xref: /openbmc/linux/crypto/ecc.c (revision 9144f784f852f9a125cabe9927b986d909bfa439)
1 /*
2  * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
3  * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are
7  * met:
8  *  * Redistributions of source code must retain the above copyright
9  *   notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <crypto/ecc_curve.h>
28 #include <linux/module.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/swab.h>
32 #include <linux/fips.h>
33 #include <crypto/ecdh.h>
34 #include <crypto/rng.h>
35 #include <crypto/internal/ecc.h>
36 #include <asm/unaligned.h>
37 #include <linux/ratelimit.h>
38 
39 #include "ecc_curve_defs.h"
40 
41 typedef struct {
42 	u64 m_low;
43 	u64 m_high;
44 } uint128_t;
45 
46 /* Returns curv25519 curve param */
ecc_get_curve25519(void)47 const struct ecc_curve *ecc_get_curve25519(void)
48 {
49 	return &ecc_25519;
50 }
51 EXPORT_SYMBOL(ecc_get_curve25519);
52 
ecc_get_curve(unsigned int curve_id)53 const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
54 {
55 	switch (curve_id) {
56 	/* In FIPS mode only allow P256 and higher */
57 	case ECC_CURVE_NIST_P192:
58 		return fips_enabled ? NULL : &nist_p192;
59 	case ECC_CURVE_NIST_P256:
60 		return &nist_p256;
61 	case ECC_CURVE_NIST_P384:
62 		return &nist_p384;
63 	default:
64 		return NULL;
65 	}
66 }
67 EXPORT_SYMBOL(ecc_get_curve);
68 
ecc_digits_from_bytes(const u8 * in,unsigned int nbytes,u64 * out,unsigned int ndigits)69 void ecc_digits_from_bytes(const u8 *in, unsigned int nbytes,
70 			   u64 *out, unsigned int ndigits)
71 {
72 	int diff = ndigits - DIV_ROUND_UP(nbytes, sizeof(u64));
73 	unsigned int o = nbytes & 7;
74 	__be64 msd = 0;
75 
76 	/* diff > 0: not enough input bytes: set most significant digits to 0 */
77 	if (diff > 0) {
78 		ndigits -= diff;
79 		memset(&out[ndigits - 1], 0, diff * sizeof(u64));
80 	}
81 
82 	if (o) {
83 		memcpy((u8 *)&msd + sizeof(msd) - o, in, o);
84 		out[--ndigits] = be64_to_cpu(msd);
85 		in += o;
86 	}
87 	ecc_swap_digits(in, out, ndigits);
88 }
89 EXPORT_SYMBOL(ecc_digits_from_bytes);
90 
ecc_alloc_digits_space(unsigned int ndigits)91 static u64 *ecc_alloc_digits_space(unsigned int ndigits)
92 {
93 	size_t len = ndigits * sizeof(u64);
94 
95 	if (!len)
96 		return NULL;
97 
98 	return kmalloc(len, GFP_KERNEL);
99 }
100 
ecc_free_digits_space(u64 * space)101 static void ecc_free_digits_space(u64 *space)
102 {
103 	kfree_sensitive(space);
104 }
105 
ecc_alloc_point(unsigned int ndigits)106 struct ecc_point *ecc_alloc_point(unsigned int ndigits)
107 {
108 	struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
109 
110 	if (!p)
111 		return NULL;
112 
113 	p->x = ecc_alloc_digits_space(ndigits);
114 	if (!p->x)
115 		goto err_alloc_x;
116 
117 	p->y = ecc_alloc_digits_space(ndigits);
118 	if (!p->y)
119 		goto err_alloc_y;
120 
121 	p->ndigits = ndigits;
122 
123 	return p;
124 
125 err_alloc_y:
126 	ecc_free_digits_space(p->x);
127 err_alloc_x:
128 	kfree(p);
129 	return NULL;
130 }
131 EXPORT_SYMBOL(ecc_alloc_point);
132 
ecc_free_point(struct ecc_point * p)133 void ecc_free_point(struct ecc_point *p)
134 {
135 	if (!p)
136 		return;
137 
138 	kfree_sensitive(p->x);
139 	kfree_sensitive(p->y);
140 	kfree_sensitive(p);
141 }
142 EXPORT_SYMBOL(ecc_free_point);
143 
vli_clear(u64 * vli,unsigned int ndigits)144 static void vli_clear(u64 *vli, unsigned int ndigits)
145 {
146 	int i;
147 
148 	for (i = 0; i < ndigits; i++)
149 		vli[i] = 0;
150 }
151 
152 /* Returns true if vli == 0, false otherwise. */
vli_is_zero(const u64 * vli,unsigned int ndigits)153 bool vli_is_zero(const u64 *vli, unsigned int ndigits)
154 {
155 	int i;
156 
157 	for (i = 0; i < ndigits; i++) {
158 		if (vli[i])
159 			return false;
160 	}
161 
162 	return true;
163 }
164 EXPORT_SYMBOL(vli_is_zero);
165 
166 /* Returns nonzero if bit of vli is set. */
vli_test_bit(const u64 * vli,unsigned int bit)167 static u64 vli_test_bit(const u64 *vli, unsigned int bit)
168 {
169 	return (vli[bit / 64] & ((u64)1 << (bit % 64)));
170 }
171 
vli_is_negative(const u64 * vli,unsigned int ndigits)172 static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
173 {
174 	return vli_test_bit(vli, ndigits * 64 - 1);
175 }
176 
177 /* Counts the number of 64-bit "digits" in vli. */
vli_num_digits(const u64 * vli,unsigned int ndigits)178 static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
179 {
180 	int i;
181 
182 	/* Search from the end until we find a non-zero digit.
183 	 * We do it in reverse because we expect that most digits will
184 	 * be nonzero.
185 	 */
186 	for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
187 
188 	return (i + 1);
189 }
190 
191 /* Counts the number of bits required for vli. */
vli_num_bits(const u64 * vli,unsigned int ndigits)192 unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
193 {
194 	unsigned int i, num_digits;
195 	u64 digit;
196 
197 	num_digits = vli_num_digits(vli, ndigits);
198 	if (num_digits == 0)
199 		return 0;
200 
201 	digit = vli[num_digits - 1];
202 	for (i = 0; digit; i++)
203 		digit >>= 1;
204 
205 	return ((num_digits - 1) * 64 + i);
206 }
207 EXPORT_SYMBOL(vli_num_bits);
208 
209 /* Set dest from unaligned bit string src. */
vli_from_be64(u64 * dest,const void * src,unsigned int ndigits)210 void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
211 {
212 	int i;
213 	const u64 *from = src;
214 
215 	for (i = 0; i < ndigits; i++)
216 		dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
217 }
218 EXPORT_SYMBOL(vli_from_be64);
219 
vli_from_le64(u64 * dest,const void * src,unsigned int ndigits)220 void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
221 {
222 	int i;
223 	const u64 *from = src;
224 
225 	for (i = 0; i < ndigits; i++)
226 		dest[i] = get_unaligned_le64(&from[i]);
227 }
228 EXPORT_SYMBOL(vli_from_le64);
229 
230 /* Sets dest = src. */
vli_set(u64 * dest,const u64 * src,unsigned int ndigits)231 static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
232 {
233 	int i;
234 
235 	for (i = 0; i < ndigits; i++)
236 		dest[i] = src[i];
237 }
238 
239 /* Returns sign of left - right. */
vli_cmp(const u64 * left,const u64 * right,unsigned int ndigits)240 int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
241 {
242 	int i;
243 
244 	for (i = ndigits - 1; i >= 0; i--) {
245 		if (left[i] > right[i])
246 			return 1;
247 		else if (left[i] < right[i])
248 			return -1;
249 	}
250 
251 	return 0;
252 }
253 EXPORT_SYMBOL(vli_cmp);
254 
255 /* Computes result = in << c, returning carry. Can modify in place
256  * (if result == in). 0 < shift < 64.
257  */
vli_lshift(u64 * result,const u64 * in,unsigned int shift,unsigned int ndigits)258 static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
259 		      unsigned int ndigits)
260 {
261 	u64 carry = 0;
262 	int i;
263 
264 	for (i = 0; i < ndigits; i++) {
265 		u64 temp = in[i];
266 
267 		result[i] = (temp << shift) | carry;
268 		carry = temp >> (64 - shift);
269 	}
270 
271 	return carry;
272 }
273 
274 /* Computes vli = vli >> 1. */
vli_rshift1(u64 * vli,unsigned int ndigits)275 static void vli_rshift1(u64 *vli, unsigned int ndigits)
276 {
277 	u64 *end = vli;
278 	u64 carry = 0;
279 
280 	vli += ndigits;
281 
282 	while (vli-- > end) {
283 		u64 temp = *vli;
284 		*vli = (temp >> 1) | carry;
285 		carry = temp << 63;
286 	}
287 }
288 
289 /* Computes result = left + right, returning carry. Can modify in place. */
vli_add(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)290 static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
291 		   unsigned int ndigits)
292 {
293 	u64 carry = 0;
294 	int i;
295 
296 	for (i = 0; i < ndigits; i++) {
297 		u64 sum;
298 
299 		sum = left[i] + right[i] + carry;
300 		if (sum != left[i])
301 			carry = (sum < left[i]);
302 
303 		result[i] = sum;
304 	}
305 
306 	return carry;
307 }
308 
309 /* Computes result = left + right, returning carry. Can modify in place. */
vli_uadd(u64 * result,const u64 * left,u64 right,unsigned int ndigits)310 static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
311 		    unsigned int ndigits)
312 {
313 	u64 carry = right;
314 	int i;
315 
316 	for (i = 0; i < ndigits; i++) {
317 		u64 sum;
318 
319 		sum = left[i] + carry;
320 		if (sum != left[i])
321 			carry = (sum < left[i]);
322 		else
323 			carry = !!carry;
324 
325 		result[i] = sum;
326 	}
327 
328 	return carry;
329 }
330 
331 /* Computes result = left - right, returning borrow. Can modify in place. */
vli_sub(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)332 u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
333 		   unsigned int ndigits)
334 {
335 	u64 borrow = 0;
336 	int i;
337 
338 	for (i = 0; i < ndigits; i++) {
339 		u64 diff;
340 
341 		diff = left[i] - right[i] - borrow;
342 		if (diff != left[i])
343 			borrow = (diff > left[i]);
344 
345 		result[i] = diff;
346 	}
347 
348 	return borrow;
349 }
350 EXPORT_SYMBOL(vli_sub);
351 
352 /* Computes result = left - right, returning borrow. Can modify in place. */
vli_usub(u64 * result,const u64 * left,u64 right,unsigned int ndigits)353 static u64 vli_usub(u64 *result, const u64 *left, u64 right,
354 	     unsigned int ndigits)
355 {
356 	u64 borrow = right;
357 	int i;
358 
359 	for (i = 0; i < ndigits; i++) {
360 		u64 diff;
361 
362 		diff = left[i] - borrow;
363 		if (diff != left[i])
364 			borrow = (diff > left[i]);
365 
366 		result[i] = diff;
367 	}
368 
369 	return borrow;
370 }
371 
mul_64_64(u64 left,u64 right)372 static uint128_t mul_64_64(u64 left, u64 right)
373 {
374 	uint128_t result;
375 #if defined(CONFIG_ARCH_SUPPORTS_INT128)
376 	unsigned __int128 m = (unsigned __int128)left * right;
377 
378 	result.m_low  = m;
379 	result.m_high = m >> 64;
380 #else
381 	u64 a0 = left & 0xffffffffull;
382 	u64 a1 = left >> 32;
383 	u64 b0 = right & 0xffffffffull;
384 	u64 b1 = right >> 32;
385 	u64 m0 = a0 * b0;
386 	u64 m1 = a0 * b1;
387 	u64 m2 = a1 * b0;
388 	u64 m3 = a1 * b1;
389 
390 	m2 += (m0 >> 32);
391 	m2 += m1;
392 
393 	/* Overflow */
394 	if (m2 < m1)
395 		m3 += 0x100000000ull;
396 
397 	result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
398 	result.m_high = m3 + (m2 >> 32);
399 #endif
400 	return result;
401 }
402 
add_128_128(uint128_t a,uint128_t b)403 static uint128_t add_128_128(uint128_t a, uint128_t b)
404 {
405 	uint128_t result;
406 
407 	result.m_low = a.m_low + b.m_low;
408 	result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
409 
410 	return result;
411 }
412 
vli_mult(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)413 static void vli_mult(u64 *result, const u64 *left, const u64 *right,
414 		     unsigned int ndigits)
415 {
416 	uint128_t r01 = { 0, 0 };
417 	u64 r2 = 0;
418 	unsigned int i, k;
419 
420 	/* Compute each digit of result in sequence, maintaining the
421 	 * carries.
422 	 */
423 	for (k = 0; k < ndigits * 2 - 1; k++) {
424 		unsigned int min;
425 
426 		if (k < ndigits)
427 			min = 0;
428 		else
429 			min = (k + 1) - ndigits;
430 
431 		for (i = min; i <= k && i < ndigits; i++) {
432 			uint128_t product;
433 
434 			product = mul_64_64(left[i], right[k - i]);
435 
436 			r01 = add_128_128(r01, product);
437 			r2 += (r01.m_high < product.m_high);
438 		}
439 
440 		result[k] = r01.m_low;
441 		r01.m_low = r01.m_high;
442 		r01.m_high = r2;
443 		r2 = 0;
444 	}
445 
446 	result[ndigits * 2 - 1] = r01.m_low;
447 }
448 
449 /* Compute product = left * right, for a small right value. */
vli_umult(u64 * result,const u64 * left,u32 right,unsigned int ndigits)450 static void vli_umult(u64 *result, const u64 *left, u32 right,
451 		      unsigned int ndigits)
452 {
453 	uint128_t r01 = { 0 };
454 	unsigned int k;
455 
456 	for (k = 0; k < ndigits; k++) {
457 		uint128_t product;
458 
459 		product = mul_64_64(left[k], right);
460 		r01 = add_128_128(r01, product);
461 		/* no carry */
462 		result[k] = r01.m_low;
463 		r01.m_low = r01.m_high;
464 		r01.m_high = 0;
465 	}
466 	result[k] = r01.m_low;
467 	for (++k; k < ndigits * 2; k++)
468 		result[k] = 0;
469 }
470 
vli_square(u64 * result,const u64 * left,unsigned int ndigits)471 static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
472 {
473 	uint128_t r01 = { 0, 0 };
474 	u64 r2 = 0;
475 	int i, k;
476 
477 	for (k = 0; k < ndigits * 2 - 1; k++) {
478 		unsigned int min;
479 
480 		if (k < ndigits)
481 			min = 0;
482 		else
483 			min = (k + 1) - ndigits;
484 
485 		for (i = min; i <= k && i <= k - i; i++) {
486 			uint128_t product;
487 
488 			product = mul_64_64(left[i], left[k - i]);
489 
490 			if (i < k - i) {
491 				r2 += product.m_high >> 63;
492 				product.m_high = (product.m_high << 1) |
493 						 (product.m_low >> 63);
494 				product.m_low <<= 1;
495 			}
496 
497 			r01 = add_128_128(r01, product);
498 			r2 += (r01.m_high < product.m_high);
499 		}
500 
501 		result[k] = r01.m_low;
502 		r01.m_low = r01.m_high;
503 		r01.m_high = r2;
504 		r2 = 0;
505 	}
506 
507 	result[ndigits * 2 - 1] = r01.m_low;
508 }
509 
510 /* Computes result = (left + right) % mod.
511  * Assumes that left < mod and right < mod, result != mod.
512  */
vli_mod_add(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)513 static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
514 			const u64 *mod, unsigned int ndigits)
515 {
516 	u64 carry;
517 
518 	carry = vli_add(result, left, right, ndigits);
519 
520 	/* result > mod (result = mod + remainder), so subtract mod to
521 	 * get remainder.
522 	 */
523 	if (carry || vli_cmp(result, mod, ndigits) >= 0)
524 		vli_sub(result, result, mod, ndigits);
525 }
526 
527 /* Computes result = (left - right) % mod.
528  * Assumes that left < mod and right < mod, result != mod.
529  */
vli_mod_sub(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)530 static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
531 			const u64 *mod, unsigned int ndigits)
532 {
533 	u64 borrow = vli_sub(result, left, right, ndigits);
534 
535 	/* In this case, p_result == -diff == (max int) - diff.
536 	 * Since -x % d == d - x, we can get the correct result from
537 	 * result + mod (with overflow).
538 	 */
539 	if (borrow)
540 		vli_add(result, result, mod, ndigits);
541 }
542 
543 /*
544  * Computes result = product % mod
545  * for special form moduli: p = 2^k-c, for small c (note the minus sign)
546  *
547  * References:
548  * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
549  * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
550  * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
551  */
vli_mmod_special(u64 * result,const u64 * product,const u64 * mod,unsigned int ndigits)552 static void vli_mmod_special(u64 *result, const u64 *product,
553 			      const u64 *mod, unsigned int ndigits)
554 {
555 	u64 c = -mod[0];
556 	u64 t[ECC_MAX_DIGITS * 2];
557 	u64 r[ECC_MAX_DIGITS * 2];
558 
559 	vli_set(r, product, ndigits * 2);
560 	while (!vli_is_zero(r + ndigits, ndigits)) {
561 		vli_umult(t, r + ndigits, c, ndigits);
562 		vli_clear(r + ndigits, ndigits);
563 		vli_add(r, r, t, ndigits * 2);
564 	}
565 	vli_set(t, mod, ndigits);
566 	vli_clear(t + ndigits, ndigits);
567 	while (vli_cmp(r, t, ndigits * 2) >= 0)
568 		vli_sub(r, r, t, ndigits * 2);
569 	vli_set(result, r, ndigits);
570 }
571 
572 /*
573  * Computes result = product % mod
574  * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
575  * where k-1 does not fit into qword boundary by -1 bit (such as 255).
576 
577  * References (loosely based on):
578  * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
579  * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
580  * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
581  *
582  * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
583  * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
584  * Algorithm 10.25 Fast reduction for special form moduli
585  */
vli_mmod_special2(u64 * result,const u64 * product,const u64 * mod,unsigned int ndigits)586 static void vli_mmod_special2(u64 *result, const u64 *product,
587 			       const u64 *mod, unsigned int ndigits)
588 {
589 	u64 c2 = mod[0] * 2;
590 	u64 q[ECC_MAX_DIGITS];
591 	u64 r[ECC_MAX_DIGITS * 2];
592 	u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
593 	int carry; /* last bit that doesn't fit into q */
594 	int i;
595 
596 	vli_set(m, mod, ndigits);
597 	vli_clear(m + ndigits, ndigits);
598 
599 	vli_set(r, product, ndigits);
600 	/* q and carry are top bits */
601 	vli_set(q, product + ndigits, ndigits);
602 	vli_clear(r + ndigits, ndigits);
603 	carry = vli_is_negative(r, ndigits);
604 	if (carry)
605 		r[ndigits - 1] &= (1ull << 63) - 1;
606 	for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
607 		u64 qc[ECC_MAX_DIGITS * 2];
608 
609 		vli_umult(qc, q, c2, ndigits);
610 		if (carry)
611 			vli_uadd(qc, qc, mod[0], ndigits * 2);
612 		vli_set(q, qc + ndigits, ndigits);
613 		vli_clear(qc + ndigits, ndigits);
614 		carry = vli_is_negative(qc, ndigits);
615 		if (carry)
616 			qc[ndigits - 1] &= (1ull << 63) - 1;
617 		if (i & 1)
618 			vli_sub(r, r, qc, ndigits * 2);
619 		else
620 			vli_add(r, r, qc, ndigits * 2);
621 	}
622 	while (vli_is_negative(r, ndigits * 2))
623 		vli_add(r, r, m, ndigits * 2);
624 	while (vli_cmp(r, m, ndigits * 2) >= 0)
625 		vli_sub(r, r, m, ndigits * 2);
626 
627 	vli_set(result, r, ndigits);
628 }
629 
630 /*
631  * Computes result = product % mod, where product is 2N words long.
632  * Reference: Ken MacKay's micro-ecc.
633  * Currently only designed to work for curve_p or curve_n.
634  */
vli_mmod_slow(u64 * result,u64 * product,const u64 * mod,unsigned int ndigits)635 static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
636 			  unsigned int ndigits)
637 {
638 	u64 mod_m[2 * ECC_MAX_DIGITS];
639 	u64 tmp[2 * ECC_MAX_DIGITS];
640 	u64 *v[2] = { tmp, product };
641 	u64 carry = 0;
642 	unsigned int i;
643 	/* Shift mod so its highest set bit is at the maximum position. */
644 	int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
645 	int word_shift = shift / 64;
646 	int bit_shift = shift % 64;
647 
648 	vli_clear(mod_m, word_shift);
649 	if (bit_shift > 0) {
650 		for (i = 0; i < ndigits; ++i) {
651 			mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
652 			carry = mod[i] >> (64 - bit_shift);
653 		}
654 	} else
655 		vli_set(mod_m + word_shift, mod, ndigits);
656 
657 	for (i = 1; shift >= 0; --shift) {
658 		u64 borrow = 0;
659 		unsigned int j;
660 
661 		for (j = 0; j < ndigits * 2; ++j) {
662 			u64 diff = v[i][j] - mod_m[j] - borrow;
663 
664 			if (diff != v[i][j])
665 				borrow = (diff > v[i][j]);
666 			v[1 - i][j] = diff;
667 		}
668 		i = !(i ^ borrow); /* Swap the index if there was no borrow */
669 		vli_rshift1(mod_m, ndigits);
670 		mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
671 		vli_rshift1(mod_m + ndigits, ndigits);
672 	}
673 	vli_set(result, v[i], ndigits);
674 }
675 
676 /* Computes result = product % mod using Barrett's reduction with precomputed
677  * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
678  * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
679  * boundary.
680  *
681  * Reference:
682  * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
683  * 2.4.1 Barrett's algorithm. Algorithm 2.5.
684  */
vli_mmod_barrett(u64 * result,u64 * product,const u64 * mod,unsigned int ndigits)685 static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
686 			     unsigned int ndigits)
687 {
688 	u64 q[ECC_MAX_DIGITS * 2];
689 	u64 r[ECC_MAX_DIGITS * 2];
690 	const u64 *mu = mod + ndigits;
691 
692 	vli_mult(q, product + ndigits, mu, ndigits);
693 	if (mu[ndigits])
694 		vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
695 	vli_mult(r, mod, q + ndigits, ndigits);
696 	vli_sub(r, product, r, ndigits * 2);
697 	while (!vli_is_zero(r + ndigits, ndigits) ||
698 	       vli_cmp(r, mod, ndigits) != -1) {
699 		u64 carry;
700 
701 		carry = vli_sub(r, r, mod, ndigits);
702 		vli_usub(r + ndigits, r + ndigits, carry, ndigits);
703 	}
704 	vli_set(result, r, ndigits);
705 }
706 
707 /* Computes p_result = p_product % curve_p.
708  * See algorithm 5 and 6 from
709  * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
710  */
vli_mmod_fast_192(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)711 static void vli_mmod_fast_192(u64 *result, const u64 *product,
712 			      const u64 *curve_prime, u64 *tmp)
713 {
714 	const unsigned int ndigits = 3;
715 	int carry;
716 
717 	vli_set(result, product, ndigits);
718 
719 	vli_set(tmp, &product[3], ndigits);
720 	carry = vli_add(result, result, tmp, ndigits);
721 
722 	tmp[0] = 0;
723 	tmp[1] = product[3];
724 	tmp[2] = product[4];
725 	carry += vli_add(result, result, tmp, ndigits);
726 
727 	tmp[0] = tmp[1] = product[5];
728 	tmp[2] = 0;
729 	carry += vli_add(result, result, tmp, ndigits);
730 
731 	while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
732 		carry -= vli_sub(result, result, curve_prime, ndigits);
733 }
734 
735 /* Computes result = product % curve_prime
736  * from http://www.nsa.gov/ia/_files/nist-routines.pdf
737  */
vli_mmod_fast_256(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)738 static void vli_mmod_fast_256(u64 *result, const u64 *product,
739 			      const u64 *curve_prime, u64 *tmp)
740 {
741 	int carry;
742 	const unsigned int ndigits = 4;
743 
744 	/* t */
745 	vli_set(result, product, ndigits);
746 
747 	/* s1 */
748 	tmp[0] = 0;
749 	tmp[1] = product[5] & 0xffffffff00000000ull;
750 	tmp[2] = product[6];
751 	tmp[3] = product[7];
752 	carry = vli_lshift(tmp, tmp, 1, ndigits);
753 	carry += vli_add(result, result, tmp, ndigits);
754 
755 	/* s2 */
756 	tmp[1] = product[6] << 32;
757 	tmp[2] = (product[6] >> 32) | (product[7] << 32);
758 	tmp[3] = product[7] >> 32;
759 	carry += vli_lshift(tmp, tmp, 1, ndigits);
760 	carry += vli_add(result, result, tmp, ndigits);
761 
762 	/* s3 */
763 	tmp[0] = product[4];
764 	tmp[1] = product[5] & 0xffffffff;
765 	tmp[2] = 0;
766 	tmp[3] = product[7];
767 	carry += vli_add(result, result, tmp, ndigits);
768 
769 	/* s4 */
770 	tmp[0] = (product[4] >> 32) | (product[5] << 32);
771 	tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
772 	tmp[2] = product[7];
773 	tmp[3] = (product[6] >> 32) | (product[4] << 32);
774 	carry += vli_add(result, result, tmp, ndigits);
775 
776 	/* d1 */
777 	tmp[0] = (product[5] >> 32) | (product[6] << 32);
778 	tmp[1] = (product[6] >> 32);
779 	tmp[2] = 0;
780 	tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
781 	carry -= vli_sub(result, result, tmp, ndigits);
782 
783 	/* d2 */
784 	tmp[0] = product[6];
785 	tmp[1] = product[7];
786 	tmp[2] = 0;
787 	tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
788 	carry -= vli_sub(result, result, tmp, ndigits);
789 
790 	/* d3 */
791 	tmp[0] = (product[6] >> 32) | (product[7] << 32);
792 	tmp[1] = (product[7] >> 32) | (product[4] << 32);
793 	tmp[2] = (product[4] >> 32) | (product[5] << 32);
794 	tmp[3] = (product[6] << 32);
795 	carry -= vli_sub(result, result, tmp, ndigits);
796 
797 	/* d4 */
798 	tmp[0] = product[7];
799 	tmp[1] = product[4] & 0xffffffff00000000ull;
800 	tmp[2] = product[5];
801 	tmp[3] = product[6] & 0xffffffff00000000ull;
802 	carry -= vli_sub(result, result, tmp, ndigits);
803 
804 	if (carry < 0) {
805 		do {
806 			carry += vli_add(result, result, curve_prime, ndigits);
807 		} while (carry < 0);
808 	} else {
809 		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
810 			carry -= vli_sub(result, result, curve_prime, ndigits);
811 	}
812 }
813 
814 #define SL32OR32(x32, y32) (((u64)x32 << 32) | y32)
815 #define AND64H(x64)  (x64 & 0xffFFffFF00000000ull)
816 #define AND64L(x64)  (x64 & 0x00000000ffFFffFFull)
817 
818 /* Computes result = product % curve_prime
819  * from "Mathematical routines for the NIST prime elliptic curves"
820  */
vli_mmod_fast_384(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)821 static void vli_mmod_fast_384(u64 *result, const u64 *product,
822 				const u64 *curve_prime, u64 *tmp)
823 {
824 	int carry;
825 	const unsigned int ndigits = 6;
826 
827 	/* t */
828 	vli_set(result, product, ndigits);
829 
830 	/* s1 */
831 	tmp[0] = 0;		// 0 || 0
832 	tmp[1] = 0;		// 0 || 0
833 	tmp[2] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
834 	tmp[3] = product[11]>>32;	// 0 ||a23
835 	tmp[4] = 0;		// 0 || 0
836 	tmp[5] = 0;		// 0 || 0
837 	carry = vli_lshift(tmp, tmp, 1, ndigits);
838 	carry += vli_add(result, result, tmp, ndigits);
839 
840 	/* s2 */
841 	tmp[0] = product[6];	//a13||a12
842 	tmp[1] = product[7];	//a15||a14
843 	tmp[2] = product[8];	//a17||a16
844 	tmp[3] = product[9];	//a19||a18
845 	tmp[4] = product[10];	//a21||a20
846 	tmp[5] = product[11];	//a23||a22
847 	carry += vli_add(result, result, tmp, ndigits);
848 
849 	/* s3 */
850 	tmp[0] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
851 	tmp[1] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
852 	tmp[2] = SL32OR32(product[7], (product[6])>>32);	//a14||a13
853 	tmp[3] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
854 	tmp[4] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
855 	tmp[5] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
856 	carry += vli_add(result, result, tmp, ndigits);
857 
858 	/* s4 */
859 	tmp[0] = AND64H(product[11]);	//a23|| 0
860 	tmp[1] = (product[10]<<32);	//a20|| 0
861 	tmp[2] = product[6];	//a13||a12
862 	tmp[3] = product[7];	//a15||a14
863 	tmp[4] = product[8];	//a17||a16
864 	tmp[5] = product[9];	//a19||a18
865 	carry += vli_add(result, result, tmp, ndigits);
866 
867 	/* s5 */
868 	tmp[0] = 0;		//  0|| 0
869 	tmp[1] = 0;		//  0|| 0
870 	tmp[2] = product[10];	//a21||a20
871 	tmp[3] = product[11];	//a23||a22
872 	tmp[4] = 0;		//  0|| 0
873 	tmp[5] = 0;		//  0|| 0
874 	carry += vli_add(result, result, tmp, ndigits);
875 
876 	/* s6 */
877 	tmp[0] = AND64L(product[10]);	// 0 ||a20
878 	tmp[1] = AND64H(product[10]);	//a21|| 0
879 	tmp[2] = product[11];	//a23||a22
880 	tmp[3] = 0;		// 0 || 0
881 	tmp[4] = 0;		// 0 || 0
882 	tmp[5] = 0;		// 0 || 0
883 	carry += vli_add(result, result, tmp, ndigits);
884 
885 	/* d1 */
886 	tmp[0] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
887 	tmp[1] = SL32OR32(product[7], (product[6]>>32));	//a14||a13
888 	tmp[2] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
889 	tmp[3] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
890 	tmp[4] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
891 	tmp[5] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
892 	carry -= vli_sub(result, result, tmp, ndigits);
893 
894 	/* d2 */
895 	tmp[0] = (product[10]<<32);	//a20|| 0
896 	tmp[1] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
897 	tmp[2] = (product[11]>>32);	// 0 ||a23
898 	tmp[3] = 0;		// 0 || 0
899 	tmp[4] = 0;		// 0 || 0
900 	tmp[5] = 0;		// 0 || 0
901 	carry -= vli_sub(result, result, tmp, ndigits);
902 
903 	/* d3 */
904 	tmp[0] = 0;		// 0 || 0
905 	tmp[1] = AND64H(product[11]);	//a23|| 0
906 	tmp[2] = product[11]>>32;	// 0 ||a23
907 	tmp[3] = 0;		// 0 || 0
908 	tmp[4] = 0;		// 0 || 0
909 	tmp[5] = 0;		// 0 || 0
910 	carry -= vli_sub(result, result, tmp, ndigits);
911 
912 	if (carry < 0) {
913 		do {
914 			carry += vli_add(result, result, curve_prime, ndigits);
915 		} while (carry < 0);
916 	} else {
917 		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
918 			carry -= vli_sub(result, result, curve_prime, ndigits);
919 	}
920 
921 }
922 
923 #undef SL32OR32
924 #undef AND64H
925 #undef AND64L
926 
927 /* Computes result = product % curve_prime for different curve_primes.
928  *
929  * Note that curve_primes are distinguished just by heuristic check and
930  * not by complete conformance check.
931  */
vli_mmod_fast(u64 * result,u64 * product,const struct ecc_curve * curve)932 static bool vli_mmod_fast(u64 *result, u64 *product,
933 			  const struct ecc_curve *curve)
934 {
935 	u64 tmp[2 * ECC_MAX_DIGITS];
936 	const u64 *curve_prime = curve->p;
937 	const unsigned int ndigits = curve->g.ndigits;
938 
939 	/* All NIST curves have name prefix 'nist_' */
940 	if (strncmp(curve->name, "nist_", 5) != 0) {
941 		/* Try to handle Pseudo-Marsenne primes. */
942 		if (curve_prime[ndigits - 1] == -1ull) {
943 			vli_mmod_special(result, product, curve_prime,
944 					 ndigits);
945 			return true;
946 		} else if (curve_prime[ndigits - 1] == 1ull << 63 &&
947 			   curve_prime[ndigits - 2] == 0) {
948 			vli_mmod_special2(result, product, curve_prime,
949 					  ndigits);
950 			return true;
951 		}
952 		vli_mmod_barrett(result, product, curve_prime, ndigits);
953 		return true;
954 	}
955 
956 	switch (ndigits) {
957 	case 3:
958 		vli_mmod_fast_192(result, product, curve_prime, tmp);
959 		break;
960 	case 4:
961 		vli_mmod_fast_256(result, product, curve_prime, tmp);
962 		break;
963 	case 6:
964 		vli_mmod_fast_384(result, product, curve_prime, tmp);
965 		break;
966 	default:
967 		pr_err_ratelimited("ecc: unsupported digits size!\n");
968 		return false;
969 	}
970 
971 	return true;
972 }
973 
974 /* Computes result = (left * right) % mod.
975  * Assumes that mod is big enough curve order.
976  */
vli_mod_mult_slow(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)977 void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
978 		       const u64 *mod, unsigned int ndigits)
979 {
980 	u64 product[ECC_MAX_DIGITS * 2];
981 
982 	vli_mult(product, left, right, ndigits);
983 	vli_mmod_slow(result, product, mod, ndigits);
984 }
985 EXPORT_SYMBOL(vli_mod_mult_slow);
986 
987 /* Computes result = (left * right) % curve_prime. */
vli_mod_mult_fast(u64 * result,const u64 * left,const u64 * right,const struct ecc_curve * curve)988 static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
989 			      const struct ecc_curve *curve)
990 {
991 	u64 product[2 * ECC_MAX_DIGITS];
992 
993 	vli_mult(product, left, right, curve->g.ndigits);
994 	vli_mmod_fast(result, product, curve);
995 }
996 
997 /* Computes result = left^2 % curve_prime. */
vli_mod_square_fast(u64 * result,const u64 * left,const struct ecc_curve * curve)998 static void vli_mod_square_fast(u64 *result, const u64 *left,
999 				const struct ecc_curve *curve)
1000 {
1001 	u64 product[2 * ECC_MAX_DIGITS];
1002 
1003 	vli_square(product, left, curve->g.ndigits);
1004 	vli_mmod_fast(result, product, curve);
1005 }
1006 
1007 #define EVEN(vli) (!(vli[0] & 1))
1008 /* Computes result = (1 / p_input) % mod. All VLIs are the same size.
1009  * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
1010  * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
1011  */
vli_mod_inv(u64 * result,const u64 * input,const u64 * mod,unsigned int ndigits)1012 void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
1013 			unsigned int ndigits)
1014 {
1015 	u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
1016 	u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS];
1017 	u64 carry;
1018 	int cmp_result;
1019 
1020 	if (vli_is_zero(input, ndigits)) {
1021 		vli_clear(result, ndigits);
1022 		return;
1023 	}
1024 
1025 	vli_set(a, input, ndigits);
1026 	vli_set(b, mod, ndigits);
1027 	vli_clear(u, ndigits);
1028 	u[0] = 1;
1029 	vli_clear(v, ndigits);
1030 
1031 	while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
1032 		carry = 0;
1033 
1034 		if (EVEN(a)) {
1035 			vli_rshift1(a, ndigits);
1036 
1037 			if (!EVEN(u))
1038 				carry = vli_add(u, u, mod, ndigits);
1039 
1040 			vli_rshift1(u, ndigits);
1041 			if (carry)
1042 				u[ndigits - 1] |= 0x8000000000000000ull;
1043 		} else if (EVEN(b)) {
1044 			vli_rshift1(b, ndigits);
1045 
1046 			if (!EVEN(v))
1047 				carry = vli_add(v, v, mod, ndigits);
1048 
1049 			vli_rshift1(v, ndigits);
1050 			if (carry)
1051 				v[ndigits - 1] |= 0x8000000000000000ull;
1052 		} else if (cmp_result > 0) {
1053 			vli_sub(a, a, b, ndigits);
1054 			vli_rshift1(a, ndigits);
1055 
1056 			if (vli_cmp(u, v, ndigits) < 0)
1057 				vli_add(u, u, mod, ndigits);
1058 
1059 			vli_sub(u, u, v, ndigits);
1060 			if (!EVEN(u))
1061 				carry = vli_add(u, u, mod, ndigits);
1062 
1063 			vli_rshift1(u, ndigits);
1064 			if (carry)
1065 				u[ndigits - 1] |= 0x8000000000000000ull;
1066 		} else {
1067 			vli_sub(b, b, a, ndigits);
1068 			vli_rshift1(b, ndigits);
1069 
1070 			if (vli_cmp(v, u, ndigits) < 0)
1071 				vli_add(v, v, mod, ndigits);
1072 
1073 			vli_sub(v, v, u, ndigits);
1074 			if (!EVEN(v))
1075 				carry = vli_add(v, v, mod, ndigits);
1076 
1077 			vli_rshift1(v, ndigits);
1078 			if (carry)
1079 				v[ndigits - 1] |= 0x8000000000000000ull;
1080 		}
1081 	}
1082 
1083 	vli_set(result, u, ndigits);
1084 }
1085 EXPORT_SYMBOL(vli_mod_inv);
1086 
1087 /* ------ Point operations ------ */
1088 
1089 /* Returns true if p_point is the point at infinity, false otherwise. */
ecc_point_is_zero(const struct ecc_point * point)1090 bool ecc_point_is_zero(const struct ecc_point *point)
1091 {
1092 	return (vli_is_zero(point->x, point->ndigits) &&
1093 		vli_is_zero(point->y, point->ndigits));
1094 }
1095 EXPORT_SYMBOL(ecc_point_is_zero);
1096 
1097 /* Point multiplication algorithm using Montgomery's ladder with co-Z
1098  * coordinates. From https://eprint.iacr.org/2011/338.pdf
1099  */
1100 
1101 /* Double in place */
ecc_point_double_jacobian(u64 * x1,u64 * y1,u64 * z1,const struct ecc_curve * curve)1102 static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
1103 					const struct ecc_curve *curve)
1104 {
1105 	/* t1 = x, t2 = y, t3 = z */
1106 	u64 t4[ECC_MAX_DIGITS];
1107 	u64 t5[ECC_MAX_DIGITS];
1108 	const u64 *curve_prime = curve->p;
1109 	const unsigned int ndigits = curve->g.ndigits;
1110 
1111 	if (vli_is_zero(z1, ndigits))
1112 		return;
1113 
1114 	/* t4 = y1^2 */
1115 	vli_mod_square_fast(t4, y1, curve);
1116 	/* t5 = x1*y1^2 = A */
1117 	vli_mod_mult_fast(t5, x1, t4, curve);
1118 	/* t4 = y1^4 */
1119 	vli_mod_square_fast(t4, t4, curve);
1120 	/* t2 = y1*z1 = z3 */
1121 	vli_mod_mult_fast(y1, y1, z1, curve);
1122 	/* t3 = z1^2 */
1123 	vli_mod_square_fast(z1, z1, curve);
1124 
1125 	/* t1 = x1 + z1^2 */
1126 	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1127 	/* t3 = 2*z1^2 */
1128 	vli_mod_add(z1, z1, z1, curve_prime, ndigits);
1129 	/* t3 = x1 - z1^2 */
1130 	vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
1131 	/* t1 = x1^2 - z1^4 */
1132 	vli_mod_mult_fast(x1, x1, z1, curve);
1133 
1134 	/* t3 = 2*(x1^2 - z1^4) */
1135 	vli_mod_add(z1, x1, x1, curve_prime, ndigits);
1136 	/* t1 = 3*(x1^2 - z1^4) */
1137 	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1138 	if (vli_test_bit(x1, 0)) {
1139 		u64 carry = vli_add(x1, x1, curve_prime, ndigits);
1140 
1141 		vli_rshift1(x1, ndigits);
1142 		x1[ndigits - 1] |= carry << 63;
1143 	} else {
1144 		vli_rshift1(x1, ndigits);
1145 	}
1146 	/* t1 = 3/2*(x1^2 - z1^4) = B */
1147 
1148 	/* t3 = B^2 */
1149 	vli_mod_square_fast(z1, x1, curve);
1150 	/* t3 = B^2 - A */
1151 	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1152 	/* t3 = B^2 - 2A = x3 */
1153 	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1154 	/* t5 = A - x3 */
1155 	vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
1156 	/* t1 = B * (A - x3) */
1157 	vli_mod_mult_fast(x1, x1, t5, curve);
1158 	/* t4 = B * (A - x3) - y1^4 = y3 */
1159 	vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
1160 
1161 	vli_set(x1, z1, ndigits);
1162 	vli_set(z1, y1, ndigits);
1163 	vli_set(y1, t4, ndigits);
1164 }
1165 
1166 /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
apply_z(u64 * x1,u64 * y1,u64 * z,const struct ecc_curve * curve)1167 static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve)
1168 {
1169 	u64 t1[ECC_MAX_DIGITS];
1170 
1171 	vli_mod_square_fast(t1, z, curve);		/* z^2 */
1172 	vli_mod_mult_fast(x1, x1, t1, curve);	/* x1 * z^2 */
1173 	vli_mod_mult_fast(t1, t1, z, curve);	/* z^3 */
1174 	vli_mod_mult_fast(y1, y1, t1, curve);	/* y1 * z^3 */
1175 }
1176 
1177 /* P = (x1, y1) => 2P, (x2, y2) => P' */
xycz_initial_double(u64 * x1,u64 * y1,u64 * x2,u64 * y2,u64 * p_initial_z,const struct ecc_curve * curve)1178 static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1179 				u64 *p_initial_z, const struct ecc_curve *curve)
1180 {
1181 	u64 z[ECC_MAX_DIGITS];
1182 	const unsigned int ndigits = curve->g.ndigits;
1183 
1184 	vli_set(x2, x1, ndigits);
1185 	vli_set(y2, y1, ndigits);
1186 
1187 	vli_clear(z, ndigits);
1188 	z[0] = 1;
1189 
1190 	if (p_initial_z)
1191 		vli_set(z, p_initial_z, ndigits);
1192 
1193 	apply_z(x1, y1, z, curve);
1194 
1195 	ecc_point_double_jacobian(x1, y1, z, curve);
1196 
1197 	apply_z(x2, y2, z, curve);
1198 }
1199 
1200 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1201  * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
1202  * or P => P', Q => P + Q
1203  */
xycz_add(u64 * x1,u64 * y1,u64 * x2,u64 * y2,const struct ecc_curve * curve)1204 static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1205 			const struct ecc_curve *curve)
1206 {
1207 	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1208 	u64 t5[ECC_MAX_DIGITS];
1209 	const u64 *curve_prime = curve->p;
1210 	const unsigned int ndigits = curve->g.ndigits;
1211 
1212 	/* t5 = x2 - x1 */
1213 	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1214 	/* t5 = (x2 - x1)^2 = A */
1215 	vli_mod_square_fast(t5, t5, curve);
1216 	/* t1 = x1*A = B */
1217 	vli_mod_mult_fast(x1, x1, t5, curve);
1218 	/* t3 = x2*A = C */
1219 	vli_mod_mult_fast(x2, x2, t5, curve);
1220 	/* t4 = y2 - y1 */
1221 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1222 	/* t5 = (y2 - y1)^2 = D */
1223 	vli_mod_square_fast(t5, y2, curve);
1224 
1225 	/* t5 = D - B */
1226 	vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
1227 	/* t5 = D - B - C = x3 */
1228 	vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
1229 	/* t3 = C - B */
1230 	vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
1231 	/* t2 = y1*(C - B) */
1232 	vli_mod_mult_fast(y1, y1, x2, curve);
1233 	/* t3 = B - x3 */
1234 	vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
1235 	/* t4 = (y2 - y1)*(B - x3) */
1236 	vli_mod_mult_fast(y2, y2, x2, curve);
1237 	/* t4 = y3 */
1238 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1239 
1240 	vli_set(x2, t5, ndigits);
1241 }
1242 
1243 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1244  * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
1245  * or P => P - Q, Q => P + Q
1246  */
xycz_add_c(u64 * x1,u64 * y1,u64 * x2,u64 * y2,const struct ecc_curve * curve)1247 static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1248 			const struct ecc_curve *curve)
1249 {
1250 	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1251 	u64 t5[ECC_MAX_DIGITS];
1252 	u64 t6[ECC_MAX_DIGITS];
1253 	u64 t7[ECC_MAX_DIGITS];
1254 	const u64 *curve_prime = curve->p;
1255 	const unsigned int ndigits = curve->g.ndigits;
1256 
1257 	/* t5 = x2 - x1 */
1258 	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1259 	/* t5 = (x2 - x1)^2 = A */
1260 	vli_mod_square_fast(t5, t5, curve);
1261 	/* t1 = x1*A = B */
1262 	vli_mod_mult_fast(x1, x1, t5, curve);
1263 	/* t3 = x2*A = C */
1264 	vli_mod_mult_fast(x2, x2, t5, curve);
1265 	/* t4 = y2 + y1 */
1266 	vli_mod_add(t5, y2, y1, curve_prime, ndigits);
1267 	/* t4 = y2 - y1 */
1268 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1269 
1270 	/* t6 = C - B */
1271 	vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
1272 	/* t2 = y1 * (C - B) */
1273 	vli_mod_mult_fast(y1, y1, t6, curve);
1274 	/* t6 = B + C */
1275 	vli_mod_add(t6, x1, x2, curve_prime, ndigits);
1276 	/* t3 = (y2 - y1)^2 */
1277 	vli_mod_square_fast(x2, y2, curve);
1278 	/* t3 = x3 */
1279 	vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
1280 
1281 	/* t7 = B - x3 */
1282 	vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
1283 	/* t4 = (y2 - y1)*(B - x3) */
1284 	vli_mod_mult_fast(y2, y2, t7, curve);
1285 	/* t4 = y3 */
1286 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1287 
1288 	/* t7 = (y2 + y1)^2 = F */
1289 	vli_mod_square_fast(t7, t5, curve);
1290 	/* t7 = x3' */
1291 	vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
1292 	/* t6 = x3' - B */
1293 	vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
1294 	/* t6 = (y2 + y1)*(x3' - B) */
1295 	vli_mod_mult_fast(t6, t6, t5, curve);
1296 	/* t2 = y3' */
1297 	vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
1298 
1299 	vli_set(x1, t7, ndigits);
1300 }
1301 
ecc_point_mult(struct ecc_point * result,const struct ecc_point * point,const u64 * scalar,u64 * initial_z,const struct ecc_curve * curve,unsigned int ndigits)1302 static void ecc_point_mult(struct ecc_point *result,
1303 			   const struct ecc_point *point, const u64 *scalar,
1304 			   u64 *initial_z, const struct ecc_curve *curve,
1305 			   unsigned int ndigits)
1306 {
1307 	/* R0 and R1 */
1308 	u64 rx[2][ECC_MAX_DIGITS];
1309 	u64 ry[2][ECC_MAX_DIGITS];
1310 	u64 z[ECC_MAX_DIGITS];
1311 	u64 sk[2][ECC_MAX_DIGITS];
1312 	u64 *curve_prime = curve->p;
1313 	int i, nb;
1314 	int num_bits;
1315 	int carry;
1316 
1317 	carry = vli_add(sk[0], scalar, curve->n, ndigits);
1318 	vli_add(sk[1], sk[0], curve->n, ndigits);
1319 	scalar = sk[!carry];
1320 	num_bits = sizeof(u64) * ndigits * 8 + 1;
1321 
1322 	vli_set(rx[1], point->x, ndigits);
1323 	vli_set(ry[1], point->y, ndigits);
1324 
1325 	xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve);
1326 
1327 	for (i = num_bits - 2; i > 0; i--) {
1328 		nb = !vli_test_bit(scalar, i);
1329 		xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1330 		xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1331 	}
1332 
1333 	nb = !vli_test_bit(scalar, 0);
1334 	xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1335 
1336 	/* Find final 1/Z value. */
1337 	/* X1 - X0 */
1338 	vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
1339 	/* Yb * (X1 - X0) */
1340 	vli_mod_mult_fast(z, z, ry[1 - nb], curve);
1341 	/* xP * Yb * (X1 - X0) */
1342 	vli_mod_mult_fast(z, z, point->x, curve);
1343 
1344 	/* 1 / (xP * Yb * (X1 - X0)) */
1345 	vli_mod_inv(z, z, curve_prime, point->ndigits);
1346 
1347 	/* yP / (xP * Yb * (X1 - X0)) */
1348 	vli_mod_mult_fast(z, z, point->y, curve);
1349 	/* Xb * yP / (xP * Yb * (X1 - X0)) */
1350 	vli_mod_mult_fast(z, z, rx[1 - nb], curve);
1351 	/* End 1/Z calculation */
1352 
1353 	xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1354 
1355 	apply_z(rx[0], ry[0], z, curve);
1356 
1357 	vli_set(result->x, rx[0], ndigits);
1358 	vli_set(result->y, ry[0], ndigits);
1359 }
1360 
1361 /* Computes R = P + Q mod p */
ecc_point_add(const struct ecc_point * result,const struct ecc_point * p,const struct ecc_point * q,const struct ecc_curve * curve)1362 static void ecc_point_add(const struct ecc_point *result,
1363 		   const struct ecc_point *p, const struct ecc_point *q,
1364 		   const struct ecc_curve *curve)
1365 {
1366 	u64 z[ECC_MAX_DIGITS];
1367 	u64 px[ECC_MAX_DIGITS];
1368 	u64 py[ECC_MAX_DIGITS];
1369 	unsigned int ndigits = curve->g.ndigits;
1370 
1371 	vli_set(result->x, q->x, ndigits);
1372 	vli_set(result->y, q->y, ndigits);
1373 	vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
1374 	vli_set(px, p->x, ndigits);
1375 	vli_set(py, p->y, ndigits);
1376 	xycz_add(px, py, result->x, result->y, curve);
1377 	vli_mod_inv(z, z, curve->p, ndigits);
1378 	apply_z(result->x, result->y, z, curve);
1379 }
1380 
1381 /* Computes R = u1P + u2Q mod p using Shamir's trick.
1382  * Based on: Kenneth MacKay's micro-ecc (2014).
1383  */
ecc_point_mult_shamir(const struct ecc_point * result,const u64 * u1,const struct ecc_point * p,const u64 * u2,const struct ecc_point * q,const struct ecc_curve * curve)1384 void ecc_point_mult_shamir(const struct ecc_point *result,
1385 			   const u64 *u1, const struct ecc_point *p,
1386 			   const u64 *u2, const struct ecc_point *q,
1387 			   const struct ecc_curve *curve)
1388 {
1389 	u64 z[ECC_MAX_DIGITS];
1390 	u64 sump[2][ECC_MAX_DIGITS];
1391 	u64 *rx = result->x;
1392 	u64 *ry = result->y;
1393 	unsigned int ndigits = curve->g.ndigits;
1394 	unsigned int num_bits;
1395 	struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
1396 	const struct ecc_point *points[4];
1397 	const struct ecc_point *point;
1398 	unsigned int idx;
1399 	int i;
1400 
1401 	ecc_point_add(&sum, p, q, curve);
1402 	points[0] = NULL;
1403 	points[1] = p;
1404 	points[2] = q;
1405 	points[3] = &sum;
1406 
1407 	num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits));
1408 	i = num_bits - 1;
1409 	idx = !!vli_test_bit(u1, i);
1410 	idx |= (!!vli_test_bit(u2, i)) << 1;
1411 	point = points[idx];
1412 
1413 	vli_set(rx, point->x, ndigits);
1414 	vli_set(ry, point->y, ndigits);
1415 	vli_clear(z + 1, ndigits - 1);
1416 	z[0] = 1;
1417 
1418 	for (--i; i >= 0; i--) {
1419 		ecc_point_double_jacobian(rx, ry, z, curve);
1420 		idx = !!vli_test_bit(u1, i);
1421 		idx |= (!!vli_test_bit(u2, i)) << 1;
1422 		point = points[idx];
1423 		if (point) {
1424 			u64 tx[ECC_MAX_DIGITS];
1425 			u64 ty[ECC_MAX_DIGITS];
1426 			u64 tz[ECC_MAX_DIGITS];
1427 
1428 			vli_set(tx, point->x, ndigits);
1429 			vli_set(ty, point->y, ndigits);
1430 			apply_z(tx, ty, z, curve);
1431 			vli_mod_sub(tz, rx, tx, curve->p, ndigits);
1432 			xycz_add(tx, ty, rx, ry, curve);
1433 			vli_mod_mult_fast(z, z, tz, curve);
1434 		}
1435 	}
1436 	vli_mod_inv(z, z, curve->p, ndigits);
1437 	apply_z(rx, ry, z, curve);
1438 }
1439 EXPORT_SYMBOL(ecc_point_mult_shamir);
1440 
__ecc_is_key_valid(const struct ecc_curve * curve,const u64 * private_key,unsigned int ndigits)1441 static int __ecc_is_key_valid(const struct ecc_curve *curve,
1442 			      const u64 *private_key, unsigned int ndigits)
1443 {
1444 	u64 one[ECC_MAX_DIGITS] = { 1, };
1445 	u64 res[ECC_MAX_DIGITS];
1446 
1447 	if (!private_key)
1448 		return -EINVAL;
1449 
1450 	if (curve->g.ndigits != ndigits)
1451 		return -EINVAL;
1452 
1453 	/* Make sure the private key is in the range [2, n-3]. */
1454 	if (vli_cmp(one, private_key, ndigits) != -1)
1455 		return -EINVAL;
1456 	vli_sub(res, curve->n, one, ndigits);
1457 	vli_sub(res, res, one, ndigits);
1458 	if (vli_cmp(res, private_key, ndigits) != 1)
1459 		return -EINVAL;
1460 
1461 	return 0;
1462 }
1463 
ecc_is_key_valid(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,unsigned int private_key_len)1464 int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
1465 		     const u64 *private_key, unsigned int private_key_len)
1466 {
1467 	int nbytes;
1468 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1469 
1470 	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1471 
1472 	if (private_key_len != nbytes)
1473 		return -EINVAL;
1474 
1475 	return __ecc_is_key_valid(curve, private_key, ndigits);
1476 }
1477 EXPORT_SYMBOL(ecc_is_key_valid);
1478 
1479 /*
1480  * ECC private keys are generated using the method of extra random bits,
1481  * equivalent to that described in FIPS 186-4, Appendix B.4.1.
1482  *
1483  * d = (c mod(n–1)) + 1    where c is a string of random bits, 64 bits longer
1484  *                         than requested
1485  * 0 <= c mod(n-1) <= n-2  and implies that
1486  * 1 <= d <= n-1
1487  *
1488  * This method generates a private key uniformly distributed in the range
1489  * [1, n-1].
1490  */
ecc_gen_privkey(unsigned int curve_id,unsigned int ndigits,u64 * privkey)1491 int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey)
1492 {
1493 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1494 	u64 priv[ECC_MAX_DIGITS];
1495 	unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1496 	unsigned int nbits = vli_num_bits(curve->n, ndigits);
1497 	int err;
1498 
1499 	/* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */
1500 	if (nbits < 160 || ndigits > ARRAY_SIZE(priv))
1501 		return -EINVAL;
1502 
1503 	/*
1504 	 * FIPS 186-4 recommends that the private key should be obtained from a
1505 	 * RBG with a security strength equal to or greater than the security
1506 	 * strength associated with N.
1507 	 *
1508 	 * The maximum security strength identified by NIST SP800-57pt1r4 for
1509 	 * ECC is 256 (N >= 512).
1510 	 *
1511 	 * This condition is met by the default RNG because it selects a favored
1512 	 * DRBG with a security strength of 256.
1513 	 */
1514 	if (crypto_get_default_rng())
1515 		return -EFAULT;
1516 
1517 	err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes);
1518 	crypto_put_default_rng();
1519 	if (err)
1520 		return err;
1521 
1522 	/* Make sure the private key is in the valid range. */
1523 	if (__ecc_is_key_valid(curve, priv, ndigits))
1524 		return -EINVAL;
1525 
1526 	ecc_swap_digits(priv, privkey, ndigits);
1527 
1528 	return 0;
1529 }
1530 EXPORT_SYMBOL(ecc_gen_privkey);
1531 
ecc_make_pub_key(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,u64 * public_key)1532 int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
1533 		     const u64 *private_key, u64 *public_key)
1534 {
1535 	int ret = 0;
1536 	struct ecc_point *pk;
1537 	u64 priv[ECC_MAX_DIGITS];
1538 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1539 
1540 	if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) {
1541 		ret = -EINVAL;
1542 		goto out;
1543 	}
1544 
1545 	ecc_swap_digits(private_key, priv, ndigits);
1546 
1547 	pk = ecc_alloc_point(ndigits);
1548 	if (!pk) {
1549 		ret = -ENOMEM;
1550 		goto out;
1551 	}
1552 
1553 	ecc_point_mult(pk, &curve->g, priv, NULL, curve, ndigits);
1554 
1555 	/* SP800-56A rev 3 5.6.2.1.3 key check */
1556 	if (ecc_is_pubkey_valid_full(curve, pk)) {
1557 		ret = -EAGAIN;
1558 		goto err_free_point;
1559 	}
1560 
1561 	ecc_swap_digits(pk->x, public_key, ndigits);
1562 	ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
1563 
1564 err_free_point:
1565 	ecc_free_point(pk);
1566 out:
1567 	return ret;
1568 }
1569 EXPORT_SYMBOL(ecc_make_pub_key);
1570 
1571 /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
ecc_is_pubkey_valid_partial(const struct ecc_curve * curve,struct ecc_point * pk)1572 int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
1573 				struct ecc_point *pk)
1574 {
1575 	u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
1576 
1577 	if (WARN_ON(pk->ndigits != curve->g.ndigits))
1578 		return -EINVAL;
1579 
1580 	/* Check 1: Verify key is not the zero point. */
1581 	if (ecc_point_is_zero(pk))
1582 		return -EINVAL;
1583 
1584 	/* Check 2: Verify key is in the range [1, p-1]. */
1585 	if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
1586 		return -EINVAL;
1587 	if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
1588 		return -EINVAL;
1589 
1590 	/* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */
1591 	vli_mod_square_fast(yy, pk->y, curve); /* y^2 */
1592 	vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */
1593 	vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */
1594 	vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */
1595 	vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */
1596 	vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */
1597 	if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
1598 		return -EINVAL;
1599 
1600 	return 0;
1601 }
1602 EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
1603 
1604 /* SP800-56A section 5.6.2.3.3 full verification */
ecc_is_pubkey_valid_full(const struct ecc_curve * curve,struct ecc_point * pk)1605 int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
1606 			     struct ecc_point *pk)
1607 {
1608 	struct ecc_point *nQ;
1609 
1610 	/* Checks 1 through 3 */
1611 	int ret = ecc_is_pubkey_valid_partial(curve, pk);
1612 
1613 	if (ret)
1614 		return ret;
1615 
1616 	/* Check 4: Verify that nQ is the zero point. */
1617 	nQ = ecc_alloc_point(pk->ndigits);
1618 	if (!nQ)
1619 		return -ENOMEM;
1620 
1621 	ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits);
1622 	if (!ecc_point_is_zero(nQ))
1623 		ret = -EINVAL;
1624 
1625 	ecc_free_point(nQ);
1626 
1627 	return ret;
1628 }
1629 EXPORT_SYMBOL(ecc_is_pubkey_valid_full);
1630 
crypto_ecdh_shared_secret(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,const u64 * public_key,u64 * secret)1631 int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
1632 			      const u64 *private_key, const u64 *public_key,
1633 			      u64 *secret)
1634 {
1635 	int ret = 0;
1636 	struct ecc_point *product, *pk;
1637 	u64 priv[ECC_MAX_DIGITS];
1638 	u64 rand_z[ECC_MAX_DIGITS];
1639 	unsigned int nbytes;
1640 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1641 
1642 	if (!private_key || !public_key || !curve ||
1643 	    ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) {
1644 		ret = -EINVAL;
1645 		goto out;
1646 	}
1647 
1648 	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1649 
1650 	get_random_bytes(rand_z, nbytes);
1651 
1652 	pk = ecc_alloc_point(ndigits);
1653 	if (!pk) {
1654 		ret = -ENOMEM;
1655 		goto out;
1656 	}
1657 
1658 	ecc_swap_digits(public_key, pk->x, ndigits);
1659 	ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
1660 	ret = ecc_is_pubkey_valid_partial(curve, pk);
1661 	if (ret)
1662 		goto err_alloc_product;
1663 
1664 	ecc_swap_digits(private_key, priv, ndigits);
1665 
1666 	product = ecc_alloc_point(ndigits);
1667 	if (!product) {
1668 		ret = -ENOMEM;
1669 		goto err_alloc_product;
1670 	}
1671 
1672 	ecc_point_mult(product, pk, priv, rand_z, curve, ndigits);
1673 
1674 	if (ecc_point_is_zero(product)) {
1675 		ret = -EFAULT;
1676 		goto err_validity;
1677 	}
1678 
1679 	ecc_swap_digits(product->x, secret, ndigits);
1680 
1681 err_validity:
1682 	memzero_explicit(priv, sizeof(priv));
1683 	memzero_explicit(rand_z, sizeof(rand_z));
1684 	ecc_free_point(product);
1685 err_alloc_product:
1686 	ecc_free_point(pk);
1687 out:
1688 	return ret;
1689 }
1690 EXPORT_SYMBOL(crypto_ecdh_shared_secret);
1691 
1692 MODULE_LICENSE("Dual BSD/GPL");
1693