xref: /openbmc/linux/arch/arm64/kvm/vgic/vgic-kvm-device.c (revision e0d77d0f38aa60ca61b3ce6e60d64fad2aa0853d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGIC: KVM DEVICE API
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  * Author: Marc Zyngier <marc.zyngier@arm.com>
7  */
8 #include <linux/kvm_host.h>
9 #include <kvm/arm_vgic.h>
10 #include <linux/uaccess.h>
11 #include <asm/kvm_mmu.h>
12 #include <asm/cputype.h>
13 #include "vgic.h"
14 
15 /* common helpers */
16 
vgic_check_iorange(struct kvm * kvm,phys_addr_t ioaddr,phys_addr_t addr,phys_addr_t alignment,phys_addr_t size)17 int vgic_check_iorange(struct kvm *kvm, phys_addr_t ioaddr,
18 		       phys_addr_t addr, phys_addr_t alignment,
19 		       phys_addr_t size)
20 {
21 	if (!IS_VGIC_ADDR_UNDEF(ioaddr))
22 		return -EEXIST;
23 
24 	if (!IS_ALIGNED(addr, alignment) || !IS_ALIGNED(size, alignment))
25 		return -EINVAL;
26 
27 	if (addr + size < addr)
28 		return -EINVAL;
29 
30 	if (addr & ~kvm_phys_mask(kvm) || addr + size > kvm_phys_size(kvm))
31 		return -E2BIG;
32 
33 	return 0;
34 }
35 
vgic_check_type(struct kvm * kvm,int type_needed)36 static int vgic_check_type(struct kvm *kvm, int type_needed)
37 {
38 	if (kvm->arch.vgic.vgic_model != type_needed)
39 		return -ENODEV;
40 	else
41 		return 0;
42 }
43 
kvm_set_legacy_vgic_v2_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)44 int kvm_set_legacy_vgic_v2_addr(struct kvm *kvm, struct kvm_arm_device_addr *dev_addr)
45 {
46 	struct vgic_dist *vgic = &kvm->arch.vgic;
47 	int r;
48 
49 	mutex_lock(&kvm->arch.config_lock);
50 	switch (FIELD_GET(KVM_ARM_DEVICE_TYPE_MASK, dev_addr->id)) {
51 	case KVM_VGIC_V2_ADDR_TYPE_DIST:
52 		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
53 		if (!r)
54 			r = vgic_check_iorange(kvm, vgic->vgic_dist_base, dev_addr->addr,
55 					       SZ_4K, KVM_VGIC_V2_DIST_SIZE);
56 		if (!r)
57 			vgic->vgic_dist_base = dev_addr->addr;
58 		break;
59 	case KVM_VGIC_V2_ADDR_TYPE_CPU:
60 		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
61 		if (!r)
62 			r = vgic_check_iorange(kvm, vgic->vgic_cpu_base, dev_addr->addr,
63 					       SZ_4K, KVM_VGIC_V2_CPU_SIZE);
64 		if (!r)
65 			vgic->vgic_cpu_base = dev_addr->addr;
66 		break;
67 	default:
68 		r = -ENODEV;
69 	}
70 
71 	mutex_unlock(&kvm->arch.config_lock);
72 
73 	return r;
74 }
75 
76 /**
77  * kvm_vgic_addr - set or get vgic VM base addresses
78  * @kvm:   pointer to the vm struct
79  * @attr:  pointer to the attribute being retrieved/updated
80  * @write: if true set the address in the VM address space, if false read the
81  *          address
82  *
83  * Set or get the vgic base addresses for the distributor and the virtual CPU
84  * interface in the VM physical address space.  These addresses are properties
85  * of the emulated core/SoC and therefore user space initially knows this
86  * information.
87  * Check them for sanity (alignment, double assignment). We can't check for
88  * overlapping regions in case of a virtual GICv3 here, since we don't know
89  * the number of VCPUs yet, so we defer this check to map_resources().
90  */
kvm_vgic_addr(struct kvm * kvm,struct kvm_device_attr * attr,bool write)91 static int kvm_vgic_addr(struct kvm *kvm, struct kvm_device_attr *attr, bool write)
92 {
93 	u64 __user *uaddr = (u64 __user *)attr->addr;
94 	struct vgic_dist *vgic = &kvm->arch.vgic;
95 	phys_addr_t *addr_ptr, alignment, size;
96 	u64 undef_value = VGIC_ADDR_UNDEF;
97 	u64 addr;
98 	int r;
99 
100 	/* Reading a redistributor region addr implies getting the index */
101 	if (write || attr->attr == KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION)
102 		if (get_user(addr, uaddr))
103 			return -EFAULT;
104 
105 	/*
106 	 * Since we can't hold config_lock while registering the redistributor
107 	 * iodevs, take the slots_lock immediately.
108 	 */
109 	mutex_lock(&kvm->slots_lock);
110 	switch (attr->attr) {
111 	case KVM_VGIC_V2_ADDR_TYPE_DIST:
112 		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
113 		addr_ptr = &vgic->vgic_dist_base;
114 		alignment = SZ_4K;
115 		size = KVM_VGIC_V2_DIST_SIZE;
116 		break;
117 	case KVM_VGIC_V2_ADDR_TYPE_CPU:
118 		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
119 		addr_ptr = &vgic->vgic_cpu_base;
120 		alignment = SZ_4K;
121 		size = KVM_VGIC_V2_CPU_SIZE;
122 		break;
123 	case KVM_VGIC_V3_ADDR_TYPE_DIST:
124 		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
125 		addr_ptr = &vgic->vgic_dist_base;
126 		alignment = SZ_64K;
127 		size = KVM_VGIC_V3_DIST_SIZE;
128 		break;
129 	case KVM_VGIC_V3_ADDR_TYPE_REDIST: {
130 		struct vgic_redist_region *rdreg;
131 
132 		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
133 		if (r)
134 			break;
135 		if (write) {
136 			r = vgic_v3_set_redist_base(kvm, 0, addr, 0);
137 			goto out;
138 		}
139 		rdreg = list_first_entry_or_null(&vgic->rd_regions,
140 						 struct vgic_redist_region, list);
141 		if (!rdreg)
142 			addr_ptr = &undef_value;
143 		else
144 			addr_ptr = &rdreg->base;
145 		break;
146 	}
147 	case KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION:
148 	{
149 		struct vgic_redist_region *rdreg;
150 		u8 index;
151 
152 		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
153 		if (r)
154 			break;
155 
156 		index = addr & KVM_VGIC_V3_RDIST_INDEX_MASK;
157 
158 		if (write) {
159 			gpa_t base = addr & KVM_VGIC_V3_RDIST_BASE_MASK;
160 			u32 count = FIELD_GET(KVM_VGIC_V3_RDIST_COUNT_MASK, addr);
161 			u8 flags = FIELD_GET(KVM_VGIC_V3_RDIST_FLAGS_MASK, addr);
162 
163 			if (!count || flags)
164 				r = -EINVAL;
165 			else
166 				r = vgic_v3_set_redist_base(kvm, index,
167 							    base, count);
168 			goto out;
169 		}
170 
171 		rdreg = vgic_v3_rdist_region_from_index(kvm, index);
172 		if (!rdreg) {
173 			r = -ENOENT;
174 			goto out;
175 		}
176 
177 		addr = index;
178 		addr |= rdreg->base;
179 		addr |= (u64)rdreg->count << KVM_VGIC_V3_RDIST_COUNT_SHIFT;
180 		goto out;
181 	}
182 	default:
183 		r = -ENODEV;
184 	}
185 
186 	if (r)
187 		goto out;
188 
189 	mutex_lock(&kvm->arch.config_lock);
190 	if (write) {
191 		r = vgic_check_iorange(kvm, *addr_ptr, addr, alignment, size);
192 		if (!r)
193 			*addr_ptr = addr;
194 	} else {
195 		addr = *addr_ptr;
196 	}
197 	mutex_unlock(&kvm->arch.config_lock);
198 
199 out:
200 	mutex_unlock(&kvm->slots_lock);
201 
202 	if (!r && !write)
203 		r =  put_user(addr, uaddr);
204 
205 	return r;
206 }
207 
vgic_set_common_attr(struct kvm_device * dev,struct kvm_device_attr * attr)208 static int vgic_set_common_attr(struct kvm_device *dev,
209 				struct kvm_device_attr *attr)
210 {
211 	int r;
212 
213 	switch (attr->group) {
214 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
215 		r = kvm_vgic_addr(dev->kvm, attr, true);
216 		return (r == -ENODEV) ? -ENXIO : r;
217 	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
218 		u32 __user *uaddr = (u32 __user *)(long)attr->addr;
219 		u32 val;
220 		int ret = 0;
221 
222 		if (get_user(val, uaddr))
223 			return -EFAULT;
224 
225 		/*
226 		 * We require:
227 		 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
228 		 * - at most 1024 interrupts
229 		 * - a multiple of 32 interrupts
230 		 */
231 		if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
232 		    val > VGIC_MAX_RESERVED ||
233 		    (val & 31))
234 			return -EINVAL;
235 
236 		mutex_lock(&dev->kvm->arch.config_lock);
237 
238 		if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_spis)
239 			ret = -EBUSY;
240 		else
241 			dev->kvm->arch.vgic.nr_spis =
242 				val - VGIC_NR_PRIVATE_IRQS;
243 
244 		mutex_unlock(&dev->kvm->arch.config_lock);
245 
246 		return ret;
247 	}
248 	case KVM_DEV_ARM_VGIC_GRP_CTRL: {
249 		switch (attr->attr) {
250 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
251 			mutex_lock(&dev->kvm->arch.config_lock);
252 			r = vgic_init(dev->kvm);
253 			mutex_unlock(&dev->kvm->arch.config_lock);
254 			return r;
255 		case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES:
256 			/*
257 			 * OK, this one isn't common at all, but we
258 			 * want to handle all control group attributes
259 			 * in a single place.
260 			 */
261 			if (vgic_check_type(dev->kvm, KVM_DEV_TYPE_ARM_VGIC_V3))
262 				return -ENXIO;
263 			mutex_lock(&dev->kvm->lock);
264 
265 			if (!lock_all_vcpus(dev->kvm)) {
266 				mutex_unlock(&dev->kvm->lock);
267 				return -EBUSY;
268 			}
269 
270 			mutex_lock(&dev->kvm->arch.config_lock);
271 			r = vgic_v3_save_pending_tables(dev->kvm);
272 			mutex_unlock(&dev->kvm->arch.config_lock);
273 			unlock_all_vcpus(dev->kvm);
274 			mutex_unlock(&dev->kvm->lock);
275 			return r;
276 		}
277 		break;
278 	}
279 	}
280 
281 	return -ENXIO;
282 }
283 
vgic_get_common_attr(struct kvm_device * dev,struct kvm_device_attr * attr)284 static int vgic_get_common_attr(struct kvm_device *dev,
285 				struct kvm_device_attr *attr)
286 {
287 	int r = -ENXIO;
288 
289 	switch (attr->group) {
290 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
291 		r = kvm_vgic_addr(dev->kvm, attr, false);
292 		return (r == -ENODEV) ? -ENXIO : r;
293 	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
294 		u32 __user *uaddr = (u32 __user *)(long)attr->addr;
295 
296 		r = put_user(dev->kvm->arch.vgic.nr_spis +
297 			     VGIC_NR_PRIVATE_IRQS, uaddr);
298 		break;
299 	}
300 	}
301 
302 	return r;
303 }
304 
vgic_create(struct kvm_device * dev,u32 type)305 static int vgic_create(struct kvm_device *dev, u32 type)
306 {
307 	return kvm_vgic_create(dev->kvm, type);
308 }
309 
vgic_destroy(struct kvm_device * dev)310 static void vgic_destroy(struct kvm_device *dev)
311 {
312 	kfree(dev);
313 }
314 
kvm_register_vgic_device(unsigned long type)315 int kvm_register_vgic_device(unsigned long type)
316 {
317 	int ret = -ENODEV;
318 
319 	switch (type) {
320 	case KVM_DEV_TYPE_ARM_VGIC_V2:
321 		ret = kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
322 					      KVM_DEV_TYPE_ARM_VGIC_V2);
323 		break;
324 	case KVM_DEV_TYPE_ARM_VGIC_V3:
325 		ret = kvm_register_device_ops(&kvm_arm_vgic_v3_ops,
326 					      KVM_DEV_TYPE_ARM_VGIC_V3);
327 
328 		if (ret)
329 			break;
330 		ret = kvm_vgic_register_its_device();
331 		break;
332 	}
333 
334 	return ret;
335 }
336 
vgic_v2_parse_attr(struct kvm_device * dev,struct kvm_device_attr * attr,struct vgic_reg_attr * reg_attr)337 int vgic_v2_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr,
338 		       struct vgic_reg_attr *reg_attr)
339 {
340 	int cpuid = FIELD_GET(KVM_DEV_ARM_VGIC_CPUID_MASK, attr->attr);
341 
342 	reg_attr->addr = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
343 	reg_attr->vcpu = kvm_get_vcpu_by_id(dev->kvm, cpuid);
344 	if (!reg_attr->vcpu)
345 		return -EINVAL;
346 
347 	return 0;
348 }
349 
350 /**
351  * vgic_v2_attr_regs_access - allows user space to access VGIC v2 state
352  *
353  * @dev:      kvm device handle
354  * @attr:     kvm device attribute
355  * @is_write: true if userspace is writing a register
356  */
vgic_v2_attr_regs_access(struct kvm_device * dev,struct kvm_device_attr * attr,bool is_write)357 static int vgic_v2_attr_regs_access(struct kvm_device *dev,
358 				    struct kvm_device_attr *attr,
359 				    bool is_write)
360 {
361 	u32 __user *uaddr = (u32 __user *)(unsigned long)attr->addr;
362 	struct vgic_reg_attr reg_attr;
363 	gpa_t addr;
364 	struct kvm_vcpu *vcpu;
365 	int ret;
366 	u32 val;
367 
368 	ret = vgic_v2_parse_attr(dev, attr, &reg_attr);
369 	if (ret)
370 		return ret;
371 
372 	vcpu = reg_attr.vcpu;
373 	addr = reg_attr.addr;
374 
375 	if (is_write)
376 		if (get_user(val, uaddr))
377 			return -EFAULT;
378 
379 	mutex_lock(&dev->kvm->lock);
380 
381 	if (!lock_all_vcpus(dev->kvm)) {
382 		mutex_unlock(&dev->kvm->lock);
383 		return -EBUSY;
384 	}
385 
386 	mutex_lock(&dev->kvm->arch.config_lock);
387 
388 	ret = vgic_init(dev->kvm);
389 	if (ret)
390 		goto out;
391 
392 	switch (attr->group) {
393 	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
394 		ret = vgic_v2_cpuif_uaccess(vcpu, is_write, addr, &val);
395 		break;
396 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
397 		ret = vgic_v2_dist_uaccess(vcpu, is_write, addr, &val);
398 		break;
399 	default:
400 		ret = -EINVAL;
401 		break;
402 	}
403 
404 out:
405 	mutex_unlock(&dev->kvm->arch.config_lock);
406 	unlock_all_vcpus(dev->kvm);
407 	mutex_unlock(&dev->kvm->lock);
408 
409 	if (!ret && !is_write)
410 		ret = put_user(val, uaddr);
411 
412 	return ret;
413 }
414 
vgic_v2_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)415 static int vgic_v2_set_attr(struct kvm_device *dev,
416 			    struct kvm_device_attr *attr)
417 {
418 	switch (attr->group) {
419 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
420 	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
421 		return vgic_v2_attr_regs_access(dev, attr, true);
422 	default:
423 		return vgic_set_common_attr(dev, attr);
424 	}
425 }
426 
vgic_v2_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)427 static int vgic_v2_get_attr(struct kvm_device *dev,
428 			    struct kvm_device_attr *attr)
429 {
430 	switch (attr->group) {
431 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
432 	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
433 		return vgic_v2_attr_regs_access(dev, attr, false);
434 	default:
435 		return vgic_get_common_attr(dev, attr);
436 	}
437 }
438 
vgic_v2_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)439 static int vgic_v2_has_attr(struct kvm_device *dev,
440 			    struct kvm_device_attr *attr)
441 {
442 	switch (attr->group) {
443 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
444 		switch (attr->attr) {
445 		case KVM_VGIC_V2_ADDR_TYPE_DIST:
446 		case KVM_VGIC_V2_ADDR_TYPE_CPU:
447 			return 0;
448 		}
449 		break;
450 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
451 	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
452 		return vgic_v2_has_attr_regs(dev, attr);
453 	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
454 		return 0;
455 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
456 		switch (attr->attr) {
457 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
458 			return 0;
459 		}
460 	}
461 	return -ENXIO;
462 }
463 
464 struct kvm_device_ops kvm_arm_vgic_v2_ops = {
465 	.name = "kvm-arm-vgic-v2",
466 	.create = vgic_create,
467 	.destroy = vgic_destroy,
468 	.set_attr = vgic_v2_set_attr,
469 	.get_attr = vgic_v2_get_attr,
470 	.has_attr = vgic_v2_has_attr,
471 };
472 
vgic_v3_parse_attr(struct kvm_device * dev,struct kvm_device_attr * attr,struct vgic_reg_attr * reg_attr)473 int vgic_v3_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr,
474 		       struct vgic_reg_attr *reg_attr)
475 {
476 	unsigned long vgic_mpidr, mpidr_reg;
477 
478 	/*
479 	 * For KVM_DEV_ARM_VGIC_GRP_DIST_REGS group,
480 	 * attr might not hold MPIDR. Hence assume vcpu0.
481 	 */
482 	if (attr->group != KVM_DEV_ARM_VGIC_GRP_DIST_REGS) {
483 		vgic_mpidr = (attr->attr & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) >>
484 			      KVM_DEV_ARM_VGIC_V3_MPIDR_SHIFT;
485 
486 		mpidr_reg = VGIC_TO_MPIDR(vgic_mpidr);
487 		reg_attr->vcpu = kvm_mpidr_to_vcpu(dev->kvm, mpidr_reg);
488 	} else {
489 		reg_attr->vcpu = kvm_get_vcpu(dev->kvm, 0);
490 	}
491 
492 	if (!reg_attr->vcpu)
493 		return -EINVAL;
494 
495 	reg_attr->addr = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
496 
497 	return 0;
498 }
499 
500 /*
501  * vgic_v3_attr_regs_access - allows user space to access VGIC v3 state
502  *
503  * @dev:      kvm device handle
504  * @attr:     kvm device attribute
505  * @is_write: true if userspace is writing a register
506  */
vgic_v3_attr_regs_access(struct kvm_device * dev,struct kvm_device_attr * attr,bool is_write)507 static int vgic_v3_attr_regs_access(struct kvm_device *dev,
508 				    struct kvm_device_attr *attr,
509 				    bool is_write)
510 {
511 	struct vgic_reg_attr reg_attr;
512 	gpa_t addr;
513 	struct kvm_vcpu *vcpu;
514 	bool uaccess;
515 	u32 val;
516 	int ret;
517 
518 	ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
519 	if (ret)
520 		return ret;
521 
522 	vcpu = reg_attr.vcpu;
523 	addr = reg_attr.addr;
524 
525 	switch (attr->group) {
526 	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
527 		/* Sysregs uaccess is performed by the sysreg handling code */
528 		uaccess = false;
529 		break;
530 	default:
531 		uaccess = true;
532 	}
533 
534 	if (uaccess && is_write) {
535 		u32 __user *uaddr = (u32 __user *)(unsigned long)attr->addr;
536 		if (get_user(val, uaddr))
537 			return -EFAULT;
538 	}
539 
540 	mutex_lock(&dev->kvm->lock);
541 
542 	if (!lock_all_vcpus(dev->kvm)) {
543 		mutex_unlock(&dev->kvm->lock);
544 		return -EBUSY;
545 	}
546 
547 	mutex_lock(&dev->kvm->arch.config_lock);
548 
549 	if (unlikely(!vgic_initialized(dev->kvm))) {
550 		ret = -EBUSY;
551 		goto out;
552 	}
553 
554 	switch (attr->group) {
555 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
556 		ret = vgic_v3_dist_uaccess(vcpu, is_write, addr, &val);
557 		break;
558 	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
559 		ret = vgic_v3_redist_uaccess(vcpu, is_write, addr, &val);
560 		break;
561 	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
562 		ret = vgic_v3_cpu_sysregs_uaccess(vcpu, attr, is_write);
563 		break;
564 	case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: {
565 		unsigned int info, intid;
566 
567 		info = (attr->attr & KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK) >>
568 			KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT;
569 		if (info == VGIC_LEVEL_INFO_LINE_LEVEL) {
570 			intid = attr->attr &
571 				KVM_DEV_ARM_VGIC_LINE_LEVEL_INTID_MASK;
572 			ret = vgic_v3_line_level_info_uaccess(vcpu, is_write,
573 							      intid, &val);
574 		} else {
575 			ret = -EINVAL;
576 		}
577 		break;
578 	}
579 	default:
580 		ret = -EINVAL;
581 		break;
582 	}
583 
584 out:
585 	mutex_unlock(&dev->kvm->arch.config_lock);
586 	unlock_all_vcpus(dev->kvm);
587 	mutex_unlock(&dev->kvm->lock);
588 
589 	if (!ret && uaccess && !is_write) {
590 		u32 __user *uaddr = (u32 __user *)(unsigned long)attr->addr;
591 		ret = put_user(val, uaddr);
592 	}
593 
594 	return ret;
595 }
596 
vgic_v3_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)597 static int vgic_v3_set_attr(struct kvm_device *dev,
598 			    struct kvm_device_attr *attr)
599 {
600 	switch (attr->group) {
601 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
602 	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
603 	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
604 	case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO:
605 		return vgic_v3_attr_regs_access(dev, attr, true);
606 	default:
607 		return vgic_set_common_attr(dev, attr);
608 	}
609 }
610 
vgic_v3_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)611 static int vgic_v3_get_attr(struct kvm_device *dev,
612 			    struct kvm_device_attr *attr)
613 {
614 	switch (attr->group) {
615 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
616 	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
617 	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
618 	case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO:
619 		return vgic_v3_attr_regs_access(dev, attr, false);
620 	default:
621 		return vgic_get_common_attr(dev, attr);
622 	}
623 }
624 
vgic_v3_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)625 static int vgic_v3_has_attr(struct kvm_device *dev,
626 			    struct kvm_device_attr *attr)
627 {
628 	switch (attr->group) {
629 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
630 		switch (attr->attr) {
631 		case KVM_VGIC_V3_ADDR_TYPE_DIST:
632 		case KVM_VGIC_V3_ADDR_TYPE_REDIST:
633 		case KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION:
634 			return 0;
635 		}
636 		break;
637 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
638 	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
639 	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
640 		return vgic_v3_has_attr_regs(dev, attr);
641 	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
642 		return 0;
643 	case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: {
644 		if (((attr->attr & KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK) >>
645 		      KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT) ==
646 		      VGIC_LEVEL_INFO_LINE_LEVEL)
647 			return 0;
648 		break;
649 	}
650 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
651 		switch (attr->attr) {
652 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
653 			return 0;
654 		case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES:
655 			return 0;
656 		}
657 	}
658 	return -ENXIO;
659 }
660 
661 struct kvm_device_ops kvm_arm_vgic_v3_ops = {
662 	.name = "kvm-arm-vgic-v3",
663 	.create = vgic_create,
664 	.destroy = vgic_destroy,
665 	.set_attr = vgic_v3_set_attr,
666 	.get_attr = vgic_v3_get_attr,
667 	.has_attr = vgic_v3_has_attr,
668 };
669