xref: /openbmc/linux/kernel/fork.c (revision 24f68eb5bf14a74027946970a18bc902e19d986a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 #include <linux/iommu.h>
102 #include <linux/tick.h>
103 
104 #include <asm/pgalloc.h>
105 #include <linux/uaccess.h>
106 #include <asm/mmu_context.h>
107 #include <asm/cacheflush.h>
108 #include <asm/tlbflush.h>
109 
110 #include <trace/events/sched.h>
111 
112 #define CREATE_TRACE_POINTS
113 #include <trace/events/task.h>
114 
115 /*
116  * Minimum number of threads to boot the kernel
117  */
118 #define MIN_THREADS 20
119 
120 /*
121  * Maximum number of threads
122  */
123 #define MAX_THREADS FUTEX_TID_MASK
124 
125 /*
126  * Protected counters by write_lock_irq(&tasklist_lock)
127  */
128 unsigned long total_forks;	/* Handle normal Linux uptimes. */
129 int nr_threads;			/* The idle threads do not count.. */
130 
131 static int max_threads;		/* tunable limit on nr_threads */
132 
133 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
134 
135 static const char * const resident_page_types[] = {
136 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
137 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
138 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
139 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
140 };
141 
142 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
143 
144 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
145 
146 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)147 int lockdep_tasklist_lock_is_held(void)
148 {
149 	return lockdep_is_held(&tasklist_lock);
150 }
151 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
152 #endif /* #ifdef CONFIG_PROVE_RCU */
153 
nr_processes(void)154 int nr_processes(void)
155 {
156 	int cpu;
157 	int total = 0;
158 
159 	for_each_possible_cpu(cpu)
160 		total += per_cpu(process_counts, cpu);
161 
162 	return total;
163 }
164 
arch_release_task_struct(struct task_struct * tsk)165 void __weak arch_release_task_struct(struct task_struct *tsk)
166 {
167 }
168 
169 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
170 static struct kmem_cache *task_struct_cachep;
171 
alloc_task_struct_node(int node)172 static inline struct task_struct *alloc_task_struct_node(int node)
173 {
174 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
175 }
176 
free_task_struct(struct task_struct * tsk)177 static inline void free_task_struct(struct task_struct *tsk)
178 {
179 	kmem_cache_free(task_struct_cachep, tsk);
180 }
181 #endif
182 
183 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
184 
185 /*
186  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
187  * kmemcache based allocator.
188  */
189 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
190 
191 #  ifdef CONFIG_VMAP_STACK
192 /*
193  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
194  * flush.  Try to minimize the number of calls by caching stacks.
195  */
196 #define NR_CACHED_STACKS 2
197 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
198 
199 struct vm_stack {
200 	struct rcu_head rcu;
201 	struct vm_struct *stack_vm_area;
202 };
203 
try_release_thread_stack_to_cache(struct vm_struct * vm)204 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
205 {
206 	unsigned int i;
207 
208 	for (i = 0; i < NR_CACHED_STACKS; i++) {
209 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
210 			continue;
211 		return true;
212 	}
213 	return false;
214 }
215 
thread_stack_free_rcu(struct rcu_head * rh)216 static void thread_stack_free_rcu(struct rcu_head *rh)
217 {
218 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
219 
220 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
221 		return;
222 
223 	vfree(vm_stack);
224 }
225 
thread_stack_delayed_free(struct task_struct * tsk)226 static void thread_stack_delayed_free(struct task_struct *tsk)
227 {
228 	struct vm_stack *vm_stack = tsk->stack;
229 
230 	vm_stack->stack_vm_area = tsk->stack_vm_area;
231 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
232 }
233 
free_vm_stack_cache(unsigned int cpu)234 static int free_vm_stack_cache(unsigned int cpu)
235 {
236 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
237 	int i;
238 
239 	for (i = 0; i < NR_CACHED_STACKS; i++) {
240 		struct vm_struct *vm_stack = cached_vm_stacks[i];
241 
242 		if (!vm_stack)
243 			continue;
244 
245 		vfree(vm_stack->addr);
246 		cached_vm_stacks[i] = NULL;
247 	}
248 
249 	return 0;
250 }
251 
memcg_charge_kernel_stack(struct vm_struct * vm)252 static int memcg_charge_kernel_stack(struct vm_struct *vm)
253 {
254 	int i;
255 	int ret;
256 	int nr_charged = 0;
257 
258 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
259 
260 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
261 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
262 		if (ret)
263 			goto err;
264 		nr_charged++;
265 	}
266 	return 0;
267 err:
268 	for (i = 0; i < nr_charged; i++)
269 		memcg_kmem_uncharge_page(vm->pages[i], 0);
270 	return ret;
271 }
272 
alloc_thread_stack_node(struct task_struct * tsk,int node)273 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
274 {
275 	struct vm_struct *vm;
276 	void *stack;
277 	int i;
278 
279 	for (i = 0; i < NR_CACHED_STACKS; i++) {
280 		struct vm_struct *s;
281 
282 		s = this_cpu_xchg(cached_stacks[i], NULL);
283 
284 		if (!s)
285 			continue;
286 
287 		/* Reset stack metadata. */
288 		kasan_unpoison_range(s->addr, THREAD_SIZE);
289 
290 		stack = kasan_reset_tag(s->addr);
291 
292 		/* Clear stale pointers from reused stack. */
293 		memset(stack, 0, THREAD_SIZE);
294 
295 		if (memcg_charge_kernel_stack(s)) {
296 			vfree(s->addr);
297 			return -ENOMEM;
298 		}
299 
300 		tsk->stack_vm_area = s;
301 		tsk->stack = stack;
302 		return 0;
303 	}
304 
305 	/*
306 	 * Allocated stacks are cached and later reused by new threads,
307 	 * so memcg accounting is performed manually on assigning/releasing
308 	 * stacks to tasks. Drop __GFP_ACCOUNT.
309 	 */
310 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
311 				     VMALLOC_START, VMALLOC_END,
312 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
313 				     PAGE_KERNEL,
314 				     0, node, __builtin_return_address(0));
315 	if (!stack)
316 		return -ENOMEM;
317 
318 	vm = find_vm_area(stack);
319 	if (memcg_charge_kernel_stack(vm)) {
320 		vfree(stack);
321 		return -ENOMEM;
322 	}
323 	/*
324 	 * We can't call find_vm_area() in interrupt context, and
325 	 * free_thread_stack() can be called in interrupt context,
326 	 * so cache the vm_struct.
327 	 */
328 	tsk->stack_vm_area = vm;
329 	stack = kasan_reset_tag(stack);
330 	tsk->stack = stack;
331 	return 0;
332 }
333 
free_thread_stack(struct task_struct * tsk)334 static void free_thread_stack(struct task_struct *tsk)
335 {
336 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
337 		thread_stack_delayed_free(tsk);
338 
339 	tsk->stack = NULL;
340 	tsk->stack_vm_area = NULL;
341 }
342 
343 #  else /* !CONFIG_VMAP_STACK */
344 
thread_stack_free_rcu(struct rcu_head * rh)345 static void thread_stack_free_rcu(struct rcu_head *rh)
346 {
347 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
348 }
349 
thread_stack_delayed_free(struct task_struct * tsk)350 static void thread_stack_delayed_free(struct task_struct *tsk)
351 {
352 	struct rcu_head *rh = tsk->stack;
353 
354 	call_rcu(rh, thread_stack_free_rcu);
355 }
356 
alloc_thread_stack_node(struct task_struct * tsk,int node)357 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
358 {
359 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
360 					     THREAD_SIZE_ORDER);
361 
362 	if (likely(page)) {
363 		tsk->stack = kasan_reset_tag(page_address(page));
364 		return 0;
365 	}
366 	return -ENOMEM;
367 }
368 
free_thread_stack(struct task_struct * tsk)369 static void free_thread_stack(struct task_struct *tsk)
370 {
371 	thread_stack_delayed_free(tsk);
372 	tsk->stack = NULL;
373 }
374 
375 #  endif /* CONFIG_VMAP_STACK */
376 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
377 
378 static struct kmem_cache *thread_stack_cache;
379 
thread_stack_free_rcu(struct rcu_head * rh)380 static void thread_stack_free_rcu(struct rcu_head *rh)
381 {
382 	kmem_cache_free(thread_stack_cache, rh);
383 }
384 
thread_stack_delayed_free(struct task_struct * tsk)385 static void thread_stack_delayed_free(struct task_struct *tsk)
386 {
387 	struct rcu_head *rh = tsk->stack;
388 
389 	call_rcu(rh, thread_stack_free_rcu);
390 }
391 
alloc_thread_stack_node(struct task_struct * tsk,int node)392 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
393 {
394 	unsigned long *stack;
395 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
396 	stack = kasan_reset_tag(stack);
397 	tsk->stack = stack;
398 	return stack ? 0 : -ENOMEM;
399 }
400 
free_thread_stack(struct task_struct * tsk)401 static void free_thread_stack(struct task_struct *tsk)
402 {
403 	thread_stack_delayed_free(tsk);
404 	tsk->stack = NULL;
405 }
406 
thread_stack_cache_init(void)407 void thread_stack_cache_init(void)
408 {
409 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
410 					THREAD_SIZE, THREAD_SIZE, 0, 0,
411 					THREAD_SIZE, NULL);
412 	BUG_ON(thread_stack_cache == NULL);
413 }
414 
415 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
416 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
417 
alloc_thread_stack_node(struct task_struct * tsk,int node)418 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
419 {
420 	unsigned long *stack;
421 
422 	stack = arch_alloc_thread_stack_node(tsk, node);
423 	tsk->stack = stack;
424 	return stack ? 0 : -ENOMEM;
425 }
426 
free_thread_stack(struct task_struct * tsk)427 static void free_thread_stack(struct task_struct *tsk)
428 {
429 	arch_free_thread_stack(tsk);
430 	tsk->stack = NULL;
431 }
432 
433 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
434 
435 /* SLAB cache for signal_struct structures (tsk->signal) */
436 static struct kmem_cache *signal_cachep;
437 
438 /* SLAB cache for sighand_struct structures (tsk->sighand) */
439 struct kmem_cache *sighand_cachep;
440 
441 /* SLAB cache for files_struct structures (tsk->files) */
442 struct kmem_cache *files_cachep;
443 
444 /* SLAB cache for fs_struct structures (tsk->fs) */
445 struct kmem_cache *fs_cachep;
446 
447 /* SLAB cache for vm_area_struct structures */
448 static struct kmem_cache *vm_area_cachep;
449 
450 /* SLAB cache for mm_struct structures (tsk->mm) */
451 static struct kmem_cache *mm_cachep;
452 
453 #ifdef CONFIG_PER_VMA_LOCK
454 
455 /* SLAB cache for vm_area_struct.lock */
456 static struct kmem_cache *vma_lock_cachep;
457 
vma_lock_alloc(struct vm_area_struct * vma)458 static bool vma_lock_alloc(struct vm_area_struct *vma)
459 {
460 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
461 	if (!vma->vm_lock)
462 		return false;
463 
464 	init_rwsem(&vma->vm_lock->lock);
465 	vma->vm_lock_seq = -1;
466 
467 	return true;
468 }
469 
vma_lock_free(struct vm_area_struct * vma)470 static inline void vma_lock_free(struct vm_area_struct *vma)
471 {
472 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
473 }
474 
475 #else /* CONFIG_PER_VMA_LOCK */
476 
vma_lock_alloc(struct vm_area_struct * vma)477 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
vma_lock_free(struct vm_area_struct * vma)478 static inline void vma_lock_free(struct vm_area_struct *vma) {}
479 
480 #endif /* CONFIG_PER_VMA_LOCK */
481 
vm_area_alloc(struct mm_struct * mm)482 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
483 {
484 	struct vm_area_struct *vma;
485 
486 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
487 	if (!vma)
488 		return NULL;
489 
490 	vma_init(vma, mm);
491 	if (!vma_lock_alloc(vma)) {
492 		kmem_cache_free(vm_area_cachep, vma);
493 		return NULL;
494 	}
495 
496 	return vma;
497 }
498 
vm_area_dup(struct vm_area_struct * orig)499 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
500 {
501 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
502 
503 	if (!new)
504 		return NULL;
505 
506 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
507 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
508 	/*
509 	 * orig->shared.rb may be modified concurrently, but the clone
510 	 * will be reinitialized.
511 	 */
512 	data_race(memcpy(new, orig, sizeof(*new)));
513 	if (!vma_lock_alloc(new)) {
514 		kmem_cache_free(vm_area_cachep, new);
515 		return NULL;
516 	}
517 	INIT_LIST_HEAD(&new->anon_vma_chain);
518 	vma_numab_state_init(new);
519 	dup_anon_vma_name(orig, new);
520 
521 	return new;
522 }
523 
__vm_area_free(struct vm_area_struct * vma)524 void __vm_area_free(struct vm_area_struct *vma)
525 {
526 	vma_numab_state_free(vma);
527 	free_anon_vma_name(vma);
528 	vma_lock_free(vma);
529 	kmem_cache_free(vm_area_cachep, vma);
530 }
531 
532 #ifdef CONFIG_PER_VMA_LOCK
vm_area_free_rcu_cb(struct rcu_head * head)533 static void vm_area_free_rcu_cb(struct rcu_head *head)
534 {
535 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
536 						  vm_rcu);
537 
538 	/* The vma should not be locked while being destroyed. */
539 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
540 	__vm_area_free(vma);
541 }
542 #endif
543 
vm_area_free(struct vm_area_struct * vma)544 void vm_area_free(struct vm_area_struct *vma)
545 {
546 #ifdef CONFIG_PER_VMA_LOCK
547 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
548 #else
549 	__vm_area_free(vma);
550 #endif
551 }
552 
account_kernel_stack(struct task_struct * tsk,int account)553 static void account_kernel_stack(struct task_struct *tsk, int account)
554 {
555 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
556 		struct vm_struct *vm = task_stack_vm_area(tsk);
557 		int i;
558 
559 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
560 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
561 					      account * (PAGE_SIZE / 1024));
562 	} else {
563 		void *stack = task_stack_page(tsk);
564 
565 		/* All stack pages are in the same node. */
566 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
567 				      account * (THREAD_SIZE / 1024));
568 	}
569 }
570 
exit_task_stack_account(struct task_struct * tsk)571 void exit_task_stack_account(struct task_struct *tsk)
572 {
573 	account_kernel_stack(tsk, -1);
574 
575 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
576 		struct vm_struct *vm;
577 		int i;
578 
579 		vm = task_stack_vm_area(tsk);
580 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
581 			memcg_kmem_uncharge_page(vm->pages[i], 0);
582 	}
583 }
584 
release_task_stack(struct task_struct * tsk)585 static void release_task_stack(struct task_struct *tsk)
586 {
587 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
588 		return;  /* Better to leak the stack than to free prematurely */
589 
590 	free_thread_stack(tsk);
591 }
592 
593 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)594 void put_task_stack(struct task_struct *tsk)
595 {
596 	if (refcount_dec_and_test(&tsk->stack_refcount))
597 		release_task_stack(tsk);
598 }
599 #endif
600 
free_task(struct task_struct * tsk)601 void free_task(struct task_struct *tsk)
602 {
603 #ifdef CONFIG_SECCOMP
604 	WARN_ON_ONCE(tsk->seccomp.filter);
605 #endif
606 	release_user_cpus_ptr(tsk);
607 	scs_release(tsk);
608 
609 #ifndef CONFIG_THREAD_INFO_IN_TASK
610 	/*
611 	 * The task is finally done with both the stack and thread_info,
612 	 * so free both.
613 	 */
614 	release_task_stack(tsk);
615 #else
616 	/*
617 	 * If the task had a separate stack allocation, it should be gone
618 	 * by now.
619 	 */
620 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
621 #endif
622 	rt_mutex_debug_task_free(tsk);
623 	ftrace_graph_exit_task(tsk);
624 	arch_release_task_struct(tsk);
625 	if (tsk->flags & PF_KTHREAD)
626 		free_kthread_struct(tsk);
627 	bpf_task_storage_free(tsk);
628 	free_task_struct(tsk);
629 }
630 EXPORT_SYMBOL(free_task);
631 
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)632 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
633 {
634 	struct file *exe_file;
635 
636 	exe_file = get_mm_exe_file(oldmm);
637 	RCU_INIT_POINTER(mm->exe_file, exe_file);
638 	/*
639 	 * We depend on the oldmm having properly denied write access to the
640 	 * exe_file already.
641 	 */
642 	if (exe_file && deny_write_access(exe_file))
643 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
644 }
645 
646 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)647 static __latent_entropy int dup_mmap(struct mm_struct *mm,
648 					struct mm_struct *oldmm)
649 {
650 	struct vm_area_struct *mpnt, *tmp;
651 	int retval;
652 	unsigned long charge = 0;
653 	LIST_HEAD(uf);
654 	VMA_ITERATOR(old_vmi, oldmm, 0);
655 	VMA_ITERATOR(vmi, mm, 0);
656 
657 	uprobe_start_dup_mmap();
658 	if (mmap_write_lock_killable(oldmm)) {
659 		retval = -EINTR;
660 		goto fail_uprobe_end;
661 	}
662 	flush_cache_dup_mm(oldmm);
663 	uprobe_dup_mmap(oldmm, mm);
664 	/*
665 	 * Not linked in yet - no deadlock potential:
666 	 */
667 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
668 
669 	/* No ordering required: file already has been exposed. */
670 	dup_mm_exe_file(mm, oldmm);
671 
672 	mm->total_vm = oldmm->total_vm;
673 	mm->data_vm = oldmm->data_vm;
674 	mm->exec_vm = oldmm->exec_vm;
675 	mm->stack_vm = oldmm->stack_vm;
676 
677 	retval = ksm_fork(mm, oldmm);
678 	if (retval)
679 		goto out;
680 	khugepaged_fork(mm, oldmm);
681 
682 	retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
683 	if (retval)
684 		goto out;
685 
686 	mt_clear_in_rcu(vmi.mas.tree);
687 	for_each_vma(old_vmi, mpnt) {
688 		struct file *file;
689 
690 		vma_start_write(mpnt);
691 		if (mpnt->vm_flags & VM_DONTCOPY) {
692 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
693 			continue;
694 		}
695 		charge = 0;
696 		/*
697 		 * Don't duplicate many vmas if we've been oom-killed (for
698 		 * example)
699 		 */
700 		if (fatal_signal_pending(current)) {
701 			retval = -EINTR;
702 			goto loop_out;
703 		}
704 		if (mpnt->vm_flags & VM_ACCOUNT) {
705 			unsigned long len = vma_pages(mpnt);
706 
707 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
708 				goto fail_nomem;
709 			charge = len;
710 		}
711 		tmp = vm_area_dup(mpnt);
712 		if (!tmp)
713 			goto fail_nomem;
714 		retval = vma_dup_policy(mpnt, tmp);
715 		if (retval)
716 			goto fail_nomem_policy;
717 		tmp->vm_mm = mm;
718 		retval = dup_userfaultfd(tmp, &uf);
719 		if (retval)
720 			goto fail_nomem_anon_vma_fork;
721 		if (tmp->vm_flags & VM_WIPEONFORK) {
722 			/*
723 			 * VM_WIPEONFORK gets a clean slate in the child.
724 			 * Don't prepare anon_vma until fault since we don't
725 			 * copy page for current vma.
726 			 */
727 			tmp->anon_vma = NULL;
728 		} else if (anon_vma_fork(tmp, mpnt))
729 			goto fail_nomem_anon_vma_fork;
730 		vm_flags_clear(tmp, VM_LOCKED_MASK);
731 		file = tmp->vm_file;
732 		if (file) {
733 			struct address_space *mapping = file->f_mapping;
734 
735 			get_file(file);
736 			i_mmap_lock_write(mapping);
737 			if (tmp->vm_flags & VM_SHARED)
738 				mapping_allow_writable(mapping);
739 			flush_dcache_mmap_lock(mapping);
740 			/* insert tmp into the share list, just after mpnt */
741 			vma_interval_tree_insert_after(tmp, mpnt,
742 					&mapping->i_mmap);
743 			flush_dcache_mmap_unlock(mapping);
744 			i_mmap_unlock_write(mapping);
745 		}
746 
747 		/*
748 		 * Copy/update hugetlb private vma information.
749 		 */
750 		if (is_vm_hugetlb_page(tmp))
751 			hugetlb_dup_vma_private(tmp);
752 
753 		/* Link the vma into the MT */
754 		if (vma_iter_bulk_store(&vmi, tmp))
755 			goto fail_nomem_vmi_store;
756 
757 		mm->map_count++;
758 		if (!(tmp->vm_flags & VM_WIPEONFORK))
759 			retval = copy_page_range(tmp, mpnt);
760 
761 		if (tmp->vm_ops && tmp->vm_ops->open)
762 			tmp->vm_ops->open(tmp);
763 
764 		if (retval)
765 			goto loop_out;
766 	}
767 	/* a new mm has just been created */
768 	retval = arch_dup_mmap(oldmm, mm);
769 loop_out:
770 	vma_iter_free(&vmi);
771 	if (!retval)
772 		mt_set_in_rcu(vmi.mas.tree);
773 out:
774 	mmap_write_unlock(mm);
775 	flush_tlb_mm(oldmm);
776 	mmap_write_unlock(oldmm);
777 	dup_userfaultfd_complete(&uf);
778 fail_uprobe_end:
779 	uprobe_end_dup_mmap();
780 	return retval;
781 
782 fail_nomem_vmi_store:
783 	unlink_anon_vmas(tmp);
784 fail_nomem_anon_vma_fork:
785 	mpol_put(vma_policy(tmp));
786 fail_nomem_policy:
787 	vm_area_free(tmp);
788 fail_nomem:
789 	retval = -ENOMEM;
790 	vm_unacct_memory(charge);
791 	goto loop_out;
792 }
793 
mm_alloc_pgd(struct mm_struct * mm)794 static inline int mm_alloc_pgd(struct mm_struct *mm)
795 {
796 	mm->pgd = pgd_alloc(mm);
797 	if (unlikely(!mm->pgd))
798 		return -ENOMEM;
799 	return 0;
800 }
801 
mm_free_pgd(struct mm_struct * mm)802 static inline void mm_free_pgd(struct mm_struct *mm)
803 {
804 	pgd_free(mm, mm->pgd);
805 }
806 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)807 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
808 {
809 	mmap_write_lock(oldmm);
810 	dup_mm_exe_file(mm, oldmm);
811 	mmap_write_unlock(oldmm);
812 	return 0;
813 }
814 #define mm_alloc_pgd(mm)	(0)
815 #define mm_free_pgd(mm)
816 #endif /* CONFIG_MMU */
817 
check_mm(struct mm_struct * mm)818 static void check_mm(struct mm_struct *mm)
819 {
820 	int i;
821 
822 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
823 			 "Please make sure 'struct resident_page_types[]' is updated as well");
824 
825 	for (i = 0; i < NR_MM_COUNTERS; i++) {
826 		long x = percpu_counter_sum(&mm->rss_stat[i]);
827 
828 		if (unlikely(x))
829 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
830 				 mm, resident_page_types[i], x);
831 	}
832 
833 	if (mm_pgtables_bytes(mm))
834 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
835 				mm_pgtables_bytes(mm));
836 
837 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
838 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
839 #endif
840 }
841 
842 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
843 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
844 
do_check_lazy_tlb(void * arg)845 static void do_check_lazy_tlb(void *arg)
846 {
847 	struct mm_struct *mm = arg;
848 
849 	WARN_ON_ONCE(current->active_mm == mm);
850 }
851 
do_shoot_lazy_tlb(void * arg)852 static void do_shoot_lazy_tlb(void *arg)
853 {
854 	struct mm_struct *mm = arg;
855 
856 	if (current->active_mm == mm) {
857 		WARN_ON_ONCE(current->mm);
858 		current->active_mm = &init_mm;
859 		switch_mm(mm, &init_mm, current);
860 	}
861 }
862 
cleanup_lazy_tlbs(struct mm_struct * mm)863 static void cleanup_lazy_tlbs(struct mm_struct *mm)
864 {
865 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
866 		/*
867 		 * In this case, lazy tlb mms are refounted and would not reach
868 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
869 		 */
870 		return;
871 	}
872 
873 	/*
874 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
875 	 * requires lazy mm users to switch to another mm when the refcount
876 	 * drops to zero, before the mm is freed. This requires IPIs here to
877 	 * switch kernel threads to init_mm.
878 	 *
879 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
880 	 * switch with the final userspace teardown TLB flush which leaves the
881 	 * mm lazy on this CPU but no others, reducing the need for additional
882 	 * IPIs here. There are cases where a final IPI is still required here,
883 	 * such as the final mmdrop being performed on a different CPU than the
884 	 * one exiting, or kernel threads using the mm when userspace exits.
885 	 *
886 	 * IPI overheads have not found to be expensive, but they could be
887 	 * reduced in a number of possible ways, for example (roughly
888 	 * increasing order of complexity):
889 	 * - The last lazy reference created by exit_mm() could instead switch
890 	 *   to init_mm, however it's probable this will run on the same CPU
891 	 *   immediately afterwards, so this may not reduce IPIs much.
892 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
893 	 * - CPUs store active_mm where it can be remotely checked without a
894 	 *   lock, to filter out false-positives in the cpumask.
895 	 * - After mm_users or mm_count reaches zero, switching away from the
896 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
897 	 *   with some batching or delaying of the final IPIs.
898 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
899 	 *   switching to avoid IPIs completely.
900 	 */
901 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
902 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
903 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
904 }
905 
906 /*
907  * Called when the last reference to the mm
908  * is dropped: either by a lazy thread or by
909  * mmput. Free the page directory and the mm.
910  */
__mmdrop(struct mm_struct * mm)911 void __mmdrop(struct mm_struct *mm)
912 {
913 	BUG_ON(mm == &init_mm);
914 	WARN_ON_ONCE(mm == current->mm);
915 
916 	/* Ensure no CPUs are using this as their lazy tlb mm */
917 	cleanup_lazy_tlbs(mm);
918 
919 	WARN_ON_ONCE(mm == current->active_mm);
920 	mm_free_pgd(mm);
921 	destroy_context(mm);
922 	mmu_notifier_subscriptions_destroy(mm);
923 	check_mm(mm);
924 	put_user_ns(mm->user_ns);
925 	mm_pasid_drop(mm);
926 	mm_destroy_cid(mm);
927 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
928 
929 	free_mm(mm);
930 }
931 EXPORT_SYMBOL_GPL(__mmdrop);
932 
mmdrop_async_fn(struct work_struct * work)933 static void mmdrop_async_fn(struct work_struct *work)
934 {
935 	struct mm_struct *mm;
936 
937 	mm = container_of(work, struct mm_struct, async_put_work);
938 	__mmdrop(mm);
939 }
940 
mmdrop_async(struct mm_struct * mm)941 static void mmdrop_async(struct mm_struct *mm)
942 {
943 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
944 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
945 		schedule_work(&mm->async_put_work);
946 	}
947 }
948 
free_signal_struct(struct signal_struct * sig)949 static inline void free_signal_struct(struct signal_struct *sig)
950 {
951 	taskstats_tgid_free(sig);
952 	sched_autogroup_exit(sig);
953 	/*
954 	 * __mmdrop is not safe to call from softirq context on x86 due to
955 	 * pgd_dtor so postpone it to the async context
956 	 */
957 	if (sig->oom_mm)
958 		mmdrop_async(sig->oom_mm);
959 	kmem_cache_free(signal_cachep, sig);
960 }
961 
put_signal_struct(struct signal_struct * sig)962 static inline void put_signal_struct(struct signal_struct *sig)
963 {
964 	if (refcount_dec_and_test(&sig->sigcnt))
965 		free_signal_struct(sig);
966 }
967 
__put_task_struct(struct task_struct * tsk)968 void __put_task_struct(struct task_struct *tsk)
969 {
970 	WARN_ON(!tsk->exit_state);
971 	WARN_ON(refcount_read(&tsk->usage));
972 	WARN_ON(tsk == current);
973 
974 	io_uring_free(tsk);
975 	cgroup_free(tsk);
976 	task_numa_free(tsk, true);
977 	security_task_free(tsk);
978 	exit_creds(tsk);
979 	delayacct_tsk_free(tsk);
980 	put_signal_struct(tsk->signal);
981 	sched_core_free(tsk);
982 	free_task(tsk);
983 }
984 EXPORT_SYMBOL_GPL(__put_task_struct);
985 
__put_task_struct_rcu_cb(struct rcu_head * rhp)986 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
987 {
988 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
989 
990 	__put_task_struct(task);
991 }
992 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
993 
arch_task_cache_init(void)994 void __init __weak arch_task_cache_init(void) { }
995 
996 /*
997  * set_max_threads
998  */
set_max_threads(unsigned int max_threads_suggested)999 static void set_max_threads(unsigned int max_threads_suggested)
1000 {
1001 	u64 threads;
1002 	unsigned long nr_pages = totalram_pages();
1003 
1004 	/*
1005 	 * The number of threads shall be limited such that the thread
1006 	 * structures may only consume a small part of the available memory.
1007 	 */
1008 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1009 		threads = MAX_THREADS;
1010 	else
1011 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1012 				    (u64) THREAD_SIZE * 8UL);
1013 
1014 	if (threads > max_threads_suggested)
1015 		threads = max_threads_suggested;
1016 
1017 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1018 }
1019 
1020 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1021 /* Initialized by the architecture: */
1022 int arch_task_struct_size __read_mostly;
1023 #endif
1024 
1025 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)1026 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1027 {
1028 	/* Fetch thread_struct whitelist for the architecture. */
1029 	arch_thread_struct_whitelist(offset, size);
1030 
1031 	/*
1032 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1033 	 * adjust offset to position of thread_struct in task_struct.
1034 	 */
1035 	if (unlikely(*size == 0))
1036 		*offset = 0;
1037 	else
1038 		*offset += offsetof(struct task_struct, thread);
1039 }
1040 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1041 
fork_init(void)1042 void __init fork_init(void)
1043 {
1044 	int i;
1045 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1046 #ifndef ARCH_MIN_TASKALIGN
1047 #define ARCH_MIN_TASKALIGN	0
1048 #endif
1049 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1050 	unsigned long useroffset, usersize;
1051 
1052 	/* create a slab on which task_structs can be allocated */
1053 	task_struct_whitelist(&useroffset, &usersize);
1054 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1055 			arch_task_struct_size, align,
1056 			SLAB_PANIC|SLAB_ACCOUNT,
1057 			useroffset, usersize, NULL);
1058 #endif
1059 
1060 	/* do the arch specific task caches init */
1061 	arch_task_cache_init();
1062 
1063 	set_max_threads(MAX_THREADS);
1064 
1065 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1066 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1067 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1068 		init_task.signal->rlim[RLIMIT_NPROC];
1069 
1070 	for (i = 0; i < UCOUNT_COUNTS; i++)
1071 		init_user_ns.ucount_max[i] = max_threads/2;
1072 
1073 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1074 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1075 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1076 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1077 
1078 #ifdef CONFIG_VMAP_STACK
1079 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1080 			  NULL, free_vm_stack_cache);
1081 #endif
1082 
1083 	scs_init();
1084 
1085 	lockdep_init_task(&init_task);
1086 	uprobes_init();
1087 }
1088 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1089 int __weak arch_dup_task_struct(struct task_struct *dst,
1090 					       struct task_struct *src)
1091 {
1092 	*dst = *src;
1093 	return 0;
1094 }
1095 
set_task_stack_end_magic(struct task_struct * tsk)1096 void set_task_stack_end_magic(struct task_struct *tsk)
1097 {
1098 	unsigned long *stackend;
1099 
1100 	stackend = end_of_stack(tsk);
1101 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1102 }
1103 
dup_task_struct(struct task_struct * orig,int node)1104 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1105 {
1106 	struct task_struct *tsk;
1107 	int err;
1108 
1109 	if (node == NUMA_NO_NODE)
1110 		node = tsk_fork_get_node(orig);
1111 	tsk = alloc_task_struct_node(node);
1112 	if (!tsk)
1113 		return NULL;
1114 
1115 	err = arch_dup_task_struct(tsk, orig);
1116 	if (err)
1117 		goto free_tsk;
1118 
1119 	err = alloc_thread_stack_node(tsk, node);
1120 	if (err)
1121 		goto free_tsk;
1122 
1123 #ifdef CONFIG_THREAD_INFO_IN_TASK
1124 	refcount_set(&tsk->stack_refcount, 1);
1125 #endif
1126 	account_kernel_stack(tsk, 1);
1127 
1128 	err = scs_prepare(tsk, node);
1129 	if (err)
1130 		goto free_stack;
1131 
1132 #ifdef CONFIG_SECCOMP
1133 	/*
1134 	 * We must handle setting up seccomp filters once we're under
1135 	 * the sighand lock in case orig has changed between now and
1136 	 * then. Until then, filter must be NULL to avoid messing up
1137 	 * the usage counts on the error path calling free_task.
1138 	 */
1139 	tsk->seccomp.filter = NULL;
1140 #endif
1141 
1142 	setup_thread_stack(tsk, orig);
1143 	clear_user_return_notifier(tsk);
1144 	clear_tsk_need_resched(tsk);
1145 	set_task_stack_end_magic(tsk);
1146 	clear_syscall_work_syscall_user_dispatch(tsk);
1147 
1148 #ifdef CONFIG_STACKPROTECTOR
1149 	tsk->stack_canary = get_random_canary();
1150 #endif
1151 	if (orig->cpus_ptr == &orig->cpus_mask)
1152 		tsk->cpus_ptr = &tsk->cpus_mask;
1153 	dup_user_cpus_ptr(tsk, orig, node);
1154 
1155 	/*
1156 	 * One for the user space visible state that goes away when reaped.
1157 	 * One for the scheduler.
1158 	 */
1159 	refcount_set(&tsk->rcu_users, 2);
1160 	/* One for the rcu users */
1161 	refcount_set(&tsk->usage, 1);
1162 #ifdef CONFIG_BLK_DEV_IO_TRACE
1163 	tsk->btrace_seq = 0;
1164 #endif
1165 	tsk->splice_pipe = NULL;
1166 	tsk->task_frag.page = NULL;
1167 	tsk->wake_q.next = NULL;
1168 	tsk->worker_private = NULL;
1169 
1170 	kcov_task_init(tsk);
1171 	kmsan_task_create(tsk);
1172 	kmap_local_fork(tsk);
1173 
1174 #ifdef CONFIG_FAULT_INJECTION
1175 	tsk->fail_nth = 0;
1176 #endif
1177 
1178 #ifdef CONFIG_BLK_CGROUP
1179 	tsk->throttle_disk = NULL;
1180 	tsk->use_memdelay = 0;
1181 #endif
1182 
1183 #ifdef CONFIG_IOMMU_SVA
1184 	tsk->pasid_activated = 0;
1185 #endif
1186 
1187 #ifdef CONFIG_MEMCG
1188 	tsk->active_memcg = NULL;
1189 #endif
1190 
1191 #ifdef CONFIG_CPU_SUP_INTEL
1192 	tsk->reported_split_lock = 0;
1193 #endif
1194 
1195 #ifdef CONFIG_SCHED_MM_CID
1196 	tsk->mm_cid = -1;
1197 	tsk->last_mm_cid = -1;
1198 	tsk->mm_cid_active = 0;
1199 	tsk->migrate_from_cpu = -1;
1200 #endif
1201 	return tsk;
1202 
1203 free_stack:
1204 	exit_task_stack_account(tsk);
1205 	free_thread_stack(tsk);
1206 free_tsk:
1207 	free_task_struct(tsk);
1208 	return NULL;
1209 }
1210 
1211 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1212 
1213 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1214 
coredump_filter_setup(char * s)1215 static int __init coredump_filter_setup(char *s)
1216 {
1217 	default_dump_filter =
1218 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1219 		MMF_DUMP_FILTER_MASK;
1220 	return 1;
1221 }
1222 
1223 __setup("coredump_filter=", coredump_filter_setup);
1224 
1225 #include <linux/init_task.h>
1226 
mm_init_aio(struct mm_struct * mm)1227 static void mm_init_aio(struct mm_struct *mm)
1228 {
1229 #ifdef CONFIG_AIO
1230 	spin_lock_init(&mm->ioctx_lock);
1231 	mm->ioctx_table = NULL;
1232 #endif
1233 }
1234 
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1235 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1236 					   struct task_struct *p)
1237 {
1238 #ifdef CONFIG_MEMCG
1239 	if (mm->owner == p)
1240 		WRITE_ONCE(mm->owner, NULL);
1241 #endif
1242 }
1243 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1244 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1245 {
1246 #ifdef CONFIG_MEMCG
1247 	mm->owner = p;
1248 #endif
1249 }
1250 
mm_init_uprobes_state(struct mm_struct * mm)1251 static void mm_init_uprobes_state(struct mm_struct *mm)
1252 {
1253 #ifdef CONFIG_UPROBES
1254 	mm->uprobes_state.xol_area = NULL;
1255 #endif
1256 }
1257 
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1258 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1259 	struct user_namespace *user_ns)
1260 {
1261 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1262 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1263 	atomic_set(&mm->mm_users, 1);
1264 	atomic_set(&mm->mm_count, 1);
1265 	seqcount_init(&mm->write_protect_seq);
1266 	mmap_init_lock(mm);
1267 	INIT_LIST_HEAD(&mm->mmlist);
1268 #ifdef CONFIG_PER_VMA_LOCK
1269 	mm->mm_lock_seq = 0;
1270 #endif
1271 	mm_pgtables_bytes_init(mm);
1272 	mm->map_count = 0;
1273 	mm->locked_vm = 0;
1274 	atomic64_set(&mm->pinned_vm, 0);
1275 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1276 	spin_lock_init(&mm->page_table_lock);
1277 	spin_lock_init(&mm->arg_lock);
1278 	mm_init_cpumask(mm);
1279 	mm_init_aio(mm);
1280 	mm_init_owner(mm, p);
1281 	mm_pasid_init(mm);
1282 	RCU_INIT_POINTER(mm->exe_file, NULL);
1283 	mmu_notifier_subscriptions_init(mm);
1284 	init_tlb_flush_pending(mm);
1285 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1286 	mm->pmd_huge_pte = NULL;
1287 #endif
1288 	mm_init_uprobes_state(mm);
1289 	hugetlb_count_init(mm);
1290 
1291 	if (current->mm) {
1292 		mm->flags = mmf_init_flags(current->mm->flags);
1293 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1294 	} else {
1295 		mm->flags = default_dump_filter;
1296 		mm->def_flags = 0;
1297 	}
1298 
1299 	if (mm_alloc_pgd(mm))
1300 		goto fail_nopgd;
1301 
1302 	if (init_new_context(p, mm))
1303 		goto fail_nocontext;
1304 
1305 	if (mm_alloc_cid(mm))
1306 		goto fail_cid;
1307 
1308 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1309 				     NR_MM_COUNTERS))
1310 		goto fail_pcpu;
1311 
1312 	mm->user_ns = get_user_ns(user_ns);
1313 	lru_gen_init_mm(mm);
1314 	return mm;
1315 
1316 fail_pcpu:
1317 	mm_destroy_cid(mm);
1318 fail_cid:
1319 	destroy_context(mm);
1320 fail_nocontext:
1321 	mm_free_pgd(mm);
1322 fail_nopgd:
1323 	free_mm(mm);
1324 	return NULL;
1325 }
1326 
1327 /*
1328  * Allocate and initialize an mm_struct.
1329  */
mm_alloc(void)1330 struct mm_struct *mm_alloc(void)
1331 {
1332 	struct mm_struct *mm;
1333 
1334 	mm = allocate_mm();
1335 	if (!mm)
1336 		return NULL;
1337 
1338 	memset(mm, 0, sizeof(*mm));
1339 	return mm_init(mm, current, current_user_ns());
1340 }
1341 
__mmput(struct mm_struct * mm)1342 static inline void __mmput(struct mm_struct *mm)
1343 {
1344 	VM_BUG_ON(atomic_read(&mm->mm_users));
1345 
1346 	uprobe_clear_state(mm);
1347 	exit_aio(mm);
1348 	ksm_exit(mm);
1349 	khugepaged_exit(mm); /* must run before exit_mmap */
1350 	exit_mmap(mm);
1351 	mm_put_huge_zero_page(mm);
1352 	set_mm_exe_file(mm, NULL);
1353 	if (!list_empty(&mm->mmlist)) {
1354 		spin_lock(&mmlist_lock);
1355 		list_del(&mm->mmlist);
1356 		spin_unlock(&mmlist_lock);
1357 	}
1358 	if (mm->binfmt)
1359 		module_put(mm->binfmt->module);
1360 	lru_gen_del_mm(mm);
1361 	mmdrop(mm);
1362 }
1363 
1364 /*
1365  * Decrement the use count and release all resources for an mm.
1366  */
mmput(struct mm_struct * mm)1367 void mmput(struct mm_struct *mm)
1368 {
1369 	might_sleep();
1370 
1371 	if (atomic_dec_and_test(&mm->mm_users))
1372 		__mmput(mm);
1373 }
1374 EXPORT_SYMBOL_GPL(mmput);
1375 
1376 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1377 static void mmput_async_fn(struct work_struct *work)
1378 {
1379 	struct mm_struct *mm = container_of(work, struct mm_struct,
1380 					    async_put_work);
1381 
1382 	__mmput(mm);
1383 }
1384 
mmput_async(struct mm_struct * mm)1385 void mmput_async(struct mm_struct *mm)
1386 {
1387 	if (atomic_dec_and_test(&mm->mm_users)) {
1388 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1389 		schedule_work(&mm->async_put_work);
1390 	}
1391 }
1392 EXPORT_SYMBOL_GPL(mmput_async);
1393 #endif
1394 
1395 /**
1396  * set_mm_exe_file - change a reference to the mm's executable file
1397  *
1398  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1399  *
1400  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1401  * invocations: in mmput() nobody alive left, in execve it happens before
1402  * the new mm is made visible to anyone.
1403  *
1404  * Can only fail if new_exe_file != NULL.
1405  */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1406 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1407 {
1408 	struct file *old_exe_file;
1409 
1410 	/*
1411 	 * It is safe to dereference the exe_file without RCU as
1412 	 * this function is only called if nobody else can access
1413 	 * this mm -- see comment above for justification.
1414 	 */
1415 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1416 
1417 	if (new_exe_file) {
1418 		/*
1419 		 * We expect the caller (i.e., sys_execve) to already denied
1420 		 * write access, so this is unlikely to fail.
1421 		 */
1422 		if (unlikely(deny_write_access(new_exe_file)))
1423 			return -EACCES;
1424 		get_file(new_exe_file);
1425 	}
1426 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1427 	if (old_exe_file) {
1428 		allow_write_access(old_exe_file);
1429 		fput(old_exe_file);
1430 	}
1431 	return 0;
1432 }
1433 
1434 /**
1435  * replace_mm_exe_file - replace a reference to the mm's executable file
1436  *
1437  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1438  *
1439  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1440  */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1441 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1442 {
1443 	struct vm_area_struct *vma;
1444 	struct file *old_exe_file;
1445 	int ret = 0;
1446 
1447 	/* Forbid mm->exe_file change if old file still mapped. */
1448 	old_exe_file = get_mm_exe_file(mm);
1449 	if (old_exe_file) {
1450 		VMA_ITERATOR(vmi, mm, 0);
1451 		mmap_read_lock(mm);
1452 		for_each_vma(vmi, vma) {
1453 			if (!vma->vm_file)
1454 				continue;
1455 			if (path_equal(&vma->vm_file->f_path,
1456 				       &old_exe_file->f_path)) {
1457 				ret = -EBUSY;
1458 				break;
1459 			}
1460 		}
1461 		mmap_read_unlock(mm);
1462 		fput(old_exe_file);
1463 		if (ret)
1464 			return ret;
1465 	}
1466 
1467 	ret = deny_write_access(new_exe_file);
1468 	if (ret)
1469 		return -EACCES;
1470 	get_file(new_exe_file);
1471 
1472 	/* set the new file */
1473 	mmap_write_lock(mm);
1474 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1475 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1476 	mmap_write_unlock(mm);
1477 
1478 	if (old_exe_file) {
1479 		allow_write_access(old_exe_file);
1480 		fput(old_exe_file);
1481 	}
1482 	return 0;
1483 }
1484 
1485 /**
1486  * get_mm_exe_file - acquire a reference to the mm's executable file
1487  *
1488  * Returns %NULL if mm has no associated executable file.
1489  * User must release file via fput().
1490  */
get_mm_exe_file(struct mm_struct * mm)1491 struct file *get_mm_exe_file(struct mm_struct *mm)
1492 {
1493 	struct file *exe_file;
1494 
1495 	rcu_read_lock();
1496 	exe_file = rcu_dereference(mm->exe_file);
1497 	if (exe_file && !get_file_rcu(exe_file))
1498 		exe_file = NULL;
1499 	rcu_read_unlock();
1500 	return exe_file;
1501 }
1502 
1503 /**
1504  * get_task_exe_file - acquire a reference to the task's executable file
1505  *
1506  * Returns %NULL if task's mm (if any) has no associated executable file or
1507  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1508  * User must release file via fput().
1509  */
get_task_exe_file(struct task_struct * task)1510 struct file *get_task_exe_file(struct task_struct *task)
1511 {
1512 	struct file *exe_file = NULL;
1513 	struct mm_struct *mm;
1514 
1515 	task_lock(task);
1516 	mm = task->mm;
1517 	if (mm) {
1518 		if (!(task->flags & PF_KTHREAD))
1519 			exe_file = get_mm_exe_file(mm);
1520 	}
1521 	task_unlock(task);
1522 	return exe_file;
1523 }
1524 
1525 /**
1526  * get_task_mm - acquire a reference to the task's mm
1527  *
1528  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1529  * this kernel workthread has transiently adopted a user mm with use_mm,
1530  * to do its AIO) is not set and if so returns a reference to it, after
1531  * bumping up the use count.  User must release the mm via mmput()
1532  * after use.  Typically used by /proc and ptrace.
1533  */
get_task_mm(struct task_struct * task)1534 struct mm_struct *get_task_mm(struct task_struct *task)
1535 {
1536 	struct mm_struct *mm;
1537 
1538 	task_lock(task);
1539 	mm = task->mm;
1540 	if (mm) {
1541 		if (task->flags & PF_KTHREAD)
1542 			mm = NULL;
1543 		else
1544 			mmget(mm);
1545 	}
1546 	task_unlock(task);
1547 	return mm;
1548 }
1549 EXPORT_SYMBOL_GPL(get_task_mm);
1550 
mm_access(struct task_struct * task,unsigned int mode)1551 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1552 {
1553 	struct mm_struct *mm;
1554 	int err;
1555 
1556 	err =  down_read_killable(&task->signal->exec_update_lock);
1557 	if (err)
1558 		return ERR_PTR(err);
1559 
1560 	mm = get_task_mm(task);
1561 	if (mm && mm != current->mm &&
1562 			!ptrace_may_access(task, mode)) {
1563 		mmput(mm);
1564 		mm = ERR_PTR(-EACCES);
1565 	}
1566 	up_read(&task->signal->exec_update_lock);
1567 
1568 	return mm;
1569 }
1570 
complete_vfork_done(struct task_struct * tsk)1571 static void complete_vfork_done(struct task_struct *tsk)
1572 {
1573 	struct completion *vfork;
1574 
1575 	task_lock(tsk);
1576 	vfork = tsk->vfork_done;
1577 	if (likely(vfork)) {
1578 		tsk->vfork_done = NULL;
1579 		complete(vfork);
1580 	}
1581 	task_unlock(tsk);
1582 }
1583 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1584 static int wait_for_vfork_done(struct task_struct *child,
1585 				struct completion *vfork)
1586 {
1587 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1588 	int killed;
1589 
1590 	cgroup_enter_frozen();
1591 	killed = wait_for_completion_state(vfork, state);
1592 	cgroup_leave_frozen(false);
1593 
1594 	if (killed) {
1595 		task_lock(child);
1596 		child->vfork_done = NULL;
1597 		task_unlock(child);
1598 	}
1599 
1600 	put_task_struct(child);
1601 	return killed;
1602 }
1603 
1604 /* Please note the differences between mmput and mm_release.
1605  * mmput is called whenever we stop holding onto a mm_struct,
1606  * error success whatever.
1607  *
1608  * mm_release is called after a mm_struct has been removed
1609  * from the current process.
1610  *
1611  * This difference is important for error handling, when we
1612  * only half set up a mm_struct for a new process and need to restore
1613  * the old one.  Because we mmput the new mm_struct before
1614  * restoring the old one. . .
1615  * Eric Biederman 10 January 1998
1616  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1617 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1618 {
1619 	uprobe_free_utask(tsk);
1620 
1621 	/* Get rid of any cached register state */
1622 	deactivate_mm(tsk, mm);
1623 
1624 	/*
1625 	 * Signal userspace if we're not exiting with a core dump
1626 	 * because we want to leave the value intact for debugging
1627 	 * purposes.
1628 	 */
1629 	if (tsk->clear_child_tid) {
1630 		if (atomic_read(&mm->mm_users) > 1) {
1631 			/*
1632 			 * We don't check the error code - if userspace has
1633 			 * not set up a proper pointer then tough luck.
1634 			 */
1635 			put_user(0, tsk->clear_child_tid);
1636 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1637 					1, NULL, NULL, 0, 0);
1638 		}
1639 		tsk->clear_child_tid = NULL;
1640 	}
1641 
1642 	/*
1643 	 * All done, finally we can wake up parent and return this mm to him.
1644 	 * Also kthread_stop() uses this completion for synchronization.
1645 	 */
1646 	if (tsk->vfork_done)
1647 		complete_vfork_done(tsk);
1648 }
1649 
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1650 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1651 {
1652 	futex_exit_release(tsk);
1653 	mm_release(tsk, mm);
1654 }
1655 
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1656 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1657 {
1658 	futex_exec_release(tsk);
1659 	mm_release(tsk, mm);
1660 }
1661 
1662 /**
1663  * dup_mm() - duplicates an existing mm structure
1664  * @tsk: the task_struct with which the new mm will be associated.
1665  * @oldmm: the mm to duplicate.
1666  *
1667  * Allocates a new mm structure and duplicates the provided @oldmm structure
1668  * content into it.
1669  *
1670  * Return: the duplicated mm or NULL on failure.
1671  */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1672 static struct mm_struct *dup_mm(struct task_struct *tsk,
1673 				struct mm_struct *oldmm)
1674 {
1675 	struct mm_struct *mm;
1676 	int err;
1677 
1678 	mm = allocate_mm();
1679 	if (!mm)
1680 		goto fail_nomem;
1681 
1682 	memcpy(mm, oldmm, sizeof(*mm));
1683 
1684 	if (!mm_init(mm, tsk, mm->user_ns))
1685 		goto fail_nomem;
1686 
1687 	err = dup_mmap(mm, oldmm);
1688 	if (err)
1689 		goto free_pt;
1690 
1691 	mm->hiwater_rss = get_mm_rss(mm);
1692 	mm->hiwater_vm = mm->total_vm;
1693 
1694 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1695 		goto free_pt;
1696 
1697 	return mm;
1698 
1699 free_pt:
1700 	/* don't put binfmt in mmput, we haven't got module yet */
1701 	mm->binfmt = NULL;
1702 	mm_init_owner(mm, NULL);
1703 	mmput(mm);
1704 
1705 fail_nomem:
1706 	return NULL;
1707 }
1708 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1709 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1710 {
1711 	struct mm_struct *mm, *oldmm;
1712 
1713 	tsk->min_flt = tsk->maj_flt = 0;
1714 	tsk->nvcsw = tsk->nivcsw = 0;
1715 #ifdef CONFIG_DETECT_HUNG_TASK
1716 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1717 	tsk->last_switch_time = 0;
1718 #endif
1719 
1720 	tsk->mm = NULL;
1721 	tsk->active_mm = NULL;
1722 
1723 	/*
1724 	 * Are we cloning a kernel thread?
1725 	 *
1726 	 * We need to steal a active VM for that..
1727 	 */
1728 	oldmm = current->mm;
1729 	if (!oldmm)
1730 		return 0;
1731 
1732 	if (clone_flags & CLONE_VM) {
1733 		mmget(oldmm);
1734 		mm = oldmm;
1735 	} else {
1736 		mm = dup_mm(tsk, current->mm);
1737 		if (!mm)
1738 			return -ENOMEM;
1739 	}
1740 
1741 	tsk->mm = mm;
1742 	tsk->active_mm = mm;
1743 	sched_mm_cid_fork(tsk);
1744 	return 0;
1745 }
1746 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1747 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1748 {
1749 	struct fs_struct *fs = current->fs;
1750 	if (clone_flags & CLONE_FS) {
1751 		/* tsk->fs is already what we want */
1752 		spin_lock(&fs->lock);
1753 		if (fs->in_exec) {
1754 			spin_unlock(&fs->lock);
1755 			return -EAGAIN;
1756 		}
1757 		fs->users++;
1758 		spin_unlock(&fs->lock);
1759 		return 0;
1760 	}
1761 	tsk->fs = copy_fs_struct(fs);
1762 	if (!tsk->fs)
1763 		return -ENOMEM;
1764 	return 0;
1765 }
1766 
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1767 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1768 		      int no_files)
1769 {
1770 	struct files_struct *oldf, *newf;
1771 
1772 	/*
1773 	 * A background process may not have any files ...
1774 	 */
1775 	oldf = current->files;
1776 	if (!oldf)
1777 		return 0;
1778 
1779 	if (no_files) {
1780 		tsk->files = NULL;
1781 		return 0;
1782 	}
1783 
1784 	if (clone_flags & CLONE_FILES) {
1785 		atomic_inc(&oldf->count);
1786 		return 0;
1787 	}
1788 
1789 	newf = dup_fd(oldf, NULL);
1790 	if (IS_ERR(newf))
1791 		return PTR_ERR(newf);
1792 
1793 	tsk->files = newf;
1794 	return 0;
1795 }
1796 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1797 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1798 {
1799 	struct sighand_struct *sig;
1800 
1801 	if (clone_flags & CLONE_SIGHAND) {
1802 		refcount_inc(&current->sighand->count);
1803 		return 0;
1804 	}
1805 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1806 	RCU_INIT_POINTER(tsk->sighand, sig);
1807 	if (!sig)
1808 		return -ENOMEM;
1809 
1810 	refcount_set(&sig->count, 1);
1811 	spin_lock_irq(&current->sighand->siglock);
1812 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1813 	spin_unlock_irq(&current->sighand->siglock);
1814 
1815 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1816 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1817 		flush_signal_handlers(tsk, 0);
1818 
1819 	return 0;
1820 }
1821 
__cleanup_sighand(struct sighand_struct * sighand)1822 void __cleanup_sighand(struct sighand_struct *sighand)
1823 {
1824 	if (refcount_dec_and_test(&sighand->count)) {
1825 		signalfd_cleanup(sighand);
1826 		/*
1827 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1828 		 * without an RCU grace period, see __lock_task_sighand().
1829 		 */
1830 		kmem_cache_free(sighand_cachep, sighand);
1831 	}
1832 }
1833 
1834 /*
1835  * Initialize POSIX timer handling for a thread group.
1836  */
posix_cpu_timers_init_group(struct signal_struct * sig)1837 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1838 {
1839 	struct posix_cputimers *pct = &sig->posix_cputimers;
1840 	unsigned long cpu_limit;
1841 
1842 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1843 	posix_cputimers_group_init(pct, cpu_limit);
1844 }
1845 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1846 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1847 {
1848 	struct signal_struct *sig;
1849 
1850 	if (clone_flags & CLONE_THREAD)
1851 		return 0;
1852 
1853 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1854 	tsk->signal = sig;
1855 	if (!sig)
1856 		return -ENOMEM;
1857 
1858 	sig->nr_threads = 1;
1859 	sig->quick_threads = 1;
1860 	atomic_set(&sig->live, 1);
1861 	refcount_set(&sig->sigcnt, 1);
1862 
1863 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1864 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1865 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1866 
1867 	init_waitqueue_head(&sig->wait_chldexit);
1868 	sig->curr_target = tsk;
1869 	init_sigpending(&sig->shared_pending);
1870 	INIT_HLIST_HEAD(&sig->multiprocess);
1871 	seqlock_init(&sig->stats_lock);
1872 	prev_cputime_init(&sig->prev_cputime);
1873 
1874 #ifdef CONFIG_POSIX_TIMERS
1875 	INIT_LIST_HEAD(&sig->posix_timers);
1876 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1877 	sig->real_timer.function = it_real_fn;
1878 #endif
1879 
1880 	task_lock(current->group_leader);
1881 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1882 	task_unlock(current->group_leader);
1883 
1884 	posix_cpu_timers_init_group(sig);
1885 
1886 	tty_audit_fork(sig);
1887 	sched_autogroup_fork(sig);
1888 
1889 	sig->oom_score_adj = current->signal->oom_score_adj;
1890 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1891 
1892 	mutex_init(&sig->cred_guard_mutex);
1893 	init_rwsem(&sig->exec_update_lock);
1894 
1895 	return 0;
1896 }
1897 
copy_seccomp(struct task_struct * p)1898 static void copy_seccomp(struct task_struct *p)
1899 {
1900 #ifdef CONFIG_SECCOMP
1901 	/*
1902 	 * Must be called with sighand->lock held, which is common to
1903 	 * all threads in the group. Holding cred_guard_mutex is not
1904 	 * needed because this new task is not yet running and cannot
1905 	 * be racing exec.
1906 	 */
1907 	assert_spin_locked(&current->sighand->siglock);
1908 
1909 	/* Ref-count the new filter user, and assign it. */
1910 	get_seccomp_filter(current);
1911 	p->seccomp = current->seccomp;
1912 
1913 	/*
1914 	 * Explicitly enable no_new_privs here in case it got set
1915 	 * between the task_struct being duplicated and holding the
1916 	 * sighand lock. The seccomp state and nnp must be in sync.
1917 	 */
1918 	if (task_no_new_privs(current))
1919 		task_set_no_new_privs(p);
1920 
1921 	/*
1922 	 * If the parent gained a seccomp mode after copying thread
1923 	 * flags and between before we held the sighand lock, we have
1924 	 * to manually enable the seccomp thread flag here.
1925 	 */
1926 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1927 		set_task_syscall_work(p, SECCOMP);
1928 #endif
1929 }
1930 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1931 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1932 {
1933 	current->clear_child_tid = tidptr;
1934 
1935 	return task_pid_vnr(current);
1936 }
1937 
rt_mutex_init_task(struct task_struct * p)1938 static void rt_mutex_init_task(struct task_struct *p)
1939 {
1940 	raw_spin_lock_init(&p->pi_lock);
1941 #ifdef CONFIG_RT_MUTEXES
1942 	p->pi_waiters = RB_ROOT_CACHED;
1943 	p->pi_top_task = NULL;
1944 	p->pi_blocked_on = NULL;
1945 #endif
1946 }
1947 
init_task_pid_links(struct task_struct * task)1948 static inline void init_task_pid_links(struct task_struct *task)
1949 {
1950 	enum pid_type type;
1951 
1952 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1953 		INIT_HLIST_NODE(&task->pid_links[type]);
1954 }
1955 
1956 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1957 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1958 {
1959 	if (type == PIDTYPE_PID)
1960 		task->thread_pid = pid;
1961 	else
1962 		task->signal->pids[type] = pid;
1963 }
1964 
rcu_copy_process(struct task_struct * p)1965 static inline void rcu_copy_process(struct task_struct *p)
1966 {
1967 #ifdef CONFIG_PREEMPT_RCU
1968 	p->rcu_read_lock_nesting = 0;
1969 	p->rcu_read_unlock_special.s = 0;
1970 	p->rcu_blocked_node = NULL;
1971 	INIT_LIST_HEAD(&p->rcu_node_entry);
1972 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1973 #ifdef CONFIG_TASKS_RCU
1974 	p->rcu_tasks_holdout = false;
1975 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1976 	p->rcu_tasks_idle_cpu = -1;
1977 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1978 #endif /* #ifdef CONFIG_TASKS_RCU */
1979 #ifdef CONFIG_TASKS_TRACE_RCU
1980 	p->trc_reader_nesting = 0;
1981 	p->trc_reader_special.s = 0;
1982 	INIT_LIST_HEAD(&p->trc_holdout_list);
1983 	INIT_LIST_HEAD(&p->trc_blkd_node);
1984 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1985 }
1986 
pidfd_pid(const struct file * file)1987 struct pid *pidfd_pid(const struct file *file)
1988 {
1989 	if (file->f_op == &pidfd_fops)
1990 		return file->private_data;
1991 
1992 	return ERR_PTR(-EBADF);
1993 }
1994 
pidfd_release(struct inode * inode,struct file * file)1995 static int pidfd_release(struct inode *inode, struct file *file)
1996 {
1997 	struct pid *pid = file->private_data;
1998 
1999 	file->private_data = NULL;
2000 	put_pid(pid);
2001 	return 0;
2002 }
2003 
2004 #ifdef CONFIG_PROC_FS
2005 /**
2006  * pidfd_show_fdinfo - print information about a pidfd
2007  * @m: proc fdinfo file
2008  * @f: file referencing a pidfd
2009  *
2010  * Pid:
2011  * This function will print the pid that a given pidfd refers to in the
2012  * pid namespace of the procfs instance.
2013  * If the pid namespace of the process is not a descendant of the pid
2014  * namespace of the procfs instance 0 will be shown as its pid. This is
2015  * similar to calling getppid() on a process whose parent is outside of
2016  * its pid namespace.
2017  *
2018  * NSpid:
2019  * If pid namespaces are supported then this function will also print
2020  * the pid of a given pidfd refers to for all descendant pid namespaces
2021  * starting from the current pid namespace of the instance, i.e. the
2022  * Pid field and the first entry in the NSpid field will be identical.
2023  * If the pid namespace of the process is not a descendant of the pid
2024  * namespace of the procfs instance 0 will be shown as its first NSpid
2025  * entry and no others will be shown.
2026  * Note that this differs from the Pid and NSpid fields in
2027  * /proc/<pid>/status where Pid and NSpid are always shown relative to
2028  * the  pid namespace of the procfs instance. The difference becomes
2029  * obvious when sending around a pidfd between pid namespaces from a
2030  * different branch of the tree, i.e. where no ancestral relation is
2031  * present between the pid namespaces:
2032  * - create two new pid namespaces ns1 and ns2 in the initial pid
2033  *   namespace (also take care to create new mount namespaces in the
2034  *   new pid namespace and mount procfs)
2035  * - create a process with a pidfd in ns1
2036  * - send pidfd from ns1 to ns2
2037  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2038  *   have exactly one entry, which is 0
2039  */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)2040 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2041 {
2042 	struct pid *pid = f->private_data;
2043 	struct pid_namespace *ns;
2044 	pid_t nr = -1;
2045 
2046 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2047 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
2048 		nr = pid_nr_ns(pid, ns);
2049 	}
2050 
2051 	seq_put_decimal_ll(m, "Pid:\t", nr);
2052 
2053 #ifdef CONFIG_PID_NS
2054 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2055 	if (nr > 0) {
2056 		int i;
2057 
2058 		/* If nr is non-zero it means that 'pid' is valid and that
2059 		 * ns, i.e. the pid namespace associated with the procfs
2060 		 * instance, is in the pid namespace hierarchy of pid.
2061 		 * Start at one below the already printed level.
2062 		 */
2063 		for (i = ns->level + 1; i <= pid->level; i++)
2064 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2065 	}
2066 #endif
2067 	seq_putc(m, '\n');
2068 }
2069 #endif
2070 
2071 /*
2072  * Poll support for process exit notification.
2073  */
pidfd_poll(struct file * file,struct poll_table_struct * pts)2074 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2075 {
2076 	struct pid *pid = file->private_data;
2077 	__poll_t poll_flags = 0;
2078 
2079 	poll_wait(file, &pid->wait_pidfd, pts);
2080 
2081 	/*
2082 	 * Inform pollers only when the whole thread group exits.
2083 	 * If the thread group leader exits before all other threads in the
2084 	 * group, then poll(2) should block, similar to the wait(2) family.
2085 	 */
2086 	if (thread_group_exited(pid))
2087 		poll_flags = EPOLLIN | EPOLLRDNORM;
2088 
2089 	return poll_flags;
2090 }
2091 
2092 const struct file_operations pidfd_fops = {
2093 	.release = pidfd_release,
2094 	.poll = pidfd_poll,
2095 #ifdef CONFIG_PROC_FS
2096 	.show_fdinfo = pidfd_show_fdinfo,
2097 #endif
2098 };
2099 
2100 /**
2101  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2102  * @pid:   the struct pid for which to create a pidfd
2103  * @flags: flags of the new @pidfd
2104  * @pidfd: the pidfd to return
2105  *
2106  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2107  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2108 
2109  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2110  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2111  * pidfd file are prepared.
2112  *
2113  * If this function returns successfully the caller is responsible to either
2114  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2115  * order to install the pidfd into its file descriptor table or they must use
2116  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2117  * respectively.
2118  *
2119  * This function is useful when a pidfd must already be reserved but there
2120  * might still be points of failure afterwards and the caller wants to ensure
2121  * that no pidfd is leaked into its file descriptor table.
2122  *
2123  * Return: On success, a reserved pidfd is returned from the function and a new
2124  *         pidfd file is returned in the last argument to the function. On
2125  *         error, a negative error code is returned from the function and the
2126  *         last argument remains unchanged.
2127  */
__pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2128 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2129 {
2130 	int pidfd;
2131 	struct file *pidfd_file;
2132 
2133 	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2134 		return -EINVAL;
2135 
2136 	pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2137 	if (pidfd < 0)
2138 		return pidfd;
2139 
2140 	pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2141 					flags | O_RDWR | O_CLOEXEC);
2142 	if (IS_ERR(pidfd_file)) {
2143 		put_unused_fd(pidfd);
2144 		return PTR_ERR(pidfd_file);
2145 	}
2146 	get_pid(pid); /* held by pidfd_file now */
2147 	*ret = pidfd_file;
2148 	return pidfd;
2149 }
2150 
2151 /**
2152  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2153  * @pid:   the struct pid for which to create a pidfd
2154  * @flags: flags of the new @pidfd
2155  * @pidfd: the pidfd to return
2156  *
2157  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2158  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2159  *
2160  * The helper verifies that @pid is used as a thread group leader.
2161  *
2162  * If this function returns successfully the caller is responsible to either
2163  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2164  * order to install the pidfd into its file descriptor table or they must use
2165  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2166  * respectively.
2167  *
2168  * This function is useful when a pidfd must already be reserved but there
2169  * might still be points of failure afterwards and the caller wants to ensure
2170  * that no pidfd is leaked into its file descriptor table.
2171  *
2172  * Return: On success, a reserved pidfd is returned from the function and a new
2173  *         pidfd file is returned in the last argument to the function. On
2174  *         error, a negative error code is returned from the function and the
2175  *         last argument remains unchanged.
2176  */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2177 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2178 {
2179 	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2180 		return -EINVAL;
2181 
2182 	return __pidfd_prepare(pid, flags, ret);
2183 }
2184 
__delayed_free_task(struct rcu_head * rhp)2185 static void __delayed_free_task(struct rcu_head *rhp)
2186 {
2187 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2188 
2189 	free_task(tsk);
2190 }
2191 
delayed_free_task(struct task_struct * tsk)2192 static __always_inline void delayed_free_task(struct task_struct *tsk)
2193 {
2194 	if (IS_ENABLED(CONFIG_MEMCG))
2195 		call_rcu(&tsk->rcu, __delayed_free_task);
2196 	else
2197 		free_task(tsk);
2198 }
2199 
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2200 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2201 {
2202 	/* Skip if kernel thread */
2203 	if (!tsk->mm)
2204 		return;
2205 
2206 	/* Skip if spawning a thread or using vfork */
2207 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2208 		return;
2209 
2210 	/* We need to synchronize with __set_oom_adj */
2211 	mutex_lock(&oom_adj_mutex);
2212 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2213 	/* Update the values in case they were changed after copy_signal */
2214 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2215 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2216 	mutex_unlock(&oom_adj_mutex);
2217 }
2218 
2219 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2220 static void rv_task_fork(struct task_struct *p)
2221 {
2222 	int i;
2223 
2224 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2225 		p->rv[i].da_mon.monitoring = false;
2226 }
2227 #else
2228 #define rv_task_fork(p) do {} while (0)
2229 #endif
2230 
2231 /*
2232  * This creates a new process as a copy of the old one,
2233  * but does not actually start it yet.
2234  *
2235  * It copies the registers, and all the appropriate
2236  * parts of the process environment (as per the clone
2237  * flags). The actual kick-off is left to the caller.
2238  */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2239 __latent_entropy struct task_struct *copy_process(
2240 					struct pid *pid,
2241 					int trace,
2242 					int node,
2243 					struct kernel_clone_args *args)
2244 {
2245 	int pidfd = -1, retval;
2246 	struct task_struct *p;
2247 	struct multiprocess_signals delayed;
2248 	struct file *pidfile = NULL;
2249 	const u64 clone_flags = args->flags;
2250 	struct nsproxy *nsp = current->nsproxy;
2251 
2252 	/*
2253 	 * Don't allow sharing the root directory with processes in a different
2254 	 * namespace
2255 	 */
2256 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2257 		return ERR_PTR(-EINVAL);
2258 
2259 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2260 		return ERR_PTR(-EINVAL);
2261 
2262 	/*
2263 	 * Thread groups must share signals as well, and detached threads
2264 	 * can only be started up within the thread group.
2265 	 */
2266 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2267 		return ERR_PTR(-EINVAL);
2268 
2269 	/*
2270 	 * Shared signal handlers imply shared VM. By way of the above,
2271 	 * thread groups also imply shared VM. Blocking this case allows
2272 	 * for various simplifications in other code.
2273 	 */
2274 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2275 		return ERR_PTR(-EINVAL);
2276 
2277 	/*
2278 	 * Siblings of global init remain as zombies on exit since they are
2279 	 * not reaped by their parent (swapper). To solve this and to avoid
2280 	 * multi-rooted process trees, prevent global and container-inits
2281 	 * from creating siblings.
2282 	 */
2283 	if ((clone_flags & CLONE_PARENT) &&
2284 				current->signal->flags & SIGNAL_UNKILLABLE)
2285 		return ERR_PTR(-EINVAL);
2286 
2287 	/*
2288 	 * If the new process will be in a different pid or user namespace
2289 	 * do not allow it to share a thread group with the forking task.
2290 	 */
2291 	if (clone_flags & CLONE_THREAD) {
2292 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2293 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2294 			return ERR_PTR(-EINVAL);
2295 	}
2296 
2297 	if (clone_flags & CLONE_PIDFD) {
2298 		/*
2299 		 * - CLONE_DETACHED is blocked so that we can potentially
2300 		 *   reuse it later for CLONE_PIDFD.
2301 		 * - CLONE_THREAD is blocked until someone really needs it.
2302 		 */
2303 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2304 			return ERR_PTR(-EINVAL);
2305 	}
2306 
2307 	/*
2308 	 * Force any signals received before this point to be delivered
2309 	 * before the fork happens.  Collect up signals sent to multiple
2310 	 * processes that happen during the fork and delay them so that
2311 	 * they appear to happen after the fork.
2312 	 */
2313 	sigemptyset(&delayed.signal);
2314 	INIT_HLIST_NODE(&delayed.node);
2315 
2316 	spin_lock_irq(&current->sighand->siglock);
2317 	if (!(clone_flags & CLONE_THREAD))
2318 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2319 	recalc_sigpending();
2320 	spin_unlock_irq(&current->sighand->siglock);
2321 	retval = -ERESTARTNOINTR;
2322 	if (task_sigpending(current))
2323 		goto fork_out;
2324 
2325 	retval = -ENOMEM;
2326 	p = dup_task_struct(current, node);
2327 	if (!p)
2328 		goto fork_out;
2329 	p->flags &= ~PF_KTHREAD;
2330 	if (args->kthread)
2331 		p->flags |= PF_KTHREAD;
2332 	if (args->user_worker) {
2333 		/*
2334 		 * Mark us a user worker, and block any signal that isn't
2335 		 * fatal or STOP
2336 		 */
2337 		p->flags |= PF_USER_WORKER;
2338 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2339 	}
2340 	if (args->io_thread)
2341 		p->flags |= PF_IO_WORKER;
2342 
2343 	if (args->name)
2344 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2345 
2346 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2347 	/*
2348 	 * Clear TID on mm_release()?
2349 	 */
2350 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2351 
2352 	ftrace_graph_init_task(p);
2353 
2354 	rt_mutex_init_task(p);
2355 
2356 	lockdep_assert_irqs_enabled();
2357 #ifdef CONFIG_PROVE_LOCKING
2358 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2359 #endif
2360 	retval = copy_creds(p, clone_flags);
2361 	if (retval < 0)
2362 		goto bad_fork_free;
2363 
2364 	retval = -EAGAIN;
2365 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2366 		if (p->real_cred->user != INIT_USER &&
2367 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2368 			goto bad_fork_cleanup_count;
2369 	}
2370 	current->flags &= ~PF_NPROC_EXCEEDED;
2371 
2372 	/*
2373 	 * If multiple threads are within copy_process(), then this check
2374 	 * triggers too late. This doesn't hurt, the check is only there
2375 	 * to stop root fork bombs.
2376 	 */
2377 	retval = -EAGAIN;
2378 	if (data_race(nr_threads >= max_threads))
2379 		goto bad_fork_cleanup_count;
2380 
2381 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2382 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2383 	p->flags |= PF_FORKNOEXEC;
2384 	INIT_LIST_HEAD(&p->children);
2385 	INIT_LIST_HEAD(&p->sibling);
2386 	rcu_copy_process(p);
2387 	p->vfork_done = NULL;
2388 	spin_lock_init(&p->alloc_lock);
2389 
2390 	init_sigpending(&p->pending);
2391 
2392 	p->utime = p->stime = p->gtime = 0;
2393 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2394 	p->utimescaled = p->stimescaled = 0;
2395 #endif
2396 	prev_cputime_init(&p->prev_cputime);
2397 
2398 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2399 	seqcount_init(&p->vtime.seqcount);
2400 	p->vtime.starttime = 0;
2401 	p->vtime.state = VTIME_INACTIVE;
2402 #endif
2403 
2404 #ifdef CONFIG_IO_URING
2405 	p->io_uring = NULL;
2406 #endif
2407 
2408 #if defined(SPLIT_RSS_COUNTING)
2409 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2410 #endif
2411 
2412 	p->default_timer_slack_ns = current->timer_slack_ns;
2413 
2414 #ifdef CONFIG_PSI
2415 	p->psi_flags = 0;
2416 #endif
2417 
2418 	task_io_accounting_init(&p->ioac);
2419 	acct_clear_integrals(p);
2420 
2421 	posix_cputimers_init(&p->posix_cputimers);
2422 	tick_dep_init_task(p);
2423 
2424 	p->io_context = NULL;
2425 	audit_set_context(p, NULL);
2426 	cgroup_fork(p);
2427 	if (args->kthread) {
2428 		if (!set_kthread_struct(p))
2429 			goto bad_fork_cleanup_delayacct;
2430 	}
2431 #ifdef CONFIG_NUMA
2432 	p->mempolicy = mpol_dup(p->mempolicy);
2433 	if (IS_ERR(p->mempolicy)) {
2434 		retval = PTR_ERR(p->mempolicy);
2435 		p->mempolicy = NULL;
2436 		goto bad_fork_cleanup_delayacct;
2437 	}
2438 #endif
2439 #ifdef CONFIG_CPUSETS
2440 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2441 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2442 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2443 #endif
2444 #ifdef CONFIG_TRACE_IRQFLAGS
2445 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2446 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2447 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2448 	p->softirqs_enabled		= 1;
2449 	p->softirq_context		= 0;
2450 #endif
2451 
2452 	p->pagefault_disabled = 0;
2453 
2454 #ifdef CONFIG_LOCKDEP
2455 	lockdep_init_task(p);
2456 #endif
2457 
2458 #ifdef CONFIG_DEBUG_MUTEXES
2459 	p->blocked_on = NULL; /* not blocked yet */
2460 #endif
2461 #ifdef CONFIG_BCACHE
2462 	p->sequential_io	= 0;
2463 	p->sequential_io_avg	= 0;
2464 #endif
2465 #ifdef CONFIG_BPF_SYSCALL
2466 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2467 	p->bpf_ctx = NULL;
2468 #endif
2469 
2470 	/* Perform scheduler related setup. Assign this task to a CPU. */
2471 	retval = sched_fork(clone_flags, p);
2472 	if (retval)
2473 		goto bad_fork_cleanup_policy;
2474 
2475 	retval = perf_event_init_task(p, clone_flags);
2476 	if (retval)
2477 		goto bad_fork_cleanup_policy;
2478 	retval = audit_alloc(p);
2479 	if (retval)
2480 		goto bad_fork_cleanup_perf;
2481 	/* copy all the process information */
2482 	shm_init_task(p);
2483 	retval = security_task_alloc(p, clone_flags);
2484 	if (retval)
2485 		goto bad_fork_cleanup_audit;
2486 	retval = copy_semundo(clone_flags, p);
2487 	if (retval)
2488 		goto bad_fork_cleanup_security;
2489 	retval = copy_files(clone_flags, p, args->no_files);
2490 	if (retval)
2491 		goto bad_fork_cleanup_semundo;
2492 	retval = copy_fs(clone_flags, p);
2493 	if (retval)
2494 		goto bad_fork_cleanup_files;
2495 	retval = copy_sighand(clone_flags, p);
2496 	if (retval)
2497 		goto bad_fork_cleanup_fs;
2498 	retval = copy_signal(clone_flags, p);
2499 	if (retval)
2500 		goto bad_fork_cleanup_sighand;
2501 	retval = copy_mm(clone_flags, p);
2502 	if (retval)
2503 		goto bad_fork_cleanup_signal;
2504 	retval = copy_namespaces(clone_flags, p);
2505 	if (retval)
2506 		goto bad_fork_cleanup_mm;
2507 	retval = copy_io(clone_flags, p);
2508 	if (retval)
2509 		goto bad_fork_cleanup_namespaces;
2510 	retval = copy_thread(p, args);
2511 	if (retval)
2512 		goto bad_fork_cleanup_io;
2513 
2514 	stackleak_task_init(p);
2515 
2516 	if (pid != &init_struct_pid) {
2517 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2518 				args->set_tid_size);
2519 		if (IS_ERR(pid)) {
2520 			retval = PTR_ERR(pid);
2521 			goto bad_fork_cleanup_thread;
2522 		}
2523 	}
2524 
2525 	/*
2526 	 * This has to happen after we've potentially unshared the file
2527 	 * descriptor table (so that the pidfd doesn't leak into the child
2528 	 * if the fd table isn't shared).
2529 	 */
2530 	if (clone_flags & CLONE_PIDFD) {
2531 		/* Note that no task has been attached to @pid yet. */
2532 		retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2533 		if (retval < 0)
2534 			goto bad_fork_free_pid;
2535 		pidfd = retval;
2536 
2537 		retval = put_user(pidfd, args->pidfd);
2538 		if (retval)
2539 			goto bad_fork_put_pidfd;
2540 	}
2541 
2542 #ifdef CONFIG_BLOCK
2543 	p->plug = NULL;
2544 #endif
2545 	futex_init_task(p);
2546 
2547 	/*
2548 	 * sigaltstack should be cleared when sharing the same VM
2549 	 */
2550 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2551 		sas_ss_reset(p);
2552 
2553 	/*
2554 	 * Syscall tracing and stepping should be turned off in the
2555 	 * child regardless of CLONE_PTRACE.
2556 	 */
2557 	user_disable_single_step(p);
2558 	clear_task_syscall_work(p, SYSCALL_TRACE);
2559 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2560 	clear_task_syscall_work(p, SYSCALL_EMU);
2561 #endif
2562 	clear_tsk_latency_tracing(p);
2563 
2564 	/* ok, now we should be set up.. */
2565 	p->pid = pid_nr(pid);
2566 	if (clone_flags & CLONE_THREAD) {
2567 		p->group_leader = current->group_leader;
2568 		p->tgid = current->tgid;
2569 	} else {
2570 		p->group_leader = p;
2571 		p->tgid = p->pid;
2572 	}
2573 
2574 	p->nr_dirtied = 0;
2575 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2576 	p->dirty_paused_when = 0;
2577 
2578 	p->pdeath_signal = 0;
2579 	INIT_LIST_HEAD(&p->thread_group);
2580 	p->task_works = NULL;
2581 	clear_posix_cputimers_work(p);
2582 
2583 #ifdef CONFIG_KRETPROBES
2584 	p->kretprobe_instances.first = NULL;
2585 #endif
2586 #ifdef CONFIG_RETHOOK
2587 	p->rethooks.first = NULL;
2588 #endif
2589 
2590 	/*
2591 	 * Ensure that the cgroup subsystem policies allow the new process to be
2592 	 * forked. It should be noted that the new process's css_set can be changed
2593 	 * between here and cgroup_post_fork() if an organisation operation is in
2594 	 * progress.
2595 	 */
2596 	retval = cgroup_can_fork(p, args);
2597 	if (retval)
2598 		goto bad_fork_put_pidfd;
2599 
2600 	/*
2601 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2602 	 * the new task on the correct runqueue. All this *before* the task
2603 	 * becomes visible.
2604 	 *
2605 	 * This isn't part of ->can_fork() because while the re-cloning is
2606 	 * cgroup specific, it unconditionally needs to place the task on a
2607 	 * runqueue.
2608 	 */
2609 	sched_cgroup_fork(p, args);
2610 
2611 	/*
2612 	 * From this point on we must avoid any synchronous user-space
2613 	 * communication until we take the tasklist-lock. In particular, we do
2614 	 * not want user-space to be able to predict the process start-time by
2615 	 * stalling fork(2) after we recorded the start_time but before it is
2616 	 * visible to the system.
2617 	 */
2618 
2619 	p->start_time = ktime_get_ns();
2620 	p->start_boottime = ktime_get_boottime_ns();
2621 
2622 	/*
2623 	 * Make it visible to the rest of the system, but dont wake it up yet.
2624 	 * Need tasklist lock for parent etc handling!
2625 	 */
2626 	write_lock_irq(&tasklist_lock);
2627 
2628 	/* CLONE_PARENT re-uses the old parent */
2629 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2630 		p->real_parent = current->real_parent;
2631 		p->parent_exec_id = current->parent_exec_id;
2632 		if (clone_flags & CLONE_THREAD)
2633 			p->exit_signal = -1;
2634 		else
2635 			p->exit_signal = current->group_leader->exit_signal;
2636 	} else {
2637 		p->real_parent = current;
2638 		p->parent_exec_id = current->self_exec_id;
2639 		p->exit_signal = args->exit_signal;
2640 	}
2641 
2642 	klp_copy_process(p);
2643 
2644 	sched_core_fork(p);
2645 
2646 	spin_lock(&current->sighand->siglock);
2647 
2648 	rv_task_fork(p);
2649 
2650 	rseq_fork(p, clone_flags);
2651 
2652 	/* Don't start children in a dying pid namespace */
2653 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2654 		retval = -ENOMEM;
2655 		goto bad_fork_cancel_cgroup;
2656 	}
2657 
2658 	/* Let kill terminate clone/fork in the middle */
2659 	if (fatal_signal_pending(current)) {
2660 		retval = -EINTR;
2661 		goto bad_fork_cancel_cgroup;
2662 	}
2663 
2664 	/* No more failure paths after this point. */
2665 
2666 	/*
2667 	 * Copy seccomp details explicitly here, in case they were changed
2668 	 * before holding sighand lock.
2669 	 */
2670 	copy_seccomp(p);
2671 
2672 	init_task_pid_links(p);
2673 	if (likely(p->pid)) {
2674 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2675 
2676 		init_task_pid(p, PIDTYPE_PID, pid);
2677 		if (thread_group_leader(p)) {
2678 			init_task_pid(p, PIDTYPE_TGID, pid);
2679 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2680 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2681 
2682 			if (is_child_reaper(pid)) {
2683 				ns_of_pid(pid)->child_reaper = p;
2684 				p->signal->flags |= SIGNAL_UNKILLABLE;
2685 			}
2686 			p->signal->shared_pending.signal = delayed.signal;
2687 			p->signal->tty = tty_kref_get(current->signal->tty);
2688 			/*
2689 			 * Inherit has_child_subreaper flag under the same
2690 			 * tasklist_lock with adding child to the process tree
2691 			 * for propagate_has_child_subreaper optimization.
2692 			 */
2693 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2694 							 p->real_parent->signal->is_child_subreaper;
2695 			list_add_tail(&p->sibling, &p->real_parent->children);
2696 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2697 			attach_pid(p, PIDTYPE_TGID);
2698 			attach_pid(p, PIDTYPE_PGID);
2699 			attach_pid(p, PIDTYPE_SID);
2700 			__this_cpu_inc(process_counts);
2701 		} else {
2702 			current->signal->nr_threads++;
2703 			current->signal->quick_threads++;
2704 			atomic_inc(&current->signal->live);
2705 			refcount_inc(&current->signal->sigcnt);
2706 			task_join_group_stop(p);
2707 			list_add_tail_rcu(&p->thread_group,
2708 					  &p->group_leader->thread_group);
2709 			list_add_tail_rcu(&p->thread_node,
2710 					  &p->signal->thread_head);
2711 		}
2712 		attach_pid(p, PIDTYPE_PID);
2713 		nr_threads++;
2714 	}
2715 	total_forks++;
2716 	hlist_del_init(&delayed.node);
2717 	spin_unlock(&current->sighand->siglock);
2718 	syscall_tracepoint_update(p);
2719 	write_unlock_irq(&tasklist_lock);
2720 
2721 	if (pidfile)
2722 		fd_install(pidfd, pidfile);
2723 
2724 	proc_fork_connector(p);
2725 	sched_post_fork(p);
2726 	cgroup_post_fork(p, args);
2727 	perf_event_fork(p);
2728 
2729 	trace_task_newtask(p, clone_flags);
2730 	uprobe_copy_process(p, clone_flags);
2731 	user_events_fork(p, clone_flags);
2732 
2733 	copy_oom_score_adj(clone_flags, p);
2734 
2735 	return p;
2736 
2737 bad_fork_cancel_cgroup:
2738 	sched_core_free(p);
2739 	spin_unlock(&current->sighand->siglock);
2740 	write_unlock_irq(&tasklist_lock);
2741 	cgroup_cancel_fork(p, args);
2742 bad_fork_put_pidfd:
2743 	if (clone_flags & CLONE_PIDFD) {
2744 		fput(pidfile);
2745 		put_unused_fd(pidfd);
2746 	}
2747 bad_fork_free_pid:
2748 	if (pid != &init_struct_pid)
2749 		free_pid(pid);
2750 bad_fork_cleanup_thread:
2751 	exit_thread(p);
2752 bad_fork_cleanup_io:
2753 	if (p->io_context)
2754 		exit_io_context(p);
2755 bad_fork_cleanup_namespaces:
2756 	exit_task_namespaces(p);
2757 bad_fork_cleanup_mm:
2758 	if (p->mm) {
2759 		mm_clear_owner(p->mm, p);
2760 		mmput(p->mm);
2761 	}
2762 bad_fork_cleanup_signal:
2763 	if (!(clone_flags & CLONE_THREAD))
2764 		free_signal_struct(p->signal);
2765 bad_fork_cleanup_sighand:
2766 	__cleanup_sighand(p->sighand);
2767 bad_fork_cleanup_fs:
2768 	exit_fs(p); /* blocking */
2769 bad_fork_cleanup_files:
2770 	exit_files(p); /* blocking */
2771 bad_fork_cleanup_semundo:
2772 	exit_sem(p);
2773 bad_fork_cleanup_security:
2774 	security_task_free(p);
2775 bad_fork_cleanup_audit:
2776 	audit_free(p);
2777 bad_fork_cleanup_perf:
2778 	perf_event_free_task(p);
2779 bad_fork_cleanup_policy:
2780 	lockdep_free_task(p);
2781 #ifdef CONFIG_NUMA
2782 	mpol_put(p->mempolicy);
2783 #endif
2784 bad_fork_cleanup_delayacct:
2785 	delayacct_tsk_free(p);
2786 bad_fork_cleanup_count:
2787 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2788 	exit_creds(p);
2789 bad_fork_free:
2790 	WRITE_ONCE(p->__state, TASK_DEAD);
2791 	exit_task_stack_account(p);
2792 	put_task_stack(p);
2793 	delayed_free_task(p);
2794 fork_out:
2795 	spin_lock_irq(&current->sighand->siglock);
2796 	hlist_del_init(&delayed.node);
2797 	spin_unlock_irq(&current->sighand->siglock);
2798 	return ERR_PTR(retval);
2799 }
2800 
init_idle_pids(struct task_struct * idle)2801 static inline void init_idle_pids(struct task_struct *idle)
2802 {
2803 	enum pid_type type;
2804 
2805 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2806 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2807 		init_task_pid(idle, type, &init_struct_pid);
2808 	}
2809 }
2810 
idle_dummy(void * dummy)2811 static int idle_dummy(void *dummy)
2812 {
2813 	/* This function is never called */
2814 	return 0;
2815 }
2816 
fork_idle(int cpu)2817 struct task_struct * __init fork_idle(int cpu)
2818 {
2819 	struct task_struct *task;
2820 	struct kernel_clone_args args = {
2821 		.flags		= CLONE_VM,
2822 		.fn		= &idle_dummy,
2823 		.fn_arg		= NULL,
2824 		.kthread	= 1,
2825 		.idle		= 1,
2826 	};
2827 
2828 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2829 	if (!IS_ERR(task)) {
2830 		init_idle_pids(task);
2831 		init_idle(task, cpu);
2832 	}
2833 
2834 	return task;
2835 }
2836 
2837 /*
2838  * This is like kernel_clone(), but shaved down and tailored to just
2839  * creating io_uring workers. It returns a created task, or an error pointer.
2840  * The returned task is inactive, and the caller must fire it up through
2841  * wake_up_new_task(p). All signals are blocked in the created task.
2842  */
create_io_thread(int (* fn)(void *),void * arg,int node)2843 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2844 {
2845 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2846 				CLONE_IO;
2847 	struct kernel_clone_args args = {
2848 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2849 				    CLONE_UNTRACED) & ~CSIGNAL),
2850 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2851 		.fn		= fn,
2852 		.fn_arg		= arg,
2853 		.io_thread	= 1,
2854 		.user_worker	= 1,
2855 	};
2856 
2857 	return copy_process(NULL, 0, node, &args);
2858 }
2859 
2860 /*
2861  *  Ok, this is the main fork-routine.
2862  *
2863  * It copies the process, and if successful kick-starts
2864  * it and waits for it to finish using the VM if required.
2865  *
2866  * args->exit_signal is expected to be checked for sanity by the caller.
2867  */
kernel_clone(struct kernel_clone_args * args)2868 pid_t kernel_clone(struct kernel_clone_args *args)
2869 {
2870 	u64 clone_flags = args->flags;
2871 	struct completion vfork;
2872 	struct pid *pid;
2873 	struct task_struct *p;
2874 	int trace = 0;
2875 	pid_t nr;
2876 
2877 	/*
2878 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2879 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2880 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2881 	 * field in struct clone_args and it still doesn't make sense to have
2882 	 * them both point at the same memory location. Performing this check
2883 	 * here has the advantage that we don't need to have a separate helper
2884 	 * to check for legacy clone().
2885 	 */
2886 	if ((args->flags & CLONE_PIDFD) &&
2887 	    (args->flags & CLONE_PARENT_SETTID) &&
2888 	    (args->pidfd == args->parent_tid))
2889 		return -EINVAL;
2890 
2891 	/*
2892 	 * Determine whether and which event to report to ptracer.  When
2893 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2894 	 * requested, no event is reported; otherwise, report if the event
2895 	 * for the type of forking is enabled.
2896 	 */
2897 	if (!(clone_flags & CLONE_UNTRACED)) {
2898 		if (clone_flags & CLONE_VFORK)
2899 			trace = PTRACE_EVENT_VFORK;
2900 		else if (args->exit_signal != SIGCHLD)
2901 			trace = PTRACE_EVENT_CLONE;
2902 		else
2903 			trace = PTRACE_EVENT_FORK;
2904 
2905 		if (likely(!ptrace_event_enabled(current, trace)))
2906 			trace = 0;
2907 	}
2908 
2909 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2910 	add_latent_entropy();
2911 
2912 	if (IS_ERR(p))
2913 		return PTR_ERR(p);
2914 
2915 	/*
2916 	 * Do this prior waking up the new thread - the thread pointer
2917 	 * might get invalid after that point, if the thread exits quickly.
2918 	 */
2919 	trace_sched_process_fork(current, p);
2920 
2921 	pid = get_task_pid(p, PIDTYPE_PID);
2922 	nr = pid_vnr(pid);
2923 
2924 	if (clone_flags & CLONE_PARENT_SETTID)
2925 		put_user(nr, args->parent_tid);
2926 
2927 	if (clone_flags & CLONE_VFORK) {
2928 		p->vfork_done = &vfork;
2929 		init_completion(&vfork);
2930 		get_task_struct(p);
2931 	}
2932 
2933 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2934 		/* lock the task to synchronize with memcg migration */
2935 		task_lock(p);
2936 		lru_gen_add_mm(p->mm);
2937 		task_unlock(p);
2938 	}
2939 
2940 	wake_up_new_task(p);
2941 
2942 	/* forking complete and child started to run, tell ptracer */
2943 	if (unlikely(trace))
2944 		ptrace_event_pid(trace, pid);
2945 
2946 	if (clone_flags & CLONE_VFORK) {
2947 		if (!wait_for_vfork_done(p, &vfork))
2948 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2949 	}
2950 
2951 	put_pid(pid);
2952 	return nr;
2953 }
2954 
2955 /*
2956  * Create a kernel thread.
2957  */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2958 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2959 		    unsigned long flags)
2960 {
2961 	struct kernel_clone_args args = {
2962 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2963 				    CLONE_UNTRACED) & ~CSIGNAL),
2964 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2965 		.fn		= fn,
2966 		.fn_arg		= arg,
2967 		.name		= name,
2968 		.kthread	= 1,
2969 	};
2970 
2971 	return kernel_clone(&args);
2972 }
2973 
2974 /*
2975  * Create a user mode thread.
2976  */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2977 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2978 {
2979 	struct kernel_clone_args args = {
2980 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2981 				    CLONE_UNTRACED) & ~CSIGNAL),
2982 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2983 		.fn		= fn,
2984 		.fn_arg		= arg,
2985 	};
2986 
2987 	return kernel_clone(&args);
2988 }
2989 
2990 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2991 SYSCALL_DEFINE0(fork)
2992 {
2993 #ifdef CONFIG_MMU
2994 	struct kernel_clone_args args = {
2995 		.exit_signal = SIGCHLD,
2996 	};
2997 
2998 	return kernel_clone(&args);
2999 #else
3000 	/* can not support in nommu mode */
3001 	return -EINVAL;
3002 #endif
3003 }
3004 #endif
3005 
3006 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)3007 SYSCALL_DEFINE0(vfork)
3008 {
3009 	struct kernel_clone_args args = {
3010 		.flags		= CLONE_VFORK | CLONE_VM,
3011 		.exit_signal	= SIGCHLD,
3012 	};
3013 
3014 	return kernel_clone(&args);
3015 }
3016 #endif
3017 
3018 #ifdef __ARCH_WANT_SYS_CLONE
3019 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)3020 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3021 		 int __user *, parent_tidptr,
3022 		 unsigned long, tls,
3023 		 int __user *, child_tidptr)
3024 #elif defined(CONFIG_CLONE_BACKWARDS2)
3025 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3026 		 int __user *, parent_tidptr,
3027 		 int __user *, child_tidptr,
3028 		 unsigned long, tls)
3029 #elif defined(CONFIG_CLONE_BACKWARDS3)
3030 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3031 		int, stack_size,
3032 		int __user *, parent_tidptr,
3033 		int __user *, child_tidptr,
3034 		unsigned long, tls)
3035 #else
3036 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3037 		 int __user *, parent_tidptr,
3038 		 int __user *, child_tidptr,
3039 		 unsigned long, tls)
3040 #endif
3041 {
3042 	struct kernel_clone_args args = {
3043 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
3044 		.pidfd		= parent_tidptr,
3045 		.child_tid	= child_tidptr,
3046 		.parent_tid	= parent_tidptr,
3047 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
3048 		.stack		= newsp,
3049 		.tls		= tls,
3050 	};
3051 
3052 	return kernel_clone(&args);
3053 }
3054 #endif
3055 
3056 #ifdef __ARCH_WANT_SYS_CLONE3
3057 
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)3058 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3059 					      struct clone_args __user *uargs,
3060 					      size_t usize)
3061 {
3062 	int err;
3063 	struct clone_args args;
3064 	pid_t *kset_tid = kargs->set_tid;
3065 
3066 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3067 		     CLONE_ARGS_SIZE_VER0);
3068 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3069 		     CLONE_ARGS_SIZE_VER1);
3070 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3071 		     CLONE_ARGS_SIZE_VER2);
3072 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3073 
3074 	if (unlikely(usize > PAGE_SIZE))
3075 		return -E2BIG;
3076 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3077 		return -EINVAL;
3078 
3079 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3080 	if (err)
3081 		return err;
3082 
3083 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3084 		return -EINVAL;
3085 
3086 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
3087 		return -EINVAL;
3088 
3089 	if (unlikely(args.set_tid && args.set_tid_size == 0))
3090 		return -EINVAL;
3091 
3092 	/*
3093 	 * Verify that higher 32bits of exit_signal are unset and that
3094 	 * it is a valid signal
3095 	 */
3096 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3097 		     !valid_signal(args.exit_signal)))
3098 		return -EINVAL;
3099 
3100 	if ((args.flags & CLONE_INTO_CGROUP) &&
3101 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3102 		return -EINVAL;
3103 
3104 	*kargs = (struct kernel_clone_args){
3105 		.flags		= args.flags,
3106 		.pidfd		= u64_to_user_ptr(args.pidfd),
3107 		.child_tid	= u64_to_user_ptr(args.child_tid),
3108 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3109 		.exit_signal	= args.exit_signal,
3110 		.stack		= args.stack,
3111 		.stack_size	= args.stack_size,
3112 		.tls		= args.tls,
3113 		.set_tid_size	= args.set_tid_size,
3114 		.cgroup		= args.cgroup,
3115 	};
3116 
3117 	if (args.set_tid &&
3118 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3119 			(kargs->set_tid_size * sizeof(pid_t))))
3120 		return -EFAULT;
3121 
3122 	kargs->set_tid = kset_tid;
3123 
3124 	return 0;
3125 }
3126 
3127 /**
3128  * clone3_stack_valid - check and prepare stack
3129  * @kargs: kernel clone args
3130  *
3131  * Verify that the stack arguments userspace gave us are sane.
3132  * In addition, set the stack direction for userspace since it's easy for us to
3133  * determine.
3134  */
clone3_stack_valid(struct kernel_clone_args * kargs)3135 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3136 {
3137 	if (kargs->stack == 0) {
3138 		if (kargs->stack_size > 0)
3139 			return false;
3140 	} else {
3141 		if (kargs->stack_size == 0)
3142 			return false;
3143 
3144 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3145 			return false;
3146 
3147 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3148 		kargs->stack += kargs->stack_size;
3149 #endif
3150 	}
3151 
3152 	return true;
3153 }
3154 
clone3_args_valid(struct kernel_clone_args * kargs)3155 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3156 {
3157 	/* Verify that no unknown flags are passed along. */
3158 	if (kargs->flags &
3159 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3160 		return false;
3161 
3162 	/*
3163 	 * - make the CLONE_DETACHED bit reusable for clone3
3164 	 * - make the CSIGNAL bits reusable for clone3
3165 	 */
3166 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3167 		return false;
3168 
3169 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3170 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3171 		return false;
3172 
3173 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3174 	    kargs->exit_signal)
3175 		return false;
3176 
3177 	if (!clone3_stack_valid(kargs))
3178 		return false;
3179 
3180 	return true;
3181 }
3182 
3183 /**
3184  * clone3 - create a new process with specific properties
3185  * @uargs: argument structure
3186  * @size:  size of @uargs
3187  *
3188  * clone3() is the extensible successor to clone()/clone2().
3189  * It takes a struct as argument that is versioned by its size.
3190  *
3191  * Return: On success, a positive PID for the child process.
3192  *         On error, a negative errno number.
3193  */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3194 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3195 {
3196 	int err;
3197 
3198 	struct kernel_clone_args kargs;
3199 	pid_t set_tid[MAX_PID_NS_LEVEL];
3200 
3201 	kargs.set_tid = set_tid;
3202 
3203 	err = copy_clone_args_from_user(&kargs, uargs, size);
3204 	if (err)
3205 		return err;
3206 
3207 	if (!clone3_args_valid(&kargs))
3208 		return -EINVAL;
3209 
3210 	return kernel_clone(&kargs);
3211 }
3212 #endif
3213 
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3214 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3215 {
3216 	struct task_struct *leader, *parent, *child;
3217 	int res;
3218 
3219 	read_lock(&tasklist_lock);
3220 	leader = top = top->group_leader;
3221 down:
3222 	for_each_thread(leader, parent) {
3223 		list_for_each_entry(child, &parent->children, sibling) {
3224 			res = visitor(child, data);
3225 			if (res) {
3226 				if (res < 0)
3227 					goto out;
3228 				leader = child;
3229 				goto down;
3230 			}
3231 up:
3232 			;
3233 		}
3234 	}
3235 
3236 	if (leader != top) {
3237 		child = leader;
3238 		parent = child->real_parent;
3239 		leader = parent->group_leader;
3240 		goto up;
3241 	}
3242 out:
3243 	read_unlock(&tasklist_lock);
3244 }
3245 
3246 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3247 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3248 #endif
3249 
sighand_ctor(void * data)3250 static void sighand_ctor(void *data)
3251 {
3252 	struct sighand_struct *sighand = data;
3253 
3254 	spin_lock_init(&sighand->siglock);
3255 	init_waitqueue_head(&sighand->signalfd_wqh);
3256 }
3257 
mm_cache_init(void)3258 void __init mm_cache_init(void)
3259 {
3260 	unsigned int mm_size;
3261 
3262 	/*
3263 	 * The mm_cpumask is located at the end of mm_struct, and is
3264 	 * dynamically sized based on the maximum CPU number this system
3265 	 * can have, taking hotplug into account (nr_cpu_ids).
3266 	 */
3267 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3268 
3269 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3270 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3271 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3272 			offsetof(struct mm_struct, saved_auxv),
3273 			sizeof_field(struct mm_struct, saved_auxv),
3274 			NULL);
3275 }
3276 
proc_caches_init(void)3277 void __init proc_caches_init(void)
3278 {
3279 	sighand_cachep = kmem_cache_create("sighand_cache",
3280 			sizeof(struct sighand_struct), 0,
3281 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3282 			SLAB_ACCOUNT, sighand_ctor);
3283 	signal_cachep = kmem_cache_create("signal_cache",
3284 			sizeof(struct signal_struct), 0,
3285 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3286 			NULL);
3287 	files_cachep = kmem_cache_create("files_cache",
3288 			sizeof(struct files_struct), 0,
3289 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3290 			NULL);
3291 	fs_cachep = kmem_cache_create("fs_cache",
3292 			sizeof(struct fs_struct), 0,
3293 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3294 			NULL);
3295 
3296 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3297 #ifdef CONFIG_PER_VMA_LOCK
3298 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3299 #endif
3300 	mmap_init();
3301 	nsproxy_cache_init();
3302 }
3303 
3304 /*
3305  * Check constraints on flags passed to the unshare system call.
3306  */
check_unshare_flags(unsigned long unshare_flags)3307 static int check_unshare_flags(unsigned long unshare_flags)
3308 {
3309 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3310 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3311 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3312 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3313 				CLONE_NEWTIME))
3314 		return -EINVAL;
3315 	/*
3316 	 * Not implemented, but pretend it works if there is nothing
3317 	 * to unshare.  Note that unsharing the address space or the
3318 	 * signal handlers also need to unshare the signal queues (aka
3319 	 * CLONE_THREAD).
3320 	 */
3321 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3322 		if (!thread_group_empty(current))
3323 			return -EINVAL;
3324 	}
3325 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3326 		if (refcount_read(&current->sighand->count) > 1)
3327 			return -EINVAL;
3328 	}
3329 	if (unshare_flags & CLONE_VM) {
3330 		if (!current_is_single_threaded())
3331 			return -EINVAL;
3332 	}
3333 
3334 	return 0;
3335 }
3336 
3337 /*
3338  * Unshare the filesystem structure if it is being shared
3339  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3340 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3341 {
3342 	struct fs_struct *fs = current->fs;
3343 
3344 	if (!(unshare_flags & CLONE_FS) || !fs)
3345 		return 0;
3346 
3347 	/* don't need lock here; in the worst case we'll do useless copy */
3348 	if (fs->users == 1)
3349 		return 0;
3350 
3351 	*new_fsp = copy_fs_struct(fs);
3352 	if (!*new_fsp)
3353 		return -ENOMEM;
3354 
3355 	return 0;
3356 }
3357 
3358 /*
3359  * Unshare file descriptor table if it is being shared
3360  */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3361 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3362 {
3363 	struct files_struct *fd = current->files;
3364 
3365 	if ((unshare_flags & CLONE_FILES) &&
3366 	    (fd && atomic_read(&fd->count) > 1)) {
3367 		fd = dup_fd(fd, NULL);
3368 		if (IS_ERR(fd))
3369 			return PTR_ERR(fd);
3370 		*new_fdp = fd;
3371 	}
3372 
3373 	return 0;
3374 }
3375 
3376 /*
3377  * unshare allows a process to 'unshare' part of the process
3378  * context which was originally shared using clone.  copy_*
3379  * functions used by kernel_clone() cannot be used here directly
3380  * because they modify an inactive task_struct that is being
3381  * constructed. Here we are modifying the current, active,
3382  * task_struct.
3383  */
ksys_unshare(unsigned long unshare_flags)3384 int ksys_unshare(unsigned long unshare_flags)
3385 {
3386 	struct fs_struct *fs, *new_fs = NULL;
3387 	struct files_struct *new_fd = NULL;
3388 	struct cred *new_cred = NULL;
3389 	struct nsproxy *new_nsproxy = NULL;
3390 	int do_sysvsem = 0;
3391 	int err;
3392 
3393 	/*
3394 	 * If unsharing a user namespace must also unshare the thread group
3395 	 * and unshare the filesystem root and working directories.
3396 	 */
3397 	if (unshare_flags & CLONE_NEWUSER)
3398 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3399 	/*
3400 	 * If unsharing vm, must also unshare signal handlers.
3401 	 */
3402 	if (unshare_flags & CLONE_VM)
3403 		unshare_flags |= CLONE_SIGHAND;
3404 	/*
3405 	 * If unsharing a signal handlers, must also unshare the signal queues.
3406 	 */
3407 	if (unshare_flags & CLONE_SIGHAND)
3408 		unshare_flags |= CLONE_THREAD;
3409 	/*
3410 	 * If unsharing namespace, must also unshare filesystem information.
3411 	 */
3412 	if (unshare_flags & CLONE_NEWNS)
3413 		unshare_flags |= CLONE_FS;
3414 
3415 	err = check_unshare_flags(unshare_flags);
3416 	if (err)
3417 		goto bad_unshare_out;
3418 	/*
3419 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3420 	 * to a new ipc namespace, the semaphore arrays from the old
3421 	 * namespace are unreachable.
3422 	 */
3423 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3424 		do_sysvsem = 1;
3425 	err = unshare_fs(unshare_flags, &new_fs);
3426 	if (err)
3427 		goto bad_unshare_out;
3428 	err = unshare_fd(unshare_flags, &new_fd);
3429 	if (err)
3430 		goto bad_unshare_cleanup_fs;
3431 	err = unshare_userns(unshare_flags, &new_cred);
3432 	if (err)
3433 		goto bad_unshare_cleanup_fd;
3434 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3435 					 new_cred, new_fs);
3436 	if (err)
3437 		goto bad_unshare_cleanup_cred;
3438 
3439 	if (new_cred) {
3440 		err = set_cred_ucounts(new_cred);
3441 		if (err)
3442 			goto bad_unshare_cleanup_cred;
3443 	}
3444 
3445 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3446 		if (do_sysvsem) {
3447 			/*
3448 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3449 			 */
3450 			exit_sem(current);
3451 		}
3452 		if (unshare_flags & CLONE_NEWIPC) {
3453 			/* Orphan segments in old ns (see sem above). */
3454 			exit_shm(current);
3455 			shm_init_task(current);
3456 		}
3457 
3458 		if (new_nsproxy)
3459 			switch_task_namespaces(current, new_nsproxy);
3460 
3461 		task_lock(current);
3462 
3463 		if (new_fs) {
3464 			fs = current->fs;
3465 			spin_lock(&fs->lock);
3466 			current->fs = new_fs;
3467 			if (--fs->users)
3468 				new_fs = NULL;
3469 			else
3470 				new_fs = fs;
3471 			spin_unlock(&fs->lock);
3472 		}
3473 
3474 		if (new_fd)
3475 			swap(current->files, new_fd);
3476 
3477 		task_unlock(current);
3478 
3479 		if (new_cred) {
3480 			/* Install the new user namespace */
3481 			commit_creds(new_cred);
3482 			new_cred = NULL;
3483 		}
3484 	}
3485 
3486 	perf_event_namespaces(current);
3487 
3488 bad_unshare_cleanup_cred:
3489 	if (new_cred)
3490 		put_cred(new_cred);
3491 bad_unshare_cleanup_fd:
3492 	if (new_fd)
3493 		put_files_struct(new_fd);
3494 
3495 bad_unshare_cleanup_fs:
3496 	if (new_fs)
3497 		free_fs_struct(new_fs);
3498 
3499 bad_unshare_out:
3500 	return err;
3501 }
3502 
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3503 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3504 {
3505 	return ksys_unshare(unshare_flags);
3506 }
3507 
3508 /*
3509  *	Helper to unshare the files of the current task.
3510  *	We don't want to expose copy_files internals to
3511  *	the exec layer of the kernel.
3512  */
3513 
unshare_files(void)3514 int unshare_files(void)
3515 {
3516 	struct task_struct *task = current;
3517 	struct files_struct *old, *copy = NULL;
3518 	int error;
3519 
3520 	error = unshare_fd(CLONE_FILES, &copy);
3521 	if (error || !copy)
3522 		return error;
3523 
3524 	old = task->files;
3525 	task_lock(task);
3526 	task->files = copy;
3527 	task_unlock(task);
3528 	put_files_struct(old);
3529 	return 0;
3530 }
3531 
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3532 int sysctl_max_threads(struct ctl_table *table, int write,
3533 		       void *buffer, size_t *lenp, loff_t *ppos)
3534 {
3535 	struct ctl_table t;
3536 	int ret;
3537 	int threads = max_threads;
3538 	int min = 1;
3539 	int max = MAX_THREADS;
3540 
3541 	t = *table;
3542 	t.data = &threads;
3543 	t.extra1 = &min;
3544 	t.extra2 = &max;
3545 
3546 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3547 	if (ret || !write)
3548 		return ret;
3549 
3550 	max_threads = threads;
3551 
3552 	return 0;
3553 }
3554