xref: /openbmc/linux/drivers/rtc/rtc-stm32.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2017
4  * Author:  Amelie Delaunay <amelie.delaunay@st.com>
5  */
6 
7 #include <linux/bcd.h>
8 #include <linux/clk.h>
9 #include <linux/errno.h>
10 #include <linux/iopoll.h>
11 #include <linux/ioport.h>
12 #include <linux/mfd/syscon.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_wakeirq.h>
17 #include <linux/regmap.h>
18 #include <linux/rtc.h>
19 
20 #define DRIVER_NAME "stm32_rtc"
21 
22 /* STM32_RTC_TR bit fields  */
23 #define STM32_RTC_TR_SEC_SHIFT		0
24 #define STM32_RTC_TR_SEC		GENMASK(6, 0)
25 #define STM32_RTC_TR_MIN_SHIFT		8
26 #define STM32_RTC_TR_MIN		GENMASK(14, 8)
27 #define STM32_RTC_TR_HOUR_SHIFT		16
28 #define STM32_RTC_TR_HOUR		GENMASK(21, 16)
29 
30 /* STM32_RTC_DR bit fields */
31 #define STM32_RTC_DR_DATE_SHIFT		0
32 #define STM32_RTC_DR_DATE		GENMASK(5, 0)
33 #define STM32_RTC_DR_MONTH_SHIFT	8
34 #define STM32_RTC_DR_MONTH		GENMASK(12, 8)
35 #define STM32_RTC_DR_WDAY_SHIFT		13
36 #define STM32_RTC_DR_WDAY		GENMASK(15, 13)
37 #define STM32_RTC_DR_YEAR_SHIFT		16
38 #define STM32_RTC_DR_YEAR		GENMASK(23, 16)
39 
40 /* STM32_RTC_CR bit fields */
41 #define STM32_RTC_CR_FMT		BIT(6)
42 #define STM32_RTC_CR_ALRAE		BIT(8)
43 #define STM32_RTC_CR_ALRAIE		BIT(12)
44 
45 /* STM32_RTC_ISR/STM32_RTC_ICSR bit fields */
46 #define STM32_RTC_ISR_ALRAWF		BIT(0)
47 #define STM32_RTC_ISR_INITS		BIT(4)
48 #define STM32_RTC_ISR_RSF		BIT(5)
49 #define STM32_RTC_ISR_INITF		BIT(6)
50 #define STM32_RTC_ISR_INIT		BIT(7)
51 #define STM32_RTC_ISR_ALRAF		BIT(8)
52 
53 /* STM32_RTC_PRER bit fields */
54 #define STM32_RTC_PRER_PRED_S_SHIFT	0
55 #define STM32_RTC_PRER_PRED_S		GENMASK(14, 0)
56 #define STM32_RTC_PRER_PRED_A_SHIFT	16
57 #define STM32_RTC_PRER_PRED_A		GENMASK(22, 16)
58 
59 /* STM32_RTC_ALRMAR and STM32_RTC_ALRMBR bit fields */
60 #define STM32_RTC_ALRMXR_SEC_SHIFT	0
61 #define STM32_RTC_ALRMXR_SEC		GENMASK(6, 0)
62 #define STM32_RTC_ALRMXR_SEC_MASK	BIT(7)
63 #define STM32_RTC_ALRMXR_MIN_SHIFT	8
64 #define STM32_RTC_ALRMXR_MIN		GENMASK(14, 8)
65 #define STM32_RTC_ALRMXR_MIN_MASK	BIT(15)
66 #define STM32_RTC_ALRMXR_HOUR_SHIFT	16
67 #define STM32_RTC_ALRMXR_HOUR		GENMASK(21, 16)
68 #define STM32_RTC_ALRMXR_PM		BIT(22)
69 #define STM32_RTC_ALRMXR_HOUR_MASK	BIT(23)
70 #define STM32_RTC_ALRMXR_DATE_SHIFT	24
71 #define STM32_RTC_ALRMXR_DATE		GENMASK(29, 24)
72 #define STM32_RTC_ALRMXR_WDSEL		BIT(30)
73 #define STM32_RTC_ALRMXR_WDAY_SHIFT	24
74 #define STM32_RTC_ALRMXR_WDAY		GENMASK(27, 24)
75 #define STM32_RTC_ALRMXR_DATE_MASK	BIT(31)
76 
77 /* STM32_RTC_SR/_SCR bit fields */
78 #define STM32_RTC_SR_ALRA		BIT(0)
79 
80 /* STM32_RTC_VERR bit fields */
81 #define STM32_RTC_VERR_MINREV_SHIFT	0
82 #define STM32_RTC_VERR_MINREV		GENMASK(3, 0)
83 #define STM32_RTC_VERR_MAJREV_SHIFT	4
84 #define STM32_RTC_VERR_MAJREV		GENMASK(7, 4)
85 
86 /* STM32_RTC_WPR key constants */
87 #define RTC_WPR_1ST_KEY			0xCA
88 #define RTC_WPR_2ND_KEY			0x53
89 #define RTC_WPR_WRONG_KEY		0xFF
90 
91 /* Max STM32 RTC register offset is 0x3FC */
92 #define UNDEF_REG			0xFFFF
93 
94 /* STM32 RTC driver time helpers */
95 #define SEC_PER_DAY		(24 * 60 * 60)
96 
97 struct stm32_rtc;
98 
99 struct stm32_rtc_registers {
100 	u16 tr;
101 	u16 dr;
102 	u16 cr;
103 	u16 isr;
104 	u16 prer;
105 	u16 alrmar;
106 	u16 wpr;
107 	u16 sr;
108 	u16 scr;
109 	u16 verr;
110 };
111 
112 struct stm32_rtc_events {
113 	u32 alra;
114 };
115 
116 struct stm32_rtc_data {
117 	const struct stm32_rtc_registers regs;
118 	const struct stm32_rtc_events events;
119 	void (*clear_events)(struct stm32_rtc *rtc, unsigned int flags);
120 	bool has_pclk;
121 	bool need_dbp;
122 	bool need_accuracy;
123 };
124 
125 struct stm32_rtc {
126 	struct rtc_device *rtc_dev;
127 	void __iomem *base;
128 	struct regmap *dbp;
129 	unsigned int dbp_reg;
130 	unsigned int dbp_mask;
131 	struct clk *pclk;
132 	struct clk *rtc_ck;
133 	const struct stm32_rtc_data *data;
134 	int irq_alarm;
135 };
136 
stm32_rtc_wpr_unlock(struct stm32_rtc * rtc)137 static void stm32_rtc_wpr_unlock(struct stm32_rtc *rtc)
138 {
139 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
140 
141 	writel_relaxed(RTC_WPR_1ST_KEY, rtc->base + regs->wpr);
142 	writel_relaxed(RTC_WPR_2ND_KEY, rtc->base + regs->wpr);
143 }
144 
stm32_rtc_wpr_lock(struct stm32_rtc * rtc)145 static void stm32_rtc_wpr_lock(struct stm32_rtc *rtc)
146 {
147 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
148 
149 	writel_relaxed(RTC_WPR_WRONG_KEY, rtc->base + regs->wpr);
150 }
151 
stm32_rtc_enter_init_mode(struct stm32_rtc * rtc)152 static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc)
153 {
154 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
155 	unsigned int isr = readl_relaxed(rtc->base + regs->isr);
156 
157 	if (!(isr & STM32_RTC_ISR_INITF)) {
158 		isr |= STM32_RTC_ISR_INIT;
159 		writel_relaxed(isr, rtc->base + regs->isr);
160 
161 		/*
162 		 * It takes around 2 rtc_ck clock cycles to enter in
163 		 * initialization phase mode (and have INITF flag set). As
164 		 * slowest rtc_ck frequency may be 32kHz and highest should be
165 		 * 1MHz, we poll every 10 us with a timeout of 100ms.
166 		 */
167 		return readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr, isr,
168 							 (isr & STM32_RTC_ISR_INITF),
169 							 10, 100000);
170 	}
171 
172 	return 0;
173 }
174 
stm32_rtc_exit_init_mode(struct stm32_rtc * rtc)175 static void stm32_rtc_exit_init_mode(struct stm32_rtc *rtc)
176 {
177 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
178 	unsigned int isr = readl_relaxed(rtc->base + regs->isr);
179 
180 	isr &= ~STM32_RTC_ISR_INIT;
181 	writel_relaxed(isr, rtc->base + regs->isr);
182 }
183 
stm32_rtc_wait_sync(struct stm32_rtc * rtc)184 static int stm32_rtc_wait_sync(struct stm32_rtc *rtc)
185 {
186 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
187 	unsigned int isr = readl_relaxed(rtc->base + regs->isr);
188 
189 	isr &= ~STM32_RTC_ISR_RSF;
190 	writel_relaxed(isr, rtc->base + regs->isr);
191 
192 	/*
193 	 * Wait for RSF to be set to ensure the calendar registers are
194 	 * synchronised, it takes around 2 rtc_ck clock cycles
195 	 */
196 	return readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
197 						 isr,
198 						 (isr & STM32_RTC_ISR_RSF),
199 						 10, 100000);
200 }
201 
stm32_rtc_clear_event_flags(struct stm32_rtc * rtc,unsigned int flags)202 static void stm32_rtc_clear_event_flags(struct stm32_rtc *rtc,
203 					unsigned int flags)
204 {
205 	rtc->data->clear_events(rtc, flags);
206 }
207 
stm32_rtc_alarm_irq(int irq,void * dev_id)208 static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id)
209 {
210 	struct stm32_rtc *rtc = (struct stm32_rtc *)dev_id;
211 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
212 	const struct stm32_rtc_events *evts = &rtc->data->events;
213 	unsigned int status, cr;
214 
215 	rtc_lock(rtc->rtc_dev);
216 
217 	status = readl_relaxed(rtc->base + regs->sr);
218 	cr = readl_relaxed(rtc->base + regs->cr);
219 
220 	if ((status & evts->alra) &&
221 	    (cr & STM32_RTC_CR_ALRAIE)) {
222 		/* Alarm A flag - Alarm interrupt */
223 		dev_dbg(&rtc->rtc_dev->dev, "Alarm occurred\n");
224 
225 		/* Pass event to the kernel */
226 		rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
227 
228 		/* Clear event flags, otherwise new events won't be received */
229 		stm32_rtc_clear_event_flags(rtc, evts->alra);
230 	}
231 
232 	rtc_unlock(rtc->rtc_dev);
233 
234 	return IRQ_HANDLED;
235 }
236 
237 /* Convert rtc_time structure from bin to bcd format */
tm2bcd(struct rtc_time * tm)238 static void tm2bcd(struct rtc_time *tm)
239 {
240 	tm->tm_sec = bin2bcd(tm->tm_sec);
241 	tm->tm_min = bin2bcd(tm->tm_min);
242 	tm->tm_hour = bin2bcd(tm->tm_hour);
243 
244 	tm->tm_mday = bin2bcd(tm->tm_mday);
245 	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
246 	tm->tm_year = bin2bcd(tm->tm_year - 100);
247 	/*
248 	 * Number of days since Sunday
249 	 * - on kernel side, 0=Sunday...6=Saturday
250 	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
251 	 */
252 	tm->tm_wday = (!tm->tm_wday) ? 7 : tm->tm_wday;
253 }
254 
255 /* Convert rtc_time structure from bcd to bin format */
bcd2tm(struct rtc_time * tm)256 static void bcd2tm(struct rtc_time *tm)
257 {
258 	tm->tm_sec = bcd2bin(tm->tm_sec);
259 	tm->tm_min = bcd2bin(tm->tm_min);
260 	tm->tm_hour = bcd2bin(tm->tm_hour);
261 
262 	tm->tm_mday = bcd2bin(tm->tm_mday);
263 	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
264 	tm->tm_year = bcd2bin(tm->tm_year) + 100;
265 	/*
266 	 * Number of days since Sunday
267 	 * - on kernel side, 0=Sunday...6=Saturday
268 	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
269 	 */
270 	tm->tm_wday %= 7;
271 }
272 
stm32_rtc_read_time(struct device * dev,struct rtc_time * tm)273 static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm)
274 {
275 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
276 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
277 	unsigned int tr, dr;
278 
279 	/* Time and Date in BCD format */
280 	tr = readl_relaxed(rtc->base + regs->tr);
281 	dr = readl_relaxed(rtc->base + regs->dr);
282 
283 	tm->tm_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
284 	tm->tm_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
285 	tm->tm_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
286 
287 	tm->tm_mday = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
288 	tm->tm_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
289 	tm->tm_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
290 	tm->tm_wday = (dr & STM32_RTC_DR_WDAY) >> STM32_RTC_DR_WDAY_SHIFT;
291 
292 	/* We don't report tm_yday and tm_isdst */
293 
294 	bcd2tm(tm);
295 
296 	return 0;
297 }
298 
stm32_rtc_set_time(struct device * dev,struct rtc_time * tm)299 static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm)
300 {
301 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
302 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
303 	unsigned int tr, dr;
304 	int ret = 0;
305 
306 	tm2bcd(tm);
307 
308 	/* Time in BCD format */
309 	tr = ((tm->tm_sec << STM32_RTC_TR_SEC_SHIFT) & STM32_RTC_TR_SEC) |
310 	     ((tm->tm_min << STM32_RTC_TR_MIN_SHIFT) & STM32_RTC_TR_MIN) |
311 	     ((tm->tm_hour << STM32_RTC_TR_HOUR_SHIFT) & STM32_RTC_TR_HOUR);
312 
313 	/* Date in BCD format */
314 	dr = ((tm->tm_mday << STM32_RTC_DR_DATE_SHIFT) & STM32_RTC_DR_DATE) |
315 	     ((tm->tm_mon << STM32_RTC_DR_MONTH_SHIFT) & STM32_RTC_DR_MONTH) |
316 	     ((tm->tm_year << STM32_RTC_DR_YEAR_SHIFT) & STM32_RTC_DR_YEAR) |
317 	     ((tm->tm_wday << STM32_RTC_DR_WDAY_SHIFT) & STM32_RTC_DR_WDAY);
318 
319 	stm32_rtc_wpr_unlock(rtc);
320 
321 	ret = stm32_rtc_enter_init_mode(rtc);
322 	if (ret) {
323 		dev_err(dev, "Can't enter in init mode. Set time aborted.\n");
324 		goto end;
325 	}
326 
327 	writel_relaxed(tr, rtc->base + regs->tr);
328 	writel_relaxed(dr, rtc->base + regs->dr);
329 
330 	stm32_rtc_exit_init_mode(rtc);
331 
332 	ret = stm32_rtc_wait_sync(rtc);
333 end:
334 	stm32_rtc_wpr_lock(rtc);
335 
336 	return ret;
337 }
338 
stm32_rtc_read_alarm(struct device * dev,struct rtc_wkalrm * alrm)339 static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
340 {
341 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
342 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
343 	const struct stm32_rtc_events *evts = &rtc->data->events;
344 	struct rtc_time *tm = &alrm->time;
345 	unsigned int alrmar, cr, status;
346 
347 	alrmar = readl_relaxed(rtc->base + regs->alrmar);
348 	cr = readl_relaxed(rtc->base + regs->cr);
349 	status = readl_relaxed(rtc->base + regs->sr);
350 
351 	if (alrmar & STM32_RTC_ALRMXR_DATE_MASK) {
352 		/*
353 		 * Date/day doesn't matter in Alarm comparison so alarm
354 		 * triggers every day
355 		 */
356 		tm->tm_mday = -1;
357 		tm->tm_wday = -1;
358 	} else {
359 		if (alrmar & STM32_RTC_ALRMXR_WDSEL) {
360 			/* Alarm is set to a day of week */
361 			tm->tm_mday = -1;
362 			tm->tm_wday = (alrmar & STM32_RTC_ALRMXR_WDAY) >>
363 				      STM32_RTC_ALRMXR_WDAY_SHIFT;
364 			tm->tm_wday %= 7;
365 		} else {
366 			/* Alarm is set to a day of month */
367 			tm->tm_wday = -1;
368 			tm->tm_mday = (alrmar & STM32_RTC_ALRMXR_DATE) >>
369 				       STM32_RTC_ALRMXR_DATE_SHIFT;
370 		}
371 	}
372 
373 	if (alrmar & STM32_RTC_ALRMXR_HOUR_MASK) {
374 		/* Hours don't matter in Alarm comparison */
375 		tm->tm_hour = -1;
376 	} else {
377 		tm->tm_hour = (alrmar & STM32_RTC_ALRMXR_HOUR) >>
378 			       STM32_RTC_ALRMXR_HOUR_SHIFT;
379 		if (alrmar & STM32_RTC_ALRMXR_PM)
380 			tm->tm_hour += 12;
381 	}
382 
383 	if (alrmar & STM32_RTC_ALRMXR_MIN_MASK) {
384 		/* Minutes don't matter in Alarm comparison */
385 		tm->tm_min = -1;
386 	} else {
387 		tm->tm_min = (alrmar & STM32_RTC_ALRMXR_MIN) >>
388 			      STM32_RTC_ALRMXR_MIN_SHIFT;
389 	}
390 
391 	if (alrmar & STM32_RTC_ALRMXR_SEC_MASK) {
392 		/* Seconds don't matter in Alarm comparison */
393 		tm->tm_sec = -1;
394 	} else {
395 		tm->tm_sec = (alrmar & STM32_RTC_ALRMXR_SEC) >>
396 			      STM32_RTC_ALRMXR_SEC_SHIFT;
397 	}
398 
399 	bcd2tm(tm);
400 
401 	alrm->enabled = (cr & STM32_RTC_CR_ALRAE) ? 1 : 0;
402 	alrm->pending = (status & evts->alra) ? 1 : 0;
403 
404 	return 0;
405 }
406 
stm32_rtc_alarm_irq_enable(struct device * dev,unsigned int enabled)407 static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
408 {
409 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
410 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
411 	const struct stm32_rtc_events *evts = &rtc->data->events;
412 	unsigned int cr;
413 
414 	cr = readl_relaxed(rtc->base + regs->cr);
415 
416 	stm32_rtc_wpr_unlock(rtc);
417 
418 	/* We expose Alarm A to the kernel */
419 	if (enabled)
420 		cr |= (STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
421 	else
422 		cr &= ~(STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
423 	writel_relaxed(cr, rtc->base + regs->cr);
424 
425 	/* Clear event flags, otherwise new events won't be received */
426 	stm32_rtc_clear_event_flags(rtc, evts->alra);
427 
428 	stm32_rtc_wpr_lock(rtc);
429 
430 	return 0;
431 }
432 
stm32_rtc_valid_alrm(struct device * dev,struct rtc_time * tm)433 static int stm32_rtc_valid_alrm(struct device *dev, struct rtc_time *tm)
434 {
435 	static struct rtc_time now;
436 	time64_t max_alarm_time64;
437 	int max_day_forward;
438 	int next_month;
439 	int next_year;
440 
441 	/*
442 	 * Assuming current date is M-D-Y H:M:S.
443 	 * RTC alarm can't be set on a specific month and year.
444 	 * So the valid alarm range is:
445 	 *	M-D-Y H:M:S < alarm <= (M+1)-D-Y H:M:S
446 	 */
447 	stm32_rtc_read_time(dev, &now);
448 
449 	/*
450 	 * Find the next month and the year of the next month.
451 	 * Note: tm_mon and next_month are from 0 to 11
452 	 */
453 	next_month = now.tm_mon + 1;
454 	if (next_month == 12) {
455 		next_month = 0;
456 		next_year = now.tm_year + 1;
457 	} else {
458 		next_year = now.tm_year;
459 	}
460 
461 	/* Find the maximum limit of alarm in days. */
462 	max_day_forward = rtc_month_days(now.tm_mon, now.tm_year)
463 			 - now.tm_mday
464 			 + min(rtc_month_days(next_month, next_year), now.tm_mday);
465 
466 	/* Convert to timestamp and compare the alarm time and its upper limit */
467 	max_alarm_time64 = rtc_tm_to_time64(&now) + max_day_forward * SEC_PER_DAY;
468 	return rtc_tm_to_time64(tm) <= max_alarm_time64 ? 0 : -EINVAL;
469 }
470 
stm32_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * alrm)471 static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
472 {
473 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
474 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
475 	struct rtc_time *tm = &alrm->time;
476 	unsigned int cr, isr, alrmar;
477 	int ret = 0;
478 
479 	/*
480 	 * RTC alarm can't be set on a specific date, unless this date is
481 	 * up to the same day of month next month.
482 	 */
483 	if (stm32_rtc_valid_alrm(dev, tm) < 0) {
484 		dev_err(dev, "Alarm can be set only on upcoming month.\n");
485 		return -EINVAL;
486 	}
487 
488 	tm2bcd(tm);
489 
490 	alrmar = 0;
491 	/* tm_year and tm_mon are not used because not supported by RTC */
492 	alrmar |= (tm->tm_mday << STM32_RTC_ALRMXR_DATE_SHIFT) &
493 		  STM32_RTC_ALRMXR_DATE;
494 	/* 24-hour format */
495 	alrmar &= ~STM32_RTC_ALRMXR_PM;
496 	alrmar |= (tm->tm_hour << STM32_RTC_ALRMXR_HOUR_SHIFT) &
497 		  STM32_RTC_ALRMXR_HOUR;
498 	alrmar |= (tm->tm_min << STM32_RTC_ALRMXR_MIN_SHIFT) &
499 		  STM32_RTC_ALRMXR_MIN;
500 	alrmar |= (tm->tm_sec << STM32_RTC_ALRMXR_SEC_SHIFT) &
501 		  STM32_RTC_ALRMXR_SEC;
502 
503 	stm32_rtc_wpr_unlock(rtc);
504 
505 	/* Disable Alarm */
506 	cr = readl_relaxed(rtc->base + regs->cr);
507 	cr &= ~STM32_RTC_CR_ALRAE;
508 	writel_relaxed(cr, rtc->base + regs->cr);
509 
510 	/*
511 	 * Poll Alarm write flag to be sure that Alarm update is allowed: it
512 	 * takes around 2 rtc_ck clock cycles
513 	 */
514 	ret = readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
515 						isr,
516 						(isr & STM32_RTC_ISR_ALRAWF),
517 						10, 100000);
518 
519 	if (ret) {
520 		dev_err(dev, "Alarm update not allowed\n");
521 		goto end;
522 	}
523 
524 	/* Write to Alarm register */
525 	writel_relaxed(alrmar, rtc->base + regs->alrmar);
526 
527 	stm32_rtc_alarm_irq_enable(dev, alrm->enabled);
528 end:
529 	stm32_rtc_wpr_lock(rtc);
530 
531 	return ret;
532 }
533 
534 static const struct rtc_class_ops stm32_rtc_ops = {
535 	.read_time	= stm32_rtc_read_time,
536 	.set_time	= stm32_rtc_set_time,
537 	.read_alarm	= stm32_rtc_read_alarm,
538 	.set_alarm	= stm32_rtc_set_alarm,
539 	.alarm_irq_enable = stm32_rtc_alarm_irq_enable,
540 };
541 
stm32_rtc_clear_events(struct stm32_rtc * rtc,unsigned int flags)542 static void stm32_rtc_clear_events(struct stm32_rtc *rtc,
543 				   unsigned int flags)
544 {
545 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
546 
547 	/* Flags are cleared by writing 0 in RTC_ISR */
548 	writel_relaxed(readl_relaxed(rtc->base + regs->isr) & ~flags,
549 		       rtc->base + regs->isr);
550 }
551 
552 static const struct stm32_rtc_data stm32_rtc_data = {
553 	.has_pclk = false,
554 	.need_dbp = true,
555 	.need_accuracy = false,
556 	.regs = {
557 		.tr = 0x00,
558 		.dr = 0x04,
559 		.cr = 0x08,
560 		.isr = 0x0C,
561 		.prer = 0x10,
562 		.alrmar = 0x1C,
563 		.wpr = 0x24,
564 		.sr = 0x0C, /* set to ISR offset to ease alarm management */
565 		.scr = UNDEF_REG,
566 		.verr = UNDEF_REG,
567 	},
568 	.events = {
569 		.alra = STM32_RTC_ISR_ALRAF,
570 	},
571 	.clear_events = stm32_rtc_clear_events,
572 };
573 
574 static const struct stm32_rtc_data stm32h7_rtc_data = {
575 	.has_pclk = true,
576 	.need_dbp = true,
577 	.need_accuracy = false,
578 	.regs = {
579 		.tr = 0x00,
580 		.dr = 0x04,
581 		.cr = 0x08,
582 		.isr = 0x0C,
583 		.prer = 0x10,
584 		.alrmar = 0x1C,
585 		.wpr = 0x24,
586 		.sr = 0x0C, /* set to ISR offset to ease alarm management */
587 		.scr = UNDEF_REG,
588 		.verr = UNDEF_REG,
589 	},
590 	.events = {
591 		.alra = STM32_RTC_ISR_ALRAF,
592 	},
593 	.clear_events = stm32_rtc_clear_events,
594 };
595 
stm32mp1_rtc_clear_events(struct stm32_rtc * rtc,unsigned int flags)596 static void stm32mp1_rtc_clear_events(struct stm32_rtc *rtc,
597 				      unsigned int flags)
598 {
599 	struct stm32_rtc_registers regs = rtc->data->regs;
600 
601 	/* Flags are cleared by writing 1 in RTC_SCR */
602 	writel_relaxed(flags, rtc->base + regs.scr);
603 }
604 
605 static const struct stm32_rtc_data stm32mp1_data = {
606 	.has_pclk = true,
607 	.need_dbp = false,
608 	.need_accuracy = true,
609 	.regs = {
610 		.tr = 0x00,
611 		.dr = 0x04,
612 		.cr = 0x18,
613 		.isr = 0x0C, /* named RTC_ICSR on stm32mp1 */
614 		.prer = 0x10,
615 		.alrmar = 0x40,
616 		.wpr = 0x24,
617 		.sr = 0x50,
618 		.scr = 0x5C,
619 		.verr = 0x3F4,
620 	},
621 	.events = {
622 		.alra = STM32_RTC_SR_ALRA,
623 	},
624 	.clear_events = stm32mp1_rtc_clear_events,
625 };
626 
627 static const struct of_device_id stm32_rtc_of_match[] = {
628 	{ .compatible = "st,stm32-rtc", .data = &stm32_rtc_data },
629 	{ .compatible = "st,stm32h7-rtc", .data = &stm32h7_rtc_data },
630 	{ .compatible = "st,stm32mp1-rtc", .data = &stm32mp1_data },
631 	{}
632 };
633 MODULE_DEVICE_TABLE(of, stm32_rtc_of_match);
634 
stm32_rtc_init(struct platform_device * pdev,struct stm32_rtc * rtc)635 static int stm32_rtc_init(struct platform_device *pdev,
636 			  struct stm32_rtc *rtc)
637 {
638 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
639 	unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
640 	unsigned int rate;
641 	int ret;
642 
643 	rate = clk_get_rate(rtc->rtc_ck);
644 
645 	/* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */
646 	pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT;
647 	pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT;
648 
649 	if (rate > (pred_a_max + 1) * (pred_s_max + 1)) {
650 		dev_err(&pdev->dev, "rtc_ck rate is too high: %dHz\n", rate);
651 		return -EINVAL;
652 	}
653 
654 	if (rtc->data->need_accuracy) {
655 		for (pred_a = 0; pred_a <= pred_a_max; pred_a++) {
656 			pred_s = (rate / (pred_a + 1)) - 1;
657 
658 			if (pred_s <= pred_s_max && ((pred_s + 1) * (pred_a + 1)) == rate)
659 				break;
660 		}
661 	} else {
662 		for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) {
663 			pred_s = (rate / (pred_a + 1)) - 1;
664 
665 			if (((pred_s + 1) * (pred_a + 1)) == rate)
666 				break;
667 		}
668 	}
669 
670 	/*
671 	 * Can't find a 1Hz, so give priority to RTC power consumption
672 	 * by choosing the higher possible value for prediv_a
673 	 */
674 	if (pred_s > pred_s_max || pred_a > pred_a_max) {
675 		pred_a = pred_a_max;
676 		pred_s = (rate / (pred_a + 1)) - 1;
677 
678 		dev_warn(&pdev->dev, "rtc_ck is %s\n",
679 			 (rate < ((pred_a + 1) * (pred_s + 1))) ?
680 			 "fast" : "slow");
681 	}
682 
683 	cr = readl_relaxed(rtc->base + regs->cr);
684 
685 	prer = readl_relaxed(rtc->base + regs->prer);
686 	prer &= STM32_RTC_PRER_PRED_S | STM32_RTC_PRER_PRED_A;
687 
688 	pred_s = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) &
689 		 STM32_RTC_PRER_PRED_S;
690 	pred_a = (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) &
691 		 STM32_RTC_PRER_PRED_A;
692 
693 	/* quit if there is nothing to initialize */
694 	if ((cr & STM32_RTC_CR_FMT) == 0 && prer == (pred_s | pred_a))
695 		return 0;
696 
697 	stm32_rtc_wpr_unlock(rtc);
698 
699 	ret = stm32_rtc_enter_init_mode(rtc);
700 	if (ret) {
701 		dev_err(&pdev->dev,
702 			"Can't enter in init mode. Prescaler config failed.\n");
703 		goto end;
704 	}
705 
706 	writel_relaxed(pred_s, rtc->base + regs->prer);
707 	writel_relaxed(pred_a | pred_s, rtc->base + regs->prer);
708 
709 	/* Force 24h time format */
710 	cr &= ~STM32_RTC_CR_FMT;
711 	writel_relaxed(cr, rtc->base + regs->cr);
712 
713 	stm32_rtc_exit_init_mode(rtc);
714 
715 	ret = stm32_rtc_wait_sync(rtc);
716 end:
717 	stm32_rtc_wpr_lock(rtc);
718 
719 	return ret;
720 }
721 
stm32_rtc_probe(struct platform_device * pdev)722 static int stm32_rtc_probe(struct platform_device *pdev)
723 {
724 	struct stm32_rtc *rtc;
725 	const struct stm32_rtc_registers *regs;
726 	int ret;
727 
728 	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
729 	if (!rtc)
730 		return -ENOMEM;
731 
732 	rtc->base = devm_platform_ioremap_resource(pdev, 0);
733 	if (IS_ERR(rtc->base))
734 		return PTR_ERR(rtc->base);
735 
736 	rtc->data = (struct stm32_rtc_data *)
737 		    of_device_get_match_data(&pdev->dev);
738 	regs = &rtc->data->regs;
739 
740 	if (rtc->data->need_dbp) {
741 		rtc->dbp = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
742 							   "st,syscfg");
743 		if (IS_ERR(rtc->dbp)) {
744 			dev_err(&pdev->dev, "no st,syscfg\n");
745 			return PTR_ERR(rtc->dbp);
746 		}
747 
748 		ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
749 						 1, &rtc->dbp_reg);
750 		if (ret) {
751 			dev_err(&pdev->dev, "can't read DBP register offset\n");
752 			return ret;
753 		}
754 
755 		ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
756 						 2, &rtc->dbp_mask);
757 		if (ret) {
758 			dev_err(&pdev->dev, "can't read DBP register mask\n");
759 			return ret;
760 		}
761 	}
762 
763 	if (!rtc->data->has_pclk) {
764 		rtc->pclk = NULL;
765 		rtc->rtc_ck = devm_clk_get(&pdev->dev, NULL);
766 	} else {
767 		rtc->pclk = devm_clk_get(&pdev->dev, "pclk");
768 		if (IS_ERR(rtc->pclk))
769 			return dev_err_probe(&pdev->dev, PTR_ERR(rtc->pclk), "no pclk clock");
770 
771 		rtc->rtc_ck = devm_clk_get(&pdev->dev, "rtc_ck");
772 	}
773 	if (IS_ERR(rtc->rtc_ck))
774 		return dev_err_probe(&pdev->dev, PTR_ERR(rtc->rtc_ck), "no rtc_ck clock");
775 
776 	if (rtc->data->has_pclk) {
777 		ret = clk_prepare_enable(rtc->pclk);
778 		if (ret)
779 			return ret;
780 	}
781 
782 	ret = clk_prepare_enable(rtc->rtc_ck);
783 	if (ret)
784 		goto err_no_rtc_ck;
785 
786 	if (rtc->data->need_dbp)
787 		regmap_update_bits(rtc->dbp, rtc->dbp_reg,
788 				   rtc->dbp_mask, rtc->dbp_mask);
789 
790 	/*
791 	 * After a system reset, RTC_ISR.INITS flag can be read to check if
792 	 * the calendar has been initialized or not. INITS flag is reset by a
793 	 * power-on reset (no vbat, no power-supply). It is not reset if
794 	 * rtc_ck parent clock has changed (so RTC prescalers need to be
795 	 * changed). That's why we cannot rely on this flag to know if RTC
796 	 * init has to be done.
797 	 */
798 	ret = stm32_rtc_init(pdev, rtc);
799 	if (ret)
800 		goto err;
801 
802 	rtc->irq_alarm = platform_get_irq(pdev, 0);
803 	if (rtc->irq_alarm <= 0) {
804 		ret = rtc->irq_alarm;
805 		goto err;
806 	}
807 
808 	ret = device_init_wakeup(&pdev->dev, true);
809 	if (ret)
810 		goto err;
811 
812 	ret = dev_pm_set_wake_irq(&pdev->dev, rtc->irq_alarm);
813 	if (ret)
814 		goto err;
815 
816 	platform_set_drvdata(pdev, rtc);
817 
818 	rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name,
819 						&stm32_rtc_ops, THIS_MODULE);
820 	if (IS_ERR(rtc->rtc_dev)) {
821 		ret = PTR_ERR(rtc->rtc_dev);
822 		dev_err(&pdev->dev, "rtc device registration failed, err=%d\n",
823 			ret);
824 		goto err;
825 	}
826 
827 	/* Handle RTC alarm interrupts */
828 	ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_alarm, NULL,
829 					stm32_rtc_alarm_irq, IRQF_ONESHOT,
830 					pdev->name, rtc);
831 	if (ret) {
832 		dev_err(&pdev->dev, "IRQ%d (alarm interrupt) already claimed\n",
833 			rtc->irq_alarm);
834 		goto err;
835 	}
836 
837 	/*
838 	 * If INITS flag is reset (calendar year field set to 0x00), calendar
839 	 * must be initialized
840 	 */
841 	if (!(readl_relaxed(rtc->base + regs->isr) & STM32_RTC_ISR_INITS))
842 		dev_warn(&pdev->dev, "Date/Time must be initialized\n");
843 
844 	if (regs->verr != UNDEF_REG) {
845 		u32 ver = readl_relaxed(rtc->base + regs->verr);
846 
847 		dev_info(&pdev->dev, "registered rev:%d.%d\n",
848 			 (ver >> STM32_RTC_VERR_MAJREV_SHIFT) & 0xF,
849 			 (ver >> STM32_RTC_VERR_MINREV_SHIFT) & 0xF);
850 	}
851 
852 	return 0;
853 
854 err:
855 	clk_disable_unprepare(rtc->rtc_ck);
856 err_no_rtc_ck:
857 	if (rtc->data->has_pclk)
858 		clk_disable_unprepare(rtc->pclk);
859 
860 	if (rtc->data->need_dbp)
861 		regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
862 
863 	dev_pm_clear_wake_irq(&pdev->dev);
864 	device_init_wakeup(&pdev->dev, false);
865 
866 	return ret;
867 }
868 
stm32_rtc_remove(struct platform_device * pdev)869 static void stm32_rtc_remove(struct platform_device *pdev)
870 {
871 	struct stm32_rtc *rtc = platform_get_drvdata(pdev);
872 	const struct stm32_rtc_registers *regs = &rtc->data->regs;
873 	unsigned int cr;
874 
875 	/* Disable interrupts */
876 	stm32_rtc_wpr_unlock(rtc);
877 	cr = readl_relaxed(rtc->base + regs->cr);
878 	cr &= ~STM32_RTC_CR_ALRAIE;
879 	writel_relaxed(cr, rtc->base + regs->cr);
880 	stm32_rtc_wpr_lock(rtc);
881 
882 	clk_disable_unprepare(rtc->rtc_ck);
883 	if (rtc->data->has_pclk)
884 		clk_disable_unprepare(rtc->pclk);
885 
886 	/* Enable backup domain write protection if needed */
887 	if (rtc->data->need_dbp)
888 		regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
889 
890 	dev_pm_clear_wake_irq(&pdev->dev);
891 	device_init_wakeup(&pdev->dev, false);
892 }
893 
stm32_rtc_suspend(struct device * dev)894 static int stm32_rtc_suspend(struct device *dev)
895 {
896 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
897 
898 	if (rtc->data->has_pclk)
899 		clk_disable_unprepare(rtc->pclk);
900 
901 	return 0;
902 }
903 
stm32_rtc_resume(struct device * dev)904 static int stm32_rtc_resume(struct device *dev)
905 {
906 	struct stm32_rtc *rtc = dev_get_drvdata(dev);
907 	int ret = 0;
908 
909 	if (rtc->data->has_pclk) {
910 		ret = clk_prepare_enable(rtc->pclk);
911 		if (ret)
912 			return ret;
913 	}
914 
915 	ret = stm32_rtc_wait_sync(rtc);
916 	if (ret < 0) {
917 		if (rtc->data->has_pclk)
918 			clk_disable_unprepare(rtc->pclk);
919 		return ret;
920 	}
921 
922 	return ret;
923 }
924 
925 static const struct dev_pm_ops stm32_rtc_pm_ops = {
926 	NOIRQ_SYSTEM_SLEEP_PM_OPS(stm32_rtc_suspend, stm32_rtc_resume)
927 };
928 
929 static struct platform_driver stm32_rtc_driver = {
930 	.probe		= stm32_rtc_probe,
931 	.remove_new	= stm32_rtc_remove,
932 	.driver		= {
933 		.name	= DRIVER_NAME,
934 		.pm	= &stm32_rtc_pm_ops,
935 		.of_match_table = stm32_rtc_of_match,
936 	},
937 };
938 
939 module_platform_driver(stm32_rtc_driver);
940 
941 MODULE_ALIAS("platform:" DRIVER_NAME);
942 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
943 MODULE_DESCRIPTION("STMicroelectronics STM32 Real Time Clock driver");
944 MODULE_LICENSE("GPL v2");
945