192 * spinlock. Also lookup the pagecache page now as it is used to
6193 * determine if a reservation has been consumed.
6194 */
6195 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6196 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6197 if (vma_needs_reservation(h, vma, haddr) < 0) {
6198 ret = VM_FAULT_OOM;
6199 goto out_mutex;
6200 }
6201 /* Just decrements count, does not deallocate */
6202 vma_end_reservation(h, vma, haddr);
6203
6204 pagecache_folio = filemap_lock_folio(mapping, idx);
6205 if (IS_ERR(pagecache_folio))
6206 pagecache_folio = NULL;
6207 }
6208
6209 ptl = huge_pte_lock(h, mm, ptep);
6210
6211 /* Check for a racing update before calling hugetlb_wp() */
6212 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6213 goto out_ptl;
6214
6215 /* Handle userfault-wp first, before trying to lock more pages */
6216 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6217 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6218 struct vm_fault vmf = {
6219 .vma = vma,
6220 .address = haddr,
6221 .real_address = address,
6222 .flags = flags,
6223 };
6224
6225 spin_unlock(ptl);
6226 if (pagecache_folio) {
6227 folio_unlock(pagecache_folio);
6228 folio_put(pagecache_folio);
6229 }
6230 hugetlb_vma_unlock_read(vma);
6231 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6232 return handle_userfault(&vmf, VM_UFFD_WP);
6233 }
6234
6235 /*
6236 * hugetlb_wp() requires page locks of pte_page(entry) and
6237 * pagecache_folio, so here we need take the former one
6238 * when folio != pagecache_folio or !pagecache_folio.
6239 */
6240 folio = page_folio(pte_page(entry));
6241 if (folio != pagecache_folio)
6242 if (!folio_trylock(folio)) {
6243 need_wait_lock = 1;
6244 goto out_ptl;
6245 }
6246
6247 folio_get(folio);
6248
6249 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6250 if (!huge_pte_write(entry)) {
6251 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6252 pagecache_folio, ptl);
6253 goto out_put_page;
6254 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6255 entry = huge_pte_mkdirty(entry);
6256 }
6257 }
6258 entry = pte_mkyoung(entry);
6259 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6260 flags & FAULT_FLAG_WRITE))
6261 update_mmu_cache(vma, haddr, ptep);
6262 out_put_page:
6263 if (folio != pagecache_folio)
6264 folio_unlock(folio);
6265 folio_put(folio);
6266 out_ptl:
6267 spin_unlock(ptl);
6268
6269 if (pagecache_folio) {
6270 folio_unlock(pagecache_folio);
6271 folio_put(pagecache_folio);
6272 }
6273 out_mutex:
6274 hugetlb_vma_unlock_read(vma);
6275 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6276 /*
6277 * Generally it's safe to hold refcount during waiting page lock. But
6278 * here we just wait to defer the next page fault to avoid busy loop and
6279 * the page is not used after unlocked before returning from the current
6280 * page fault. So we are safe from accessing freed page, even if we wait
6281 * here without taking refcount.
6282 */
6283 if (need_wait_lock)
6284 folio_wait_locked(folio);
6285 return ret;
6286 }
6287
6288 #ifdef CONFIG_USERFAULTFD
6289 /*
6290 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6291 * with modifications for hugetlb pages.
6292 */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6293 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6294 struct vm_area_struct *dst_vma,
6295 unsigned long dst_addr,
6296 unsigned long src_addr,
6297 uffd_flags_t flags,
6298 struct folio **foliop)
6299 {
6300 struct mm_struct *dst_mm = dst_vma->vm_mm;
6301 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6302 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6303 struct hstate *h = hstate_vma(dst_vma);
6304 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6305 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6306 unsigned long size;
6307 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6308 pte_t _dst_pte;
6309 spinlock_t *ptl;
6310 int ret = -ENOMEM;
6311 struct folio *folio;
6312 int writable;
6313 bool folio_in_pagecache = false;
6314
6315 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6316 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6317
6318 /* Don't overwrite any existing PTEs (even markers) */
6319 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6320 spin_unlock(ptl);
6321 return -EEXIST;
6322 }
6323
6324 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6325 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6326 huge_page_size(h));
6327
6328 /* No need to invalidate - it was non-present before */
6329 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6330
6331 spin_unlock(ptl);
6332 return 0;
6333 }
6334
6335 if (is_continue) {
6336 ret = -EFAULT;
6337 folio = filemap_lock_folio(mapping, idx);
6338 if (IS_ERR(folio))
6339 goto out;
6340 folio_in_pagecache = true;
6341 } else if (!*foliop) {
6342 /* If a folio already exists, then it's UFFDIO_COPY for
6343 * a non-missing case. Return -EEXIST.
6344 */
6345 if (vm_shared &&
6346 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6347 ret = -EEXIST;
6348 goto out;
6349 }
6350
6351 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6352 if (IS_ERR(folio)) {
6353 ret = -ENOMEM;
6354 goto out;
6355 }
6356
6357 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6358 false);
6359
6360 /* fallback to copy_from_user outside mmap_lock */
6361 if (unlikely(ret)) {
6362 ret = -ENOENT;
6363 /* Free the allocated folio which may have
6364 * consumed a reservation.
6365 */
6366 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6367 folio_put(folio);
6368
6369 /* Allocate a temporary folio to hold the copied
6370 * contents.
6371 */
6372 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6373 if (!folio) {
6374 ret = -ENOMEM;
6375 goto out;
6376 }
6377 *foliop = folio;
6378 /* Set the outparam foliop and return to the caller to
6379 * copy the contents outside the lock. Don't free the
6380 * folio.
6381 */
6382 goto out;
6383 }
6384 } else {
6385 if (vm_shared &&
6386 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6387 folio_put(*foliop);
6388 ret = -EEXIST;
6389 *foliop = NULL;
6390 goto out;
6391 }
6392
6393 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6394 if (IS_ERR(folio)) {
6395 folio_put(*foliop);
6396 ret = -ENOMEM;
6397 *foliop = NULL;
6398 goto out;
6399 }
6400 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6401 folio_put(*foliop);
6402 *foliop = NULL;
6403 if (ret) {
6404 folio_put(folio);
6405 goto out;
6406 }
6407 }
6408
6409 /*
6410 * The memory barrier inside __folio_mark_uptodate makes sure that
6411 * preceding stores to the page contents become visible before
6412 * the set_pte_at() write.
6413 */
6414 __folio_mark_uptodate(folio);
6415
6416 /* Add shared, newly allocated pages to the page cache. */
6417 if (vm_shared && !is_continue) {
6418 size = i_size_read(mapping->host) >> huge_page_shift(h);
6419 ret = -EFAULT;
6420 if (idx >= size)
6421 goto out_release_nounlock;
6422
6423 /*
6424 * Serialization between remove_inode_hugepages() and
6425 * hugetlb_add_to_page_cache() below happens through the
6426 * hugetlb_fault_mutex_table that here must be hold by
6427 * the caller.
6428 */
6429 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6430 if (ret)
6431 goto out_release_nounlock;
6432 folio_in_pagecache = true;
6433 }
6434
6435 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6436
6437 ret = -EIO;
6438 if (folio_test_hwpoison(folio))
6439 goto out_release_unlock;
6440
6441 /*
6442 * We allow to overwrite a pte marker: consider when both MISSING|WP
6443 * registered, we firstly wr-protect a none pte which has no page cache
6444 * page backing it, then access the page.
6445 */
6446 ret = -EEXIST;
6447 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6448 goto out_release_unlock;
6449
6450 if (folio_in_pagecache)
6451 page_dup_file_rmap(&folio->page, true);
6452 else
6453 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6454
6455 /*
6456 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6457 * with wp flag set, don't set pte write bit.
6458 */
6459 if (wp_enabled || (is_continue && !vm_shared))
6460 writable = 0;
6461 else
6462 writable = dst_vma->vm_flags & VM_WRITE;
6463
6464 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6465 /*
6466 * Always mark UFFDIO_COPY page dirty; note that this may not be
6467 * extremely important for hugetlbfs for now since swapping is not
6468 * supported, but we should still be clear in that this page cannot be
6469 * thrown away at will, even if write bit not set.
6470 */
6471 _dst_pte = huge_pte_mkdirty(_dst_pte);
6472 _dst_pte = pte_mkyoung(_dst_pte);
6473
6474 if (wp_enabled)
6475 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6476
6477 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6478
6479 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6480
6481 /* No need to invalidate - it was non-present before */
6482 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6483
6484 spin_unlock(ptl);
6485 if (!is_continue)
6486 folio_set_hugetlb_migratable(folio);
6487 if (vm_shared || is_continue)
6488 folio_unlock(folio);
6489 ret = 0;
6490 out:
6491 return ret;
6492 out_release_unlock:
6493 spin_unlock(ptl);
6494 if (vm_shared || is_continue)
6495 folio_unlock(folio);
6496 out_release_nounlock:
6497 if (!folio_in_pagecache)
6498 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6499 folio_put(folio);
6500 goto out;
6501 }
6502 #endif /* CONFIG_USERFAULTFD */
6503
hugetlb_follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned int * page_mask)6504 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6505 unsigned long address, unsigned int flags,
6506 unsigned int *page_mask)
6507 {
6508 struct hstate *h = hstate_vma(vma);
6509 struct mm_struct *mm = vma->vm_mm;
6510 unsigned long haddr = address & huge_page_mask(h);
6511 struct page *page = NULL;
6512 spinlock_t *ptl;
6513 pte_t *pte, entry;
6514 int ret;
6515
6516 hugetlb_vma_lock_read(vma);
6517 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6518 if (!pte)
6519 goto out_unlock;
6520
6521 ptl = huge_pte_lock(h, mm, pte);
6522 entry = huge_ptep_get(pte);
6523 if (pte_present(entry)) {
6524 page = pte_page(entry);
6525
6526 if (!huge_pte_write(entry)) {
6527 if (flags & FOLL_WRITE) {
6528 page = NULL;
6529 goto out;
6530 }
6531
6532 if (gup_must_unshare(vma, flags, page)) {
6533 /* Tell the caller to do unsharing */
6534 page = ERR_PTR(-EMLINK);
6535 goto out;
6536 }
6537 }
6538
6539 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6540
6541 /*
6542 * Note that page may be a sub-page, and with vmemmap
6543 * optimizations the page struct may be read only.
6544 * try_grab_page() will increase the ref count on the
6545 * head page, so this will be OK.
6546 *
6547 * try_grab_page() should always be able to get the page here,
6548 * because we hold the ptl lock and have verified pte_present().
6549 */
6550 ret = try_grab_folio(page_folio(page), 1, flags);
6551
6552 if (WARN_ON_ONCE(ret)) {
6553 page = ERR_PTR(ret);
6554 goto out;
6555 }
6556
6557 *page_mask = (1U << huge_page_order(h)) - 1;
6558 }
6559 out:
6560 spin_unlock(ptl);
6561 out_unlock:
6562 hugetlb_vma_unlock_read(vma);
6563
6564 /*
6565 * Fixup retval for dump requests: if pagecache doesn't exist,
6566 * don't try to allocate a new page but just skip it.
6567 */
6568 if (!page && (flags & FOLL_DUMP) &&
6569 !hugetlbfs_pagecache_present(h, vma, address))
6570 page = ERR_PTR(-EFAULT);
6571
6572 return page;
6573 }
6574
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)6575 long hugetlb_change_protection(struct vm_area_struct *vma,
6576 unsigned long address, unsigned long end,
6577 pgprot_t newprot, unsigned long cp_flags)
6578 {
6579 struct mm_struct *mm = vma->vm_mm;
6580 unsigned long start = address;
6581 pte_t *ptep;
6582 pte_t pte;
6583 struct hstate *h = hstate_vma(vma);
6584 long pages = 0, psize = huge_page_size(h);
6585 bool shared_pmd = false;
6586 struct mmu_notifier_range range;
6587 unsigned long last_addr_mask;
6588 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6589 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6590
6591 /*
6592 * In the case of shared PMDs, the area to flush could be beyond
6593 * start/end. Set range.start/range.end to cover the maximum possible
6594 * range if PMD sharing is possible.
6595 */
6596 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6597 0, mm, start, end);
6598 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6599
6600 BUG_ON(address >= end);
6601 flush_cache_range(vma, range.start, range.end);
6602
6603 mmu_notifier_invalidate_range_start(&range);
6604 hugetlb_vma_lock_write(vma);
6605 i_mmap_lock_write(vma->vm_file->f_mapping);
6606 last_addr_mask = hugetlb_mask_last_page(h);
6607 for (; address < end; address += psize) {
6608 spinlock_t *ptl;
6609 ptep = hugetlb_walk(vma, address, psize);
6610 if (!ptep) {
6611 if (!uffd_wp) {
6612 address |= last_addr_mask;
6613 continue;
6614 }
6615 /*
6616 * Userfaultfd wr-protect requires pgtable
6617 * pre-allocations to install pte markers.
6618 */
6619 ptep = huge_pte_alloc(mm, vma, address, psize);
6620 if (!ptep) {
6621 pages = -ENOMEM;
6622 break;
6623 }
6624 }
6625 ptl = huge_pte_lock(h, mm, ptep);
6626 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6627 /*
6628 * When uffd-wp is enabled on the vma, unshare
6629 * shouldn't happen at all. Warn about it if it
6630 * happened due to some reason.
6631 */
6632 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6633 pages++;
6634 spin_unlock(ptl);
6635 shared_pmd = true;
6636 address |= last_addr_mask;
6637 continue;
6638 }
6639 pte = huge_ptep_get(ptep);
6640 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6641 /* Nothing to do. */
6642 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6643 swp_entry_t entry = pte_to_swp_entry(pte);
6644 struct page *page = pfn_swap_entry_to_page(entry);
6645 pte_t newpte = pte;
6646
6647 if (is_writable_migration_entry(entry)) {
6648 if (PageAnon(page))
6649 entry = make_readable_exclusive_migration_entry(
6650 swp_offset(entry));
6651 else
6652 entry = make_readable_migration_entry(
6653 swp_offset(entry));
6654 newpte = swp_entry_to_pte(entry);
6655 pages++;
6656 }
6657
6658 if (uffd_wp)
6659 newpte = pte_swp_mkuffd_wp(newpte);
6660 else if (uffd_wp_resolve)
6661 newpte = pte_swp_clear_uffd_wp(newpte);
6662 if (!pte_same(pte, newpte))
6663 set_huge_pte_at(mm, address, ptep, newpte, psize);
6664 } else if (unlikely(is_pte_marker(pte))) {
6665 /*
6666 * Do nothing on a poison marker; page is
6667 * corrupted, permissons do not apply. Here
6668 * pte_marker_uffd_wp()==true implies !poison
6669 * because they're mutual exclusive.
6670 */
6671 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6672 /* Safe to modify directly (non-present->none). */
6673 huge_pte_clear(mm, address, ptep, psize);
6674 } else if (!huge_pte_none(pte)) {
6675 pte_t old_pte;
6676 unsigned int shift = huge_page_shift(hstate_vma(vma));
6677
6678 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6679 pte = huge_pte_modify(old_pte, newprot);
6680 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6681 if (uffd_wp)
6682 pte = huge_pte_mkuffd_wp(pte);
6683 else if (uffd_wp_resolve)
6684 pte = huge_pte_clear_uffd_wp(pte);
6685 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6686 pages++;
6687 } else {
6688 /* None pte */
6689 if (unlikely(uffd_wp))
6690 /* Safe to modify directly (none->non-present). */
6691 set_huge_pte_at(mm, address, ptep,
6692 make_pte_marker(PTE_MARKER_UFFD_WP),
6693 psize);
6694 }
6695 spin_unlock(ptl);
6696 }
6697 /*
6698 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6699 * may have cleared our pud entry and done put_page on the page table:
6700 * once we release i_mmap_rwsem, another task can do the final put_page
6701 * and that page table be reused and filled with junk. If we actually
6702 * did unshare a page of pmds, flush the range corresponding to the pud.
6703 */
6704 if (shared_pmd)
6705 flush_hugetlb_tlb_range(vma, range.start, range.end);
6706 else
6707 flush_hugetlb_tlb_range(vma, start, end);
6708 /*
6709 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6710 * downgrading page table protection not changing it to point to a new
6711 * page.
6712 *
6713 * See Documentation/mm/mmu_notifier.rst
6714 */
6715 i_mmap_unlock_write(vma->vm_file->f_mapping);
6716 hugetlb_vma_unlock_write(vma);
6717 mmu_notifier_invalidate_range_end(&range);
6718
6719 return pages > 0 ? (pages << h->order) : pages;
6720 }
6721
6722 /* Return true if reservation was successful, false otherwise. */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)6723 bool hugetlb_reserve_pages(struct inode *inode,
6724 long from, long to,
6725 struct vm_area_struct *vma,
6726 vm_flags_t vm_flags)
6727 {
6728 long chg = -1, add = -1;
6729 struct hstate *h = hstate_inode(inode);
6730 struct hugepage_subpool *spool = subpool_inode(inode);
6731 struct resv_map *resv_map;
6732 struct hugetlb_cgroup *h_cg = NULL;
6733 long gbl_reserve, regions_needed = 0;
6734
6735 /* This should never happen */
6736 if (from > to) {
6737 VM_WARN(1, "%s called with a negative range\n", __func__);
6738 return false;
6739 }
6740
6741 /*
6742 * vma specific semaphore used for pmd sharing and fault/truncation
6743 * synchronization
6744 */
6745 hugetlb_vma_lock_alloc(vma);
6746
6747 /*
6748 * Only apply hugepage reservation if asked. At fault time, an
6749 * attempt will be made for VM_NORESERVE to allocate a page
6750 * without using reserves
6751 */
6752 if (vm_flags & VM_NORESERVE)
6753 return true;
6754
6755 /*
6756 * Shared mappings base their reservation on the number of pages that
6757 * are already allocated on behalf of the file. Private mappings need
6758 * to reserve the full area even if read-only as mprotect() may be
6759 * called to make the mapping read-write. Assume !vma is a shm mapping
6760 */
6761 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6762 /*
6763 * resv_map can not be NULL as hugetlb_reserve_pages is only
6764 * called for inodes for which resv_maps were created (see
6765 * hugetlbfs_get_inode).
6766 */
6767 resv_map = inode_resv_map(inode);
6768
6769 chg = region_chg(resv_map, from, to, ®ions_needed);
6770 } else {
6771 /* Private mapping. */
6772 resv_map = resv_map_alloc();
6773 if (!resv_map)
6774 goto out_err;
6775
6776 chg = to - from;
6777
6778 set_vma_resv_map(vma, resv_map);
6779 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6780 }
6781
6782 if (chg < 0)
6783 goto out_err;
6784
6785 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6786 chg * pages_per_huge_page(h), &h_cg) < 0)
6787 goto out_err;
6788
6789 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6790 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6791 * of the resv_map.
6792 */
6793 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6794 }
6795
6796 /*
6797 * There must be enough pages in the subpool for the mapping. If
6798 * the subpool has a minimum size, there may be some global
6799 * reservations already in place (gbl_reserve).
6800 */
6801 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6802 if (gbl_reserve < 0)
6803 goto out_uncharge_cgroup;
6804
6805 /*
6806 * Check enough hugepages are available for the reservation.
6807 * Hand the pages back to the subpool if there are not
6808 */
6809 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6810 goto out_put_pages;
6811
6812 /*
6813 * Account for the reservations made. Shared mappings record regions
6814 * that have reservations as they are shared by multiple VMAs.
6815 * When the last VMA disappears, the region map says how much
6816 * the reservation was and the page cache tells how much of
6817 * the reservation was consumed. Private mappings are per-VMA and
6818 * only the consumed reservations are tracked. When the VMA
6819 * disappears, the original reservation is the VMA size and the
6820 * consumed reservations are stored in the map. Hence, nothing
6821 * else has to be done for private mappings here
6822 */
6823 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6824 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6825
6826 if (unlikely(add < 0)) {
6827 hugetlb_acct_memory(h, -gbl_reserve);
6828 goto out_put_pages;
6829 } else if (unlikely(chg > add)) {
6830 /*
6831 * pages in this range were added to the reserve
6832 * map between region_chg and region_add. This
6833 * indicates a race with alloc_hugetlb_folio. Adjust
6834 * the subpool and reserve counts modified above
6835 * based on the difference.
6836 */
6837 long rsv_adjust;
6838
6839 /*
6840 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6841 * reference to h_cg->css. See comment below for detail.
6842 */
6843 hugetlb_cgroup_uncharge_cgroup_rsvd(
6844 hstate_index(h),
6845 (chg - add) * pages_per_huge_page(h), h_cg);
6846
6847 rsv_adjust = hugepage_subpool_put_pages(spool,
6848 chg - add);
6849 hugetlb_acct_memory(h, -rsv_adjust);
6850 } else if (h_cg) {
6851 /*
6852 * The file_regions will hold their own reference to
6853 * h_cg->css. So we should release the reference held
6854 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6855 * done.
6856 */
6857 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6858 }
6859 }
6860 return true;
6861
6862 out_put_pages:
6863 /* put back original number of pages, chg */
6864 (void)hugepage_subpool_put_pages(spool, chg);
6865 out_uncharge_cgroup:
6866 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6867 chg * pages_per_huge_page(h), h_cg);
6868 out_err:
6869 hugetlb_vma_lock_free(vma);
6870 if (!vma || vma->vm_flags & VM_MAYSHARE)
6871 /* Only call region_abort if the region_chg succeeded but the
6872 * region_add failed or didn't run.
6873 */
6874 if (chg >= 0 && add < 0)
6875 region_abort(resv_map, from, to, regions_needed);
6876 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
6877 kref_put(&resv_map->refs, resv_map_release);
6878 set_vma_resv_map(vma, NULL);
6879 }
6880 return false;
6881 }
6882
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)6883 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6884 long freed)
6885 {
6886 struct hstate *h = hstate_inode(inode);
6887 struct resv_map *resv_map = inode_resv_map(inode);
6888 long chg = 0;
6889 struct hugepage_subpool *spool = subpool_inode(inode);
6890 long gbl_reserve;
6891
6892 /*
6893 * Since this routine can be called in the evict inode path for all
6894 * hugetlbfs inodes, resv_map could be NULL.
6895 */
6896 if (resv_map) {
6897 chg = region_del(resv_map, start, end);
6898 /*
6899 * region_del() can fail in the rare case where a region
6900 * must be split and another region descriptor can not be
6901 * allocated. If end == LONG_MAX, it will not fail.
6902 */
6903 if (chg < 0)
6904 return chg;
6905 }
6906
6907 spin_lock(&inode->i_lock);
6908 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6909 spin_unlock(&inode->i_lock);
6910
6911 /*
6912 * If the subpool has a minimum size, the number of global
6913 * reservations to be released may be adjusted.
6914 *
6915 * Note that !resv_map implies freed == 0. So (chg - freed)
6916 * won't go negative.
6917 */
6918 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6919 hugetlb_acct_memory(h, -gbl_reserve);
6920
6921 return 0;
6922 }
6923
6924 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)6925 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6926 struct vm_area_struct *vma,
6927 unsigned long addr, pgoff_t idx)
6928 {
6929 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6930 svma->vm_start;
6931 unsigned long sbase = saddr & PUD_MASK;
6932 unsigned long s_end = sbase + PUD_SIZE;
6933
6934 /* Allow segments to share if only one is marked locked */
6935 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6936 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6937
6938 /*
6939 * match the virtual addresses, permission and the alignment of the
6940 * page table page.
6941 *
6942 * Also, vma_lock (vm_private_data) is required for sharing.
6943 */
6944 if (pmd_index(addr) != pmd_index(saddr) ||
6945 vm_flags != svm_flags ||
6946 !range_in_vma(svma, sbase, s_end) ||
6947 !svma->vm_private_data)
6948 return 0;
6949
6950 return saddr;
6951 }
6952
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)6953 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6954 {
6955 unsigned long start = addr & PUD_MASK;
6956 unsigned long end = start + PUD_SIZE;
6957
6958 #ifdef CONFIG_USERFAULTFD
6959 if (uffd_disable_huge_pmd_share(vma))
6960 return false;
6961 #endif
6962 /*
6963 * check on proper vm_flags and page table alignment
6964 */
6965 if (!(vma->vm_flags & VM_MAYSHARE))
6966 return false;
6967 if (!vma->vm_private_data) /* vma lock required for sharing */
6968 return false;
6969 if (!range_in_vma(vma, start, end))
6970 return false;
6971 return true;
6972 }
6973
6974 /*
6975 * Determine if start,end range within vma could be mapped by shared pmd.
6976 * If yes, adjust start and end to cover range associated with possible
6977 * shared pmd mappings.
6978 */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)6979 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6980 unsigned long *start, unsigned long *end)
6981 {
6982 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6983 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6984
6985 /*
6986 * vma needs to span at least one aligned PUD size, and the range
6987 * must be at least partially within in.
6988 */
6989 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6990 (*end <= v_start) || (*start >= v_end))
6991 return;
6992
6993 /* Extend the range to be PUD aligned for a worst case scenario */
6994 if (*start > v_start)
6995 *start = ALIGN_DOWN(*start, PUD_SIZE);
6996
6997 if (*end < v_end)
6998 *end = ALIGN(*end, PUD_SIZE);
6999 }
7000
7001 /*
7002 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7003 * and returns the corresponding pte. While this is not necessary for the
7004 * !shared pmd case because we can allocate the pmd later as well, it makes the
7005 * code much cleaner. pmd allocation is essential for the shared case because
7006 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7007 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7008 * bad pmd for sharing.
7009 */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7010 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7011 unsigned long addr, pud_t *pud)
7012 {
7013 struct address_space *mapping = vma->vm_file->f_mapping;
7014 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7015 vma->vm_pgoff;
7016 struct vm_area_struct *svma;
7017 unsigned long saddr;
7018 pte_t *spte = NULL;
7019 pte_t *pte;
7020
7021 i_mmap_lock_read(mapping);
7022 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7023 if (svma == vma)
7024 continue;
7025
7026 saddr = page_table_shareable(svma, vma, addr, idx);
7027 if (saddr) {
7028 spte = hugetlb_walk(svma, saddr,
7029 vma_mmu_pagesize(svma));
7030 if (spte) {
7031 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
7032 break;
7033 }
7034 }
7035 }
7036
7037 if (!spte)
7038 goto out;
7039
7040 spin_lock(&mm->page_table_lock);
7041 if (pud_none(*pud)) {
7042 pud_populate(mm, pud,
7043 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7044 mm_inc_nr_pmds(mm);
7045 } else {
7046 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
7047 }
7048 spin_unlock(&mm->page_table_lock);
7049 out:
7050 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7051 i_mmap_unlock_read(mapping);
7052 return pte;
7053 }
7054
7055 /*
7056 * unmap huge page backed by shared pte.
7057 *
7058 * Called with page table lock held.
7059 *
7060 * returns: 1 successfully unmapped a shared pte page
7061 * 0 the underlying pte page is not shared, or it is the last user
7062 */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7063 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7064 unsigned long addr, pte_t *ptep)
7065 {
7066 unsigned long sz = huge_page_size(hstate_vma(vma));
7067 pgd_t *pgd = pgd_offset(mm, addr);
7068 p4d_t *p4d = p4d_offset(pgd, addr);
7069 pud_t *pud = pud_offset(p4d, addr);
7070
7071 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7072 hugetlb_vma_assert_locked(vma);
7073 if (sz != PMD_SIZE)
7074 return 0;
7075 if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep)))
7076 return 0;
7077
7078 pud_clear(pud);
7079 /*
7080 * Once our caller drops the rmap lock, some other process might be
7081 * using this page table as a normal, non-hugetlb page table.
7082 * Wait for pending gup_fast() in other threads to finish before letting
7083 * that happen.
7084 */
7085 tlb_remove_table_sync_one();
7086 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
7087 mm_dec_nr_pmds(mm);
7088 return 1;
7089 }
7090
7091 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7092
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7093 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7094 unsigned long addr, pud_t *pud)
7095 {
7096 return NULL;
7097 }
7098
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7099 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7100 unsigned long addr, pte_t *ptep)
7101 {
7102 return 0;
7103 }
7104
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7105 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7106 unsigned long *start, unsigned long *end)
7107 {
7108 }
7109
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7110 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7111 {
7112 return false;
7113 }
7114 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7115
7116 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7117 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7118 unsigned long addr, unsigned long sz)
7119 {
7120 pgd_t *pgd;
7121 p4d_t *p4d;
7122 pud_t *pud;
7123 pte_t *pte = NULL;
7124
7125 pgd = pgd_offset(mm, addr);
7126 p4d = p4d_alloc(mm, pgd, addr);
7127 if (!p4d)
7128 return NULL;
7129 pud = pud_alloc(mm, p4d, addr);
7130 if (pud) {
7131 if (sz == PUD_SIZE) {
7132 pte = (pte_t *)pud;
7133 } else {
7134 BUG_ON(sz != PMD_SIZE);
7135 if (want_pmd_share(vma, addr) && pud_none(*pud))
7136 pte = huge_pmd_share(mm, vma, addr, pud);
7137 else
7138 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7139 }
7140 }
7141
7142 if (pte) {
7143 pte_t pteval = ptep_get_lockless(pte);
7144
7145 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7146 }
7147
7148 return pte;
7149 }
7150
7151 /*
7152 * huge_pte_offset() - Walk the page table to resolve the hugepage
7153 * entry at address @addr
7154 *
7155 * Return: Pointer to page table entry (PUD or PMD) for
7156 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7157 * size @sz doesn't match the hugepage size at this level of the page
7158 * table.
7159 */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7160 pte_t *huge_pte_offset(struct mm_struct *mm,
7161 unsigned long addr, unsigned long sz)
7162 {
7163 pgd_t *pgd;
7164 p4d_t *p4d;
7165 pud_t *pud;
7166 pmd_t *pmd;
7167
7168 pgd = pgd_offset(mm, addr);
7169 if (!pgd_present(*pgd))
7170 return NULL;
7171 p4d = p4d_offset(pgd, addr);
7172 if (!p4d_present(*p4d))
7173 return NULL;
7174
7175 pud = pud_offset(p4d, addr);
7176 if (sz == PUD_SIZE)
7177 /* must be pud huge, non-present or none */
7178 return (pte_t *)pud;
7179 if (!pud_present(*pud))
7180 return NULL;
7181 /* must have a valid entry and size to go further */
7182
7183 pmd = pmd_offset(pud, addr);
7184 /* must be pmd huge, non-present or none */
7185 return (pte_t *)pmd;
7186 }
7187
7188 /*
7189 * Return a mask that can be used to update an address to the last huge
7190 * page in a page table page mapping size. Used to skip non-present
7191 * page table entries when linearly scanning address ranges. Architectures
7192 * with unique huge page to page table relationships can define their own
7193 * version of this routine.
7194 */
hugetlb_mask_last_page(struct hstate * h)7195 unsigned long hugetlb_mask_last_page(struct hstate *h)
7196 {
7197 unsigned long hp_size = huge_page_size(h);
7198
7199 if (hp_size == PUD_SIZE)
7200 return P4D_SIZE - PUD_SIZE;
7201 else if (hp_size == PMD_SIZE)
7202 return PUD_SIZE - PMD_SIZE;
7203 else
7204 return 0UL;
7205 }
7206
7207 #else
7208
7209 /* See description above. Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7210 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7211 {
7212 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7213 if (huge_page_size(h) == PMD_SIZE)
7214 return PUD_SIZE - PMD_SIZE;
7215 #endif
7216 return 0UL;
7217 }
7218
7219 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7220
7221 /*
7222 * These functions are overwritable if your architecture needs its own
7223 * behavior.
7224 */
isolate_hugetlb(struct folio * folio,struct list_head * list)7225 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7226 {
7227 bool ret = true;
7228
7229 spin_lock_irq(&hugetlb_lock);
7230 if (!folio_test_hugetlb(folio) ||
7231 !folio_test_hugetlb_migratable(folio) ||
7232 !folio_try_get(folio)) {
7233 ret = false;
7234 goto unlock;
7235 }
7236 folio_clear_hugetlb_migratable(folio);
7237 list_move_tail(&folio->lru, list);
7238 unlock:
7239 spin_unlock_irq(&hugetlb_lock);
7240 return ret;
7241 }
7242
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7243 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7244 {
7245 int ret = 0;
7246
7247 *hugetlb = false;
7248 spin_lock_irq(&hugetlb_lock);
7249 if (folio_test_hugetlb(folio)) {
7250 *hugetlb = true;
7251 if (folio_test_hugetlb_freed(folio))
7252 ret = 0;
7253 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7254 ret = folio_try_get(folio);
7255 else
7256 ret = -EBUSY;
7257 }
7258 spin_unlock_irq(&hugetlb_lock);
7259 return ret;
7260 }
7261
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7262 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7263 bool *migratable_cleared)
7264 {
7265 int ret;
7266
7267 spin_lock_irq(&hugetlb_lock);
7268 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7269 spin_unlock_irq(&hugetlb_lock);
7270 return ret;
7271 }
7272
folio_putback_active_hugetlb(struct folio * folio)7273 void folio_putback_active_hugetlb(struct folio *folio)
7274 {
7275 spin_lock_irq(&hugetlb_lock);
7276 folio_set_hugetlb_migratable(folio);
7277 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7278 spin_unlock_irq(&hugetlb_lock);
7279 folio_put(folio);
7280 }
7281
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7282 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7283 {
7284 struct hstate *h = folio_hstate(old_folio);
7285
7286 hugetlb_cgroup_migrate(old_folio, new_folio);
7287 set_page_owner_migrate_reason(&new_folio->page, reason);
7288
7289 /*
7290 * transfer temporary state of the new hugetlb folio. This is
7291 * reverse to other transitions because the newpage is going to
7292 * be final while the old one will be freed so it takes over
7293 * the temporary status.
7294 *
7295 * Also note that we have to transfer the per-node surplus state
7296 * here as well otherwise the global surplus count will not match
7297 * the per-node's.
7298 */
7299 if (folio_test_hugetlb_temporary(new_folio)) {
7300 int old_nid = folio_nid(old_folio);
7301 int new_nid = folio_nid(new_folio);
7302
7303 folio_set_hugetlb_temporary(old_folio);
7304 folio_clear_hugetlb_temporary(new_folio);
7305
7306
7307 /*
7308 * There is no need to transfer the per-node surplus state
7309 * when we do not cross the node.
7310 */
7311 if (new_nid == old_nid)
7312 return;
7313 spin_lock_irq(&hugetlb_lock);
7314 if (h->surplus_huge_pages_node[old_nid]) {
7315 h->surplus_huge_pages_node[old_nid]--;
7316 h->surplus_huge_pages_node[new_nid]++;
7317 }
7318 spin_unlock_irq(&hugetlb_lock);
7319 }
7320 }
7321
7322 /*
7323 * If @take_locks is false, the caller must ensure that no concurrent page table
7324 * access can happen (except for gup_fast() and hardware page walks).
7325 * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like
7326 * concurrent page fault handling) and the file rmap lock.
7327 */
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool take_locks)7328 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7329 unsigned long start,
7330 unsigned long end,
7331 bool take_locks)
7332 {
7333 struct hstate *h = hstate_vma(vma);
7334 unsigned long sz = huge_page_size(h);
7335 struct mm_struct *mm = vma->vm_mm;
7336 struct mmu_notifier_range range;
7337 unsigned long address;
7338 spinlock_t *ptl;
7339 pte_t *ptep;
7340
7341 if (!(vma->vm_flags & VM_MAYSHARE))
7342 return;
7343
7344 if (start >= end)
7345 return;
7346
7347 flush_cache_range(vma, start, end);
7348 /*
7349 * No need to call adjust_range_if_pmd_sharing_possible(), because
7350 * we have already done the PUD_SIZE alignment.
7351 */
7352 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7353 start, end);
7354 mmu_notifier_invalidate_range_start(&range);
7355 if (take_locks) {
7356 hugetlb_vma_lock_write(vma);
7357 i_mmap_lock_write(vma->vm_file->f_mapping);
7358 } else {
7359 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7360 }
7361 for (address = start; address < end; address += PUD_SIZE) {
7362 ptep = hugetlb_walk(vma, address, sz);
7363 if (!ptep)
7364 continue;
7365 ptl = huge_pte_lock(h, mm, ptep);
7366 huge_pmd_unshare(mm, vma, address, ptep);
7367 spin_unlock(ptl);
7368 }
7369 flush_hugetlb_tlb_range(vma, start, end);
7370 if (take_locks) {
7371 i_mmap_unlock_write(vma->vm_file->f_mapping);
7372 hugetlb_vma_unlock_write(vma);
7373 }
7374 /*
7375 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7376 * Documentation/mm/mmu_notifier.rst.
7377 */
7378 mmu_notifier_invalidate_range_end(&range);
7379 }
7380
7381 /*
7382 * This function will unconditionally remove all the shared pmd pgtable entries
7383 * within the specific vma for a hugetlbfs memory range.
7384 */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7385 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7386 {
7387 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7388 ALIGN_DOWN(vma->vm_end, PUD_SIZE),
7389 /* take_locks = */ true);
7390 }
7391
7392 #ifdef CONFIG_CMA
7393 static bool cma_reserve_called __initdata;
7394
cmdline_parse_hugetlb_cma(char * p)7395 static int __init cmdline_parse_hugetlb_cma(char *p)
7396 {
7397 int nid, count = 0;
7398 unsigned long tmp;
7399 char *s = p;
7400
7401 while (*s) {
7402 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7403 break;
7404
7405 if (s[count] == ':') {
7406 if (tmp >= MAX_NUMNODES)
7407 break;
7408 nid = array_index_nospec(tmp, MAX_NUMNODES);
7409
7410 s += count + 1;
7411 tmp = memparse(s, &s);
7412 hugetlb_cma_size_in_node[nid] = tmp;
7413 hugetlb_cma_size += tmp;
7414
7415 /*
7416 * Skip the separator if have one, otherwise
7417 * break the parsing.
7418 */
7419 if (*s == ',')
7420 s++;
7421 else
7422 break;
7423 } else {
7424 hugetlb_cma_size = memparse(p, &p);
7425 break;
7426 }
7427 }
7428
7429 return 0;
7430 }
7431
7432 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7433
hugetlb_cma_reserve(int order)7434 void __init hugetlb_cma_reserve(int order)
7435 {
7436 unsigned long size, reserved, per_node;
7437 bool node_specific_cma_alloc = false;
7438 int nid;
7439
7440 cma_reserve_called = true;
7441
7442 if (!hugetlb_cma_size)
7443 return;
7444
7445 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7446 if (hugetlb_cma_size_in_node[nid] == 0)
7447 continue;
7448
7449 if (!node_online(nid)) {
7450 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7451 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7452 hugetlb_cma_size_in_node[nid] = 0;
7453 continue;
7454 }
7455
7456 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7457 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7458 nid, (PAGE_SIZE << order) / SZ_1M);
7459 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7460 hugetlb_cma_size_in_node[nid] = 0;
7461 } else {
7462 node_specific_cma_alloc = true;
7463 }
7464 }
7465
7466 /* Validate the CMA size again in case some invalid nodes specified. */
7467 if (!hugetlb_cma_size)
7468 return;
7469
7470 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7471 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7472 (PAGE_SIZE << order) / SZ_1M);
7473 hugetlb_cma_size = 0;
7474 return;
7475 }
7476
7477 if (!node_specific_cma_alloc) {
7478 /*
7479 * If 3 GB area is requested on a machine with 4 numa nodes,
7480 * let's allocate 1 GB on first three nodes and ignore the last one.
7481 */
7482 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7483 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7484 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7485 }
7486
7487 reserved = 0;
7488 for_each_online_node(nid) {
7489 int res;
7490 char name[CMA_MAX_NAME];
7491
7492 if (node_specific_cma_alloc) {
7493 if (hugetlb_cma_size_in_node[nid] == 0)
7494 continue;
7495
7496 size = hugetlb_cma_size_in_node[nid];
7497 } else {
7498 size = min(per_node, hugetlb_cma_size - reserved);
7499 }
7500
7501 size = round_up(size, PAGE_SIZE << order);
7502
7503 snprintf(name, sizeof(name), "hugetlb%d", nid);
7504 /*
7505 * Note that 'order per bit' is based on smallest size that
7506 * may be returned to CMA allocator in the case of
7507 * huge page demotion.
7508 */
7509 res = cma_declare_contiguous_nid(0, size, 0,
7510 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7511 HUGETLB_PAGE_ORDER, false, name,
7512 &hugetlb_cma[nid], nid);
7513 if (res) {
7514 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7515 res, nid);
7516 continue;
7517 }
7518
7519 reserved += size;
7520 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7521 size / SZ_1M, nid);
7522
7523 if (reserved >= hugetlb_cma_size)
7524 break;
7525 }
7526
7527 if (!reserved)
7528 /*
7529 * hugetlb_cma_size is used to determine if allocations from
7530 * cma are possible. Set to zero if no cma regions are set up.
7531 */
7532 hugetlb_cma_size = 0;
7533 }
7534
hugetlb_cma_check(void)7535 static void __init hugetlb_cma_check(void)
7536 {
7537 if (!hugetlb_cma_size || cma_reserve_called)
7538 return;
7539
7540 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7541 }
7542
7543 #endif /* CONFIG_CMA */
7544