xref: /openbmc/linux/arch/arm64/kvm/sys_regs.c (revision 16f6ccde74a6f8538c62f127f17207c75f4dba7a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/kvm_host.h>
16 #include <linux/mm.h>
17 #include <linux/printk.h>
18 #include <linux/uaccess.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/cputype.h>
22 #include <asm/debug-monitors.h>
23 #include <asm/esr.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_emulate.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_nested.h>
29 #include <asm/perf_event.h>
30 #include <asm/sysreg.h>
31 
32 #include <trace/events/kvm.h>
33 
34 #include "sys_regs.h"
35 #include "vgic/vgic.h"
36 
37 #include "trace.h"
38 
39 /*
40  * For AArch32, we only take care of what is being trapped. Anything
41  * that has to do with init and userspace access has to go via the
42  * 64bit interface.
43  */
44 
45 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
46 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
47 		      u64 val);
48 
read_from_write_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)49 static bool read_from_write_only(struct kvm_vcpu *vcpu,
50 				 struct sys_reg_params *params,
51 				 const struct sys_reg_desc *r)
52 {
53 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
54 	print_sys_reg_instr(params);
55 	kvm_inject_undefined(vcpu);
56 	return false;
57 }
58 
write_to_read_only(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)59 static bool write_to_read_only(struct kvm_vcpu *vcpu,
60 			       struct sys_reg_params *params,
61 			       const struct sys_reg_desc *r)
62 {
63 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
64 	print_sys_reg_instr(params);
65 	kvm_inject_undefined(vcpu);
66 	return false;
67 }
68 
vcpu_read_sys_reg(const struct kvm_vcpu * vcpu,int reg)69 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
70 {
71 	u64 val = 0x8badf00d8badf00d;
72 
73 	if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
74 	    __vcpu_read_sys_reg_from_cpu(reg, &val))
75 		return val;
76 
77 	return __vcpu_sys_reg(vcpu, reg);
78 }
79 
vcpu_write_sys_reg(struct kvm_vcpu * vcpu,u64 val,int reg)80 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
81 {
82 	if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
83 	    __vcpu_write_sys_reg_to_cpu(val, reg))
84 		return;
85 
86 	__vcpu_sys_reg(vcpu, reg) = val;
87 }
88 
89 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
90 #define CSSELR_MAX 14
91 
92 /*
93  * Returns the minimum line size for the selected cache, expressed as
94  * Log2(bytes).
95  */
get_min_cache_line_size(bool icache)96 static u8 get_min_cache_line_size(bool icache)
97 {
98 	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
99 	u8 field;
100 
101 	if (icache)
102 		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
103 	else
104 		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
105 
106 	/*
107 	 * Cache line size is represented as Log2(words) in CTR_EL0.
108 	 * Log2(bytes) can be derived with the following:
109 	 *
110 	 * Log2(words) + 2 = Log2(bytes / 4) + 2
111 	 * 		   = Log2(bytes) - 2 + 2
112 	 * 		   = Log2(bytes)
113 	 */
114 	return field + 2;
115 }
116 
117 /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(struct kvm_vcpu * vcpu,u32 csselr)118 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
119 {
120 	u8 line_size;
121 
122 	if (vcpu->arch.ccsidr)
123 		return vcpu->arch.ccsidr[csselr];
124 
125 	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
126 
127 	/*
128 	 * Fabricate a CCSIDR value as the overriding value does not exist.
129 	 * The real CCSIDR value will not be used as it can vary by the
130 	 * physical CPU which the vcpu currently resides in.
131 	 *
132 	 * The line size is determined with get_min_cache_line_size(), which
133 	 * should be valid for all CPUs even if they have different cache
134 	 * configuration.
135 	 *
136 	 * The associativity bits are cleared, meaning the geometry of all data
137 	 * and unified caches (which are guaranteed to be PIPT and thus
138 	 * non-aliasing) are 1 set and 1 way.
139 	 * Guests should not be doing cache operations by set/way at all, and
140 	 * for this reason, we trap them and attempt to infer the intent, so
141 	 * that we can flush the entire guest's address space at the appropriate
142 	 * time. The exposed geometry minimizes the number of the traps.
143 	 * [If guests should attempt to infer aliasing properties from the
144 	 * geometry (which is not permitted by the architecture), they would
145 	 * only do so for virtually indexed caches.]
146 	 *
147 	 * We don't check if the cache level exists as it is allowed to return
148 	 * an UNKNOWN value if not.
149 	 */
150 	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
151 }
152 
set_ccsidr(struct kvm_vcpu * vcpu,u32 csselr,u32 val)153 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
154 {
155 	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
156 	u32 *ccsidr = vcpu->arch.ccsidr;
157 	u32 i;
158 
159 	if ((val & CCSIDR_EL1_RES0) ||
160 	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
161 		return -EINVAL;
162 
163 	if (!ccsidr) {
164 		if (val == get_ccsidr(vcpu, csselr))
165 			return 0;
166 
167 		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
168 		if (!ccsidr)
169 			return -ENOMEM;
170 
171 		for (i = 0; i < CSSELR_MAX; i++)
172 			ccsidr[i] = get_ccsidr(vcpu, i);
173 
174 		vcpu->arch.ccsidr = ccsidr;
175 	}
176 
177 	ccsidr[csselr] = val;
178 
179 	return 0;
180 }
181 
access_rw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)182 static bool access_rw(struct kvm_vcpu *vcpu,
183 		      struct sys_reg_params *p,
184 		      const struct sys_reg_desc *r)
185 {
186 	if (p->is_write)
187 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
188 	else
189 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
190 
191 	return true;
192 }
193 
194 /*
195  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
196  */
access_dcsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)197 static bool access_dcsw(struct kvm_vcpu *vcpu,
198 			struct sys_reg_params *p,
199 			const struct sys_reg_desc *r)
200 {
201 	if (!p->is_write)
202 		return read_from_write_only(vcpu, p, r);
203 
204 	/*
205 	 * Only track S/W ops if we don't have FWB. It still indicates
206 	 * that the guest is a bit broken (S/W operations should only
207 	 * be done by firmware, knowing that there is only a single
208 	 * CPU left in the system, and certainly not from non-secure
209 	 * software).
210 	 */
211 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
212 		kvm_set_way_flush(vcpu);
213 
214 	return true;
215 }
216 
access_dcgsw(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)217 static bool access_dcgsw(struct kvm_vcpu *vcpu,
218 			 struct sys_reg_params *p,
219 			 const struct sys_reg_desc *r)
220 {
221 	if (!kvm_has_mte(vcpu->kvm)) {
222 		kvm_inject_undefined(vcpu);
223 		return false;
224 	}
225 
226 	/* Treat MTE S/W ops as we treat the classic ones: with contempt */
227 	return access_dcsw(vcpu, p, r);
228 }
229 
get_access_mask(const struct sys_reg_desc * r,u64 * mask,u64 * shift)230 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
231 {
232 	switch (r->aarch32_map) {
233 	case AA32_LO:
234 		*mask = GENMASK_ULL(31, 0);
235 		*shift = 0;
236 		break;
237 	case AA32_HI:
238 		*mask = GENMASK_ULL(63, 32);
239 		*shift = 32;
240 		break;
241 	default:
242 		*mask = GENMASK_ULL(63, 0);
243 		*shift = 0;
244 		break;
245 	}
246 }
247 
248 /*
249  * Generic accessor for VM registers. Only called as long as HCR_TVM
250  * is set. If the guest enables the MMU, we stop trapping the VM
251  * sys_regs and leave it in complete control of the caches.
252  */
access_vm_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)253 static bool access_vm_reg(struct kvm_vcpu *vcpu,
254 			  struct sys_reg_params *p,
255 			  const struct sys_reg_desc *r)
256 {
257 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
258 	u64 val, mask, shift;
259 
260 	BUG_ON(!p->is_write);
261 
262 	get_access_mask(r, &mask, &shift);
263 
264 	if (~mask) {
265 		val = vcpu_read_sys_reg(vcpu, r->reg);
266 		val &= ~mask;
267 	} else {
268 		val = 0;
269 	}
270 
271 	val |= (p->regval & (mask >> shift)) << shift;
272 	vcpu_write_sys_reg(vcpu, val, r->reg);
273 
274 	kvm_toggle_cache(vcpu, was_enabled);
275 	return true;
276 }
277 
access_actlr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)278 static bool access_actlr(struct kvm_vcpu *vcpu,
279 			 struct sys_reg_params *p,
280 			 const struct sys_reg_desc *r)
281 {
282 	u64 mask, shift;
283 
284 	if (p->is_write)
285 		return ignore_write(vcpu, p);
286 
287 	get_access_mask(r, &mask, &shift);
288 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
289 
290 	return true;
291 }
292 
293 /*
294  * Trap handler for the GICv3 SGI generation system register.
295  * Forward the request to the VGIC emulation.
296  * The cp15_64 code makes sure this automatically works
297  * for both AArch64 and AArch32 accesses.
298  */
access_gic_sgi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)299 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
300 			   struct sys_reg_params *p,
301 			   const struct sys_reg_desc *r)
302 {
303 	bool g1;
304 
305 	if (!kvm_has_gicv3(vcpu->kvm)) {
306 		kvm_inject_undefined(vcpu);
307 		return false;
308 	}
309 
310 	if (!p->is_write)
311 		return read_from_write_only(vcpu, p, r);
312 
313 	/*
314 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
315 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
316 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
317 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
318 	 * group.
319 	 */
320 	if (p->Op0 == 0) {		/* AArch32 */
321 		switch (p->Op1) {
322 		default:		/* Keep GCC quiet */
323 		case 0:			/* ICC_SGI1R */
324 			g1 = true;
325 			break;
326 		case 1:			/* ICC_ASGI1R */
327 		case 2:			/* ICC_SGI0R */
328 			g1 = false;
329 			break;
330 		}
331 	} else {			/* AArch64 */
332 		switch (p->Op2) {
333 		default:		/* Keep GCC quiet */
334 		case 5:			/* ICC_SGI1R_EL1 */
335 			g1 = true;
336 			break;
337 		case 6:			/* ICC_ASGI1R_EL1 */
338 		case 7:			/* ICC_SGI0R_EL1 */
339 			g1 = false;
340 			break;
341 		}
342 	}
343 
344 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
345 
346 	return true;
347 }
348 
access_gic_sre(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)349 static bool access_gic_sre(struct kvm_vcpu *vcpu,
350 			   struct sys_reg_params *p,
351 			   const struct sys_reg_desc *r)
352 {
353 	if (p->is_write)
354 		return ignore_write(vcpu, p);
355 
356 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
357 	return true;
358 }
359 
trap_raz_wi(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)360 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
361 			struct sys_reg_params *p,
362 			const struct sys_reg_desc *r)
363 {
364 	if (p->is_write)
365 		return ignore_write(vcpu, p);
366 	else
367 		return read_zero(vcpu, p);
368 }
369 
trap_undef(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)370 static bool trap_undef(struct kvm_vcpu *vcpu,
371 		       struct sys_reg_params *p,
372 		       const struct sys_reg_desc *r)
373 {
374 	kvm_inject_undefined(vcpu);
375 	return false;
376 }
377 
378 /*
379  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
380  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
381  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
382  * treat it separately.
383  */
trap_loregion(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)384 static bool trap_loregion(struct kvm_vcpu *vcpu,
385 			  struct sys_reg_params *p,
386 			  const struct sys_reg_desc *r)
387 {
388 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
389 	u32 sr = reg_to_encoding(r);
390 
391 	if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
392 		kvm_inject_undefined(vcpu);
393 		return false;
394 	}
395 
396 	if (p->is_write && sr == SYS_LORID_EL1)
397 		return write_to_read_only(vcpu, p, r);
398 
399 	return trap_raz_wi(vcpu, p, r);
400 }
401 
trap_oslar_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)402 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
403 			   struct sys_reg_params *p,
404 			   const struct sys_reg_desc *r)
405 {
406 	u64 oslsr;
407 
408 	if (!p->is_write)
409 		return read_from_write_only(vcpu, p, r);
410 
411 	/* Forward the OSLK bit to OSLSR */
412 	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
413 	if (p->regval & OSLAR_EL1_OSLK)
414 		oslsr |= OSLSR_EL1_OSLK;
415 
416 	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
417 	return true;
418 }
419 
trap_oslsr_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)420 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
421 			   struct sys_reg_params *p,
422 			   const struct sys_reg_desc *r)
423 {
424 	if (p->is_write)
425 		return write_to_read_only(vcpu, p, r);
426 
427 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
428 	return true;
429 }
430 
set_oslsr_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)431 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
432 			 u64 val)
433 {
434 	/*
435 	 * The only modifiable bit is the OSLK bit. Refuse the write if
436 	 * userspace attempts to change any other bit in the register.
437 	 */
438 	if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
439 		return -EINVAL;
440 
441 	__vcpu_sys_reg(vcpu, rd->reg) = val;
442 	return 0;
443 }
444 
trap_dbgauthstatus_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)445 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
446 				   struct sys_reg_params *p,
447 				   const struct sys_reg_desc *r)
448 {
449 	if (p->is_write) {
450 		return ignore_write(vcpu, p);
451 	} else {
452 		p->regval = read_sysreg(dbgauthstatus_el1);
453 		return true;
454 	}
455 }
456 
457 /*
458  * We want to avoid world-switching all the DBG registers all the
459  * time:
460  *
461  * - If we've touched any debug register, it is likely that we're
462  *   going to touch more of them. It then makes sense to disable the
463  *   traps and start doing the save/restore dance
464  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
465  *   then mandatory to save/restore the registers, as the guest
466  *   depends on them.
467  *
468  * For this, we use a DIRTY bit, indicating the guest has modified the
469  * debug registers, used as follow:
470  *
471  * On guest entry:
472  * - If the dirty bit is set (because we're coming back from trapping),
473  *   disable the traps, save host registers, restore guest registers.
474  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
475  *   set the dirty bit, disable the traps, save host registers,
476  *   restore guest registers.
477  * - Otherwise, enable the traps
478  *
479  * On guest exit:
480  * - If the dirty bit is set, save guest registers, restore host
481  *   registers and clear the dirty bit. This ensure that the host can
482  *   now use the debug registers.
483  */
trap_debug_regs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)484 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
485 			    struct sys_reg_params *p,
486 			    const struct sys_reg_desc *r)
487 {
488 	access_rw(vcpu, p, r);
489 	if (p->is_write)
490 		vcpu_set_flag(vcpu, DEBUG_DIRTY);
491 
492 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
493 
494 	return true;
495 }
496 
497 /*
498  * reg_to_dbg/dbg_to_reg
499  *
500  * A 32 bit write to a debug register leave top bits alone
501  * A 32 bit read from a debug register only returns the bottom bits
502  *
503  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
504  * switches between host and guest values in future.
505  */
reg_to_dbg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd,u64 * dbg_reg)506 static void reg_to_dbg(struct kvm_vcpu *vcpu,
507 		       struct sys_reg_params *p,
508 		       const struct sys_reg_desc *rd,
509 		       u64 *dbg_reg)
510 {
511 	u64 mask, shift, val;
512 
513 	get_access_mask(rd, &mask, &shift);
514 
515 	val = *dbg_reg;
516 	val &= ~mask;
517 	val |= (p->regval & (mask >> shift)) << shift;
518 	*dbg_reg = val;
519 
520 	vcpu_set_flag(vcpu, DEBUG_DIRTY);
521 }
522 
dbg_to_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd,u64 * dbg_reg)523 static void dbg_to_reg(struct kvm_vcpu *vcpu,
524 		       struct sys_reg_params *p,
525 		       const struct sys_reg_desc *rd,
526 		       u64 *dbg_reg)
527 {
528 	u64 mask, shift;
529 
530 	get_access_mask(rd, &mask, &shift);
531 	p->regval = (*dbg_reg & mask) >> shift;
532 }
533 
trap_bvr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)534 static bool trap_bvr(struct kvm_vcpu *vcpu,
535 		     struct sys_reg_params *p,
536 		     const struct sys_reg_desc *rd)
537 {
538 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
539 
540 	if (p->is_write)
541 		reg_to_dbg(vcpu, p, rd, dbg_reg);
542 	else
543 		dbg_to_reg(vcpu, p, rd, dbg_reg);
544 
545 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
546 
547 	return true;
548 }
549 
set_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)550 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
551 		   u64 val)
552 {
553 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
554 	return 0;
555 }
556 
get_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)557 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
558 		   u64 *val)
559 {
560 	*val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
561 	return 0;
562 }
563 
reset_bvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)564 static u64 reset_bvr(struct kvm_vcpu *vcpu,
565 		      const struct sys_reg_desc *rd)
566 {
567 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
568 	return rd->val;
569 }
570 
trap_bcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)571 static bool trap_bcr(struct kvm_vcpu *vcpu,
572 		     struct sys_reg_params *p,
573 		     const struct sys_reg_desc *rd)
574 {
575 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
576 
577 	if (p->is_write)
578 		reg_to_dbg(vcpu, p, rd, dbg_reg);
579 	else
580 		dbg_to_reg(vcpu, p, rd, dbg_reg);
581 
582 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
583 
584 	return true;
585 }
586 
set_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)587 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
588 		   u64 val)
589 {
590 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
591 	return 0;
592 }
593 
get_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)594 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
595 		   u64 *val)
596 {
597 	*val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
598 	return 0;
599 }
600 
reset_bcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)601 static u64 reset_bcr(struct kvm_vcpu *vcpu,
602 		      const struct sys_reg_desc *rd)
603 {
604 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
605 	return rd->val;
606 }
607 
trap_wvr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)608 static bool trap_wvr(struct kvm_vcpu *vcpu,
609 		     struct sys_reg_params *p,
610 		     const struct sys_reg_desc *rd)
611 {
612 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
613 
614 	if (p->is_write)
615 		reg_to_dbg(vcpu, p, rd, dbg_reg);
616 	else
617 		dbg_to_reg(vcpu, p, rd, dbg_reg);
618 
619 	trace_trap_reg(__func__, rd->CRm, p->is_write,
620 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
621 
622 	return true;
623 }
624 
set_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)625 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
626 		   u64 val)
627 {
628 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
629 	return 0;
630 }
631 
get_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)632 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
633 		   u64 *val)
634 {
635 	*val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
636 	return 0;
637 }
638 
reset_wvr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)639 static u64 reset_wvr(struct kvm_vcpu *vcpu,
640 		      const struct sys_reg_desc *rd)
641 {
642 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
643 	return rd->val;
644 }
645 
trap_wcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * rd)646 static bool trap_wcr(struct kvm_vcpu *vcpu,
647 		     struct sys_reg_params *p,
648 		     const struct sys_reg_desc *rd)
649 {
650 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
651 
652 	if (p->is_write)
653 		reg_to_dbg(vcpu, p, rd, dbg_reg);
654 	else
655 		dbg_to_reg(vcpu, p, rd, dbg_reg);
656 
657 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
658 
659 	return true;
660 }
661 
set_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)662 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
663 		   u64 val)
664 {
665 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
666 	return 0;
667 }
668 
get_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)669 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
670 		   u64 *val)
671 {
672 	*val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
673 	return 0;
674 }
675 
reset_wcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)676 static u64 reset_wcr(struct kvm_vcpu *vcpu,
677 		      const struct sys_reg_desc *rd)
678 {
679 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
680 	return rd->val;
681 }
682 
reset_amair_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)683 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
684 {
685 	u64 amair = read_sysreg(amair_el1);
686 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
687 	return amair;
688 }
689 
reset_actlr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)690 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
691 {
692 	u64 actlr = read_sysreg(actlr_el1);
693 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
694 	return actlr;
695 }
696 
reset_mpidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)697 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
698 {
699 	u64 mpidr;
700 
701 	/*
702 	 * Map the vcpu_id into the first three affinity level fields of
703 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
704 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
705 	 * of the GICv3 to be able to address each CPU directly when
706 	 * sending IPIs.
707 	 */
708 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
709 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
710 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
711 	mpidr |= (1ULL << 31);
712 	vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
713 
714 	return mpidr;
715 }
716 
pmu_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)717 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
718 				   const struct sys_reg_desc *r)
719 {
720 	if (kvm_vcpu_has_pmu(vcpu))
721 		return 0;
722 
723 	return REG_HIDDEN;
724 }
725 
reset_pmu_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)726 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
727 {
728 	u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
729 
730 	/* No PMU available, any PMU reg may UNDEF... */
731 	if (!kvm_arm_support_pmu_v3())
732 		return 0;
733 
734 	n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
735 	n &= ARMV8_PMU_PMCR_N_MASK;
736 	if (n)
737 		mask |= GENMASK(n - 1, 0);
738 
739 	reset_unknown(vcpu, r);
740 	__vcpu_sys_reg(vcpu, r->reg) &= mask;
741 
742 	return __vcpu_sys_reg(vcpu, r->reg);
743 }
744 
reset_pmevcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)745 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
746 {
747 	reset_unknown(vcpu, r);
748 	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
749 
750 	return __vcpu_sys_reg(vcpu, r->reg);
751 }
752 
reset_pmevtyper(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)753 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
754 {
755 	reset_unknown(vcpu, r);
756 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
757 
758 	return __vcpu_sys_reg(vcpu, r->reg);
759 }
760 
reset_pmselr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)761 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
762 {
763 	reset_unknown(vcpu, r);
764 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
765 
766 	return __vcpu_sys_reg(vcpu, r->reg);
767 }
768 
reset_pmcr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)769 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
770 {
771 	u64 pmcr;
772 
773 	/* No PMU available, PMCR_EL0 may UNDEF... */
774 	if (!kvm_arm_support_pmu_v3())
775 		return 0;
776 
777 	/* Only preserve PMCR_EL0.N, and reset the rest to 0 */
778 	pmcr = read_sysreg(pmcr_el0) & (ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT);
779 	if (!kvm_supports_32bit_el0())
780 		pmcr |= ARMV8_PMU_PMCR_LC;
781 
782 	__vcpu_sys_reg(vcpu, r->reg) = pmcr;
783 
784 	return __vcpu_sys_reg(vcpu, r->reg);
785 }
786 
check_pmu_access_disabled(struct kvm_vcpu * vcpu,u64 flags)787 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
788 {
789 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
790 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
791 
792 	if (!enabled)
793 		kvm_inject_undefined(vcpu);
794 
795 	return !enabled;
796 }
797 
pmu_access_el0_disabled(struct kvm_vcpu * vcpu)798 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
799 {
800 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
801 }
802 
pmu_write_swinc_el0_disabled(struct kvm_vcpu * vcpu)803 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
804 {
805 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
806 }
807 
pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu * vcpu)808 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
809 {
810 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
811 }
812 
pmu_access_event_counter_el0_disabled(struct kvm_vcpu * vcpu)813 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
814 {
815 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
816 }
817 
access_pmcr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)818 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
819 			const struct sys_reg_desc *r)
820 {
821 	u64 val;
822 
823 	if (pmu_access_el0_disabled(vcpu))
824 		return false;
825 
826 	if (p->is_write) {
827 		/*
828 		 * Only update writeable bits of PMCR (continuing into
829 		 * kvm_pmu_handle_pmcr() as well)
830 		 */
831 		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
832 		val &= ~ARMV8_PMU_PMCR_MASK;
833 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
834 		if (!kvm_supports_32bit_el0())
835 			val |= ARMV8_PMU_PMCR_LC;
836 		kvm_pmu_handle_pmcr(vcpu, val);
837 	} else {
838 		/* PMCR.P & PMCR.C are RAZ */
839 		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
840 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
841 		p->regval = val;
842 	}
843 
844 	return true;
845 }
846 
access_pmselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)847 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
848 			  const struct sys_reg_desc *r)
849 {
850 	if (pmu_access_event_counter_el0_disabled(vcpu))
851 		return false;
852 
853 	if (p->is_write)
854 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
855 	else
856 		/* return PMSELR.SEL field */
857 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
858 			    & ARMV8_PMU_COUNTER_MASK;
859 
860 	return true;
861 }
862 
access_pmceid(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)863 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
864 			  const struct sys_reg_desc *r)
865 {
866 	u64 pmceid, mask, shift;
867 
868 	BUG_ON(p->is_write);
869 
870 	if (pmu_access_el0_disabled(vcpu))
871 		return false;
872 
873 	get_access_mask(r, &mask, &shift);
874 
875 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
876 	pmceid &= mask;
877 	pmceid >>= shift;
878 
879 	p->regval = pmceid;
880 
881 	return true;
882 }
883 
pmu_counter_idx_valid(struct kvm_vcpu * vcpu,u64 idx)884 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
885 {
886 	u64 pmcr, val;
887 
888 	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
889 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
890 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
891 		kvm_inject_undefined(vcpu);
892 		return false;
893 	}
894 
895 	return true;
896 }
897 
get_pmu_evcntr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r,u64 * val)898 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
899 			  u64 *val)
900 {
901 	u64 idx;
902 
903 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
904 		/* PMCCNTR_EL0 */
905 		idx = ARMV8_PMU_CYCLE_IDX;
906 	else
907 		/* PMEVCNTRn_EL0 */
908 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
909 
910 	*val = kvm_pmu_get_counter_value(vcpu, idx);
911 	return 0;
912 }
913 
access_pmu_evcntr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)914 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
915 			      struct sys_reg_params *p,
916 			      const struct sys_reg_desc *r)
917 {
918 	u64 idx = ~0UL;
919 
920 	if (r->CRn == 9 && r->CRm == 13) {
921 		if (r->Op2 == 2) {
922 			/* PMXEVCNTR_EL0 */
923 			if (pmu_access_event_counter_el0_disabled(vcpu))
924 				return false;
925 
926 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
927 			      & ARMV8_PMU_COUNTER_MASK;
928 		} else if (r->Op2 == 0) {
929 			/* PMCCNTR_EL0 */
930 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
931 				return false;
932 
933 			idx = ARMV8_PMU_CYCLE_IDX;
934 		}
935 	} else if (r->CRn == 0 && r->CRm == 9) {
936 		/* PMCCNTR */
937 		if (pmu_access_event_counter_el0_disabled(vcpu))
938 			return false;
939 
940 		idx = ARMV8_PMU_CYCLE_IDX;
941 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
942 		/* PMEVCNTRn_EL0 */
943 		if (pmu_access_event_counter_el0_disabled(vcpu))
944 			return false;
945 
946 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
947 	}
948 
949 	/* Catch any decoding mistake */
950 	WARN_ON(idx == ~0UL);
951 
952 	if (!pmu_counter_idx_valid(vcpu, idx))
953 		return false;
954 
955 	if (p->is_write) {
956 		if (pmu_access_el0_disabled(vcpu))
957 			return false;
958 
959 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
960 	} else {
961 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
962 	}
963 
964 	return true;
965 }
966 
access_pmu_evtyper(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)967 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
968 			       const struct sys_reg_desc *r)
969 {
970 	u64 idx, reg;
971 
972 	if (pmu_access_el0_disabled(vcpu))
973 		return false;
974 
975 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
976 		/* PMXEVTYPER_EL0 */
977 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
978 		reg = PMEVTYPER0_EL0 + idx;
979 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
980 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
981 		if (idx == ARMV8_PMU_CYCLE_IDX)
982 			reg = PMCCFILTR_EL0;
983 		else
984 			/* PMEVTYPERn_EL0 */
985 			reg = PMEVTYPER0_EL0 + idx;
986 	} else {
987 		BUG();
988 	}
989 
990 	if (!pmu_counter_idx_valid(vcpu, idx))
991 		return false;
992 
993 	if (p->is_write) {
994 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
995 		kvm_vcpu_pmu_restore_guest(vcpu);
996 	} else {
997 		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
998 	}
999 
1000 	return true;
1001 }
1002 
access_pmcnten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1003 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1004 			   const struct sys_reg_desc *r)
1005 {
1006 	u64 val, mask;
1007 
1008 	if (pmu_access_el0_disabled(vcpu))
1009 		return false;
1010 
1011 	mask = kvm_pmu_valid_counter_mask(vcpu);
1012 	if (p->is_write) {
1013 		val = p->regval & mask;
1014 		if (r->Op2 & 0x1) {
1015 			/* accessing PMCNTENSET_EL0 */
1016 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1017 			kvm_pmu_enable_counter_mask(vcpu, val);
1018 			kvm_vcpu_pmu_restore_guest(vcpu);
1019 		} else {
1020 			/* accessing PMCNTENCLR_EL0 */
1021 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1022 			kvm_pmu_disable_counter_mask(vcpu, val);
1023 		}
1024 	} else {
1025 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1026 	}
1027 
1028 	return true;
1029 }
1030 
access_pminten(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1031 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1032 			   const struct sys_reg_desc *r)
1033 {
1034 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1035 
1036 	if (check_pmu_access_disabled(vcpu, 0))
1037 		return false;
1038 
1039 	if (p->is_write) {
1040 		u64 val = p->regval & mask;
1041 
1042 		if (r->Op2 & 0x1)
1043 			/* accessing PMINTENSET_EL1 */
1044 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1045 		else
1046 			/* accessing PMINTENCLR_EL1 */
1047 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1048 	} else {
1049 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1050 	}
1051 
1052 	return true;
1053 }
1054 
access_pmovs(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1055 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1056 			 const struct sys_reg_desc *r)
1057 {
1058 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1059 
1060 	if (pmu_access_el0_disabled(vcpu))
1061 		return false;
1062 
1063 	if (p->is_write) {
1064 		if (r->CRm & 0x2)
1065 			/* accessing PMOVSSET_EL0 */
1066 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1067 		else
1068 			/* accessing PMOVSCLR_EL0 */
1069 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1070 	} else {
1071 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1072 	}
1073 
1074 	return true;
1075 }
1076 
access_pmswinc(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1077 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1078 			   const struct sys_reg_desc *r)
1079 {
1080 	u64 mask;
1081 
1082 	if (!p->is_write)
1083 		return read_from_write_only(vcpu, p, r);
1084 
1085 	if (pmu_write_swinc_el0_disabled(vcpu))
1086 		return false;
1087 
1088 	mask = kvm_pmu_valid_counter_mask(vcpu);
1089 	kvm_pmu_software_increment(vcpu, p->regval & mask);
1090 	return true;
1091 }
1092 
access_pmuserenr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1093 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1094 			     const struct sys_reg_desc *r)
1095 {
1096 	if (p->is_write) {
1097 		if (!vcpu_mode_priv(vcpu)) {
1098 			kvm_inject_undefined(vcpu);
1099 			return false;
1100 		}
1101 
1102 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1103 			       p->regval & ARMV8_PMU_USERENR_MASK;
1104 	} else {
1105 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1106 			    & ARMV8_PMU_USERENR_MASK;
1107 	}
1108 
1109 	return true;
1110 }
1111 
1112 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1113 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1114 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1115 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1116 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1117 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1118 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1119 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1120 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1121 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1122 
1123 #define PMU_SYS_REG(name)						\
1124 	SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\
1125 	.visibility = pmu_visibility
1126 
1127 /* Macro to expand the PMEVCNTRn_EL0 register */
1128 #define PMU_PMEVCNTR_EL0(n)						\
1129 	{ PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\
1130 	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
1131 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1132 
1133 /* Macro to expand the PMEVTYPERn_EL0 register */
1134 #define PMU_PMEVTYPER_EL0(n)						\
1135 	{ PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\
1136 	  .reset = reset_pmevtyper,					\
1137 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1138 
undef_access(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1139 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1140 			 const struct sys_reg_desc *r)
1141 {
1142 	kvm_inject_undefined(vcpu);
1143 
1144 	return false;
1145 }
1146 
1147 /* Macro to expand the AMU counter and type registers*/
1148 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1149 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1150 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1151 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1152 
ptrauth_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1153 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1154 			const struct sys_reg_desc *rd)
1155 {
1156 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1157 }
1158 
1159 /*
1160  * If we land here on a PtrAuth access, that is because we didn't
1161  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1162  * way this happens is when the guest does not have PtrAuth support
1163  * enabled.
1164  */
1165 #define __PTRAUTH_KEY(k)						\
1166 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1167 	.visibility = ptrauth_visibility}
1168 
1169 #define PTRAUTH_KEY(k)							\
1170 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1171 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1172 
access_arch_timer(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1173 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1174 			      struct sys_reg_params *p,
1175 			      const struct sys_reg_desc *r)
1176 {
1177 	enum kvm_arch_timers tmr;
1178 	enum kvm_arch_timer_regs treg;
1179 	u64 reg = reg_to_encoding(r);
1180 
1181 	switch (reg) {
1182 	case SYS_CNTP_TVAL_EL0:
1183 	case SYS_AARCH32_CNTP_TVAL:
1184 		tmr = TIMER_PTIMER;
1185 		treg = TIMER_REG_TVAL;
1186 		break;
1187 	case SYS_CNTP_CTL_EL0:
1188 	case SYS_AARCH32_CNTP_CTL:
1189 		tmr = TIMER_PTIMER;
1190 		treg = TIMER_REG_CTL;
1191 		break;
1192 	case SYS_CNTP_CVAL_EL0:
1193 	case SYS_AARCH32_CNTP_CVAL:
1194 		tmr = TIMER_PTIMER;
1195 		treg = TIMER_REG_CVAL;
1196 		break;
1197 	case SYS_CNTPCT_EL0:
1198 	case SYS_CNTPCTSS_EL0:
1199 	case SYS_AARCH32_CNTPCT:
1200 		tmr = TIMER_PTIMER;
1201 		treg = TIMER_REG_CNT;
1202 		break;
1203 	default:
1204 		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1205 		kvm_inject_undefined(vcpu);
1206 		return false;
1207 	}
1208 
1209 	if (p->is_write)
1210 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1211 	else
1212 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1213 
1214 	return true;
1215 }
1216 
kvm_arm64_ftr_safe_value(u32 id,const struct arm64_ftr_bits * ftrp,s64 new,s64 cur)1217 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1218 				    s64 new, s64 cur)
1219 {
1220 	struct arm64_ftr_bits kvm_ftr = *ftrp;
1221 
1222 	/* Some features have different safe value type in KVM than host features */
1223 	switch (id) {
1224 	case SYS_ID_AA64DFR0_EL1:
1225 		if (kvm_ftr.shift == ID_AA64DFR0_EL1_PMUVer_SHIFT)
1226 			kvm_ftr.type = FTR_LOWER_SAFE;
1227 		break;
1228 	case SYS_ID_DFR0_EL1:
1229 		if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1230 			kvm_ftr.type = FTR_LOWER_SAFE;
1231 		break;
1232 	}
1233 
1234 	return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1235 }
1236 
1237 /**
1238  * arm64_check_features() - Check if a feature register value constitutes
1239  * a subset of features indicated by the idreg's KVM sanitised limit.
1240  *
1241  * This function will check if each feature field of @val is the "safe" value
1242  * against idreg's KVM sanitised limit return from reset() callback.
1243  * If a field value in @val is the same as the one in limit, it is always
1244  * considered the safe value regardless For register fields that are not in
1245  * writable, only the value in limit is considered the safe value.
1246  *
1247  * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1248  */
arm64_check_features(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1249 static int arm64_check_features(struct kvm_vcpu *vcpu,
1250 				const struct sys_reg_desc *rd,
1251 				u64 val)
1252 {
1253 	const struct arm64_ftr_reg *ftr_reg;
1254 	const struct arm64_ftr_bits *ftrp = NULL;
1255 	u32 id = reg_to_encoding(rd);
1256 	u64 writable_mask = rd->val;
1257 	u64 limit = rd->reset(vcpu, rd);
1258 	u64 mask = 0;
1259 
1260 	/*
1261 	 * Hidden and unallocated ID registers may not have a corresponding
1262 	 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1263 	 * only safe value is 0.
1264 	 */
1265 	if (sysreg_visible_as_raz(vcpu, rd))
1266 		return val ? -E2BIG : 0;
1267 
1268 	ftr_reg = get_arm64_ftr_reg(id);
1269 	if (!ftr_reg)
1270 		return -EINVAL;
1271 
1272 	ftrp = ftr_reg->ftr_bits;
1273 
1274 	for (; ftrp && ftrp->width; ftrp++) {
1275 		s64 f_val, f_lim, safe_val;
1276 		u64 ftr_mask;
1277 
1278 		ftr_mask = arm64_ftr_mask(ftrp);
1279 		if ((ftr_mask & writable_mask) != ftr_mask)
1280 			continue;
1281 
1282 		f_val = arm64_ftr_value(ftrp, val);
1283 		f_lim = arm64_ftr_value(ftrp, limit);
1284 		mask |= ftr_mask;
1285 
1286 		if (f_val == f_lim)
1287 			safe_val = f_val;
1288 		else
1289 			safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1290 
1291 		if (safe_val != f_val)
1292 			return -E2BIG;
1293 	}
1294 
1295 	/* For fields that are not writable, values in limit are the safe values. */
1296 	if ((val & ~mask) != (limit & ~mask))
1297 		return -E2BIG;
1298 
1299 	return 0;
1300 }
1301 
pmuver_to_perfmon(u8 pmuver)1302 static u8 pmuver_to_perfmon(u8 pmuver)
1303 {
1304 	switch (pmuver) {
1305 	case ID_AA64DFR0_EL1_PMUVer_IMP:
1306 		return ID_DFR0_EL1_PerfMon_PMUv3;
1307 	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1308 		return ID_DFR0_EL1_PerfMon_IMPDEF;
1309 	default:
1310 		/* Anything ARMv8.1+ and NI have the same value. For now. */
1311 		return pmuver;
1312 	}
1313 }
1314 
1315 /* Read a sanitised cpufeature ID register by sys_reg_desc */
__kvm_read_sanitised_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1316 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1317 				       const struct sys_reg_desc *r)
1318 {
1319 	u32 id = reg_to_encoding(r);
1320 	u64 val;
1321 
1322 	if (sysreg_visible_as_raz(vcpu, r))
1323 		return 0;
1324 
1325 	val = read_sanitised_ftr_reg(id);
1326 
1327 	switch (id) {
1328 	case SYS_ID_AA64PFR1_EL1:
1329 		if (!kvm_has_mte(vcpu->kvm))
1330 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1331 
1332 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1333 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MPAM_frac);
1334 		break;
1335 	case SYS_ID_AA64ISAR1_EL1:
1336 		if (!vcpu_has_ptrauth(vcpu))
1337 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1338 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1339 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1340 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1341 		break;
1342 	case SYS_ID_AA64ISAR2_EL1:
1343 		if (!vcpu_has_ptrauth(vcpu))
1344 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1345 				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1346 		if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1347 			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1348 		val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_MOPS);
1349 		break;
1350 	case SYS_ID_AA64MMFR2_EL1:
1351 		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1352 		break;
1353 	case SYS_ID_MMFR4_EL1:
1354 		val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1355 		break;
1356 	}
1357 
1358 	return val;
1359 }
1360 
kvm_read_sanitised_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1361 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1362 				     const struct sys_reg_desc *r)
1363 {
1364 	return __kvm_read_sanitised_id_reg(vcpu, r);
1365 }
1366 
read_id_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1367 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1368 {
1369 	return IDREG(vcpu->kvm, reg_to_encoding(r));
1370 }
1371 
1372 /*
1373  * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1374  * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
1375  */
is_id_reg(u32 id)1376 static inline bool is_id_reg(u32 id)
1377 {
1378 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1379 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1380 		sys_reg_CRm(id) < 8);
1381 }
1382 
id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1383 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1384 				  const struct sys_reg_desc *r)
1385 {
1386 	u32 id = reg_to_encoding(r);
1387 
1388 	switch (id) {
1389 	case SYS_ID_AA64ZFR0_EL1:
1390 		if (!vcpu_has_sve(vcpu))
1391 			return REG_RAZ;
1392 		break;
1393 	}
1394 
1395 	return 0;
1396 }
1397 
aa32_id_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1398 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1399 				       const struct sys_reg_desc *r)
1400 {
1401 	/*
1402 	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1403 	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1404 	 * systems.
1405 	 */
1406 	if (!kvm_supports_32bit_el0())
1407 		return REG_RAZ | REG_USER_WI;
1408 
1409 	return id_visibility(vcpu, r);
1410 }
1411 
raz_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1412 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1413 				   const struct sys_reg_desc *r)
1414 {
1415 	return REG_RAZ;
1416 }
1417 
1418 /* cpufeature ID register access trap handlers */
1419 
access_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1420 static bool access_id_reg(struct kvm_vcpu *vcpu,
1421 			  struct sys_reg_params *p,
1422 			  const struct sys_reg_desc *r)
1423 {
1424 	if (p->is_write)
1425 		return write_to_read_only(vcpu, p, r);
1426 
1427 	p->regval = read_id_reg(vcpu, r);
1428 	if (vcpu_has_nv(vcpu))
1429 		access_nested_id_reg(vcpu, p, r);
1430 
1431 	return true;
1432 }
1433 
1434 /* Visibility overrides for SVE-specific control registers */
sve_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1435 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1436 				   const struct sys_reg_desc *rd)
1437 {
1438 	if (vcpu_has_sve(vcpu))
1439 		return 0;
1440 
1441 	return REG_HIDDEN;
1442 }
1443 
read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1444 static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1445 					  const struct sys_reg_desc *rd)
1446 {
1447 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1448 
1449 	if (!vcpu_has_sve(vcpu))
1450 		val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1451 
1452 	/*
1453 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
1454 	 * Although this is a per-CPU feature, we make it global because
1455 	 * asymmetric systems are just a nuisance.
1456 	 *
1457 	 * Userspace can override this as long as it doesn't promise
1458 	 * the impossible.
1459 	 */
1460 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1461 		val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1462 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1463 	}
1464 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1465 		val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1466 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1467 	}
1468 
1469 	if (kvm_vgic_global_state.type == VGIC_V3) {
1470 		val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1471 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1472 	}
1473 
1474 	val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1475 
1476 	/*
1477 	 * MPAM is disabled by default as KVM also needs a set of PARTID to
1478 	 * program the MPAMVPMx_EL2 PARTID remapping registers with. But some
1479 	 * older kernels let the guest see the ID bit.
1480 	 */
1481 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
1482 
1483 	return val;
1484 }
1485 
read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1486 static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1487 					  const struct sys_reg_desc *rd)
1488 {
1489 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1490 
1491 	/* Limit debug to ARMv8.0 */
1492 	val &= ~ID_AA64DFR0_EL1_DebugVer_MASK;
1493 	val |= SYS_FIELD_PREP_ENUM(ID_AA64DFR0_EL1, DebugVer, IMP);
1494 
1495 	/*
1496 	 * Only initialize the PMU version if the vCPU was configured with one.
1497 	 */
1498 	val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1499 	if (kvm_vcpu_has_pmu(vcpu))
1500 		val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1501 				      kvm_arm_pmu_get_pmuver_limit());
1502 
1503 	/* Hide SPE from guests */
1504 	val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1505 
1506 	return val;
1507 }
1508 
set_id_aa64dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1509 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1510 			       const struct sys_reg_desc *rd,
1511 			       u64 val)
1512 {
1513 	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1514 
1515 	/*
1516 	 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1517 	 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1518 	 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1519 	 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1520 	 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1521 	 *
1522 	 * At minimum, we're on the hook to allow values that were given to
1523 	 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1524 	 * with a more sensible NI. The value of an ID register changing under
1525 	 * the nose of the guest is unfortunate, but is certainly no more
1526 	 * surprising than an ill-guided PMU driver poking at impdef system
1527 	 * registers that end in an UNDEF...
1528 	 */
1529 	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1530 		val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1531 
1532 	return set_id_reg(vcpu, rd, val);
1533 }
1534 
read_sanitised_id_dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1535 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1536 				      const struct sys_reg_desc *rd)
1537 {
1538 	u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1539 	u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1540 
1541 	val &= ~ID_DFR0_EL1_PerfMon_MASK;
1542 	if (kvm_vcpu_has_pmu(vcpu))
1543 		val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1544 
1545 	return val;
1546 }
1547 
set_id_dfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1548 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1549 			   const struct sys_reg_desc *rd,
1550 			   u64 val)
1551 {
1552 	u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1553 
1554 	if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1555 		val &= ~ID_DFR0_EL1_PerfMon_MASK;
1556 		perfmon = 0;
1557 	}
1558 
1559 	/*
1560 	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1561 	 * it doesn't promise more than what the HW gives us on the
1562 	 * AArch64 side (as everything is emulated with that), and
1563 	 * that this is a PMUv3.
1564 	 */
1565 	if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1566 		return -EINVAL;
1567 
1568 	return set_id_reg(vcpu, rd, val);
1569 }
1570 
set_id_aa64pfr0_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)1571 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1572 			       const struct sys_reg_desc *rd, u64 user_val)
1573 {
1574 	u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1575 	u64 mpam_mask = ID_AA64PFR0_EL1_MPAM_MASK;
1576 
1577 	/*
1578 	 * Commit 011e5f5bf529f ("arm64/cpufeature: Add remaining feature bits
1579 	 * in ID_AA64PFR0 register") exposed the MPAM field of AA64PFR0_EL1 to
1580 	 * guests, but didn't add trap handling. KVM doesn't support MPAM and
1581 	 * always returns an UNDEF for these registers. The guest must see 0
1582 	 * for this field.
1583 	 *
1584 	 * But KVM must also accept values from user-space that were provided
1585 	 * by KVM. On CPUs that support MPAM, permit user-space to write
1586 	 * the sanitizied value to ID_AA64PFR0_EL1.MPAM, but ignore this field.
1587 	 */
1588 	if ((hw_val & mpam_mask) == (user_val & mpam_mask))
1589 		user_val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
1590 
1591 	return set_id_reg(vcpu, rd, user_val);
1592 }
1593 
set_id_aa64pfr1_el1(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 user_val)1594 static int set_id_aa64pfr1_el1(struct kvm_vcpu *vcpu,
1595 			       const struct sys_reg_desc *rd, u64 user_val)
1596 {
1597 	u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1598 	u64 mpam_mask = ID_AA64PFR1_EL1_MPAM_frac_MASK;
1599 
1600 	/* See set_id_aa64pfr0_el1 for comment about MPAM */
1601 	if ((hw_val & mpam_mask) == (user_val & mpam_mask))
1602 		user_val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
1603 
1604 	return set_id_reg(vcpu, rd, user_val);
1605 }
1606 
1607 /*
1608  * cpufeature ID register user accessors
1609  *
1610  * For now, these registers are immutable for userspace, so no values
1611  * are stored, and for set_id_reg() we don't allow the effective value
1612  * to be changed.
1613  */
get_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)1614 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1615 		      u64 *val)
1616 {
1617 	/*
1618 	 * Avoid locking if the VM has already started, as the ID registers are
1619 	 * guaranteed to be invariant at that point.
1620 	 */
1621 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1622 		*val = read_id_reg(vcpu, rd);
1623 		return 0;
1624 	}
1625 
1626 	mutex_lock(&vcpu->kvm->arch.config_lock);
1627 	*val = read_id_reg(vcpu, rd);
1628 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1629 
1630 	return 0;
1631 }
1632 
set_id_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1633 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1634 		      u64 val)
1635 {
1636 	u32 id = reg_to_encoding(rd);
1637 	int ret;
1638 
1639 	mutex_lock(&vcpu->kvm->arch.config_lock);
1640 
1641 	/*
1642 	 * Once the VM has started the ID registers are immutable. Reject any
1643 	 * write that does not match the final register value.
1644 	 */
1645 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1646 		if (val != read_id_reg(vcpu, rd))
1647 			ret = -EBUSY;
1648 		else
1649 			ret = 0;
1650 
1651 		mutex_unlock(&vcpu->kvm->arch.config_lock);
1652 		return ret;
1653 	}
1654 
1655 	ret = arm64_check_features(vcpu, rd, val);
1656 	if (!ret)
1657 		IDREG(vcpu->kvm, id) = val;
1658 
1659 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1660 
1661 	/*
1662 	 * arm64_check_features() returns -E2BIG to indicate the register's
1663 	 * feature set is a superset of the maximally-allowed register value.
1664 	 * While it would be nice to precisely describe this to userspace, the
1665 	 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
1666 	 * writes return -EINVAL.
1667 	 */
1668 	if (ret == -E2BIG)
1669 		ret = -EINVAL;
1670 	return ret;
1671 }
1672 
get_raz_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 * val)1673 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1674 		       u64 *val)
1675 {
1676 	*val = 0;
1677 	return 0;
1678 }
1679 
set_wi_reg(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1680 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1681 		      u64 val)
1682 {
1683 	return 0;
1684 }
1685 
access_ctr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1686 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1687 		       const struct sys_reg_desc *r)
1688 {
1689 	if (p->is_write)
1690 		return write_to_read_only(vcpu, p, r);
1691 
1692 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1693 	return true;
1694 }
1695 
access_clidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1696 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1697 			 const struct sys_reg_desc *r)
1698 {
1699 	if (p->is_write)
1700 		return write_to_read_only(vcpu, p, r);
1701 
1702 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
1703 	return true;
1704 }
1705 
1706 /*
1707  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1708  * by the physical CPU which the vcpu currently resides in.
1709  */
reset_clidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * r)1710 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1711 {
1712 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1713 	u64 clidr;
1714 	u8 loc;
1715 
1716 	if ((ctr_el0 & CTR_EL0_IDC)) {
1717 		/*
1718 		 * Data cache clean to the PoU is not required so LoUU and LoUIS
1719 		 * will not be set and a unified cache, which will be marked as
1720 		 * LoC, will be added.
1721 		 *
1722 		 * If not DIC, let the unified cache L2 so that an instruction
1723 		 * cache can be added as L1 later.
1724 		 */
1725 		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1726 		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1727 	} else {
1728 		/*
1729 		 * Data cache clean to the PoU is required so let L1 have a data
1730 		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1731 		 * it can be marked as LoC too.
1732 		 */
1733 		loc = 1;
1734 		clidr = 1 << CLIDR_LOUU_SHIFT;
1735 		clidr |= 1 << CLIDR_LOUIS_SHIFT;
1736 		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1737 	}
1738 
1739 	/*
1740 	 * Instruction cache invalidation to the PoU is required so let L1 have
1741 	 * an instruction cache. If L1 already has a data cache, it will be
1742 	 * CACHE_TYPE_SEPARATE.
1743 	 */
1744 	if (!(ctr_el0 & CTR_EL0_DIC))
1745 		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1746 
1747 	clidr |= loc << CLIDR_LOC_SHIFT;
1748 
1749 	/*
1750 	 * Add tag cache unified to data cache. Allocation tags and data are
1751 	 * unified in a cache line so that it looks valid even if there is only
1752 	 * one cache line.
1753 	 */
1754 	if (kvm_has_mte(vcpu->kvm))
1755 		clidr |= 2ULL << CLIDR_TTYPE_SHIFT(loc);
1756 
1757 	__vcpu_sys_reg(vcpu, r->reg) = clidr;
1758 
1759 	return __vcpu_sys_reg(vcpu, r->reg);
1760 }
1761 
set_clidr(struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 val)1762 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1763 		      u64 val)
1764 {
1765 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1766 	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1767 
1768 	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1769 		return -EINVAL;
1770 
1771 	__vcpu_sys_reg(vcpu, rd->reg) = val;
1772 
1773 	return 0;
1774 }
1775 
access_csselr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1776 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1777 			  const struct sys_reg_desc *r)
1778 {
1779 	int reg = r->reg;
1780 
1781 	if (p->is_write)
1782 		vcpu_write_sys_reg(vcpu, p->regval, reg);
1783 	else
1784 		p->regval = vcpu_read_sys_reg(vcpu, reg);
1785 	return true;
1786 }
1787 
access_ccsidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1788 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1789 			  const struct sys_reg_desc *r)
1790 {
1791 	u32 csselr;
1792 
1793 	if (p->is_write)
1794 		return write_to_read_only(vcpu, p, r);
1795 
1796 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1797 	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1798 	if (csselr < CSSELR_MAX)
1799 		p->regval = get_ccsidr(vcpu, csselr);
1800 
1801 	return true;
1802 }
1803 
mte_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1804 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1805 				   const struct sys_reg_desc *rd)
1806 {
1807 	if (kvm_has_mte(vcpu->kvm))
1808 		return 0;
1809 
1810 	return REG_HIDDEN;
1811 }
1812 
1813 #define MTE_REG(name) {				\
1814 	SYS_DESC(SYS_##name),			\
1815 	.access = undef_access,			\
1816 	.reset = reset_unknown,			\
1817 	.reg = name,				\
1818 	.visibility = mte_visibility,		\
1819 }
1820 
el2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1821 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
1822 				   const struct sys_reg_desc *rd)
1823 {
1824 	if (vcpu_has_nv(vcpu))
1825 		return 0;
1826 
1827 	return REG_HIDDEN;
1828 }
1829 
1830 #define EL2_REG(name, acc, rst, v) {		\
1831 	SYS_DESC(SYS_##name),			\
1832 	.access = acc,				\
1833 	.reset = rst,				\
1834 	.reg = name,				\
1835 	.visibility = el2_visibility,		\
1836 	.val = v,				\
1837 }
1838 
1839 /*
1840  * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
1841  * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
1842  * handling traps. Given that, they are always hidden from userspace.
1843  */
elx2_visibility(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd)1844 static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu,
1845 				    const struct sys_reg_desc *rd)
1846 {
1847 	return REG_HIDDEN_USER;
1848 }
1849 
1850 #define EL12_REG(name, acc, rst, v) {		\
1851 	SYS_DESC(SYS_##name##_EL12),		\
1852 	.access = acc,				\
1853 	.reset = rst,				\
1854 	.reg = name##_EL1,			\
1855 	.val = v,				\
1856 	.visibility = elx2_visibility,		\
1857 }
1858 
1859 /*
1860  * Since reset() callback and field val are not used for idregs, they will be
1861  * used for specific purposes for idregs.
1862  * The reset() would return KVM sanitised register value. The value would be the
1863  * same as the host kernel sanitised value if there is no KVM sanitisation.
1864  * The val would be used as a mask indicating writable fields for the idreg.
1865  * Only bits with 1 are writable from userspace. This mask might not be
1866  * necessary in the future whenever all ID registers are enabled as writable
1867  * from userspace.
1868  */
1869 
1870 /* sys_reg_desc initialiser for known cpufeature ID registers */
1871 #define ID_SANITISED(name) {			\
1872 	SYS_DESC(SYS_##name),			\
1873 	.access	= access_id_reg,		\
1874 	.get_user = get_id_reg,			\
1875 	.set_user = set_id_reg,			\
1876 	.visibility = id_visibility,		\
1877 	.reset = kvm_read_sanitised_id_reg,	\
1878 	.val = 0,				\
1879 }
1880 
1881 /* sys_reg_desc initialiser for known cpufeature ID registers */
1882 #define AA32_ID_SANITISED(name) {		\
1883 	SYS_DESC(SYS_##name),			\
1884 	.access	= access_id_reg,		\
1885 	.get_user = get_id_reg,			\
1886 	.set_user = set_id_reg,			\
1887 	.visibility = aa32_id_visibility,	\
1888 	.reset = kvm_read_sanitised_id_reg,	\
1889 	.val = 0,				\
1890 }
1891 
1892 /*
1893  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1894  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1895  * (1 <= crm < 8, 0 <= Op2 < 8).
1896  */
1897 #define ID_UNALLOCATED(crm, op2) {			\
1898 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1899 	.access = access_id_reg,			\
1900 	.get_user = get_id_reg,				\
1901 	.set_user = set_id_reg,				\
1902 	.visibility = raz_visibility,			\
1903 	.reset = kvm_read_sanitised_id_reg,		\
1904 	.val = 0,					\
1905 }
1906 
1907 /*
1908  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1909  * For now, these are exposed just like unallocated ID regs: they appear
1910  * RAZ for the guest.
1911  */
1912 #define ID_HIDDEN(name) {			\
1913 	SYS_DESC(SYS_##name),			\
1914 	.access = access_id_reg,		\
1915 	.get_user = get_id_reg,			\
1916 	.set_user = set_id_reg,			\
1917 	.visibility = raz_visibility,		\
1918 	.reset = kvm_read_sanitised_id_reg,	\
1919 	.val = 0,				\
1920 }
1921 
access_sp_el1(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1922 static bool access_sp_el1(struct kvm_vcpu *vcpu,
1923 			  struct sys_reg_params *p,
1924 			  const struct sys_reg_desc *r)
1925 {
1926 	if (p->is_write)
1927 		__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
1928 	else
1929 		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
1930 
1931 	return true;
1932 }
1933 
access_elr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1934 static bool access_elr(struct kvm_vcpu *vcpu,
1935 		       struct sys_reg_params *p,
1936 		       const struct sys_reg_desc *r)
1937 {
1938 	if (p->is_write)
1939 		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
1940 	else
1941 		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
1942 
1943 	return true;
1944 }
1945 
access_spsr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)1946 static bool access_spsr(struct kvm_vcpu *vcpu,
1947 			struct sys_reg_params *p,
1948 			const struct sys_reg_desc *r)
1949 {
1950 	if (p->is_write)
1951 		__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
1952 	else
1953 		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
1954 
1955 	return true;
1956 }
1957 
1958 /*
1959  * Architected system registers.
1960  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1961  *
1962  * Debug handling: We do trap most, if not all debug related system
1963  * registers. The implementation is good enough to ensure that a guest
1964  * can use these with minimal performance degradation. The drawback is
1965  * that we don't implement any of the external debug architecture.
1966  * This should be revisited if we ever encounter a more demanding
1967  * guest...
1968  */
1969 static const struct sys_reg_desc sys_reg_descs[] = {
1970 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1971 	{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
1972 	{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
1973 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1974 	{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
1975 	{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
1976 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1977 	{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
1978 	{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
1979 
1980 	DBG_BCR_BVR_WCR_WVR_EL1(0),
1981 	DBG_BCR_BVR_WCR_WVR_EL1(1),
1982 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1983 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1984 	DBG_BCR_BVR_WCR_WVR_EL1(2),
1985 	DBG_BCR_BVR_WCR_WVR_EL1(3),
1986 	DBG_BCR_BVR_WCR_WVR_EL1(4),
1987 	DBG_BCR_BVR_WCR_WVR_EL1(5),
1988 	DBG_BCR_BVR_WCR_WVR_EL1(6),
1989 	DBG_BCR_BVR_WCR_WVR_EL1(7),
1990 	DBG_BCR_BVR_WCR_WVR_EL1(8),
1991 	DBG_BCR_BVR_WCR_WVR_EL1(9),
1992 	DBG_BCR_BVR_WCR_WVR_EL1(10),
1993 	DBG_BCR_BVR_WCR_WVR_EL1(11),
1994 	DBG_BCR_BVR_WCR_WVR_EL1(12),
1995 	DBG_BCR_BVR_WCR_WVR_EL1(13),
1996 	DBG_BCR_BVR_WCR_WVR_EL1(14),
1997 	DBG_BCR_BVR_WCR_WVR_EL1(15),
1998 
1999 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2000 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2001 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2002 		OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2003 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2004 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2005 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2006 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2007 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2008 
2009 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2010 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2011 	// DBGDTR[TR]X_EL0 share the same encoding
2012 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2013 
2014 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
2015 
2016 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2017 
2018 	/*
2019 	 * ID regs: all ID_SANITISED() entries here must have corresponding
2020 	 * entries in arm64_ftr_regs[].
2021 	 */
2022 
2023 	/* AArch64 mappings of the AArch32 ID registers */
2024 	/* CRm=1 */
2025 	AA32_ID_SANITISED(ID_PFR0_EL1),
2026 	AA32_ID_SANITISED(ID_PFR1_EL1),
2027 	{ SYS_DESC(SYS_ID_DFR0_EL1),
2028 	  .access = access_id_reg,
2029 	  .get_user = get_id_reg,
2030 	  .set_user = set_id_dfr0_el1,
2031 	  .visibility = aa32_id_visibility,
2032 	  .reset = read_sanitised_id_dfr0_el1,
2033 	  .val = ID_DFR0_EL1_PerfMon_MASK, },
2034 	ID_HIDDEN(ID_AFR0_EL1),
2035 	AA32_ID_SANITISED(ID_MMFR0_EL1),
2036 	AA32_ID_SANITISED(ID_MMFR1_EL1),
2037 	AA32_ID_SANITISED(ID_MMFR2_EL1),
2038 	AA32_ID_SANITISED(ID_MMFR3_EL1),
2039 
2040 	/* CRm=2 */
2041 	AA32_ID_SANITISED(ID_ISAR0_EL1),
2042 	AA32_ID_SANITISED(ID_ISAR1_EL1),
2043 	AA32_ID_SANITISED(ID_ISAR2_EL1),
2044 	AA32_ID_SANITISED(ID_ISAR3_EL1),
2045 	AA32_ID_SANITISED(ID_ISAR4_EL1),
2046 	AA32_ID_SANITISED(ID_ISAR5_EL1),
2047 	AA32_ID_SANITISED(ID_MMFR4_EL1),
2048 	AA32_ID_SANITISED(ID_ISAR6_EL1),
2049 
2050 	/* CRm=3 */
2051 	AA32_ID_SANITISED(MVFR0_EL1),
2052 	AA32_ID_SANITISED(MVFR1_EL1),
2053 	AA32_ID_SANITISED(MVFR2_EL1),
2054 	ID_UNALLOCATED(3,3),
2055 	AA32_ID_SANITISED(ID_PFR2_EL1),
2056 	ID_HIDDEN(ID_DFR1_EL1),
2057 	AA32_ID_SANITISED(ID_MMFR5_EL1),
2058 	ID_UNALLOCATED(3,7),
2059 
2060 	/* AArch64 ID registers */
2061 	/* CRm=4 */
2062 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1),
2063 	  .access = access_id_reg,
2064 	  .get_user = get_id_reg,
2065 	  .set_user = set_id_aa64pfr0_el1,
2066 	  .reset = read_sanitised_id_aa64pfr0_el1,
2067 	  .val = ID_AA64PFR0_EL1_CSV2_MASK | ID_AA64PFR0_EL1_CSV3_MASK, },
2068 	{ SYS_DESC(SYS_ID_AA64PFR1_EL1),
2069 	  .access = access_id_reg,
2070 	  .get_user = get_id_reg,
2071 	  .set_user = set_id_aa64pfr1_el1,
2072 	  .reset = kvm_read_sanitised_id_reg, },
2073 	ID_UNALLOCATED(4,2),
2074 	ID_UNALLOCATED(4,3),
2075 	ID_SANITISED(ID_AA64ZFR0_EL1),
2076 	ID_HIDDEN(ID_AA64SMFR0_EL1),
2077 	ID_UNALLOCATED(4,6),
2078 	ID_UNALLOCATED(4,7),
2079 
2080 	/* CRm=5 */
2081 	{ SYS_DESC(SYS_ID_AA64DFR0_EL1),
2082 	  .access = access_id_reg,
2083 	  .get_user = get_id_reg,
2084 	  .set_user = set_id_aa64dfr0_el1,
2085 	  .reset = read_sanitised_id_aa64dfr0_el1,
2086 	  .val = ID_AA64DFR0_EL1_PMUVer_MASK, },
2087 	ID_SANITISED(ID_AA64DFR1_EL1),
2088 	ID_UNALLOCATED(5,2),
2089 	ID_UNALLOCATED(5,3),
2090 	ID_HIDDEN(ID_AA64AFR0_EL1),
2091 	ID_HIDDEN(ID_AA64AFR1_EL1),
2092 	ID_UNALLOCATED(5,6),
2093 	ID_UNALLOCATED(5,7),
2094 
2095 	/* CRm=6 */
2096 	ID_SANITISED(ID_AA64ISAR0_EL1),
2097 	ID_SANITISED(ID_AA64ISAR1_EL1),
2098 	ID_SANITISED(ID_AA64ISAR2_EL1),
2099 	ID_UNALLOCATED(6,3),
2100 	ID_UNALLOCATED(6,4),
2101 	ID_UNALLOCATED(6,5),
2102 	ID_UNALLOCATED(6,6),
2103 	ID_UNALLOCATED(6,7),
2104 
2105 	/* CRm=7 */
2106 	ID_SANITISED(ID_AA64MMFR0_EL1),
2107 	ID_SANITISED(ID_AA64MMFR1_EL1),
2108 	ID_SANITISED(ID_AA64MMFR2_EL1),
2109 	ID_SANITISED(ID_AA64MMFR3_EL1),
2110 	ID_UNALLOCATED(7,4),
2111 	ID_UNALLOCATED(7,5),
2112 	ID_UNALLOCATED(7,6),
2113 	ID_UNALLOCATED(7,7),
2114 
2115 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2116 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2117 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2118 
2119 	MTE_REG(RGSR_EL1),
2120 	MTE_REG(GCR_EL1),
2121 
2122 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2123 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
2124 	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
2125 	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
2126 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2127 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2128 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2129 	{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
2130 
2131 	PTRAUTH_KEY(APIA),
2132 	PTRAUTH_KEY(APIB),
2133 	PTRAUTH_KEY(APDA),
2134 	PTRAUTH_KEY(APDB),
2135 	PTRAUTH_KEY(APGA),
2136 
2137 	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
2138 	{ SYS_DESC(SYS_ELR_EL1), access_elr},
2139 
2140 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2141 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2142 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2143 
2144 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2145 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2146 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2147 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2148 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2149 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2150 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2151 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2152 
2153 	MTE_REG(TFSR_EL1),
2154 	MTE_REG(TFSRE0_EL1),
2155 
2156 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2157 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2158 
2159 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
2160 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2161 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
2162 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2163 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2164 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2165 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2166 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2167 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2168 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2169 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
2170 	/* PMBIDR_EL1 is not trapped */
2171 
2172 	{ PMU_SYS_REG(PMINTENSET_EL1),
2173 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
2174 	{ PMU_SYS_REG(PMINTENCLR_EL1),
2175 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
2176 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2177 
2178 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2179 	{ SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 },
2180 	{ SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 },
2181 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2182 
2183 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2184 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2185 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
2186 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
2187 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
2188 
2189 	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2190 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2191 
2192 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
2193 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
2194 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
2195 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
2196 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
2197 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2198 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2199 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
2200 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
2201 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
2202 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
2203 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
2204 
2205 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2206 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
2207 
2208 	{ SYS_DESC(SYS_ACCDATA_EL1), undef_access },
2209 
2210 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2211 
2212 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
2213 
2214 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
2215 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2216 	  .set_user = set_clidr },
2217 	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
2218 	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
2219 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2220 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
2221 	{ SYS_DESC(SYS_SVCR), undef_access },
2222 
2223 	{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr,
2224 	  .reset = reset_pmcr, .reg = PMCR_EL0 },
2225 	{ PMU_SYS_REG(PMCNTENSET_EL0),
2226 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
2227 	{ PMU_SYS_REG(PMCNTENCLR_EL0),
2228 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
2229 	{ PMU_SYS_REG(PMOVSCLR_EL0),
2230 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
2231 	/*
2232 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2233 	 * previously (and pointlessly) advertised in the past...
2234 	 */
2235 	{ PMU_SYS_REG(PMSWINC_EL0),
2236 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
2237 	  .access = access_pmswinc, .reset = NULL },
2238 	{ PMU_SYS_REG(PMSELR_EL0),
2239 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2240 	{ PMU_SYS_REG(PMCEID0_EL0),
2241 	  .access = access_pmceid, .reset = NULL },
2242 	{ PMU_SYS_REG(PMCEID1_EL0),
2243 	  .access = access_pmceid, .reset = NULL },
2244 	{ PMU_SYS_REG(PMCCNTR_EL0),
2245 	  .access = access_pmu_evcntr, .reset = reset_unknown,
2246 	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2247 	{ PMU_SYS_REG(PMXEVTYPER_EL0),
2248 	  .access = access_pmu_evtyper, .reset = NULL },
2249 	{ PMU_SYS_REG(PMXEVCNTR_EL0),
2250 	  .access = access_pmu_evcntr, .reset = NULL },
2251 	/*
2252 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2253 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2254 	 */
2255 	{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
2256 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2257 	{ PMU_SYS_REG(PMOVSSET_EL0),
2258 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
2259 
2260 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2261 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2262 	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2263 
2264 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2265 
2266 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
2267 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2268 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2269 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2270 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2271 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2272 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2273 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2274 	AMU_AMEVCNTR0_EL0(0),
2275 	AMU_AMEVCNTR0_EL0(1),
2276 	AMU_AMEVCNTR0_EL0(2),
2277 	AMU_AMEVCNTR0_EL0(3),
2278 	AMU_AMEVCNTR0_EL0(4),
2279 	AMU_AMEVCNTR0_EL0(5),
2280 	AMU_AMEVCNTR0_EL0(6),
2281 	AMU_AMEVCNTR0_EL0(7),
2282 	AMU_AMEVCNTR0_EL0(8),
2283 	AMU_AMEVCNTR0_EL0(9),
2284 	AMU_AMEVCNTR0_EL0(10),
2285 	AMU_AMEVCNTR0_EL0(11),
2286 	AMU_AMEVCNTR0_EL0(12),
2287 	AMU_AMEVCNTR0_EL0(13),
2288 	AMU_AMEVCNTR0_EL0(14),
2289 	AMU_AMEVCNTR0_EL0(15),
2290 	AMU_AMEVTYPER0_EL0(0),
2291 	AMU_AMEVTYPER0_EL0(1),
2292 	AMU_AMEVTYPER0_EL0(2),
2293 	AMU_AMEVTYPER0_EL0(3),
2294 	AMU_AMEVTYPER0_EL0(4),
2295 	AMU_AMEVTYPER0_EL0(5),
2296 	AMU_AMEVTYPER0_EL0(6),
2297 	AMU_AMEVTYPER0_EL0(7),
2298 	AMU_AMEVTYPER0_EL0(8),
2299 	AMU_AMEVTYPER0_EL0(9),
2300 	AMU_AMEVTYPER0_EL0(10),
2301 	AMU_AMEVTYPER0_EL0(11),
2302 	AMU_AMEVTYPER0_EL0(12),
2303 	AMU_AMEVTYPER0_EL0(13),
2304 	AMU_AMEVTYPER0_EL0(14),
2305 	AMU_AMEVTYPER0_EL0(15),
2306 	AMU_AMEVCNTR1_EL0(0),
2307 	AMU_AMEVCNTR1_EL0(1),
2308 	AMU_AMEVCNTR1_EL0(2),
2309 	AMU_AMEVCNTR1_EL0(3),
2310 	AMU_AMEVCNTR1_EL0(4),
2311 	AMU_AMEVCNTR1_EL0(5),
2312 	AMU_AMEVCNTR1_EL0(6),
2313 	AMU_AMEVCNTR1_EL0(7),
2314 	AMU_AMEVCNTR1_EL0(8),
2315 	AMU_AMEVCNTR1_EL0(9),
2316 	AMU_AMEVCNTR1_EL0(10),
2317 	AMU_AMEVCNTR1_EL0(11),
2318 	AMU_AMEVCNTR1_EL0(12),
2319 	AMU_AMEVCNTR1_EL0(13),
2320 	AMU_AMEVCNTR1_EL0(14),
2321 	AMU_AMEVCNTR1_EL0(15),
2322 	AMU_AMEVTYPER1_EL0(0),
2323 	AMU_AMEVTYPER1_EL0(1),
2324 	AMU_AMEVTYPER1_EL0(2),
2325 	AMU_AMEVTYPER1_EL0(3),
2326 	AMU_AMEVTYPER1_EL0(4),
2327 	AMU_AMEVTYPER1_EL0(5),
2328 	AMU_AMEVTYPER1_EL0(6),
2329 	AMU_AMEVTYPER1_EL0(7),
2330 	AMU_AMEVTYPER1_EL0(8),
2331 	AMU_AMEVTYPER1_EL0(9),
2332 	AMU_AMEVTYPER1_EL0(10),
2333 	AMU_AMEVTYPER1_EL0(11),
2334 	AMU_AMEVTYPER1_EL0(12),
2335 	AMU_AMEVTYPER1_EL0(13),
2336 	AMU_AMEVTYPER1_EL0(14),
2337 	AMU_AMEVTYPER1_EL0(15),
2338 
2339 	{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2340 	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2341 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2342 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2343 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2344 
2345 	/* PMEVCNTRn_EL0 */
2346 	PMU_PMEVCNTR_EL0(0),
2347 	PMU_PMEVCNTR_EL0(1),
2348 	PMU_PMEVCNTR_EL0(2),
2349 	PMU_PMEVCNTR_EL0(3),
2350 	PMU_PMEVCNTR_EL0(4),
2351 	PMU_PMEVCNTR_EL0(5),
2352 	PMU_PMEVCNTR_EL0(6),
2353 	PMU_PMEVCNTR_EL0(7),
2354 	PMU_PMEVCNTR_EL0(8),
2355 	PMU_PMEVCNTR_EL0(9),
2356 	PMU_PMEVCNTR_EL0(10),
2357 	PMU_PMEVCNTR_EL0(11),
2358 	PMU_PMEVCNTR_EL0(12),
2359 	PMU_PMEVCNTR_EL0(13),
2360 	PMU_PMEVCNTR_EL0(14),
2361 	PMU_PMEVCNTR_EL0(15),
2362 	PMU_PMEVCNTR_EL0(16),
2363 	PMU_PMEVCNTR_EL0(17),
2364 	PMU_PMEVCNTR_EL0(18),
2365 	PMU_PMEVCNTR_EL0(19),
2366 	PMU_PMEVCNTR_EL0(20),
2367 	PMU_PMEVCNTR_EL0(21),
2368 	PMU_PMEVCNTR_EL0(22),
2369 	PMU_PMEVCNTR_EL0(23),
2370 	PMU_PMEVCNTR_EL0(24),
2371 	PMU_PMEVCNTR_EL0(25),
2372 	PMU_PMEVCNTR_EL0(26),
2373 	PMU_PMEVCNTR_EL0(27),
2374 	PMU_PMEVCNTR_EL0(28),
2375 	PMU_PMEVCNTR_EL0(29),
2376 	PMU_PMEVCNTR_EL0(30),
2377 	/* PMEVTYPERn_EL0 */
2378 	PMU_PMEVTYPER_EL0(0),
2379 	PMU_PMEVTYPER_EL0(1),
2380 	PMU_PMEVTYPER_EL0(2),
2381 	PMU_PMEVTYPER_EL0(3),
2382 	PMU_PMEVTYPER_EL0(4),
2383 	PMU_PMEVTYPER_EL0(5),
2384 	PMU_PMEVTYPER_EL0(6),
2385 	PMU_PMEVTYPER_EL0(7),
2386 	PMU_PMEVTYPER_EL0(8),
2387 	PMU_PMEVTYPER_EL0(9),
2388 	PMU_PMEVTYPER_EL0(10),
2389 	PMU_PMEVTYPER_EL0(11),
2390 	PMU_PMEVTYPER_EL0(12),
2391 	PMU_PMEVTYPER_EL0(13),
2392 	PMU_PMEVTYPER_EL0(14),
2393 	PMU_PMEVTYPER_EL0(15),
2394 	PMU_PMEVTYPER_EL0(16),
2395 	PMU_PMEVTYPER_EL0(17),
2396 	PMU_PMEVTYPER_EL0(18),
2397 	PMU_PMEVTYPER_EL0(19),
2398 	PMU_PMEVTYPER_EL0(20),
2399 	PMU_PMEVTYPER_EL0(21),
2400 	PMU_PMEVTYPER_EL0(22),
2401 	PMU_PMEVTYPER_EL0(23),
2402 	PMU_PMEVTYPER_EL0(24),
2403 	PMU_PMEVTYPER_EL0(25),
2404 	PMU_PMEVTYPER_EL0(26),
2405 	PMU_PMEVTYPER_EL0(27),
2406 	PMU_PMEVTYPER_EL0(28),
2407 	PMU_PMEVTYPER_EL0(29),
2408 	PMU_PMEVTYPER_EL0(30),
2409 	/*
2410 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2411 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2412 	 */
2413 	{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
2414 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2415 
2416 	EL2_REG(VPIDR_EL2, access_rw, reset_unknown, 0),
2417 	EL2_REG(VMPIDR_EL2, access_rw, reset_unknown, 0),
2418 	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2419 	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2420 	EL2_REG(HCR_EL2, access_rw, reset_val, 0),
2421 	EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2422 	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
2423 	EL2_REG(HSTR_EL2, access_rw, reset_val, 0),
2424 	EL2_REG(HFGRTR_EL2, access_rw, reset_val, 0),
2425 	EL2_REG(HFGWTR_EL2, access_rw, reset_val, 0),
2426 	EL2_REG(HFGITR_EL2, access_rw, reset_val, 0),
2427 	EL2_REG(HACR_EL2, access_rw, reset_val, 0),
2428 
2429 	EL2_REG(HCRX_EL2, access_rw, reset_val, 0),
2430 
2431 	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2432 	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2433 	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2434 	EL2_REG(VTTBR_EL2, access_rw, reset_val, 0),
2435 	EL2_REG(VTCR_EL2, access_rw, reset_val, 0),
2436 
2437 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
2438 	EL2_REG(HDFGRTR_EL2, access_rw, reset_val, 0),
2439 	EL2_REG(HDFGWTR_EL2, access_rw, reset_val, 0),
2440 	EL2_REG(SPSR_EL2, access_rw, reset_val, 0),
2441 	EL2_REG(ELR_EL2, access_rw, reset_val, 0),
2442 	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
2443 
2444 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
2445 	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2446 	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2447 	EL2_REG(ESR_EL2, access_rw, reset_val, 0),
2448 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
2449 
2450 	EL2_REG(FAR_EL2, access_rw, reset_val, 0),
2451 	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2452 
2453 	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2454 	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2455 
2456 	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2457 	EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2458 	{ SYS_DESC(SYS_RMR_EL2), trap_undef },
2459 
2460 	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2461 	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2462 
2463 	EL2_REG(CNTVOFF_EL2, access_rw, reset_val, 0),
2464 	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2465 
2466 	EL12_REG(SCTLR, access_vm_reg, reset_val, 0x00C50078),
2467 	EL12_REG(CPACR, access_rw, reset_val, 0),
2468 	EL12_REG(TTBR0, access_vm_reg, reset_unknown, 0),
2469 	EL12_REG(TTBR1, access_vm_reg, reset_unknown, 0),
2470 	EL12_REG(TCR, access_vm_reg, reset_val, 0),
2471 	{ SYS_DESC(SYS_SPSR_EL12), access_spsr},
2472 	{ SYS_DESC(SYS_ELR_EL12), access_elr},
2473 	EL12_REG(AFSR0, access_vm_reg, reset_unknown, 0),
2474 	EL12_REG(AFSR1, access_vm_reg, reset_unknown, 0),
2475 	EL12_REG(ESR, access_vm_reg, reset_unknown, 0),
2476 	EL12_REG(FAR, access_vm_reg, reset_unknown, 0),
2477 	EL12_REG(MAIR, access_vm_reg, reset_unknown, 0),
2478 	EL12_REG(AMAIR, access_vm_reg, reset_amair_el1, 0),
2479 	EL12_REG(VBAR, access_rw, reset_val, 0),
2480 	EL12_REG(CONTEXTIDR, access_vm_reg, reset_val, 0),
2481 	EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2482 
2483 	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2484 };
2485 
2486 static const struct sys_reg_desc *first_idreg;
2487 
trap_dbgdidr(struct kvm_vcpu * vcpu,struct sys_reg_params * p,const struct sys_reg_desc * r)2488 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2489 			struct sys_reg_params *p,
2490 			const struct sys_reg_desc *r)
2491 {
2492 	if (p->is_write) {
2493 		return ignore_write(vcpu, p);
2494 	} else {
2495 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
2496 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2497 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT);
2498 
2499 		p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) |
2500 			     (((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) |
2501 			     (((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20)
2502 			     | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
2503 		return true;
2504 	}
2505 }
2506 
2507 /*
2508  * AArch32 debug register mappings
2509  *
2510  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2511  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2512  *
2513  * None of the other registers share their location, so treat them as
2514  * if they were 64bit.
2515  */
2516 #define DBG_BCR_BVR_WCR_WVR(n)						      \
2517 	/* DBGBVRn */							      \
2518 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2519 	/* DBGBCRn */							      \
2520 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
2521 	/* DBGWVRn */							      \
2522 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
2523 	/* DBGWCRn */							      \
2524 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2525 
2526 #define DBGBXVR(n)							      \
2527 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2528 
2529 /*
2530  * Trapped cp14 registers. We generally ignore most of the external
2531  * debug, on the principle that they don't really make sense to a
2532  * guest. Revisit this one day, would this principle change.
2533  */
2534 static const struct sys_reg_desc cp14_regs[] = {
2535 	/* DBGDIDR */
2536 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2537 	/* DBGDTRRXext */
2538 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2539 
2540 	DBG_BCR_BVR_WCR_WVR(0),
2541 	/* DBGDSCRint */
2542 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2543 	DBG_BCR_BVR_WCR_WVR(1),
2544 	/* DBGDCCINT */
2545 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2546 	/* DBGDSCRext */
2547 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2548 	DBG_BCR_BVR_WCR_WVR(2),
2549 	/* DBGDTR[RT]Xint */
2550 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2551 	/* DBGDTR[RT]Xext */
2552 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2553 	DBG_BCR_BVR_WCR_WVR(3),
2554 	DBG_BCR_BVR_WCR_WVR(4),
2555 	DBG_BCR_BVR_WCR_WVR(5),
2556 	/* DBGWFAR */
2557 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2558 	/* DBGOSECCR */
2559 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2560 	DBG_BCR_BVR_WCR_WVR(6),
2561 	/* DBGVCR */
2562 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2563 	DBG_BCR_BVR_WCR_WVR(7),
2564 	DBG_BCR_BVR_WCR_WVR(8),
2565 	DBG_BCR_BVR_WCR_WVR(9),
2566 	DBG_BCR_BVR_WCR_WVR(10),
2567 	DBG_BCR_BVR_WCR_WVR(11),
2568 	DBG_BCR_BVR_WCR_WVR(12),
2569 	DBG_BCR_BVR_WCR_WVR(13),
2570 	DBG_BCR_BVR_WCR_WVR(14),
2571 	DBG_BCR_BVR_WCR_WVR(15),
2572 
2573 	/* DBGDRAR (32bit) */
2574 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2575 
2576 	DBGBXVR(0),
2577 	/* DBGOSLAR */
2578 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2579 	DBGBXVR(1),
2580 	/* DBGOSLSR */
2581 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2582 	DBGBXVR(2),
2583 	DBGBXVR(3),
2584 	/* DBGOSDLR */
2585 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2586 	DBGBXVR(4),
2587 	/* DBGPRCR */
2588 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2589 	DBGBXVR(5),
2590 	DBGBXVR(6),
2591 	DBGBXVR(7),
2592 	DBGBXVR(8),
2593 	DBGBXVR(9),
2594 	DBGBXVR(10),
2595 	DBGBXVR(11),
2596 	DBGBXVR(12),
2597 	DBGBXVR(13),
2598 	DBGBXVR(14),
2599 	DBGBXVR(15),
2600 
2601 	/* DBGDSAR (32bit) */
2602 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2603 
2604 	/* DBGDEVID2 */
2605 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2606 	/* DBGDEVID1 */
2607 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2608 	/* DBGDEVID */
2609 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2610 	/* DBGCLAIMSET */
2611 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2612 	/* DBGCLAIMCLR */
2613 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2614 	/* DBGAUTHSTATUS */
2615 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2616 };
2617 
2618 /* Trapped cp14 64bit registers */
2619 static const struct sys_reg_desc cp14_64_regs[] = {
2620 	/* DBGDRAR (64bit) */
2621 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
2622 
2623 	/* DBGDSAR (64bit) */
2624 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
2625 };
2626 
2627 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
2628 	AA32(_map),							\
2629 	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
2630 	.visibility = pmu_visibility
2631 
2632 /* Macro to expand the PMEVCNTRn register */
2633 #define PMU_PMEVCNTR(n)							\
2634 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2635 	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2636 	  .access = access_pmu_evcntr }
2637 
2638 /* Macro to expand the PMEVTYPERn register */
2639 #define PMU_PMEVTYPER(n)						\
2640 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2641 	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2642 	  .access = access_pmu_evtyper }
2643 /*
2644  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2645  * depending on the way they are accessed (as a 32bit or a 64bit
2646  * register).
2647  */
2648 static const struct sys_reg_desc cp15_regs[] = {
2649 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2650 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2651 	/* ACTLR */
2652 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2653 	/* ACTLR2 */
2654 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2655 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2656 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2657 	/* TTBCR */
2658 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2659 	/* TTBCR2 */
2660 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2661 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2662 	/* DFSR */
2663 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2664 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2665 	/* ADFSR */
2666 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2667 	/* AIFSR */
2668 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2669 	/* DFAR */
2670 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2671 	/* IFAR */
2672 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2673 
2674 	/*
2675 	 * DC{C,I,CI}SW operations:
2676 	 */
2677 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2678 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2679 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2680 
2681 	/* PMU */
2682 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2683 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2684 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2685 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2686 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2687 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2688 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2689 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2690 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2691 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2692 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2693 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2694 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2695 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2696 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2697 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2698 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2699 	/* PMMIR */
2700 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2701 
2702 	/* PRRR/MAIR0 */
2703 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2704 	/* NMRR/MAIR1 */
2705 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2706 	/* AMAIR0 */
2707 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2708 	/* AMAIR1 */
2709 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2710 
2711 	/* ICC_SRE */
2712 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2713 
2714 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2715 
2716 	/* Arch Tmers */
2717 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2718 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2719 
2720 	/* PMEVCNTRn */
2721 	PMU_PMEVCNTR(0),
2722 	PMU_PMEVCNTR(1),
2723 	PMU_PMEVCNTR(2),
2724 	PMU_PMEVCNTR(3),
2725 	PMU_PMEVCNTR(4),
2726 	PMU_PMEVCNTR(5),
2727 	PMU_PMEVCNTR(6),
2728 	PMU_PMEVCNTR(7),
2729 	PMU_PMEVCNTR(8),
2730 	PMU_PMEVCNTR(9),
2731 	PMU_PMEVCNTR(10),
2732 	PMU_PMEVCNTR(11),
2733 	PMU_PMEVCNTR(12),
2734 	PMU_PMEVCNTR(13),
2735 	PMU_PMEVCNTR(14),
2736 	PMU_PMEVCNTR(15),
2737 	PMU_PMEVCNTR(16),
2738 	PMU_PMEVCNTR(17),
2739 	PMU_PMEVCNTR(18),
2740 	PMU_PMEVCNTR(19),
2741 	PMU_PMEVCNTR(20),
2742 	PMU_PMEVCNTR(21),
2743 	PMU_PMEVCNTR(22),
2744 	PMU_PMEVCNTR(23),
2745 	PMU_PMEVCNTR(24),
2746 	PMU_PMEVCNTR(25),
2747 	PMU_PMEVCNTR(26),
2748 	PMU_PMEVCNTR(27),
2749 	PMU_PMEVCNTR(28),
2750 	PMU_PMEVCNTR(29),
2751 	PMU_PMEVCNTR(30),
2752 	/* PMEVTYPERn */
2753 	PMU_PMEVTYPER(0),
2754 	PMU_PMEVTYPER(1),
2755 	PMU_PMEVTYPER(2),
2756 	PMU_PMEVTYPER(3),
2757 	PMU_PMEVTYPER(4),
2758 	PMU_PMEVTYPER(5),
2759 	PMU_PMEVTYPER(6),
2760 	PMU_PMEVTYPER(7),
2761 	PMU_PMEVTYPER(8),
2762 	PMU_PMEVTYPER(9),
2763 	PMU_PMEVTYPER(10),
2764 	PMU_PMEVTYPER(11),
2765 	PMU_PMEVTYPER(12),
2766 	PMU_PMEVTYPER(13),
2767 	PMU_PMEVTYPER(14),
2768 	PMU_PMEVTYPER(15),
2769 	PMU_PMEVTYPER(16),
2770 	PMU_PMEVTYPER(17),
2771 	PMU_PMEVTYPER(18),
2772 	PMU_PMEVTYPER(19),
2773 	PMU_PMEVTYPER(20),
2774 	PMU_PMEVTYPER(21),
2775 	PMU_PMEVTYPER(22),
2776 	PMU_PMEVTYPER(23),
2777 	PMU_PMEVTYPER(24),
2778 	PMU_PMEVTYPER(25),
2779 	PMU_PMEVTYPER(26),
2780 	PMU_PMEVTYPER(27),
2781 	PMU_PMEVTYPER(28),
2782 	PMU_PMEVTYPER(29),
2783 	PMU_PMEVTYPER(30),
2784 	/* PMCCFILTR */
2785 	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
2786 
2787 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2788 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2789 
2790 	/* CCSIDR2 */
2791 	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
2792 
2793 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2794 };
2795 
2796 static const struct sys_reg_desc cp15_64_regs[] = {
2797 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2798 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
2799 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2800 	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
2801 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2802 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2803 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2804 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2805 	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
2806 };
2807 
check_sysreg_table(const struct sys_reg_desc * table,unsigned int n,bool is_32)2808 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2809 			       bool is_32)
2810 {
2811 	unsigned int i;
2812 
2813 	for (i = 0; i < n; i++) {
2814 		if (!is_32 && table[i].reg && !table[i].reset) {
2815 			kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
2816 			return false;
2817 		}
2818 
2819 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2820 			kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
2821 			return false;
2822 		}
2823 	}
2824 
2825 	return true;
2826 }
2827 
kvm_handle_cp14_load_store(struct kvm_vcpu * vcpu)2828 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2829 {
2830 	kvm_inject_undefined(vcpu);
2831 	return 1;
2832 }
2833 
perform_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * r)2834 static void perform_access(struct kvm_vcpu *vcpu,
2835 			   struct sys_reg_params *params,
2836 			   const struct sys_reg_desc *r)
2837 {
2838 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2839 
2840 	/* Check for regs disabled by runtime config */
2841 	if (sysreg_hidden(vcpu, r)) {
2842 		kvm_inject_undefined(vcpu);
2843 		return;
2844 	}
2845 
2846 	/*
2847 	 * Not having an accessor means that we have configured a trap
2848 	 * that we don't know how to handle. This certainly qualifies
2849 	 * as a gross bug that should be fixed right away.
2850 	 */
2851 	BUG_ON(!r->access);
2852 
2853 	/* Skip instruction if instructed so */
2854 	if (likely(r->access(vcpu, params, r)))
2855 		kvm_incr_pc(vcpu);
2856 }
2857 
2858 /*
2859  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2860  *                call the corresponding trap handler.
2861  *
2862  * @params: pointer to the descriptor of the access
2863  * @table: array of trap descriptors
2864  * @num: size of the trap descriptor array
2865  *
2866  * Return true if the access has been handled, false if not.
2867  */
emulate_cp(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * table,size_t num)2868 static bool emulate_cp(struct kvm_vcpu *vcpu,
2869 		       struct sys_reg_params *params,
2870 		       const struct sys_reg_desc *table,
2871 		       size_t num)
2872 {
2873 	const struct sys_reg_desc *r;
2874 
2875 	if (!table)
2876 		return false;	/* Not handled */
2877 
2878 	r = find_reg(params, table, num);
2879 
2880 	if (r) {
2881 		perform_access(vcpu, params, r);
2882 		return true;
2883 	}
2884 
2885 	/* Not handled */
2886 	return false;
2887 }
2888 
unhandled_cp_access(struct kvm_vcpu * vcpu,struct sys_reg_params * params)2889 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2890 				struct sys_reg_params *params)
2891 {
2892 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2893 	int cp = -1;
2894 
2895 	switch (esr_ec) {
2896 	case ESR_ELx_EC_CP15_32:
2897 	case ESR_ELx_EC_CP15_64:
2898 		cp = 15;
2899 		break;
2900 	case ESR_ELx_EC_CP14_MR:
2901 	case ESR_ELx_EC_CP14_64:
2902 		cp = 14;
2903 		break;
2904 	default:
2905 		WARN_ON(1);
2906 	}
2907 
2908 	print_sys_reg_msg(params,
2909 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2910 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2911 	kvm_inject_undefined(vcpu);
2912 }
2913 
2914 /**
2915  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2916  * @vcpu: The VCPU pointer
2917  * @run:  The kvm_run struct
2918  */
kvm_handle_cp_64(struct kvm_vcpu * vcpu,const struct sys_reg_desc * global,size_t nr_global)2919 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2920 			    const struct sys_reg_desc *global,
2921 			    size_t nr_global)
2922 {
2923 	struct sys_reg_params params;
2924 	u64 esr = kvm_vcpu_get_esr(vcpu);
2925 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2926 	int Rt2 = (esr >> 10) & 0x1f;
2927 
2928 	params.CRm = (esr >> 1) & 0xf;
2929 	params.is_write = ((esr & 1) == 0);
2930 
2931 	params.Op0 = 0;
2932 	params.Op1 = (esr >> 16) & 0xf;
2933 	params.Op2 = 0;
2934 	params.CRn = 0;
2935 
2936 	/*
2937 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2938 	 * backends between AArch32 and AArch64, we get away with it.
2939 	 */
2940 	if (params.is_write) {
2941 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2942 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2943 	}
2944 
2945 	/*
2946 	 * If the table contains a handler, handle the
2947 	 * potential register operation in the case of a read and return
2948 	 * with success.
2949 	 */
2950 	if (emulate_cp(vcpu, &params, global, nr_global)) {
2951 		/* Split up the value between registers for the read side */
2952 		if (!params.is_write) {
2953 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2954 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2955 		}
2956 
2957 		return 1;
2958 	}
2959 
2960 	unhandled_cp_access(vcpu, &params);
2961 	return 1;
2962 }
2963 
2964 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
2965 
2966 /*
2967  * The CP10 ID registers are architecturally mapped to AArch64 feature
2968  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
2969  * from AArch32.
2970  */
kvm_esr_cp10_id_to_sys64(u64 esr,struct sys_reg_params * params)2971 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
2972 {
2973 	u8 reg_id = (esr >> 10) & 0xf;
2974 	bool valid;
2975 
2976 	params->is_write = ((esr & 1) == 0);
2977 	params->Op0 = 3;
2978 	params->Op1 = 0;
2979 	params->CRn = 0;
2980 	params->CRm = 3;
2981 
2982 	/* CP10 ID registers are read-only */
2983 	valid = !params->is_write;
2984 
2985 	switch (reg_id) {
2986 	/* MVFR0 */
2987 	case 0b0111:
2988 		params->Op2 = 0;
2989 		break;
2990 	/* MVFR1 */
2991 	case 0b0110:
2992 		params->Op2 = 1;
2993 		break;
2994 	/* MVFR2 */
2995 	case 0b0101:
2996 		params->Op2 = 2;
2997 		break;
2998 	default:
2999 		valid = false;
3000 	}
3001 
3002 	if (valid)
3003 		return true;
3004 
3005 	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
3006 		      params->is_write ? "write" : "read", reg_id);
3007 	return false;
3008 }
3009 
3010 /**
3011  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
3012  *			  VFP Register' from AArch32.
3013  * @vcpu: The vCPU pointer
3014  *
3015  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
3016  * Work out the correct AArch64 system register encoding and reroute to the
3017  * AArch64 system register emulation.
3018  */
kvm_handle_cp10_id(struct kvm_vcpu * vcpu)3019 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
3020 {
3021 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3022 	u64 esr = kvm_vcpu_get_esr(vcpu);
3023 	struct sys_reg_params params;
3024 
3025 	/* UNDEF on any unhandled register access */
3026 	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
3027 		kvm_inject_undefined(vcpu);
3028 		return 1;
3029 	}
3030 
3031 	if (emulate_sys_reg(vcpu, &params))
3032 		vcpu_set_reg(vcpu, Rt, params.regval);
3033 
3034 	return 1;
3035 }
3036 
3037 /**
3038  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
3039  *			       CRn=0, which corresponds to the AArch32 feature
3040  *			       registers.
3041  * @vcpu: the vCPU pointer
3042  * @params: the system register access parameters.
3043  *
3044  * Our cp15 system register tables do not enumerate the AArch32 feature
3045  * registers. Conveniently, our AArch64 table does, and the AArch32 system
3046  * register encoding can be trivially remapped into the AArch64 for the feature
3047  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
3048  *
3049  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
3050  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
3051  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
3052  * treat undefined registers in this range as RAZ.
3053  */
kvm_emulate_cp15_id_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)3054 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
3055 				   struct sys_reg_params *params)
3056 {
3057 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3058 
3059 	/* Treat impossible writes to RO registers as UNDEFINED */
3060 	if (params->is_write) {
3061 		unhandled_cp_access(vcpu, params);
3062 		return 1;
3063 	}
3064 
3065 	params->Op0 = 3;
3066 
3067 	/*
3068 	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
3069 	 * Avoid conflicting with future expansion of AArch64 feature registers
3070 	 * and simply treat them as RAZ here.
3071 	 */
3072 	if (params->CRm > 3)
3073 		params->regval = 0;
3074 	else if (!emulate_sys_reg(vcpu, params))
3075 		return 1;
3076 
3077 	vcpu_set_reg(vcpu, Rt, params->regval);
3078 	return 1;
3079 }
3080 
3081 /**
3082  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
3083  * @vcpu: The VCPU pointer
3084  * @run:  The kvm_run struct
3085  */
kvm_handle_cp_32(struct kvm_vcpu * vcpu,struct sys_reg_params * params,const struct sys_reg_desc * global,size_t nr_global)3086 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
3087 			    struct sys_reg_params *params,
3088 			    const struct sys_reg_desc *global,
3089 			    size_t nr_global)
3090 {
3091 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
3092 
3093 	params->regval = vcpu_get_reg(vcpu, Rt);
3094 
3095 	if (emulate_cp(vcpu, params, global, nr_global)) {
3096 		if (!params->is_write)
3097 			vcpu_set_reg(vcpu, Rt, params->regval);
3098 		return 1;
3099 	}
3100 
3101 	unhandled_cp_access(vcpu, params);
3102 	return 1;
3103 }
3104 
kvm_handle_cp15_64(struct kvm_vcpu * vcpu)3105 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
3106 {
3107 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
3108 }
3109 
kvm_handle_cp15_32(struct kvm_vcpu * vcpu)3110 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
3111 {
3112 	struct sys_reg_params params;
3113 
3114 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3115 
3116 	/*
3117 	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
3118 	 * system register table. Registers in the ID range where CRm=0 are
3119 	 * excluded from this scheme as they do not trivially map into AArch64
3120 	 * system register encodings.
3121 	 */
3122 	if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
3123 		return kvm_emulate_cp15_id_reg(vcpu, &params);
3124 
3125 	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
3126 }
3127 
kvm_handle_cp14_64(struct kvm_vcpu * vcpu)3128 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
3129 {
3130 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
3131 }
3132 
kvm_handle_cp14_32(struct kvm_vcpu * vcpu)3133 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
3134 {
3135 	struct sys_reg_params params;
3136 
3137 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3138 
3139 	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
3140 }
3141 
is_imp_def_sys_reg(struct sys_reg_params * params)3142 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
3143 {
3144 	// See ARM DDI 0487E.a, section D12.3.2
3145 	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
3146 }
3147 
3148 /**
3149  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
3150  * @vcpu: The VCPU pointer
3151  * @params: Decoded system register parameters
3152  *
3153  * Return: true if the system register access was successful, false otherwise.
3154  */
emulate_sys_reg(struct kvm_vcpu * vcpu,struct sys_reg_params * params)3155 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
3156 			   struct sys_reg_params *params)
3157 {
3158 	const struct sys_reg_desc *r;
3159 
3160 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3161 
3162 	if (likely(r)) {
3163 		perform_access(vcpu, params, r);
3164 		return true;
3165 	}
3166 
3167 	if (is_imp_def_sys_reg(params)) {
3168 		kvm_inject_undefined(vcpu);
3169 	} else {
3170 		print_sys_reg_msg(params,
3171 				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
3172 				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3173 		kvm_inject_undefined(vcpu);
3174 	}
3175 	return false;
3176 }
3177 
kvm_reset_id_regs(struct kvm_vcpu * vcpu)3178 static void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
3179 {
3180 	const struct sys_reg_desc *idreg = first_idreg;
3181 	u32 id = reg_to_encoding(idreg);
3182 	struct kvm *kvm = vcpu->kvm;
3183 
3184 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
3185 		return;
3186 
3187 	lockdep_assert_held(&kvm->arch.config_lock);
3188 
3189 	/* Initialize all idregs */
3190 	while (is_id_reg(id)) {
3191 		IDREG(kvm, id) = idreg->reset(vcpu, idreg);
3192 
3193 		idreg++;
3194 		id = reg_to_encoding(idreg);
3195 	}
3196 
3197 	set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
3198 }
3199 
3200 /**
3201  * kvm_reset_sys_regs - sets system registers to reset value
3202  * @vcpu: The VCPU pointer
3203  *
3204  * This function finds the right table above and sets the registers on the
3205  * virtual CPU struct to their architecturally defined reset values.
3206  */
kvm_reset_sys_regs(struct kvm_vcpu * vcpu)3207 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
3208 {
3209 	unsigned long i;
3210 
3211 	kvm_reset_id_regs(vcpu);
3212 
3213 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3214 		const struct sys_reg_desc *r = &sys_reg_descs[i];
3215 
3216 		if (is_id_reg(reg_to_encoding(r)))
3217 			continue;
3218 
3219 		if (r->reset)
3220 			r->reset(vcpu, r);
3221 	}
3222 }
3223 
3224 /**
3225  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
3226  * @vcpu: The VCPU pointer
3227  */
kvm_handle_sys_reg(struct kvm_vcpu * vcpu)3228 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
3229 {
3230 	struct sys_reg_params params;
3231 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
3232 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3233 
3234 	trace_kvm_handle_sys_reg(esr);
3235 
3236 	if (__check_nv_sr_forward(vcpu))
3237 		return 1;
3238 
3239 	params = esr_sys64_to_params(esr);
3240 	params.regval = vcpu_get_reg(vcpu, Rt);
3241 
3242 	if (!emulate_sys_reg(vcpu, &params))
3243 		return 1;
3244 
3245 	if (!params.is_write)
3246 		vcpu_set_reg(vcpu, Rt, params.regval);
3247 	return 1;
3248 }
3249 
3250 /******************************************************************************
3251  * Userspace API
3252  *****************************************************************************/
3253 
index_to_params(u64 id,struct sys_reg_params * params)3254 static bool index_to_params(u64 id, struct sys_reg_params *params)
3255 {
3256 	switch (id & KVM_REG_SIZE_MASK) {
3257 	case KVM_REG_SIZE_U64:
3258 		/* Any unused index bits means it's not valid. */
3259 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
3260 			      | KVM_REG_ARM_COPROC_MASK
3261 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
3262 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
3263 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
3264 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
3265 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
3266 			return false;
3267 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
3268 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
3269 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
3270 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
3271 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
3272 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
3273 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
3274 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
3275 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
3276 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
3277 		return true;
3278 	default:
3279 		return false;
3280 	}
3281 }
3282 
get_reg_by_id(u64 id,const struct sys_reg_desc table[],unsigned int num)3283 const struct sys_reg_desc *get_reg_by_id(u64 id,
3284 					 const struct sys_reg_desc table[],
3285 					 unsigned int num)
3286 {
3287 	struct sys_reg_params params;
3288 
3289 	if (!index_to_params(id, &params))
3290 		return NULL;
3291 
3292 	return find_reg(&params, table, num);
3293 }
3294 
3295 /* Decode an index value, and find the sys_reg_desc entry. */
3296 static const struct sys_reg_desc *
id_to_sys_reg_desc(struct kvm_vcpu * vcpu,u64 id,const struct sys_reg_desc table[],unsigned int num)3297 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
3298 		   const struct sys_reg_desc table[], unsigned int num)
3299 
3300 {
3301 	const struct sys_reg_desc *r;
3302 
3303 	/* We only do sys_reg for now. */
3304 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
3305 		return NULL;
3306 
3307 	r = get_reg_by_id(id, table, num);
3308 
3309 	/* Not saved in the sys_reg array and not otherwise accessible? */
3310 	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3311 		r = NULL;
3312 
3313 	return r;
3314 }
3315 
3316 /*
3317  * These are the invariant sys_reg registers: we let the guest see the
3318  * host versions of these, so they're part of the guest state.
3319  *
3320  * A future CPU may provide a mechanism to present different values to
3321  * the guest, or a future kvm may trap them.
3322  */
3323 
3324 #define FUNCTION_INVARIANT(reg)						\
3325 	static u64 get_##reg(struct kvm_vcpu *v,			\
3326 			      const struct sys_reg_desc *r)		\
3327 	{								\
3328 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
3329 		return ((struct sys_reg_desc *)r)->val;			\
3330 	}
3331 
3332 FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(revidr_el1)3333 FUNCTION_INVARIANT(revidr_el1)
3334 FUNCTION_INVARIANT(aidr_el1)
3335 
3336 static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3337 {
3338 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3339 	return ((struct sys_reg_desc *)r)->val;
3340 }
3341 
3342 /* ->val is filled in by kvm_sys_reg_table_init() */
3343 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3344 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3345 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
3346 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3347 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3348 };
3349 
get_invariant_sys_reg(u64 id,u64 __user * uaddr)3350 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
3351 {
3352 	const struct sys_reg_desc *r;
3353 
3354 	r = get_reg_by_id(id, invariant_sys_regs,
3355 			  ARRAY_SIZE(invariant_sys_regs));
3356 	if (!r)
3357 		return -ENOENT;
3358 
3359 	return put_user(r->val, uaddr);
3360 }
3361 
set_invariant_sys_reg(u64 id,u64 __user * uaddr)3362 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3363 {
3364 	const struct sys_reg_desc *r;
3365 	u64 val;
3366 
3367 	r = get_reg_by_id(id, invariant_sys_regs,
3368 			  ARRAY_SIZE(invariant_sys_regs));
3369 	if (!r)
3370 		return -ENOENT;
3371 
3372 	if (get_user(val, uaddr))
3373 		return -EFAULT;
3374 
3375 	/* This is what we mean by invariant: you can't change it. */
3376 	if (r->val != val)
3377 		return -EINVAL;
3378 
3379 	return 0;
3380 }
3381 
demux_c15_get(struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)3382 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3383 {
3384 	u32 val;
3385 	u32 __user *uval = uaddr;
3386 
3387 	/* Fail if we have unknown bits set. */
3388 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3389 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3390 		return -ENOENT;
3391 
3392 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3393 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3394 		if (KVM_REG_SIZE(id) != 4)
3395 			return -ENOENT;
3396 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3397 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3398 		if (val >= CSSELR_MAX)
3399 			return -ENOENT;
3400 
3401 		return put_user(get_ccsidr(vcpu, val), uval);
3402 	default:
3403 		return -ENOENT;
3404 	}
3405 }
3406 
demux_c15_set(struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)3407 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3408 {
3409 	u32 val, newval;
3410 	u32 __user *uval = uaddr;
3411 
3412 	/* Fail if we have unknown bits set. */
3413 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3414 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3415 		return -ENOENT;
3416 
3417 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3418 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3419 		if (KVM_REG_SIZE(id) != 4)
3420 			return -ENOENT;
3421 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3422 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3423 		if (val >= CSSELR_MAX)
3424 			return -ENOENT;
3425 
3426 		if (get_user(newval, uval))
3427 			return -EFAULT;
3428 
3429 		return set_ccsidr(vcpu, val, newval);
3430 	default:
3431 		return -ENOENT;
3432 	}
3433 }
3434 
kvm_sys_reg_get_user(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,const struct sys_reg_desc table[],unsigned int num)3435 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3436 			 const struct sys_reg_desc table[], unsigned int num)
3437 {
3438 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3439 	const struct sys_reg_desc *r;
3440 	u64 val;
3441 	int ret;
3442 
3443 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3444 	if (!r || sysreg_hidden_user(vcpu, r))
3445 		return -ENOENT;
3446 
3447 	if (r->get_user) {
3448 		ret = (r->get_user)(vcpu, r, &val);
3449 	} else {
3450 		val = __vcpu_sys_reg(vcpu, r->reg);
3451 		ret = 0;
3452 	}
3453 
3454 	if (!ret)
3455 		ret = put_user(val, uaddr);
3456 
3457 	return ret;
3458 }
3459 
kvm_arm_sys_reg_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)3460 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3461 {
3462 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3463 	int err;
3464 
3465 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3466 		return demux_c15_get(vcpu, reg->id, uaddr);
3467 
3468 	err = get_invariant_sys_reg(reg->id, uaddr);
3469 	if (err != -ENOENT)
3470 		return err;
3471 
3472 	return kvm_sys_reg_get_user(vcpu, reg,
3473 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3474 }
3475 
kvm_sys_reg_set_user(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,const struct sys_reg_desc table[],unsigned int num)3476 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3477 			 const struct sys_reg_desc table[], unsigned int num)
3478 {
3479 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3480 	const struct sys_reg_desc *r;
3481 	u64 val;
3482 	int ret;
3483 
3484 	if (get_user(val, uaddr))
3485 		return -EFAULT;
3486 
3487 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3488 	if (!r || sysreg_hidden_user(vcpu, r))
3489 		return -ENOENT;
3490 
3491 	if (sysreg_user_write_ignore(vcpu, r))
3492 		return 0;
3493 
3494 	if (r->set_user) {
3495 		ret = (r->set_user)(vcpu, r, val);
3496 	} else {
3497 		__vcpu_sys_reg(vcpu, r->reg) = val;
3498 		ret = 0;
3499 	}
3500 
3501 	return ret;
3502 }
3503 
kvm_arm_sys_reg_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)3504 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3505 {
3506 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3507 	int err;
3508 
3509 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3510 		return demux_c15_set(vcpu, reg->id, uaddr);
3511 
3512 	err = set_invariant_sys_reg(reg->id, uaddr);
3513 	if (err != -ENOENT)
3514 		return err;
3515 
3516 	return kvm_sys_reg_set_user(vcpu, reg,
3517 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3518 }
3519 
num_demux_regs(void)3520 static unsigned int num_demux_regs(void)
3521 {
3522 	return CSSELR_MAX;
3523 }
3524 
write_demux_regids(u64 __user * uindices)3525 static int write_demux_regids(u64 __user *uindices)
3526 {
3527 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3528 	unsigned int i;
3529 
3530 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3531 	for (i = 0; i < CSSELR_MAX; i++) {
3532 		if (put_user(val | i, uindices))
3533 			return -EFAULT;
3534 		uindices++;
3535 	}
3536 	return 0;
3537 }
3538 
sys_reg_to_index(const struct sys_reg_desc * reg)3539 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3540 {
3541 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3542 		KVM_REG_ARM64_SYSREG |
3543 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3544 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3545 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3546 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3547 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3548 }
3549 
copy_reg_to_user(const struct sys_reg_desc * reg,u64 __user ** uind)3550 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3551 {
3552 	if (!*uind)
3553 		return true;
3554 
3555 	if (put_user(sys_reg_to_index(reg), *uind))
3556 		return false;
3557 
3558 	(*uind)++;
3559 	return true;
3560 }
3561 
walk_one_sys_reg(const struct kvm_vcpu * vcpu,const struct sys_reg_desc * rd,u64 __user ** uind,unsigned int * total)3562 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3563 			    const struct sys_reg_desc *rd,
3564 			    u64 __user **uind,
3565 			    unsigned int *total)
3566 {
3567 	/*
3568 	 * Ignore registers we trap but don't save,
3569 	 * and for which no custom user accessor is provided.
3570 	 */
3571 	if (!(rd->reg || rd->get_user))
3572 		return 0;
3573 
3574 	if (sysreg_hidden_user(vcpu, rd))
3575 		return 0;
3576 
3577 	if (!copy_reg_to_user(rd, uind))
3578 		return -EFAULT;
3579 
3580 	(*total)++;
3581 	return 0;
3582 }
3583 
3584 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
walk_sys_regs(struct kvm_vcpu * vcpu,u64 __user * uind)3585 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3586 {
3587 	const struct sys_reg_desc *i2, *end2;
3588 	unsigned int total = 0;
3589 	int err;
3590 
3591 	i2 = sys_reg_descs;
3592 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3593 
3594 	while (i2 != end2) {
3595 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3596 		if (err)
3597 			return err;
3598 	}
3599 	return total;
3600 }
3601 
kvm_arm_num_sys_reg_descs(struct kvm_vcpu * vcpu)3602 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3603 {
3604 	return ARRAY_SIZE(invariant_sys_regs)
3605 		+ num_demux_regs()
3606 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
3607 }
3608 
kvm_arm_copy_sys_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)3609 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3610 {
3611 	unsigned int i;
3612 	int err;
3613 
3614 	/* Then give them all the invariant registers' indices. */
3615 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3616 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3617 			return -EFAULT;
3618 		uindices++;
3619 	}
3620 
3621 	err = walk_sys_regs(vcpu, uindices);
3622 	if (err < 0)
3623 		return err;
3624 	uindices += err;
3625 
3626 	return write_demux_regids(uindices);
3627 }
3628 
kvm_sys_reg_table_init(void)3629 int __init kvm_sys_reg_table_init(void)
3630 {
3631 	struct sys_reg_params params;
3632 	bool valid = true;
3633 	unsigned int i;
3634 
3635 	/* Make sure tables are unique and in order. */
3636 	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
3637 	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
3638 	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
3639 	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
3640 	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
3641 	valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
3642 
3643 	if (!valid)
3644 		return -EINVAL;
3645 
3646 	/* We abuse the reset function to overwrite the table itself. */
3647 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
3648 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
3649 
3650 	/* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
3651 	params = encoding_to_params(SYS_ID_PFR0_EL1);
3652 	first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3653 	if (!first_idreg)
3654 		return -EINVAL;
3655 
3656 	if (kvm_get_mode() == KVM_MODE_NV)
3657 		return populate_nv_trap_config();
3658 
3659 	return 0;
3660 }
3661