1 /*
2 * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
3 * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #include <crypto/ecc_curve.h>
28 #include <linux/module.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/swab.h>
32 #include <linux/fips.h>
33 #include <crypto/ecdh.h>
34 #include <crypto/rng.h>
35 #include <crypto/internal/ecc.h>
36 #include <asm/unaligned.h>
37 #include <linux/ratelimit.h>
38
39 #include "ecc_curve_defs.h"
40
41 typedef struct {
42 u64 m_low;
43 u64 m_high;
44 } uint128_t;
45
46 /* Returns curv25519 curve param */
ecc_get_curve25519(void)47 const struct ecc_curve *ecc_get_curve25519(void)
48 {
49 return &ecc_25519;
50 }
51 EXPORT_SYMBOL(ecc_get_curve25519);
52
ecc_get_curve(unsigned int curve_id)53 const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
54 {
55 switch (curve_id) {
56 /* In FIPS mode only allow P256 and higher */
57 case ECC_CURVE_NIST_P192:
58 return fips_enabled ? NULL : &nist_p192;
59 case ECC_CURVE_NIST_P256:
60 return &nist_p256;
61 case ECC_CURVE_NIST_P384:
62 return &nist_p384;
63 default:
64 return NULL;
65 }
66 }
67 EXPORT_SYMBOL(ecc_get_curve);
68
ecc_digits_from_bytes(const u8 * in,unsigned int nbytes,u64 * out,unsigned int ndigits)69 void ecc_digits_from_bytes(const u8 *in, unsigned int nbytes,
70 u64 *out, unsigned int ndigits)
71 {
72 int diff = ndigits - DIV_ROUND_UP(nbytes, sizeof(u64));
73 unsigned int o = nbytes & 7;
74 __be64 msd = 0;
75
76 /* diff > 0: not enough input bytes: set most significant digits to 0 */
77 if (diff > 0) {
78 ndigits -= diff;
79 memset(&out[ndigits - 1], 0, diff * sizeof(u64));
80 }
81
82 if (o) {
83 memcpy((u8 *)&msd + sizeof(msd) - o, in, o);
84 out[--ndigits] = be64_to_cpu(msd);
85 in += o;
86 }
87 ecc_swap_digits(in, out, ndigits);
88 }
89 EXPORT_SYMBOL(ecc_digits_from_bytes);
90
ecc_alloc_digits_space(unsigned int ndigits)91 static u64 *ecc_alloc_digits_space(unsigned int ndigits)
92 {
93 size_t len = ndigits * sizeof(u64);
94
95 if (!len)
96 return NULL;
97
98 return kmalloc(len, GFP_KERNEL);
99 }
100
ecc_free_digits_space(u64 * space)101 static void ecc_free_digits_space(u64 *space)
102 {
103 kfree_sensitive(space);
104 }
105
ecc_alloc_point(unsigned int ndigits)106 struct ecc_point *ecc_alloc_point(unsigned int ndigits)
107 {
108 struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
109
110 if (!p)
111 return NULL;
112
113 p->x = ecc_alloc_digits_space(ndigits);
114 if (!p->x)
115 goto err_alloc_x;
116
117 p->y = ecc_alloc_digits_space(ndigits);
118 if (!p->y)
119 goto err_alloc_y;
120
121 p->ndigits = ndigits;
122
123 return p;
124
125 err_alloc_y:
126 ecc_free_digits_space(p->x);
127 err_alloc_x:
128 kfree(p);
129 return NULL;
130 }
131 EXPORT_SYMBOL(ecc_alloc_point);
132
ecc_free_point(struct ecc_point * p)133 void ecc_free_point(struct ecc_point *p)
134 {
135 if (!p)
136 return;
137
138 kfree_sensitive(p->x);
139 kfree_sensitive(p->y);
140 kfree_sensitive(p);
141 }
142 EXPORT_SYMBOL(ecc_free_point);
143
vli_clear(u64 * vli,unsigned int ndigits)144 static void vli_clear(u64 *vli, unsigned int ndigits)
145 {
146 int i;
147
148 for (i = 0; i < ndigits; i++)
149 vli[i] = 0;
150 }
151
152 /* Returns true if vli == 0, false otherwise. */
vli_is_zero(const u64 * vli,unsigned int ndigits)153 bool vli_is_zero(const u64 *vli, unsigned int ndigits)
154 {
155 int i;
156
157 for (i = 0; i < ndigits; i++) {
158 if (vli[i])
159 return false;
160 }
161
162 return true;
163 }
164 EXPORT_SYMBOL(vli_is_zero);
165
166 /* Returns nonzero if bit of vli is set. */
vli_test_bit(const u64 * vli,unsigned int bit)167 static u64 vli_test_bit(const u64 *vli, unsigned int bit)
168 {
169 return (vli[bit / 64] & ((u64)1 << (bit % 64)));
170 }
171
vli_is_negative(const u64 * vli,unsigned int ndigits)172 static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
173 {
174 return vli_test_bit(vli, ndigits * 64 - 1);
175 }
176
177 /* Counts the number of 64-bit "digits" in vli. */
vli_num_digits(const u64 * vli,unsigned int ndigits)178 static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
179 {
180 int i;
181
182 /* Search from the end until we find a non-zero digit.
183 * We do it in reverse because we expect that most digits will
184 * be nonzero.
185 */
186 for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
187
188 return (i + 1);
189 }
190
191 /* Counts the number of bits required for vli. */
vli_num_bits(const u64 * vli,unsigned int ndigits)192 unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
193 {
194 unsigned int i, num_digits;
195 u64 digit;
196
197 num_digits = vli_num_digits(vli, ndigits);
198 if (num_digits == 0)
199 return 0;
200
201 digit = vli[num_digits - 1];
202 for (i = 0; digit; i++)
203 digit >>= 1;
204
205 return ((num_digits - 1) * 64 + i);
206 }
207 EXPORT_SYMBOL(vli_num_bits);
208
209 /* Set dest from unaligned bit string src. */
vli_from_be64(u64 * dest,const void * src,unsigned int ndigits)210 void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
211 {
212 int i;
213 const u64 *from = src;
214
215 for (i = 0; i < ndigits; i++)
216 dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
217 }
218 EXPORT_SYMBOL(vli_from_be64);
219
vli_from_le64(u64 * dest,const void * src,unsigned int ndigits)220 void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
221 {
222 int i;
223 const u64 *from = src;
224
225 for (i = 0; i < ndigits; i++)
226 dest[i] = get_unaligned_le64(&from[i]);
227 }
228 EXPORT_SYMBOL(vli_from_le64);
229
230 /* Sets dest = src. */
vli_set(u64 * dest,const u64 * src,unsigned int ndigits)231 static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
232 {
233 int i;
234
235 for (i = 0; i < ndigits; i++)
236 dest[i] = src[i];
237 }
238
239 /* Returns sign of left - right. */
vli_cmp(const u64 * left,const u64 * right,unsigned int ndigits)240 int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
241 {
242 int i;
243
244 for (i = ndigits - 1; i >= 0; i--) {
245 if (left[i] > right[i])
246 return 1;
247 else if (left[i] < right[i])
248 return -1;
249 }
250
251 return 0;
252 }
253 EXPORT_SYMBOL(vli_cmp);
254
255 /* Computes result = in << c, returning carry. Can modify in place
256 * (if result == in). 0 < shift < 64.
257 */
vli_lshift(u64 * result,const u64 * in,unsigned int shift,unsigned int ndigits)258 static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
259 unsigned int ndigits)
260 {
261 u64 carry = 0;
262 int i;
263
264 for (i = 0; i < ndigits; i++) {
265 u64 temp = in[i];
266
267 result[i] = (temp << shift) | carry;
268 carry = temp >> (64 - shift);
269 }
270
271 return carry;
272 }
273
274 /* Computes vli = vli >> 1. */
vli_rshift1(u64 * vli,unsigned int ndigits)275 static void vli_rshift1(u64 *vli, unsigned int ndigits)
276 {
277 u64 *end = vli;
278 u64 carry = 0;
279
280 vli += ndigits;
281
282 while (vli-- > end) {
283 u64 temp = *vli;
284 *vli = (temp >> 1) | carry;
285 carry = temp << 63;
286 }
287 }
288
289 /* Computes result = left + right, returning carry. Can modify in place. */
vli_add(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)290 static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
291 unsigned int ndigits)
292 {
293 u64 carry = 0;
294 int i;
295
296 for (i = 0; i < ndigits; i++) {
297 u64 sum;
298
299 sum = left[i] + right[i] + carry;
300 if (sum != left[i])
301 carry = (sum < left[i]);
302
303 result[i] = sum;
304 }
305
306 return carry;
307 }
308
309 /* Computes result = left + right, returning carry. Can modify in place. */
vli_uadd(u64 * result,const u64 * left,u64 right,unsigned int ndigits)310 static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
311 unsigned int ndigits)
312 {
313 u64 carry = right;
314 int i;
315
316 for (i = 0; i < ndigits; i++) {
317 u64 sum;
318
319 sum = left[i] + carry;
320 if (sum != left[i])
321 carry = (sum < left[i]);
322 else
323 carry = !!carry;
324
325 result[i] = sum;
326 }
327
328 return carry;
329 }
330
331 /* Computes result = left - right, returning borrow. Can modify in place. */
vli_sub(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)332 u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
333 unsigned int ndigits)
334 {
335 u64 borrow = 0;
336 int i;
337
338 for (i = 0; i < ndigits; i++) {
339 u64 diff;
340
341 diff = left[i] - right[i] - borrow;
342 if (diff != left[i])
343 borrow = (diff > left[i]);
344
345 result[i] = diff;
346 }
347
348 return borrow;
349 }
350 EXPORT_SYMBOL(vli_sub);
351
352 /* Computes result = left - right, returning borrow. Can modify in place. */
vli_usub(u64 * result,const u64 * left,u64 right,unsigned int ndigits)353 static u64 vli_usub(u64 *result, const u64 *left, u64 right,
354 unsigned int ndigits)
355 {
356 u64 borrow = right;
357 int i;
358
359 for (i = 0; i < ndigits; i++) {
360 u64 diff;
361
362 diff = left[i] - borrow;
363 if (diff != left[i])
364 borrow = (diff > left[i]);
365
366 result[i] = diff;
367 }
368
369 return borrow;
370 }
371
mul_64_64(u64 left,u64 right)372 static uint128_t mul_64_64(u64 left, u64 right)
373 {
374 uint128_t result;
375 #if defined(CONFIG_ARCH_SUPPORTS_INT128)
376 unsigned __int128 m = (unsigned __int128)left * right;
377
378 result.m_low = m;
379 result.m_high = m >> 64;
380 #else
381 u64 a0 = left & 0xffffffffull;
382 u64 a1 = left >> 32;
383 u64 b0 = right & 0xffffffffull;
384 u64 b1 = right >> 32;
385 u64 m0 = a0 * b0;
386 u64 m1 = a0 * b1;
387 u64 m2 = a1 * b0;
388 u64 m3 = a1 * b1;
389
390 m2 += (m0 >> 32);
391 m2 += m1;
392
393 /* Overflow */
394 if (m2 < m1)
395 m3 += 0x100000000ull;
396
397 result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
398 result.m_high = m3 + (m2 >> 32);
399 #endif
400 return result;
401 }
402
add_128_128(uint128_t a,uint128_t b)403 static uint128_t add_128_128(uint128_t a, uint128_t b)
404 {
405 uint128_t result;
406
407 result.m_low = a.m_low + b.m_low;
408 result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
409
410 return result;
411 }
412
vli_mult(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)413 static void vli_mult(u64 *result, const u64 *left, const u64 *right,
414 unsigned int ndigits)
415 {
416 uint128_t r01 = { 0, 0 };
417 u64 r2 = 0;
418 unsigned int i, k;
419
420 /* Compute each digit of result in sequence, maintaining the
421 * carries.
422 */
423 for (k = 0; k < ndigits * 2 - 1; k++) {
424 unsigned int min;
425
426 if (k < ndigits)
427 min = 0;
428 else
429 min = (k + 1) - ndigits;
430
431 for (i = min; i <= k && i < ndigits; i++) {
432 uint128_t product;
433
434 product = mul_64_64(left[i], right[k - i]);
435
436 r01 = add_128_128(r01, product);
437 r2 += (r01.m_high < product.m_high);
438 }
439
440 result[k] = r01.m_low;
441 r01.m_low = r01.m_high;
442 r01.m_high = r2;
443 r2 = 0;
444 }
445
446 result[ndigits * 2 - 1] = r01.m_low;
447 }
448
449 /* Compute product = left * right, for a small right value. */
vli_umult(u64 * result,const u64 * left,u32 right,unsigned int ndigits)450 static void vli_umult(u64 *result, const u64 *left, u32 right,
451 unsigned int ndigits)
452 {
453 uint128_t r01 = { 0 };
454 unsigned int k;
455
456 for (k = 0; k < ndigits; k++) {
457 uint128_t product;
458
459 product = mul_64_64(left[k], right);
460 r01 = add_128_128(r01, product);
461 /* no carry */
462 result[k] = r01.m_low;
463 r01.m_low = r01.m_high;
464 r01.m_high = 0;
465 }
466 result[k] = r01.m_low;
467 for (++k; k < ndigits * 2; k++)
468 result[k] = 0;
469 }
470
vli_square(u64 * result,const u64 * left,unsigned int ndigits)471 static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
472 {
473 uint128_t r01 = { 0, 0 };
474 u64 r2 = 0;
475 int i, k;
476
477 for (k = 0; k < ndigits * 2 - 1; k++) {
478 unsigned int min;
479
480 if (k < ndigits)
481 min = 0;
482 else
483 min = (k + 1) - ndigits;
484
485 for (i = min; i <= k && i <= k - i; i++) {
486 uint128_t product;
487
488 product = mul_64_64(left[i], left[k - i]);
489
490 if (i < k - i) {
491 r2 += product.m_high >> 63;
492 product.m_high = (product.m_high << 1) |
493 (product.m_low >> 63);
494 product.m_low <<= 1;
495 }
496
497 r01 = add_128_128(r01, product);
498 r2 += (r01.m_high < product.m_high);
499 }
500
501 result[k] = r01.m_low;
502 r01.m_low = r01.m_high;
503 r01.m_high = r2;
504 r2 = 0;
505 }
506
507 result[ndigits * 2 - 1] = r01.m_low;
508 }
509
510 /* Computes result = (left + right) % mod.
511 * Assumes that left < mod and right < mod, result != mod.
512 */
vli_mod_add(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)513 static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
514 const u64 *mod, unsigned int ndigits)
515 {
516 u64 carry;
517
518 carry = vli_add(result, left, right, ndigits);
519
520 /* result > mod (result = mod + remainder), so subtract mod to
521 * get remainder.
522 */
523 if (carry || vli_cmp(result, mod, ndigits) >= 0)
524 vli_sub(result, result, mod, ndigits);
525 }
526
527 /* Computes result = (left - right) % mod.
528 * Assumes that left < mod and right < mod, result != mod.
529 */
vli_mod_sub(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)530 static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
531 const u64 *mod, unsigned int ndigits)
532 {
533 u64 borrow = vli_sub(result, left, right, ndigits);
534
535 /* In this case, p_result == -diff == (max int) - diff.
536 * Since -x % d == d - x, we can get the correct result from
537 * result + mod (with overflow).
538 */
539 if (borrow)
540 vli_add(result, result, mod, ndigits);
541 }
542
543 /*
544 * Computes result = product % mod
545 * for special form moduli: p = 2^k-c, for small c (note the minus sign)
546 *
547 * References:
548 * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
549 * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
550 * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
551 */
vli_mmod_special(u64 * result,const u64 * product,const u64 * mod,unsigned int ndigits)552 static void vli_mmod_special(u64 *result, const u64 *product,
553 const u64 *mod, unsigned int ndigits)
554 {
555 u64 c = -mod[0];
556 u64 t[ECC_MAX_DIGITS * 2];
557 u64 r[ECC_MAX_DIGITS * 2];
558
559 vli_set(r, product, ndigits * 2);
560 while (!vli_is_zero(r + ndigits, ndigits)) {
561 vli_umult(t, r + ndigits, c, ndigits);
562 vli_clear(r + ndigits, ndigits);
563 vli_add(r, r, t, ndigits * 2);
564 }
565 vli_set(t, mod, ndigits);
566 vli_clear(t + ndigits, ndigits);
567 while (vli_cmp(r, t, ndigits * 2) >= 0)
568 vli_sub(r, r, t, ndigits * 2);
569 vli_set(result, r, ndigits);
570 }
571
572 /*
573 * Computes result = product % mod
574 * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
575 * where k-1 does not fit into qword boundary by -1 bit (such as 255).
576
577 * References (loosely based on):
578 * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
579 * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
580 * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
581 *
582 * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
583 * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
584 * Algorithm 10.25 Fast reduction for special form moduli
585 */
vli_mmod_special2(u64 * result,const u64 * product,const u64 * mod,unsigned int ndigits)586 static void vli_mmod_special2(u64 *result, const u64 *product,
587 const u64 *mod, unsigned int ndigits)
588 {
589 u64 c2 = mod[0] * 2;
590 u64 q[ECC_MAX_DIGITS];
591 u64 r[ECC_MAX_DIGITS * 2];
592 u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
593 int carry; /* last bit that doesn't fit into q */
594 int i;
595
596 vli_set(m, mod, ndigits);
597 vli_clear(m + ndigits, ndigits);
598
599 vli_set(r, product, ndigits);
600 /* q and carry are top bits */
601 vli_set(q, product + ndigits, ndigits);
602 vli_clear(r + ndigits, ndigits);
603 carry = vli_is_negative(r, ndigits);
604 if (carry)
605 r[ndigits - 1] &= (1ull << 63) - 1;
606 for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
607 u64 qc[ECC_MAX_DIGITS * 2];
608
609 vli_umult(qc, q, c2, ndigits);
610 if (carry)
611 vli_uadd(qc, qc, mod[0], ndigits * 2);
612 vli_set(q, qc + ndigits, ndigits);
613 vli_clear(qc + ndigits, ndigits);
614 carry = vli_is_negative(qc, ndigits);
615 if (carry)
616 qc[ndigits - 1] &= (1ull << 63) - 1;
617 if (i & 1)
618 vli_sub(r, r, qc, ndigits * 2);
619 else
620 vli_add(r, r, qc, ndigits * 2);
621 }
622 while (vli_is_negative(r, ndigits * 2))
623 vli_add(r, r, m, ndigits * 2);
624 while (vli_cmp(r, m, ndigits * 2) >= 0)
625 vli_sub(r, r, m, ndigits * 2);
626
627 vli_set(result, r, ndigits);
628 }
629
630 /*
631 * Computes result = product % mod, where product is 2N words long.
632 * Reference: Ken MacKay's micro-ecc.
633 * Currently only designed to work for curve_p or curve_n.
634 */
vli_mmod_slow(u64 * result,u64 * product,const u64 * mod,unsigned int ndigits)635 static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
636 unsigned int ndigits)
637 {
638 u64 mod_m[2 * ECC_MAX_DIGITS];
639 u64 tmp[2 * ECC_MAX_DIGITS];
640 u64 *v[2] = { tmp, product };
641 u64 carry = 0;
642 unsigned int i;
643 /* Shift mod so its highest set bit is at the maximum position. */
644 int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
645 int word_shift = shift / 64;
646 int bit_shift = shift % 64;
647
648 vli_clear(mod_m, word_shift);
649 if (bit_shift > 0) {
650 for (i = 0; i < ndigits; ++i) {
651 mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
652 carry = mod[i] >> (64 - bit_shift);
653 }
654 } else
655 vli_set(mod_m + word_shift, mod, ndigits);
656
657 for (i = 1; shift >= 0; --shift) {
658 u64 borrow = 0;
659 unsigned int j;
660
661 for (j = 0; j < ndigits * 2; ++j) {
662 u64 diff = v[i][j] - mod_m[j] - borrow;
663
664 if (diff != v[i][j])
665 borrow = (diff > v[i][j]);
666 v[1 - i][j] = diff;
667 }
668 i = !(i ^ borrow); /* Swap the index if there was no borrow */
669 vli_rshift1(mod_m, ndigits);
670 mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
671 vli_rshift1(mod_m + ndigits, ndigits);
672 }
673 vli_set(result, v[i], ndigits);
674 }
675
676 /* Computes result = product % mod using Barrett's reduction with precomputed
677 * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
678 * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
679 * boundary.
680 *
681 * Reference:
682 * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
683 * 2.4.1 Barrett's algorithm. Algorithm 2.5.
684 */
vli_mmod_barrett(u64 * result,u64 * product,const u64 * mod,unsigned int ndigits)685 static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
686 unsigned int ndigits)
687 {
688 u64 q[ECC_MAX_DIGITS * 2];
689 u64 r[ECC_MAX_DIGITS * 2];
690 const u64 *mu = mod + ndigits;
691
692 vli_mult(q, product + ndigits, mu, ndigits);
693 if (mu[ndigits])
694 vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
695 vli_mult(r, mod, q + ndigits, ndigits);
696 vli_sub(r, product, r, ndigits * 2);
697 while (!vli_is_zero(r + ndigits, ndigits) ||
698 vli_cmp(r, mod, ndigits) != -1) {
699 u64 carry;
700
701 carry = vli_sub(r, r, mod, ndigits);
702 vli_usub(r + ndigits, r + ndigits, carry, ndigits);
703 }
704 vli_set(result, r, ndigits);
705 }
706
707 /* Computes p_result = p_product % curve_p.
708 * See algorithm 5 and 6 from
709 * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
710 */
vli_mmod_fast_192(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)711 static void vli_mmod_fast_192(u64 *result, const u64 *product,
712 const u64 *curve_prime, u64 *tmp)
713 {
714 const unsigned int ndigits = 3;
715 int carry;
716
717 vli_set(result, product, ndigits);
718
719 vli_set(tmp, &product[3], ndigits);
720 carry = vli_add(result, result, tmp, ndigits);
721
722 tmp[0] = 0;
723 tmp[1] = product[3];
724 tmp[2] = product[4];
725 carry += vli_add(result, result, tmp, ndigits);
726
727 tmp[0] = tmp[1] = product[5];
728 tmp[2] = 0;
729 carry += vli_add(result, result, tmp, ndigits);
730
731 while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
732 carry -= vli_sub(result, result, curve_prime, ndigits);
733 }
734
735 /* Computes result = product % curve_prime
736 * from http://www.nsa.gov/ia/_files/nist-routines.pdf
737 */
vli_mmod_fast_256(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)738 static void vli_mmod_fast_256(u64 *result, const u64 *product,
739 const u64 *curve_prime, u64 *tmp)
740 {
741 int carry;
742 const unsigned int ndigits = 4;
743
744 /* t */
745 vli_set(result, product, ndigits);
746
747 /* s1 */
748 tmp[0] = 0;
749 tmp[1] = product[5] & 0xffffffff00000000ull;
750 tmp[2] = product[6];
751 tmp[3] = product[7];
752 carry = vli_lshift(tmp, tmp, 1, ndigits);
753 carry += vli_add(result, result, tmp, ndigits);
754
755 /* s2 */
756 tmp[1] = product[6] << 32;
757 tmp[2] = (product[6] >> 32) | (product[7] << 32);
758 tmp[3] = product[7] >> 32;
759 carry += vli_lshift(tmp, tmp, 1, ndigits);
760 carry += vli_add(result, result, tmp, ndigits);
761
762 /* s3 */
763 tmp[0] = product[4];
764 tmp[1] = product[5] & 0xffffffff;
765 tmp[2] = 0;
766 tmp[3] = product[7];
767 carry += vli_add(result, result, tmp, ndigits);
768
769 /* s4 */
770 tmp[0] = (product[4] >> 32) | (product[5] << 32);
771 tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
772 tmp[2] = product[7];
773 tmp[3] = (product[6] >> 32) | (product[4] << 32);
774 carry += vli_add(result, result, tmp, ndigits);
775
776 /* d1 */
777 tmp[0] = (product[5] >> 32) | (product[6] << 32);
778 tmp[1] = (product[6] >> 32);
779 tmp[2] = 0;
780 tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
781 carry -= vli_sub(result, result, tmp, ndigits);
782
783 /* d2 */
784 tmp[0] = product[6];
785 tmp[1] = product[7];
786 tmp[2] = 0;
787 tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
788 carry -= vli_sub(result, result, tmp, ndigits);
789
790 /* d3 */
791 tmp[0] = (product[6] >> 32) | (product[7] << 32);
792 tmp[1] = (product[7] >> 32) | (product[4] << 32);
793 tmp[2] = (product[4] >> 32) | (product[5] << 32);
794 tmp[3] = (product[6] << 32);
795 carry -= vli_sub(result, result, tmp, ndigits);
796
797 /* d4 */
798 tmp[0] = product[7];
799 tmp[1] = product[4] & 0xffffffff00000000ull;
800 tmp[2] = product[5];
801 tmp[3] = product[6] & 0xffffffff00000000ull;
802 carry -= vli_sub(result, result, tmp, ndigits);
803
804 if (carry < 0) {
805 do {
806 carry += vli_add(result, result, curve_prime, ndigits);
807 } while (carry < 0);
808 } else {
809 while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
810 carry -= vli_sub(result, result, curve_prime, ndigits);
811 }
812 }
813
814 #define SL32OR32(x32, y32) (((u64)x32 << 32) | y32)
815 #define AND64H(x64) (x64 & 0xffFFffFF00000000ull)
816 #define AND64L(x64) (x64 & 0x00000000ffFFffFFull)
817
818 /* Computes result = product % curve_prime
819 * from "Mathematical routines for the NIST prime elliptic curves"
820 */
vli_mmod_fast_384(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)821 static void vli_mmod_fast_384(u64 *result, const u64 *product,
822 const u64 *curve_prime, u64 *tmp)
823 {
824 int carry;
825 const unsigned int ndigits = 6;
826
827 /* t */
828 vli_set(result, product, ndigits);
829
830 /* s1 */
831 tmp[0] = 0; // 0 || 0
832 tmp[1] = 0; // 0 || 0
833 tmp[2] = SL32OR32(product[11], (product[10]>>32)); //a22||a21
834 tmp[3] = product[11]>>32; // 0 ||a23
835 tmp[4] = 0; // 0 || 0
836 tmp[5] = 0; // 0 || 0
837 carry = vli_lshift(tmp, tmp, 1, ndigits);
838 carry += vli_add(result, result, tmp, ndigits);
839
840 /* s2 */
841 tmp[0] = product[6]; //a13||a12
842 tmp[1] = product[7]; //a15||a14
843 tmp[2] = product[8]; //a17||a16
844 tmp[3] = product[9]; //a19||a18
845 tmp[4] = product[10]; //a21||a20
846 tmp[5] = product[11]; //a23||a22
847 carry += vli_add(result, result, tmp, ndigits);
848
849 /* s3 */
850 tmp[0] = SL32OR32(product[11], (product[10]>>32)); //a22||a21
851 tmp[1] = SL32OR32(product[6], (product[11]>>32)); //a12||a23
852 tmp[2] = SL32OR32(product[7], (product[6])>>32); //a14||a13
853 tmp[3] = SL32OR32(product[8], (product[7]>>32)); //a16||a15
854 tmp[4] = SL32OR32(product[9], (product[8]>>32)); //a18||a17
855 tmp[5] = SL32OR32(product[10], (product[9]>>32)); //a20||a19
856 carry += vli_add(result, result, tmp, ndigits);
857
858 /* s4 */
859 tmp[0] = AND64H(product[11]); //a23|| 0
860 tmp[1] = (product[10]<<32); //a20|| 0
861 tmp[2] = product[6]; //a13||a12
862 tmp[3] = product[7]; //a15||a14
863 tmp[4] = product[8]; //a17||a16
864 tmp[5] = product[9]; //a19||a18
865 carry += vli_add(result, result, tmp, ndigits);
866
867 /* s5 */
868 tmp[0] = 0; // 0|| 0
869 tmp[1] = 0; // 0|| 0
870 tmp[2] = product[10]; //a21||a20
871 tmp[3] = product[11]; //a23||a22
872 tmp[4] = 0; // 0|| 0
873 tmp[5] = 0; // 0|| 0
874 carry += vli_add(result, result, tmp, ndigits);
875
876 /* s6 */
877 tmp[0] = AND64L(product[10]); // 0 ||a20
878 tmp[1] = AND64H(product[10]); //a21|| 0
879 tmp[2] = product[11]; //a23||a22
880 tmp[3] = 0; // 0 || 0
881 tmp[4] = 0; // 0 || 0
882 tmp[5] = 0; // 0 || 0
883 carry += vli_add(result, result, tmp, ndigits);
884
885 /* d1 */
886 tmp[0] = SL32OR32(product[6], (product[11]>>32)); //a12||a23
887 tmp[1] = SL32OR32(product[7], (product[6]>>32)); //a14||a13
888 tmp[2] = SL32OR32(product[8], (product[7]>>32)); //a16||a15
889 tmp[3] = SL32OR32(product[9], (product[8]>>32)); //a18||a17
890 tmp[4] = SL32OR32(product[10], (product[9]>>32)); //a20||a19
891 tmp[5] = SL32OR32(product[11], (product[10]>>32)); //a22||a21
892 carry -= vli_sub(result, result, tmp, ndigits);
893
894 /* d2 */
895 tmp[0] = (product[10]<<32); //a20|| 0
896 tmp[1] = SL32OR32(product[11], (product[10]>>32)); //a22||a21
897 tmp[2] = (product[11]>>32); // 0 ||a23
898 tmp[3] = 0; // 0 || 0
899 tmp[4] = 0; // 0 || 0
900 tmp[5] = 0; // 0 || 0
901 carry -= vli_sub(result, result, tmp, ndigits);
902
903 /* d3 */
904 tmp[0] = 0; // 0 || 0
905 tmp[1] = AND64H(product[11]); //a23|| 0
906 tmp[2] = product[11]>>32; // 0 ||a23
907 tmp[3] = 0; // 0 || 0
908 tmp[4] = 0; // 0 || 0
909 tmp[5] = 0; // 0 || 0
910 carry -= vli_sub(result, result, tmp, ndigits);
911
912 if (carry < 0) {
913 do {
914 carry += vli_add(result, result, curve_prime, ndigits);
915 } while (carry < 0);
916 } else {
917 while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
918 carry -= vli_sub(result, result, curve_prime, ndigits);
919 }
920
921 }
922
923 #undef SL32OR32
924 #undef AND64H
925 #undef AND64L
926
927 /* Computes result = product % curve_prime for different curve_primes.
928 *
929 * Note that curve_primes are distinguished just by heuristic check and
930 * not by complete conformance check.
931 */
vli_mmod_fast(u64 * result,u64 * product,const struct ecc_curve * curve)932 static bool vli_mmod_fast(u64 *result, u64 *product,
933 const struct ecc_curve *curve)
934 {
935 u64 tmp[2 * ECC_MAX_DIGITS];
936 const u64 *curve_prime = curve->p;
937 const unsigned int ndigits = curve->g.ndigits;
938
939 /* All NIST curves have name prefix 'nist_' */
940 if (strncmp(curve->name, "nist_", 5) != 0) {
941 /* Try to handle Pseudo-Marsenne primes. */
942 if (curve_prime[ndigits - 1] == -1ull) {
943 vli_mmod_special(result, product, curve_prime,
944 ndigits);
945 return true;
946 } else if (curve_prime[ndigits - 1] == 1ull << 63 &&
947 curve_prime[ndigits - 2] == 0) {
948 vli_mmod_special2(result, product, curve_prime,
949 ndigits);
950 return true;
951 }
952 vli_mmod_barrett(result, product, curve_prime, ndigits);
953 return true;
954 }
955
956 switch (ndigits) {
957 case 3:
958 vli_mmod_fast_192(result, product, curve_prime, tmp);
959 break;
960 case 4:
961 vli_mmod_fast_256(result, product, curve_prime, tmp);
962 break;
963 case 6:
964 vli_mmod_fast_384(result, product, curve_prime, tmp);
965 break;
966 default:
967 pr_err_ratelimited("ecc: unsupported digits size!\n");
968 return false;
969 }
970
971 return true;
972 }
973
974 /* Computes result = (left * right) % mod.
975 * Assumes that mod is big enough curve order.
976 */
vli_mod_mult_slow(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)977 void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
978 const u64 *mod, unsigned int ndigits)
979 {
980 u64 product[ECC_MAX_DIGITS * 2];
981
982 vli_mult(product, left, right, ndigits);
983 vli_mmod_slow(result, product, mod, ndigits);
984 }
985 EXPORT_SYMBOL(vli_mod_mult_slow);
986
987 /* Computes result = (left * right) % curve_prime. */
vli_mod_mult_fast(u64 * result,const u64 * left,const u64 * right,const struct ecc_curve * curve)988 static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
989 const struct ecc_curve *curve)
990 {
991 u64 product[2 * ECC_MAX_DIGITS];
992
993 vli_mult(product, left, right, curve->g.ndigits);
994 vli_mmod_fast(result, product, curve);
995 }
996
997 /* Computes result = left^2 % curve_prime. */
vli_mod_square_fast(u64 * result,const u64 * left,const struct ecc_curve * curve)998 static void vli_mod_square_fast(u64 *result, const u64 *left,
999 const struct ecc_curve *curve)
1000 {
1001 u64 product[2 * ECC_MAX_DIGITS];
1002
1003 vli_square(product, left, curve->g.ndigits);
1004 vli_mmod_fast(result, product, curve);
1005 }
1006
1007 #define EVEN(vli) (!(vli[0] & 1))
1008 /* Computes result = (1 / p_input) % mod. All VLIs are the same size.
1009 * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
1010 * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
1011 */
vli_mod_inv(u64 * result,const u64 * input,const u64 * mod,unsigned int ndigits)1012 void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
1013 unsigned int ndigits)
1014 {
1015 u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
1016 u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS];
1017 u64 carry;
1018 int cmp_result;
1019
1020 if (vli_is_zero(input, ndigits)) {
1021 vli_clear(result, ndigits);
1022 return;
1023 }
1024
1025 vli_set(a, input, ndigits);
1026 vli_set(b, mod, ndigits);
1027 vli_clear(u, ndigits);
1028 u[0] = 1;
1029 vli_clear(v, ndigits);
1030
1031 while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
1032 carry = 0;
1033
1034 if (EVEN(a)) {
1035 vli_rshift1(a, ndigits);
1036
1037 if (!EVEN(u))
1038 carry = vli_add(u, u, mod, ndigits);
1039
1040 vli_rshift1(u, ndigits);
1041 if (carry)
1042 u[ndigits - 1] |= 0x8000000000000000ull;
1043 } else if (EVEN(b)) {
1044 vli_rshift1(b, ndigits);
1045
1046 if (!EVEN(v))
1047 carry = vli_add(v, v, mod, ndigits);
1048
1049 vli_rshift1(v, ndigits);
1050 if (carry)
1051 v[ndigits - 1] |= 0x8000000000000000ull;
1052 } else if (cmp_result > 0) {
1053 vli_sub(a, a, b, ndigits);
1054 vli_rshift1(a, ndigits);
1055
1056 if (vli_cmp(u, v, ndigits) < 0)
1057 vli_add(u, u, mod, ndigits);
1058
1059 vli_sub(u, u, v, ndigits);
1060 if (!EVEN(u))
1061 carry = vli_add(u, u, mod, ndigits);
1062
1063 vli_rshift1(u, ndigits);
1064 if (carry)
1065 u[ndigits - 1] |= 0x8000000000000000ull;
1066 } else {
1067 vli_sub(b, b, a, ndigits);
1068 vli_rshift1(b, ndigits);
1069
1070 if (vli_cmp(v, u, ndigits) < 0)
1071 vli_add(v, v, mod, ndigits);
1072
1073 vli_sub(v, v, u, ndigits);
1074 if (!EVEN(v))
1075 carry = vli_add(v, v, mod, ndigits);
1076
1077 vli_rshift1(v, ndigits);
1078 if (carry)
1079 v[ndigits - 1] |= 0x8000000000000000ull;
1080 }
1081 }
1082
1083 vli_set(result, u, ndigits);
1084 }
1085 EXPORT_SYMBOL(vli_mod_inv);
1086
1087 /* ------ Point operations ------ */
1088
1089 /* Returns true if p_point is the point at infinity, false otherwise. */
ecc_point_is_zero(const struct ecc_point * point)1090 bool ecc_point_is_zero(const struct ecc_point *point)
1091 {
1092 return (vli_is_zero(point->x, point->ndigits) &&
1093 vli_is_zero(point->y, point->ndigits));
1094 }
1095 EXPORT_SYMBOL(ecc_point_is_zero);
1096
1097 /* Point multiplication algorithm using Montgomery's ladder with co-Z
1098 * coordinates. From https://eprint.iacr.org/2011/338.pdf
1099 */
1100
1101 /* Double in place */
ecc_point_double_jacobian(u64 * x1,u64 * y1,u64 * z1,const struct ecc_curve * curve)1102 static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
1103 const struct ecc_curve *curve)
1104 {
1105 /* t1 = x, t2 = y, t3 = z */
1106 u64 t4[ECC_MAX_DIGITS];
1107 u64 t5[ECC_MAX_DIGITS];
1108 const u64 *curve_prime = curve->p;
1109 const unsigned int ndigits = curve->g.ndigits;
1110
1111 if (vli_is_zero(z1, ndigits))
1112 return;
1113
1114 /* t4 = y1^2 */
1115 vli_mod_square_fast(t4, y1, curve);
1116 /* t5 = x1*y1^2 = A */
1117 vli_mod_mult_fast(t5, x1, t4, curve);
1118 /* t4 = y1^4 */
1119 vli_mod_square_fast(t4, t4, curve);
1120 /* t2 = y1*z1 = z3 */
1121 vli_mod_mult_fast(y1, y1, z1, curve);
1122 /* t3 = z1^2 */
1123 vli_mod_square_fast(z1, z1, curve);
1124
1125 /* t1 = x1 + z1^2 */
1126 vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1127 /* t3 = 2*z1^2 */
1128 vli_mod_add(z1, z1, z1, curve_prime, ndigits);
1129 /* t3 = x1 - z1^2 */
1130 vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
1131 /* t1 = x1^2 - z1^4 */
1132 vli_mod_mult_fast(x1, x1, z1, curve);
1133
1134 /* t3 = 2*(x1^2 - z1^4) */
1135 vli_mod_add(z1, x1, x1, curve_prime, ndigits);
1136 /* t1 = 3*(x1^2 - z1^4) */
1137 vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1138 if (vli_test_bit(x1, 0)) {
1139 u64 carry = vli_add(x1, x1, curve_prime, ndigits);
1140
1141 vli_rshift1(x1, ndigits);
1142 x1[ndigits - 1] |= carry << 63;
1143 } else {
1144 vli_rshift1(x1, ndigits);
1145 }
1146 /* t1 = 3/2*(x1^2 - z1^4) = B */
1147
1148 /* t3 = B^2 */
1149 vli_mod_square_fast(z1, x1, curve);
1150 /* t3 = B^2 - A */
1151 vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1152 /* t3 = B^2 - 2A = x3 */
1153 vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1154 /* t5 = A - x3 */
1155 vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
1156 /* t1 = B * (A - x3) */
1157 vli_mod_mult_fast(x1, x1, t5, curve);
1158 /* t4 = B * (A - x3) - y1^4 = y3 */
1159 vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
1160
1161 vli_set(x1, z1, ndigits);
1162 vli_set(z1, y1, ndigits);
1163 vli_set(y1, t4, ndigits);
1164 }
1165
1166 /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
apply_z(u64 * x1,u64 * y1,u64 * z,const struct ecc_curve * curve)1167 static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve)
1168 {
1169 u64 t1[ECC_MAX_DIGITS];
1170
1171 vli_mod_square_fast(t1, z, curve); /* z^2 */
1172 vli_mod_mult_fast(x1, x1, t1, curve); /* x1 * z^2 */
1173 vli_mod_mult_fast(t1, t1, z, curve); /* z^3 */
1174 vli_mod_mult_fast(y1, y1, t1, curve); /* y1 * z^3 */
1175 }
1176
1177 /* P = (x1, y1) => 2P, (x2, y2) => P' */
xycz_initial_double(u64 * x1,u64 * y1,u64 * x2,u64 * y2,u64 * p_initial_z,const struct ecc_curve * curve)1178 static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1179 u64 *p_initial_z, const struct ecc_curve *curve)
1180 {
1181 u64 z[ECC_MAX_DIGITS];
1182 const unsigned int ndigits = curve->g.ndigits;
1183
1184 vli_set(x2, x1, ndigits);
1185 vli_set(y2, y1, ndigits);
1186
1187 vli_clear(z, ndigits);
1188 z[0] = 1;
1189
1190 if (p_initial_z)
1191 vli_set(z, p_initial_z, ndigits);
1192
1193 apply_z(x1, y1, z, curve);
1194
1195 ecc_point_double_jacobian(x1, y1, z, curve);
1196
1197 apply_z(x2, y2, z, curve);
1198 }
1199
1200 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1201 * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
1202 * or P => P', Q => P + Q
1203 */
xycz_add(u64 * x1,u64 * y1,u64 * x2,u64 * y2,const struct ecc_curve * curve)1204 static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1205 const struct ecc_curve *curve)
1206 {
1207 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1208 u64 t5[ECC_MAX_DIGITS];
1209 const u64 *curve_prime = curve->p;
1210 const unsigned int ndigits = curve->g.ndigits;
1211
1212 /* t5 = x2 - x1 */
1213 vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1214 /* t5 = (x2 - x1)^2 = A */
1215 vli_mod_square_fast(t5, t5, curve);
1216 /* t1 = x1*A = B */
1217 vli_mod_mult_fast(x1, x1, t5, curve);
1218 /* t3 = x2*A = C */
1219 vli_mod_mult_fast(x2, x2, t5, curve);
1220 /* t4 = y2 - y1 */
1221 vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1222 /* t5 = (y2 - y1)^2 = D */
1223 vli_mod_square_fast(t5, y2, curve);
1224
1225 /* t5 = D - B */
1226 vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
1227 /* t5 = D - B - C = x3 */
1228 vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
1229 /* t3 = C - B */
1230 vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
1231 /* t2 = y1*(C - B) */
1232 vli_mod_mult_fast(y1, y1, x2, curve);
1233 /* t3 = B - x3 */
1234 vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
1235 /* t4 = (y2 - y1)*(B - x3) */
1236 vli_mod_mult_fast(y2, y2, x2, curve);
1237 /* t4 = y3 */
1238 vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1239
1240 vli_set(x2, t5, ndigits);
1241 }
1242
1243 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1244 * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
1245 * or P => P - Q, Q => P + Q
1246 */
xycz_add_c(u64 * x1,u64 * y1,u64 * x2,u64 * y2,const struct ecc_curve * curve)1247 static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1248 const struct ecc_curve *curve)
1249 {
1250 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1251 u64 t5[ECC_MAX_DIGITS];
1252 u64 t6[ECC_MAX_DIGITS];
1253 u64 t7[ECC_MAX_DIGITS];
1254 const u64 *curve_prime = curve->p;
1255 const unsigned int ndigits = curve->g.ndigits;
1256
1257 /* t5 = x2 - x1 */
1258 vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1259 /* t5 = (x2 - x1)^2 = A */
1260 vli_mod_square_fast(t5, t5, curve);
1261 /* t1 = x1*A = B */
1262 vli_mod_mult_fast(x1, x1, t5, curve);
1263 /* t3 = x2*A = C */
1264 vli_mod_mult_fast(x2, x2, t5, curve);
1265 /* t4 = y2 + y1 */
1266 vli_mod_add(t5, y2, y1, curve_prime, ndigits);
1267 /* t4 = y2 - y1 */
1268 vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1269
1270 /* t6 = C - B */
1271 vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
1272 /* t2 = y1 * (C - B) */
1273 vli_mod_mult_fast(y1, y1, t6, curve);
1274 /* t6 = B + C */
1275 vli_mod_add(t6, x1, x2, curve_prime, ndigits);
1276 /* t3 = (y2 - y1)^2 */
1277 vli_mod_square_fast(x2, y2, curve);
1278 /* t3 = x3 */
1279 vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
1280
1281 /* t7 = B - x3 */
1282 vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
1283 /* t4 = (y2 - y1)*(B - x3) */
1284 vli_mod_mult_fast(y2, y2, t7, curve);
1285 /* t4 = y3 */
1286 vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1287
1288 /* t7 = (y2 + y1)^2 = F */
1289 vli_mod_square_fast(t7, t5, curve);
1290 /* t7 = x3' */
1291 vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
1292 /* t6 = x3' - B */
1293 vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
1294 /* t6 = (y2 + y1)*(x3' - B) */
1295 vli_mod_mult_fast(t6, t6, t5, curve);
1296 /* t2 = y3' */
1297 vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
1298
1299 vli_set(x1, t7, ndigits);
1300 }
1301
ecc_point_mult(struct ecc_point * result,const struct ecc_point * point,const u64 * scalar,u64 * initial_z,const struct ecc_curve * curve,unsigned int ndigits)1302 static void ecc_point_mult(struct ecc_point *result,
1303 const struct ecc_point *point, const u64 *scalar,
1304 u64 *initial_z, const struct ecc_curve *curve,
1305 unsigned int ndigits)
1306 {
1307 /* R0 and R1 */
1308 u64 rx[2][ECC_MAX_DIGITS];
1309 u64 ry[2][ECC_MAX_DIGITS];
1310 u64 z[ECC_MAX_DIGITS];
1311 u64 sk[2][ECC_MAX_DIGITS];
1312 u64 *curve_prime = curve->p;
1313 int i, nb;
1314 int num_bits;
1315 int carry;
1316
1317 carry = vli_add(sk[0], scalar, curve->n, ndigits);
1318 vli_add(sk[1], sk[0], curve->n, ndigits);
1319 scalar = sk[!carry];
1320 num_bits = sizeof(u64) * ndigits * 8 + 1;
1321
1322 vli_set(rx[1], point->x, ndigits);
1323 vli_set(ry[1], point->y, ndigits);
1324
1325 xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve);
1326
1327 for (i = num_bits - 2; i > 0; i--) {
1328 nb = !vli_test_bit(scalar, i);
1329 xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1330 xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1331 }
1332
1333 nb = !vli_test_bit(scalar, 0);
1334 xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1335
1336 /* Find final 1/Z value. */
1337 /* X1 - X0 */
1338 vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
1339 /* Yb * (X1 - X0) */
1340 vli_mod_mult_fast(z, z, ry[1 - nb], curve);
1341 /* xP * Yb * (X1 - X0) */
1342 vli_mod_mult_fast(z, z, point->x, curve);
1343
1344 /* 1 / (xP * Yb * (X1 - X0)) */
1345 vli_mod_inv(z, z, curve_prime, point->ndigits);
1346
1347 /* yP / (xP * Yb * (X1 - X0)) */
1348 vli_mod_mult_fast(z, z, point->y, curve);
1349 /* Xb * yP / (xP * Yb * (X1 - X0)) */
1350 vli_mod_mult_fast(z, z, rx[1 - nb], curve);
1351 /* End 1/Z calculation */
1352
1353 xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1354
1355 apply_z(rx[0], ry[0], z, curve);
1356
1357 vli_set(result->x, rx[0], ndigits);
1358 vli_set(result->y, ry[0], ndigits);
1359 }
1360
1361 /* Computes R = P + Q mod p */
ecc_point_add(const struct ecc_point * result,const struct ecc_point * p,const struct ecc_point * q,const struct ecc_curve * curve)1362 static void ecc_point_add(const struct ecc_point *result,
1363 const struct ecc_point *p, const struct ecc_point *q,
1364 const struct ecc_curve *curve)
1365 {
1366 u64 z[ECC_MAX_DIGITS];
1367 u64 px[ECC_MAX_DIGITS];
1368 u64 py[ECC_MAX_DIGITS];
1369 unsigned int ndigits = curve->g.ndigits;
1370
1371 vli_set(result->x, q->x, ndigits);
1372 vli_set(result->y, q->y, ndigits);
1373 vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
1374 vli_set(px, p->x, ndigits);
1375 vli_set(py, p->y, ndigits);
1376 xycz_add(px, py, result->x, result->y, curve);
1377 vli_mod_inv(z, z, curve->p, ndigits);
1378 apply_z(result->x, result->y, z, curve);
1379 }
1380
1381 /* Computes R = u1P + u2Q mod p using Shamir's trick.
1382 * Based on: Kenneth MacKay's micro-ecc (2014).
1383 */
ecc_point_mult_shamir(const struct ecc_point * result,const u64 * u1,const struct ecc_point * p,const u64 * u2,const struct ecc_point * q,const struct ecc_curve * curve)1384 void ecc_point_mult_shamir(const struct ecc_point *result,
1385 const u64 *u1, const struct ecc_point *p,
1386 const u64 *u2, const struct ecc_point *q,
1387 const struct ecc_curve *curve)
1388 {
1389 u64 z[ECC_MAX_DIGITS];
1390 u64 sump[2][ECC_MAX_DIGITS];
1391 u64 *rx = result->x;
1392 u64 *ry = result->y;
1393 unsigned int ndigits = curve->g.ndigits;
1394 unsigned int num_bits;
1395 struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
1396 const struct ecc_point *points[4];
1397 const struct ecc_point *point;
1398 unsigned int idx;
1399 int i;
1400
1401 ecc_point_add(&sum, p, q, curve);
1402 points[0] = NULL;
1403 points[1] = p;
1404 points[2] = q;
1405 points[3] = ∑
1406
1407 num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits));
1408 i = num_bits - 1;
1409 idx = !!vli_test_bit(u1, i);
1410 idx |= (!!vli_test_bit(u2, i)) << 1;
1411 point = points[idx];
1412
1413 vli_set(rx, point->x, ndigits);
1414 vli_set(ry, point->y, ndigits);
1415 vli_clear(z + 1, ndigits - 1);
1416 z[0] = 1;
1417
1418 for (--i; i >= 0; i--) {
1419 ecc_point_double_jacobian(rx, ry, z, curve);
1420 idx = !!vli_test_bit(u1, i);
1421 idx |= (!!vli_test_bit(u2, i)) << 1;
1422 point = points[idx];
1423 if (point) {
1424 u64 tx[ECC_MAX_DIGITS];
1425 u64 ty[ECC_MAX_DIGITS];
1426 u64 tz[ECC_MAX_DIGITS];
1427
1428 vli_set(tx, point->x, ndigits);
1429 vli_set(ty, point->y, ndigits);
1430 apply_z(tx, ty, z, curve);
1431 vli_mod_sub(tz, rx, tx, curve->p, ndigits);
1432 xycz_add(tx, ty, rx, ry, curve);
1433 vli_mod_mult_fast(z, z, tz, curve);
1434 }
1435 }
1436 vli_mod_inv(z, z, curve->p, ndigits);
1437 apply_z(rx, ry, z, curve);
1438 }
1439 EXPORT_SYMBOL(ecc_point_mult_shamir);
1440
__ecc_is_key_valid(const struct ecc_curve * curve,const u64 * private_key,unsigned int ndigits)1441 static int __ecc_is_key_valid(const struct ecc_curve *curve,
1442 const u64 *private_key, unsigned int ndigits)
1443 {
1444 u64 one[ECC_MAX_DIGITS] = { 1, };
1445 u64 res[ECC_MAX_DIGITS];
1446
1447 if (!private_key)
1448 return -EINVAL;
1449
1450 if (curve->g.ndigits != ndigits)
1451 return -EINVAL;
1452
1453 /* Make sure the private key is in the range [2, n-3]. */
1454 if (vli_cmp(one, private_key, ndigits) != -1)
1455 return -EINVAL;
1456 vli_sub(res, curve->n, one, ndigits);
1457 vli_sub(res, res, one, ndigits);
1458 if (vli_cmp(res, private_key, ndigits) != 1)
1459 return -EINVAL;
1460
1461 return 0;
1462 }
1463
ecc_is_key_valid(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,unsigned int private_key_len)1464 int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
1465 const u64 *private_key, unsigned int private_key_len)
1466 {
1467 int nbytes;
1468 const struct ecc_curve *curve = ecc_get_curve(curve_id);
1469
1470 nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1471
1472 if (private_key_len != nbytes)
1473 return -EINVAL;
1474
1475 return __ecc_is_key_valid(curve, private_key, ndigits);
1476 }
1477 EXPORT_SYMBOL(ecc_is_key_valid);
1478
1479 /*
1480 * ECC private keys are generated using the method of extra random bits,
1481 * equivalent to that described in FIPS 186-4, Appendix B.4.1.
1482 *
1483 * d = (c mod(n–1)) + 1 where c is a string of random bits, 64 bits longer
1484 * than requested
1485 * 0 <= c mod(n-1) <= n-2 and implies that
1486 * 1 <= d <= n-1
1487 *
1488 * This method generates a private key uniformly distributed in the range
1489 * [1, n-1].
1490 */
ecc_gen_privkey(unsigned int curve_id,unsigned int ndigits,u64 * privkey)1491 int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey)
1492 {
1493 const struct ecc_curve *curve = ecc_get_curve(curve_id);
1494 u64 priv[ECC_MAX_DIGITS];
1495 unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1496 unsigned int nbits = vli_num_bits(curve->n, ndigits);
1497 int err;
1498
1499 /* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */
1500 if (nbits < 160 || ndigits > ARRAY_SIZE(priv))
1501 return -EINVAL;
1502
1503 /*
1504 * FIPS 186-4 recommends that the private key should be obtained from a
1505 * RBG with a security strength equal to or greater than the security
1506 * strength associated with N.
1507 *
1508 * The maximum security strength identified by NIST SP800-57pt1r4 for
1509 * ECC is 256 (N >= 512).
1510 *
1511 * This condition is met by the default RNG because it selects a favored
1512 * DRBG with a security strength of 256.
1513 */
1514 if (crypto_get_default_rng())
1515 return -EFAULT;
1516
1517 err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes);
1518 crypto_put_default_rng();
1519 if (err)
1520 return err;
1521
1522 /* Make sure the private key is in the valid range. */
1523 if (__ecc_is_key_valid(curve, priv, ndigits))
1524 return -EINVAL;
1525
1526 ecc_swap_digits(priv, privkey, ndigits);
1527
1528 return 0;
1529 }
1530 EXPORT_SYMBOL(ecc_gen_privkey);
1531
ecc_make_pub_key(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,u64 * public_key)1532 int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
1533 const u64 *private_key, u64 *public_key)
1534 {
1535 int ret = 0;
1536 struct ecc_point *pk;
1537 u64 priv[ECC_MAX_DIGITS];
1538 const struct ecc_curve *curve = ecc_get_curve(curve_id);
1539
1540 if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) {
1541 ret = -EINVAL;
1542 goto out;
1543 }
1544
1545 ecc_swap_digits(private_key, priv, ndigits);
1546
1547 pk = ecc_alloc_point(ndigits);
1548 if (!pk) {
1549 ret = -ENOMEM;
1550 goto out;
1551 }
1552
1553 ecc_point_mult(pk, &curve->g, priv, NULL, curve, ndigits);
1554
1555 /* SP800-56A rev 3 5.6.2.1.3 key check */
1556 if (ecc_is_pubkey_valid_full(curve, pk)) {
1557 ret = -EAGAIN;
1558 goto err_free_point;
1559 }
1560
1561 ecc_swap_digits(pk->x, public_key, ndigits);
1562 ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
1563
1564 err_free_point:
1565 ecc_free_point(pk);
1566 out:
1567 return ret;
1568 }
1569 EXPORT_SYMBOL(ecc_make_pub_key);
1570
1571 /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
ecc_is_pubkey_valid_partial(const struct ecc_curve * curve,struct ecc_point * pk)1572 int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
1573 struct ecc_point *pk)
1574 {
1575 u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
1576
1577 if (WARN_ON(pk->ndigits != curve->g.ndigits))
1578 return -EINVAL;
1579
1580 /* Check 1: Verify key is not the zero point. */
1581 if (ecc_point_is_zero(pk))
1582 return -EINVAL;
1583
1584 /* Check 2: Verify key is in the range [1, p-1]. */
1585 if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
1586 return -EINVAL;
1587 if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
1588 return -EINVAL;
1589
1590 /* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */
1591 vli_mod_square_fast(yy, pk->y, curve); /* y^2 */
1592 vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */
1593 vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */
1594 vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */
1595 vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */
1596 vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */
1597 if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
1598 return -EINVAL;
1599
1600 return 0;
1601 }
1602 EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
1603
1604 /* SP800-56A section 5.6.2.3.3 full verification */
ecc_is_pubkey_valid_full(const struct ecc_curve * curve,struct ecc_point * pk)1605 int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
1606 struct ecc_point *pk)
1607 {
1608 struct ecc_point *nQ;
1609
1610 /* Checks 1 through 3 */
1611 int ret = ecc_is_pubkey_valid_partial(curve, pk);
1612
1613 if (ret)
1614 return ret;
1615
1616 /* Check 4: Verify that nQ is the zero point. */
1617 nQ = ecc_alloc_point(pk->ndigits);
1618 if (!nQ)
1619 return -ENOMEM;
1620
1621 ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits);
1622 if (!ecc_point_is_zero(nQ))
1623 ret = -EINVAL;
1624
1625 ecc_free_point(nQ);
1626
1627 return ret;
1628 }
1629 EXPORT_SYMBOL(ecc_is_pubkey_valid_full);
1630
crypto_ecdh_shared_secret(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,const u64 * public_key,u64 * secret)1631 int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
1632 const u64 *private_key, const u64 *public_key,
1633 u64 *secret)
1634 {
1635 int ret = 0;
1636 struct ecc_point *product, *pk;
1637 u64 priv[ECC_MAX_DIGITS];
1638 u64 rand_z[ECC_MAX_DIGITS];
1639 unsigned int nbytes;
1640 const struct ecc_curve *curve = ecc_get_curve(curve_id);
1641
1642 if (!private_key || !public_key || !curve ||
1643 ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) {
1644 ret = -EINVAL;
1645 goto out;
1646 }
1647
1648 nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1649
1650 get_random_bytes(rand_z, nbytes);
1651
1652 pk = ecc_alloc_point(ndigits);
1653 if (!pk) {
1654 ret = -ENOMEM;
1655 goto out;
1656 }
1657
1658 ecc_swap_digits(public_key, pk->x, ndigits);
1659 ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
1660 ret = ecc_is_pubkey_valid_partial(curve, pk);
1661 if (ret)
1662 goto err_alloc_product;
1663
1664 ecc_swap_digits(private_key, priv, ndigits);
1665
1666 product = ecc_alloc_point(ndigits);
1667 if (!product) {
1668 ret = -ENOMEM;
1669 goto err_alloc_product;
1670 }
1671
1672 ecc_point_mult(product, pk, priv, rand_z, curve, ndigits);
1673
1674 if (ecc_point_is_zero(product)) {
1675 ret = -EFAULT;
1676 goto err_validity;
1677 }
1678
1679 ecc_swap_digits(product->x, secret, ndigits);
1680
1681 err_validity:
1682 memzero_explicit(priv, sizeof(priv));
1683 memzero_explicit(rand_z, sizeof(rand_z));
1684 ecc_free_point(product);
1685 err_alloc_product:
1686 ecc_free_point(pk);
1687 out:
1688 return ret;
1689 }
1690 EXPORT_SYMBOL(crypto_ecdh_shared_secret);
1691
1692 MODULE_LICENSE("Dual BSD/GPL");
1693