xref: /openbmc/linux/drivers/clk/clk-versaclock5.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for IDT Versaclock 5
4  *
5  * Copyright (C) 2017 Marek Vasut <marek.vasut@gmail.com>
6  */
7 
8 /*
9  * Possible optimizations:
10  * - Use spread spectrum
11  * - Use integer divider in FOD if applicable
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/delay.h>
17 #include <linux/i2c.h>
18 #include <linux/interrupt.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/property.h>
23 #include <linux/regmap.h>
24 #include <linux/slab.h>
25 
26 #include <dt-bindings/clock/versaclock.h>
27 
28 /* VersaClock5 registers */
29 #define VC5_OTP_CONTROL				0x00
30 
31 /* Factory-reserved register block */
32 #define VC5_RSVD_DEVICE_ID			0x01
33 #define VC5_RSVD_ADC_GAIN_7_0			0x02
34 #define VC5_RSVD_ADC_GAIN_15_8			0x03
35 #define VC5_RSVD_ADC_OFFSET_7_0			0x04
36 #define VC5_RSVD_ADC_OFFSET_15_8		0x05
37 #define VC5_RSVD_TEMPY				0x06
38 #define VC5_RSVD_OFFSET_TBIN			0x07
39 #define VC5_RSVD_GAIN				0x08
40 #define VC5_RSVD_TEST_NP			0x09
41 #define VC5_RSVD_UNUSED				0x0a
42 #define VC5_RSVD_BANDGAP_TRIM_UP		0x0b
43 #define VC5_RSVD_BANDGAP_TRIM_DN		0x0c
44 #define VC5_RSVD_CLK_R_12_CLK_AMP_4		0x0d
45 #define VC5_RSVD_CLK_R_34_CLK_AMP_4		0x0e
46 #define VC5_RSVD_CLK_AMP_123			0x0f
47 
48 /* Configuration register block */
49 #define VC5_PRIM_SRC_SHDN			0x10
50 #define VC5_PRIM_SRC_SHDN_EN_XTAL		BIT(7)
51 #define VC5_PRIM_SRC_SHDN_EN_CLKIN		BIT(6)
52 #define VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ	BIT(3)
53 #define VC5_PRIM_SRC_SHDN_SP			BIT(1)
54 #define VC5_PRIM_SRC_SHDN_EN_GBL_SHDN		BIT(0)
55 
56 #define VC5_VCO_BAND				0x11
57 #define VC5_XTAL_X1_LOAD_CAP			0x12
58 #define VC5_XTAL_X2_LOAD_CAP			0x13
59 #define VC5_REF_DIVIDER				0x15
60 #define VC5_REF_DIVIDER_SEL_PREDIV2		BIT(7)
61 #define VC5_REF_DIVIDER_REF_DIV(n)		((n) & 0x3f)
62 
63 #define VC5_VCO_CTRL_AND_PREDIV			0x16
64 #define VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV	BIT(7)
65 
66 #define VC5_FEEDBACK_INT_DIV			0x17
67 #define VC5_FEEDBACK_INT_DIV_BITS		0x18
68 #define VC5_FEEDBACK_FRAC_DIV(n)		(0x19 + (n))
69 #define VC5_RC_CONTROL0				0x1e
70 #define VC5_RC_CONTROL1				0x1f
71 
72 /* These registers are named "Unused Factory Reserved Registers" */
73 #define VC5_RESERVED_X0(idx)		(0x20 + ((idx) * 0x10))
74 #define VC5_RESERVED_X0_BYPASS_SYNC	BIT(7) /* bypass_sync<idx> bit */
75 
76 /* Output divider control for divider 1,2,3,4 */
77 #define VC5_OUT_DIV_CONTROL(idx)	(0x21 + ((idx) * 0x10))
78 #define VC5_OUT_DIV_CONTROL_RESET	BIT(7)
79 #define VC5_OUT_DIV_CONTROL_SELB_NORM	BIT(3)
80 #define VC5_OUT_DIV_CONTROL_SEL_EXT	BIT(2)
81 #define VC5_OUT_DIV_CONTROL_INT_MODE	BIT(1)
82 #define VC5_OUT_DIV_CONTROL_EN_FOD	BIT(0)
83 
84 #define VC5_OUT_DIV_FRAC(idx, n)	(0x22 + ((idx) * 0x10) + (n))
85 #define VC5_OUT_DIV_FRAC4_OD_SCEE	BIT(1)
86 
87 #define VC5_OUT_DIV_STEP_SPREAD(idx, n)	(0x26 + ((idx) * 0x10) + (n))
88 #define VC5_OUT_DIV_SPREAD_MOD(idx, n)	(0x29 + ((idx) * 0x10) + (n))
89 #define VC5_OUT_DIV_SKEW_INT(idx, n)	(0x2b + ((idx) * 0x10) + (n))
90 #define VC5_OUT_DIV_INT(idx, n)		(0x2d + ((idx) * 0x10) + (n))
91 #define VC5_OUT_DIV_SKEW_FRAC(idx)	(0x2f + ((idx) * 0x10))
92 
93 /* Clock control register for clock 1,2 */
94 #define VC5_CLK_OUTPUT_CFG(idx, n)	(0x60 + ((idx) * 0x2) + (n))
95 #define VC5_CLK_OUTPUT_CFG0_CFG_SHIFT	5
96 #define VC5_CLK_OUTPUT_CFG0_CFG_MASK GENMASK(7, VC5_CLK_OUTPUT_CFG0_CFG_SHIFT)
97 
98 #define VC5_CLK_OUTPUT_CFG0_CFG_LVPECL	(VC5_LVPECL)
99 #define VC5_CLK_OUTPUT_CFG0_CFG_CMOS		(VC5_CMOS)
100 #define VC5_CLK_OUTPUT_CFG0_CFG_HCSL33	(VC5_HCSL33)
101 #define VC5_CLK_OUTPUT_CFG0_CFG_LVDS		(VC5_LVDS)
102 #define VC5_CLK_OUTPUT_CFG0_CFG_CMOS2		(VC5_CMOS2)
103 #define VC5_CLK_OUTPUT_CFG0_CFG_CMOSD		(VC5_CMOSD)
104 #define VC5_CLK_OUTPUT_CFG0_CFG_HCSL25	(VC5_HCSL25)
105 
106 #define VC5_CLK_OUTPUT_CFG0_PWR_SHIFT	3
107 #define VC5_CLK_OUTPUT_CFG0_PWR_MASK GENMASK(4, VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
108 #define VC5_CLK_OUTPUT_CFG0_PWR_18	(0<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
109 #define VC5_CLK_OUTPUT_CFG0_PWR_25	(2<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
110 #define VC5_CLK_OUTPUT_CFG0_PWR_33	(3<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
111 #define VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT	0
112 #define VC5_CLK_OUTPUT_CFG0_SLEW_MASK GENMASK(1, VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
113 #define VC5_CLK_OUTPUT_CFG0_SLEW_80	(0<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
114 #define VC5_CLK_OUTPUT_CFG0_SLEW_85	(1<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
115 #define VC5_CLK_OUTPUT_CFG0_SLEW_90	(2<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
116 #define VC5_CLK_OUTPUT_CFG0_SLEW_100	(3<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
117 #define VC5_CLK_OUTPUT_CFG1_EN_CLKBUF	BIT(0)
118 
119 #define VC5_CLK_OE_SHDN				0x68
120 #define VC5_CLK_OS_SHDN				0x69
121 
122 #define VC5_GLOBAL_REGISTER			0x76
123 #define VC5_GLOBAL_REGISTER_GLOBAL_RESET	BIT(5)
124 
125 /* The minimum VCO frequency is 2.5 GHz. The maximum is variant specific. */
126 #define VC5_PLL_VCO_MIN				2500000000UL
127 
128 /* VC5 Input mux settings */
129 #define VC5_MUX_IN_XIN		BIT(0)
130 #define VC5_MUX_IN_CLKIN	BIT(1)
131 
132 /* Maximum number of clk_out supported by this driver */
133 #define VC5_MAX_CLK_OUT_NUM	5
134 
135 /* Maximum number of FODs supported by this driver */
136 #define VC5_MAX_FOD_NUM	4
137 
138 /* flags to describe chip features */
139 /* chip has built-in oscilator */
140 #define VC5_HAS_INTERNAL_XTAL	BIT(0)
141 /* chip has PFD requency doubler */
142 #define VC5_HAS_PFD_FREQ_DBL	BIT(1)
143 /* chip has bits to disable FOD sync */
144 #define VC5_HAS_BYPASS_SYNC_BIT	BIT(2)
145 
146 /* Supported IDT VC5 models. */
147 enum vc5_model {
148 	IDT_VC5_5P49V5923,
149 	IDT_VC5_5P49V5925,
150 	IDT_VC5_5P49V5933,
151 	IDT_VC5_5P49V5935,
152 	IDT_VC6_5P49V60,
153 	IDT_VC6_5P49V6901,
154 	IDT_VC6_5P49V6965,
155 	IDT_VC6_5P49V6975,
156 };
157 
158 /* Structure to describe features of a particular VC5 model */
159 struct vc5_chip_info {
160 	const enum vc5_model	model;
161 	const unsigned int	clk_fod_cnt;
162 	const unsigned int	clk_out_cnt;
163 	const u32		flags;
164 	const unsigned long	vco_max;
165 };
166 
167 struct vc5_driver_data;
168 
169 struct vc5_hw_data {
170 	struct clk_hw		hw;
171 	struct vc5_driver_data	*vc5;
172 	u32			div_int;
173 	u32			div_frc;
174 	unsigned int		num;
175 };
176 
177 struct vc5_out_data {
178 	struct clk_hw		hw;
179 	struct vc5_driver_data	*vc5;
180 	unsigned int		num;
181 	unsigned int		clk_output_cfg0;
182 	unsigned int		clk_output_cfg0_mask;
183 };
184 
185 struct vc5_driver_data {
186 	struct i2c_client	*client;
187 	struct regmap		*regmap;
188 	const struct vc5_chip_info	*chip_info;
189 
190 	struct clk		*pin_xin;
191 	struct clk		*pin_clkin;
192 	unsigned char		clk_mux_ins;
193 	struct clk_hw		clk_mux;
194 	struct clk_hw		clk_mul;
195 	struct clk_hw		clk_pfd;
196 	struct vc5_hw_data	clk_pll;
197 	struct vc5_hw_data	clk_fod[VC5_MAX_FOD_NUM];
198 	struct vc5_out_data	clk_out[VC5_MAX_CLK_OUT_NUM];
199 };
200 
201 /*
202  * VersaClock5 i2c regmap
203  */
vc5_regmap_is_writeable(struct device * dev,unsigned int reg)204 static bool vc5_regmap_is_writeable(struct device *dev, unsigned int reg)
205 {
206 	/* Factory reserved regs, make them read-only */
207 	if (reg <= 0xf)
208 		return false;
209 
210 	/* Factory reserved regs, make them read-only */
211 	if (reg == 0x14 || reg == 0x1c || reg == 0x1d)
212 		return false;
213 
214 	return true;
215 }
216 
217 static const struct regmap_config vc5_regmap_config = {
218 	.reg_bits = 8,
219 	.val_bits = 8,
220 	.cache_type = REGCACHE_RBTREE,
221 	.max_register = 0x76,
222 	.writeable_reg = vc5_regmap_is_writeable,
223 };
224 
225 /*
226  * VersaClock5 input multiplexer between XTAL and CLKIN divider
227  */
vc5_mux_get_parent(struct clk_hw * hw)228 static unsigned char vc5_mux_get_parent(struct clk_hw *hw)
229 {
230 	struct vc5_driver_data *vc5 =
231 		container_of(hw, struct vc5_driver_data, clk_mux);
232 	const u8 mask = VC5_PRIM_SRC_SHDN_EN_XTAL | VC5_PRIM_SRC_SHDN_EN_CLKIN;
233 	unsigned int src;
234 	int ret;
235 
236 	ret = regmap_read(vc5->regmap, VC5_PRIM_SRC_SHDN, &src);
237 	if (ret)
238 		return 0;
239 
240 	src &= mask;
241 
242 	if (src == VC5_PRIM_SRC_SHDN_EN_XTAL)
243 		return 0;
244 
245 	if (src == VC5_PRIM_SRC_SHDN_EN_CLKIN)
246 		return 1;
247 
248 	dev_warn(&vc5->client->dev,
249 		 "Invalid clock input configuration (%02x)\n", src);
250 	return 0;
251 }
252 
vc5_mux_set_parent(struct clk_hw * hw,u8 index)253 static int vc5_mux_set_parent(struct clk_hw *hw, u8 index)
254 {
255 	struct vc5_driver_data *vc5 =
256 		container_of(hw, struct vc5_driver_data, clk_mux);
257 	const u8 mask = VC5_PRIM_SRC_SHDN_EN_XTAL | VC5_PRIM_SRC_SHDN_EN_CLKIN;
258 	u8 src;
259 
260 	if ((index > 1) || !vc5->clk_mux_ins)
261 		return -EINVAL;
262 
263 	if (vc5->clk_mux_ins == (VC5_MUX_IN_CLKIN | VC5_MUX_IN_XIN)) {
264 		if (index == 0)
265 			src = VC5_PRIM_SRC_SHDN_EN_XTAL;
266 		if (index == 1)
267 			src = VC5_PRIM_SRC_SHDN_EN_CLKIN;
268 	} else {
269 		if (index != 0)
270 			return -EINVAL;
271 
272 		if (vc5->clk_mux_ins == VC5_MUX_IN_XIN)
273 			src = VC5_PRIM_SRC_SHDN_EN_XTAL;
274 		else if (vc5->clk_mux_ins == VC5_MUX_IN_CLKIN)
275 			src = VC5_PRIM_SRC_SHDN_EN_CLKIN;
276 		else /* Invalid; should have been caught by vc5_probe() */
277 			return -EINVAL;
278 	}
279 
280 	return regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN, mask, src);
281 }
282 
283 static const struct clk_ops vc5_mux_ops = {
284 	.determine_rate	= clk_hw_determine_rate_no_reparent,
285 	.set_parent	= vc5_mux_set_parent,
286 	.get_parent	= vc5_mux_get_parent,
287 };
288 
vc5_dbl_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)289 static unsigned long vc5_dbl_recalc_rate(struct clk_hw *hw,
290 					 unsigned long parent_rate)
291 {
292 	struct vc5_driver_data *vc5 =
293 		container_of(hw, struct vc5_driver_data, clk_mul);
294 	unsigned int premul;
295 	int ret;
296 
297 	ret = regmap_read(vc5->regmap, VC5_PRIM_SRC_SHDN, &premul);
298 	if (ret)
299 		return 0;
300 
301 	if (premul & VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ)
302 		parent_rate *= 2;
303 
304 	return parent_rate;
305 }
306 
vc5_dbl_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)307 static long vc5_dbl_round_rate(struct clk_hw *hw, unsigned long rate,
308 			       unsigned long *parent_rate)
309 {
310 	if ((*parent_rate == rate) || ((*parent_rate * 2) == rate))
311 		return rate;
312 	else
313 		return -EINVAL;
314 }
315 
vc5_dbl_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)316 static int vc5_dbl_set_rate(struct clk_hw *hw, unsigned long rate,
317 			    unsigned long parent_rate)
318 {
319 	struct vc5_driver_data *vc5 =
320 		container_of(hw, struct vc5_driver_data, clk_mul);
321 	u32 mask;
322 
323 	if ((parent_rate * 2) == rate)
324 		mask = VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ;
325 	else
326 		mask = 0;
327 
328 	return regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN,
329 				  VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ,
330 				  mask);
331 }
332 
333 static const struct clk_ops vc5_dbl_ops = {
334 	.recalc_rate	= vc5_dbl_recalc_rate,
335 	.round_rate	= vc5_dbl_round_rate,
336 	.set_rate	= vc5_dbl_set_rate,
337 };
338 
vc5_pfd_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)339 static unsigned long vc5_pfd_recalc_rate(struct clk_hw *hw,
340 					 unsigned long parent_rate)
341 {
342 	struct vc5_driver_data *vc5 =
343 		container_of(hw, struct vc5_driver_data, clk_pfd);
344 	unsigned int prediv, div;
345 	int ret;
346 
347 	ret = regmap_read(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV, &prediv);
348 	if (ret)
349 		return 0;
350 
351 	/* The bypass_prediv is set, PLL fed from Ref_in directly. */
352 	if (prediv & VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV)
353 		return parent_rate;
354 
355 	ret = regmap_read(vc5->regmap, VC5_REF_DIVIDER, &div);
356 	if (ret)
357 		return 0;
358 
359 	/* The Sel_prediv2 is set, PLL fed from prediv2 (Ref_in / 2) */
360 	if (div & VC5_REF_DIVIDER_SEL_PREDIV2)
361 		return parent_rate / 2;
362 	else
363 		return parent_rate / VC5_REF_DIVIDER_REF_DIV(div);
364 }
365 
vc5_pfd_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)366 static long vc5_pfd_round_rate(struct clk_hw *hw, unsigned long rate,
367 			       unsigned long *parent_rate)
368 {
369 	unsigned long idiv;
370 
371 	/* PLL cannot operate with input clock above 50 MHz. */
372 	if (rate > 50000000)
373 		return -EINVAL;
374 
375 	/* CLKIN within range of PLL input, feed directly to PLL. */
376 	if (*parent_rate <= 50000000)
377 		return *parent_rate;
378 
379 	idiv = DIV_ROUND_UP(*parent_rate, rate);
380 	if (idiv > 127)
381 		return -EINVAL;
382 
383 	return *parent_rate / idiv;
384 }
385 
vc5_pfd_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)386 static int vc5_pfd_set_rate(struct clk_hw *hw, unsigned long rate,
387 			    unsigned long parent_rate)
388 {
389 	struct vc5_driver_data *vc5 =
390 		container_of(hw, struct vc5_driver_data, clk_pfd);
391 	unsigned long idiv;
392 	int ret;
393 	u8 div;
394 
395 	/* CLKIN within range of PLL input, feed directly to PLL. */
396 	if (parent_rate <= 50000000) {
397 		ret = regmap_set_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV,
398 				      VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV);
399 		if (ret)
400 			return ret;
401 
402 		return regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, 0x00);
403 	}
404 
405 	idiv = DIV_ROUND_UP(parent_rate, rate);
406 
407 	/* We have dedicated div-2 predivider. */
408 	if (idiv == 2)
409 		div = VC5_REF_DIVIDER_SEL_PREDIV2;
410 	else
411 		div = VC5_REF_DIVIDER_REF_DIV(idiv);
412 
413 	ret = regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, div);
414 	if (ret)
415 		return ret;
416 
417 	return regmap_clear_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV,
418 				 VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV);
419 }
420 
421 static const struct clk_ops vc5_pfd_ops = {
422 	.recalc_rate	= vc5_pfd_recalc_rate,
423 	.round_rate	= vc5_pfd_round_rate,
424 	.set_rate	= vc5_pfd_set_rate,
425 };
426 
427 /*
428  * VersaClock5 PLL/VCO
429  */
vc5_pll_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)430 static unsigned long vc5_pll_recalc_rate(struct clk_hw *hw,
431 					 unsigned long parent_rate)
432 {
433 	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
434 	struct vc5_driver_data *vc5 = hwdata->vc5;
435 	u32 div_int, div_frc;
436 	u8 fb[5];
437 
438 	regmap_bulk_read(vc5->regmap, VC5_FEEDBACK_INT_DIV, fb, 5);
439 
440 	div_int = (fb[0] << 4) | (fb[1] >> 4);
441 	div_frc = (fb[2] << 16) | (fb[3] << 8) | fb[4];
442 
443 	/* The PLL divider has 12 integer bits and 24 fractional bits */
444 	return (parent_rate * div_int) + ((parent_rate * div_frc) >> 24);
445 }
446 
vc5_pll_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)447 static long vc5_pll_round_rate(struct clk_hw *hw, unsigned long rate,
448 			       unsigned long *parent_rate)
449 {
450 	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
451 	struct vc5_driver_data *vc5 = hwdata->vc5;
452 	u32 div_int;
453 	u64 div_frc;
454 
455 	rate = clamp(rate, VC5_PLL_VCO_MIN, vc5->chip_info->vco_max);
456 
457 	/* Determine integer part, which is 12 bit wide */
458 	div_int = rate / *parent_rate;
459 	if (div_int > 0xfff)
460 		rate = *parent_rate * 0xfff;
461 
462 	/* Determine best fractional part, which is 24 bit wide */
463 	div_frc = rate % *parent_rate;
464 	div_frc *= BIT(24) - 1;
465 	do_div(div_frc, *parent_rate);
466 
467 	hwdata->div_int = div_int;
468 	hwdata->div_frc = (u32)div_frc;
469 
470 	return (*parent_rate * div_int) + ((*parent_rate * div_frc) >> 24);
471 }
472 
vc5_pll_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)473 static int vc5_pll_set_rate(struct clk_hw *hw, unsigned long rate,
474 			    unsigned long parent_rate)
475 {
476 	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
477 	struct vc5_driver_data *vc5 = hwdata->vc5;
478 	u8 fb[5];
479 
480 	fb[0] = hwdata->div_int >> 4;
481 	fb[1] = hwdata->div_int << 4;
482 	fb[2] = hwdata->div_frc >> 16;
483 	fb[3] = hwdata->div_frc >> 8;
484 	fb[4] = hwdata->div_frc;
485 
486 	return regmap_bulk_write(vc5->regmap, VC5_FEEDBACK_INT_DIV, fb, 5);
487 }
488 
489 static const struct clk_ops vc5_pll_ops = {
490 	.recalc_rate	= vc5_pll_recalc_rate,
491 	.round_rate	= vc5_pll_round_rate,
492 	.set_rate	= vc5_pll_set_rate,
493 };
494 
vc5_fod_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)495 static unsigned long vc5_fod_recalc_rate(struct clk_hw *hw,
496 					 unsigned long parent_rate)
497 {
498 	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
499 	struct vc5_driver_data *vc5 = hwdata->vc5;
500 	/* VCO frequency is divided by two before entering FOD */
501 	u32 f_in = parent_rate / 2;
502 	u32 div_int, div_frc;
503 	u8 od_int[2];
504 	u8 od_frc[4];
505 
506 	regmap_bulk_read(vc5->regmap, VC5_OUT_DIV_INT(hwdata->num, 0),
507 			 od_int, 2);
508 	regmap_bulk_read(vc5->regmap, VC5_OUT_DIV_FRAC(hwdata->num, 0),
509 			 od_frc, 4);
510 
511 	div_int = (od_int[0] << 4) | (od_int[1] >> 4);
512 	div_frc = (od_frc[0] << 22) | (od_frc[1] << 14) |
513 		  (od_frc[2] << 6) | (od_frc[3] >> 2);
514 
515 	/* Avoid division by zero if the output is not configured. */
516 	if (div_int == 0 && div_frc == 0)
517 		return 0;
518 
519 	/* The PLL divider has 12 integer bits and 30 fractional bits */
520 	return div64_u64((u64)f_in << 24ULL, ((u64)div_int << 24ULL) + div_frc);
521 }
522 
vc5_fod_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)523 static long vc5_fod_round_rate(struct clk_hw *hw, unsigned long rate,
524 			       unsigned long *parent_rate)
525 {
526 	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
527 	/* VCO frequency is divided by two before entering FOD */
528 	u32 f_in = *parent_rate / 2;
529 	u32 div_int;
530 	u64 div_frc;
531 
532 	/* Determine integer part, which is 12 bit wide */
533 	div_int = f_in / rate;
534 	/*
535 	 * WARNING: The clock chip does not output signal if the integer part
536 	 *          of the divider is 0xfff and fractional part is non-zero.
537 	 *          Clamp the divider at 0xffe to keep the code simple.
538 	 */
539 	if (div_int > 0xffe) {
540 		div_int = 0xffe;
541 		rate = f_in / div_int;
542 	}
543 
544 	/* Determine best fractional part, which is 30 bit wide */
545 	div_frc = f_in % rate;
546 	div_frc <<= 24;
547 	do_div(div_frc, rate);
548 
549 	hwdata->div_int = div_int;
550 	hwdata->div_frc = (u32)div_frc;
551 
552 	return div64_u64((u64)f_in << 24ULL, ((u64)div_int << 24ULL) + div_frc);
553 }
554 
vc5_fod_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)555 static int vc5_fod_set_rate(struct clk_hw *hw, unsigned long rate,
556 			    unsigned long parent_rate)
557 {
558 	struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
559 	struct vc5_driver_data *vc5 = hwdata->vc5;
560 	u8 data[14] = {
561 		hwdata->div_frc >> 22, hwdata->div_frc >> 14,
562 		hwdata->div_frc >> 6, hwdata->div_frc << 2,
563 		0, 0, 0, 0, 0,
564 		0, 0,
565 		hwdata->div_int >> 4, hwdata->div_int << 4,
566 		0
567 	};
568 	int ret;
569 
570 	ret = regmap_bulk_write(vc5->regmap, VC5_OUT_DIV_FRAC(hwdata->num, 0),
571 				data, 14);
572 	if (ret)
573 		return ret;
574 
575 	/*
576 	 * Toggle magic bit in undocumented register for unknown reason.
577 	 * This is what the IDT timing commander tool does and the chip
578 	 * datasheet somewhat implies this is needed, but the register
579 	 * and the bit is not documented.
580 	 */
581 	ret = regmap_clear_bits(vc5->regmap, VC5_GLOBAL_REGISTER,
582 				VC5_GLOBAL_REGISTER_GLOBAL_RESET);
583 	if (ret)
584 		return ret;
585 
586 	return regmap_set_bits(vc5->regmap, VC5_GLOBAL_REGISTER,
587 			       VC5_GLOBAL_REGISTER_GLOBAL_RESET);
588 }
589 
590 static const struct clk_ops vc5_fod_ops = {
591 	.recalc_rate	= vc5_fod_recalc_rate,
592 	.round_rate	= vc5_fod_round_rate,
593 	.set_rate	= vc5_fod_set_rate,
594 };
595 
vc5_clk_out_prepare(struct clk_hw * hw)596 static int vc5_clk_out_prepare(struct clk_hw *hw)
597 {
598 	struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
599 	struct vc5_driver_data *vc5 = hwdata->vc5;
600 	const u8 mask = VC5_OUT_DIV_CONTROL_SELB_NORM |
601 			VC5_OUT_DIV_CONTROL_SEL_EXT |
602 			VC5_OUT_DIV_CONTROL_EN_FOD;
603 	unsigned int src;
604 	int ret;
605 
606 	/*
607 	 * When enabling a FOD, all currently enabled FODs are briefly
608 	 * stopped in order to synchronize all of them. This causes a clock
609 	 * disruption to any unrelated chips that might be already using
610 	 * other clock outputs. Bypass the sync feature to avoid the issue,
611 	 * which is possible on the VersaClock 6E family via reserved
612 	 * registers.
613 	 */
614 	if (vc5->chip_info->flags & VC5_HAS_BYPASS_SYNC_BIT) {
615 		ret = regmap_set_bits(vc5->regmap,
616 				      VC5_RESERVED_X0(hwdata->num),
617 				      VC5_RESERVED_X0_BYPASS_SYNC);
618 		if (ret)
619 			return ret;
620 	}
621 
622 	/*
623 	 * If the input mux is disabled, enable it first and
624 	 * select source from matching FOD.
625 	 */
626 	ret = regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src);
627 	if (ret)
628 		return ret;
629 
630 	if ((src & mask) == 0) {
631 		src = VC5_OUT_DIV_CONTROL_RESET | VC5_OUT_DIV_CONTROL_EN_FOD;
632 		ret = regmap_update_bits(vc5->regmap,
633 					 VC5_OUT_DIV_CONTROL(hwdata->num),
634 					 mask | VC5_OUT_DIV_CONTROL_RESET, src);
635 		if (ret)
636 			return ret;
637 	}
638 
639 	/* Enable the clock buffer */
640 	ret = regmap_set_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1),
641 			      VC5_CLK_OUTPUT_CFG1_EN_CLKBUF);
642 	if (ret)
643 		return ret;
644 
645 	if (hwdata->clk_output_cfg0_mask) {
646 		dev_dbg(&vc5->client->dev, "Update output %d mask 0x%0X val 0x%0X\n",
647 			hwdata->num, hwdata->clk_output_cfg0_mask,
648 			hwdata->clk_output_cfg0);
649 
650 		ret = regmap_update_bits(vc5->regmap,
651 					 VC5_CLK_OUTPUT_CFG(hwdata->num, 0),
652 					 hwdata->clk_output_cfg0_mask,
653 					 hwdata->clk_output_cfg0);
654 		if (ret)
655 			return ret;
656 	}
657 
658 	return 0;
659 }
660 
vc5_clk_out_unprepare(struct clk_hw * hw)661 static void vc5_clk_out_unprepare(struct clk_hw *hw)
662 {
663 	struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
664 	struct vc5_driver_data *vc5 = hwdata->vc5;
665 
666 	/* Disable the clock buffer */
667 	regmap_clear_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1),
668 			  VC5_CLK_OUTPUT_CFG1_EN_CLKBUF);
669 }
670 
vc5_clk_out_get_parent(struct clk_hw * hw)671 static unsigned char vc5_clk_out_get_parent(struct clk_hw *hw)
672 {
673 	struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
674 	struct vc5_driver_data *vc5 = hwdata->vc5;
675 	const u8 mask = VC5_OUT_DIV_CONTROL_SELB_NORM |
676 			VC5_OUT_DIV_CONTROL_SEL_EXT |
677 			VC5_OUT_DIV_CONTROL_EN_FOD;
678 	const u8 fodclkmask = VC5_OUT_DIV_CONTROL_SELB_NORM |
679 			      VC5_OUT_DIV_CONTROL_EN_FOD;
680 	const u8 extclk = VC5_OUT_DIV_CONTROL_SELB_NORM |
681 			  VC5_OUT_DIV_CONTROL_SEL_EXT;
682 	unsigned int src;
683 	int ret;
684 
685 	ret = regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src);
686 	if (ret)
687 		return 0;
688 
689 	src &= mask;
690 
691 	if (src == 0)	/* Input mux set to DISABLED */
692 		return 0;
693 
694 	if ((src & fodclkmask) == VC5_OUT_DIV_CONTROL_EN_FOD)
695 		return 0;
696 
697 	if (src == extclk)
698 		return 1;
699 
700 	dev_warn(&vc5->client->dev,
701 		 "Invalid clock output configuration (%02x)\n", src);
702 	return 0;
703 }
704 
vc5_clk_out_set_parent(struct clk_hw * hw,u8 index)705 static int vc5_clk_out_set_parent(struct clk_hw *hw, u8 index)
706 {
707 	struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
708 	struct vc5_driver_data *vc5 = hwdata->vc5;
709 	const u8 mask = VC5_OUT_DIV_CONTROL_RESET |
710 			VC5_OUT_DIV_CONTROL_SELB_NORM |
711 			VC5_OUT_DIV_CONTROL_SEL_EXT |
712 			VC5_OUT_DIV_CONTROL_EN_FOD;
713 	const u8 extclk = VC5_OUT_DIV_CONTROL_SELB_NORM |
714 			  VC5_OUT_DIV_CONTROL_SEL_EXT;
715 	u8 src = VC5_OUT_DIV_CONTROL_RESET;
716 
717 	if (index == 0)
718 		src |= VC5_OUT_DIV_CONTROL_EN_FOD;
719 	else
720 		src |= extclk;
721 
722 	return regmap_update_bits(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num),
723 				  mask, src);
724 }
725 
726 static const struct clk_ops vc5_clk_out_ops = {
727 	.prepare	= vc5_clk_out_prepare,
728 	.unprepare	= vc5_clk_out_unprepare,
729 	.determine_rate	= clk_hw_determine_rate_no_reparent,
730 	.set_parent	= vc5_clk_out_set_parent,
731 	.get_parent	= vc5_clk_out_get_parent,
732 };
733 
vc5_of_clk_get(struct of_phandle_args * clkspec,void * data)734 static struct clk_hw *vc5_of_clk_get(struct of_phandle_args *clkspec,
735 				     void *data)
736 {
737 	struct vc5_driver_data *vc5 = data;
738 	unsigned int idx = clkspec->args[0];
739 
740 	if (idx >= vc5->chip_info->clk_out_cnt)
741 		return ERR_PTR(-EINVAL);
742 
743 	return &vc5->clk_out[idx].hw;
744 }
745 
vc5_map_index_to_output(const enum vc5_model model,const unsigned int n)746 static int vc5_map_index_to_output(const enum vc5_model model,
747 				   const unsigned int n)
748 {
749 	switch (model) {
750 	case IDT_VC5_5P49V5933:
751 		return (n == 0) ? 0 : 3;
752 	case IDT_VC5_5P49V5923:
753 	case IDT_VC5_5P49V5925:
754 	case IDT_VC5_5P49V5935:
755 	case IDT_VC6_5P49V6901:
756 	case IDT_VC6_5P49V6965:
757 	case IDT_VC6_5P49V6975:
758 	default:
759 		return n;
760 	}
761 }
762 
vc5_update_mode(struct device_node * np_output,struct vc5_out_data * clk_out)763 static int vc5_update_mode(struct device_node *np_output,
764 			   struct vc5_out_data *clk_out)
765 {
766 	u32 value;
767 
768 	if (!of_property_read_u32(np_output, "idt,mode", &value)) {
769 		clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_CFG_MASK;
770 		switch (value) {
771 		case VC5_CLK_OUTPUT_CFG0_CFG_LVPECL:
772 		case VC5_CLK_OUTPUT_CFG0_CFG_CMOS:
773 		case VC5_CLK_OUTPUT_CFG0_CFG_HCSL33:
774 		case VC5_CLK_OUTPUT_CFG0_CFG_LVDS:
775 		case VC5_CLK_OUTPUT_CFG0_CFG_CMOS2:
776 		case VC5_CLK_OUTPUT_CFG0_CFG_CMOSD:
777 		case VC5_CLK_OUTPUT_CFG0_CFG_HCSL25:
778 			clk_out->clk_output_cfg0 |=
779 			    value << VC5_CLK_OUTPUT_CFG0_CFG_SHIFT;
780 			break;
781 		default:
782 			return -EINVAL;
783 		}
784 	}
785 	return 0;
786 }
787 
vc5_update_power(struct device_node * np_output,struct vc5_out_data * clk_out)788 static int vc5_update_power(struct device_node *np_output,
789 			    struct vc5_out_data *clk_out)
790 {
791 	u32 value;
792 
793 	if (!of_property_read_u32(np_output, "idt,voltage-microvolt",
794 				  &value)) {
795 		clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_PWR_MASK;
796 		switch (value) {
797 		case 1800000:
798 			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_18;
799 			break;
800 		case 2500000:
801 			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_25;
802 			break;
803 		case 3300000:
804 			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_33;
805 			break;
806 		default:
807 			return -EINVAL;
808 		}
809 	}
810 	return 0;
811 }
812 
vc5_map_cap_value(u32 femtofarads)813 static int vc5_map_cap_value(u32 femtofarads)
814 {
815 	int mapped_value;
816 
817 	/*
818 	 * The datasheet explicitly states 9000 - 25000 with 0.5pF
819 	 * steps, but the Programmer's guide shows the steps are 0.430pF.
820 	 * After getting feedback from Renesas, the .5pF steps were the
821 	 * goal, but 430nF was the actual values.
822 	 * Because of this, the actual range goes to 22760 instead of 25000
823 	 */
824 	if (femtofarads < 9000 || femtofarads > 22760)
825 		return -EINVAL;
826 
827 	/*
828 	 * The Programmer's guide shows XTAL[5:0] but in reality,
829 	 * XTAL[0] and XTAL[1] are both LSB which makes the math
830 	 * strange.  With clarfication from Renesas, setting the
831 	 * values should be simpler by ignoring XTAL[0]
832 	 */
833 	mapped_value = DIV_ROUND_CLOSEST(femtofarads - 9000, 430);
834 
835 	/*
836 	 * Since the calculation ignores XTAL[0], there is one
837 	 * special case where mapped_value = 32.  In reality, this means
838 	 * the real mapped value should be 111111b.  In other cases,
839 	 * the mapped_value needs to be shifted 1 to the left.
840 	 */
841 	if (mapped_value > 31)
842 		mapped_value = 0x3f;
843 	else
844 		mapped_value <<= 1;
845 
846 	return mapped_value;
847 }
vc5_update_cap_load(struct device_node * node,struct vc5_driver_data * vc5)848 static int vc5_update_cap_load(struct device_node *node, struct vc5_driver_data *vc5)
849 {
850 	u32 value;
851 	int mapped_value;
852 	int ret;
853 
854 	if (of_property_read_u32(node, "idt,xtal-load-femtofarads", &value))
855 		return 0;
856 
857 	mapped_value = vc5_map_cap_value(value);
858 	if (mapped_value < 0)
859 		return mapped_value;
860 
861 	/*
862 	 * The mapped_value is really the high 6 bits of
863 	 * VC5_XTAL_X1_LOAD_CAP and VC5_XTAL_X2_LOAD_CAP, so
864 	 * shift the value 2 places.
865 	 */
866 	ret = regmap_update_bits(vc5->regmap, VC5_XTAL_X1_LOAD_CAP, ~0x03,
867 				 mapped_value << 2);
868 	if (ret)
869 		return ret;
870 
871 	return regmap_update_bits(vc5->regmap, VC5_XTAL_X2_LOAD_CAP, ~0x03,
872 				  mapped_value << 2);
873 }
874 
vc5_update_slew(struct device_node * np_output,struct vc5_out_data * clk_out)875 static int vc5_update_slew(struct device_node *np_output,
876 			   struct vc5_out_data *clk_out)
877 {
878 	u32 value;
879 
880 	if (!of_property_read_u32(np_output, "idt,slew-percent", &value)) {
881 		clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_SLEW_MASK;
882 		switch (value) {
883 		case 80:
884 			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_80;
885 			break;
886 		case 85:
887 			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_85;
888 			break;
889 		case 90:
890 			clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_90;
891 			break;
892 		case 100:
893 			clk_out->clk_output_cfg0 |=
894 			    VC5_CLK_OUTPUT_CFG0_SLEW_100;
895 			break;
896 		default:
897 			return -EINVAL;
898 		}
899 	}
900 	return 0;
901 }
902 
vc5_get_output_config(struct i2c_client * client,struct vc5_out_data * clk_out)903 static int vc5_get_output_config(struct i2c_client *client,
904 				 struct vc5_out_data *clk_out)
905 {
906 	struct device_node *np_output;
907 	char *child_name;
908 	int ret = 0;
909 
910 	child_name = kasprintf(GFP_KERNEL, "OUT%d", clk_out->num + 1);
911 	if (!child_name)
912 		return -ENOMEM;
913 
914 	np_output = of_get_child_by_name(client->dev.of_node, child_name);
915 	kfree(child_name);
916 	if (!np_output)
917 		return 0;
918 
919 	ret = vc5_update_mode(np_output, clk_out);
920 	if (ret)
921 		goto output_error;
922 
923 	ret = vc5_update_power(np_output, clk_out);
924 	if (ret)
925 		goto output_error;
926 
927 	ret = vc5_update_slew(np_output, clk_out);
928 
929 output_error:
930 	if (ret) {
931 		dev_err(&client->dev,
932 			"Invalid clock output configuration OUT%d\n",
933 			clk_out->num + 1);
934 	}
935 
936 	of_node_put(np_output);
937 
938 	return ret;
939 }
940 
941 static const struct of_device_id clk_vc5_of_match[];
942 
vc5_probe(struct i2c_client * client)943 static int vc5_probe(struct i2c_client *client)
944 {
945 	unsigned int oe, sd, src_mask = 0, src_val = 0;
946 	struct vc5_driver_data *vc5;
947 	struct clk_init_data init;
948 	const char *parent_names[2];
949 	unsigned int n, idx = 0;
950 	int ret;
951 
952 	vc5 = devm_kzalloc(&client->dev, sizeof(*vc5), GFP_KERNEL);
953 	if (!vc5)
954 		return -ENOMEM;
955 
956 	i2c_set_clientdata(client, vc5);
957 	vc5->client = client;
958 	vc5->chip_info = i2c_get_match_data(client);
959 
960 	vc5->pin_xin = devm_clk_get(&client->dev, "xin");
961 	if (PTR_ERR(vc5->pin_xin) == -EPROBE_DEFER)
962 		return -EPROBE_DEFER;
963 
964 	vc5->pin_clkin = devm_clk_get(&client->dev, "clkin");
965 	if (PTR_ERR(vc5->pin_clkin) == -EPROBE_DEFER)
966 		return -EPROBE_DEFER;
967 
968 	vc5->regmap = devm_regmap_init_i2c(client, &vc5_regmap_config);
969 	if (IS_ERR(vc5->regmap))
970 		return dev_err_probe(&client->dev, PTR_ERR(vc5->regmap),
971 				     "failed to allocate register map\n");
972 
973 	ret = of_property_read_u32(client->dev.of_node, "idt,shutdown", &sd);
974 	if (!ret) {
975 		src_mask |= VC5_PRIM_SRC_SHDN_EN_GBL_SHDN;
976 		if (sd)
977 			src_val |= VC5_PRIM_SRC_SHDN_EN_GBL_SHDN;
978 	} else if (ret != -EINVAL) {
979 		return dev_err_probe(&client->dev, ret,
980 				     "could not read idt,shutdown\n");
981 	}
982 
983 	ret = of_property_read_u32(client->dev.of_node,
984 				   "idt,output-enable-active", &oe);
985 	if (!ret) {
986 		src_mask |= VC5_PRIM_SRC_SHDN_SP;
987 		if (oe)
988 			src_val |= VC5_PRIM_SRC_SHDN_SP;
989 	} else if (ret != -EINVAL) {
990 		return dev_err_probe(&client->dev, ret,
991 				     "could not read idt,output-enable-active\n");
992 	}
993 
994 	ret = regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN, src_mask,
995 				 src_val);
996 	if (ret)
997 		return ret;
998 
999 	/* Register clock input mux */
1000 	memset(&init, 0, sizeof(init));
1001 
1002 	if (!IS_ERR(vc5->pin_xin)) {
1003 		vc5->clk_mux_ins |= VC5_MUX_IN_XIN;
1004 		parent_names[init.num_parents++] = __clk_get_name(vc5->pin_xin);
1005 	} else if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL) {
1006 		vc5->pin_xin = clk_register_fixed_rate(&client->dev,
1007 						       "internal-xtal", NULL,
1008 						       0, 25000000);
1009 		if (IS_ERR(vc5->pin_xin))
1010 			return PTR_ERR(vc5->pin_xin);
1011 		vc5->clk_mux_ins |= VC5_MUX_IN_XIN;
1012 		parent_names[init.num_parents++] = __clk_get_name(vc5->pin_xin);
1013 	}
1014 
1015 	if (!IS_ERR(vc5->pin_clkin)) {
1016 		vc5->clk_mux_ins |= VC5_MUX_IN_CLKIN;
1017 		parent_names[init.num_parents++] =
1018 		    __clk_get_name(vc5->pin_clkin);
1019 	}
1020 
1021 	if (!init.num_parents)
1022 		return dev_err_probe(&client->dev, -EINVAL,
1023 				     "no input clock specified!\n");
1024 
1025 	/* Configure Optional Loading Capacitance for external XTAL */
1026 	if (!(vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)) {
1027 		ret = vc5_update_cap_load(client->dev.of_node, vc5);
1028 		if (ret)
1029 			goto err_clk_register;
1030 	}
1031 
1032 	init.name = kasprintf(GFP_KERNEL, "%pOFn.mux", client->dev.of_node);
1033 	if (!init.name) {
1034 		ret = -ENOMEM;
1035 		goto err_clk;
1036 	}
1037 
1038 	init.ops = &vc5_mux_ops;
1039 	init.flags = 0;
1040 	init.parent_names = parent_names;
1041 	vc5->clk_mux.init = &init;
1042 	ret = devm_clk_hw_register(&client->dev, &vc5->clk_mux);
1043 	if (ret)
1044 		goto err_clk_register;
1045 	kfree(init.name);	/* clock framework made a copy of the name */
1046 
1047 	if (vc5->chip_info->flags & VC5_HAS_PFD_FREQ_DBL) {
1048 		/* Register frequency doubler */
1049 		memset(&init, 0, sizeof(init));
1050 		init.name = kasprintf(GFP_KERNEL, "%pOFn.dbl",
1051 				      client->dev.of_node);
1052 		if (!init.name) {
1053 			ret = -ENOMEM;
1054 			goto err_clk;
1055 		}
1056 		init.ops = &vc5_dbl_ops;
1057 		init.flags = CLK_SET_RATE_PARENT;
1058 		init.parent_names = parent_names;
1059 		parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
1060 		init.num_parents = 1;
1061 		vc5->clk_mul.init = &init;
1062 		ret = devm_clk_hw_register(&client->dev, &vc5->clk_mul);
1063 		if (ret)
1064 			goto err_clk_register;
1065 		kfree(init.name); /* clock framework made a copy of the name */
1066 	}
1067 
1068 	/* Register PFD */
1069 	memset(&init, 0, sizeof(init));
1070 	init.name = kasprintf(GFP_KERNEL, "%pOFn.pfd", client->dev.of_node);
1071 	if (!init.name) {
1072 		ret = -ENOMEM;
1073 		goto err_clk;
1074 	}
1075 	init.ops = &vc5_pfd_ops;
1076 	init.flags = CLK_SET_RATE_PARENT;
1077 	init.parent_names = parent_names;
1078 	if (vc5->chip_info->flags & VC5_HAS_PFD_FREQ_DBL)
1079 		parent_names[0] = clk_hw_get_name(&vc5->clk_mul);
1080 	else
1081 		parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
1082 	init.num_parents = 1;
1083 	vc5->clk_pfd.init = &init;
1084 	ret = devm_clk_hw_register(&client->dev, &vc5->clk_pfd);
1085 	if (ret)
1086 		goto err_clk_register;
1087 	kfree(init.name);	/* clock framework made a copy of the name */
1088 
1089 	/* Register PLL */
1090 	memset(&init, 0, sizeof(init));
1091 	init.name = kasprintf(GFP_KERNEL, "%pOFn.pll", client->dev.of_node);
1092 	if (!init.name) {
1093 		ret = -ENOMEM;
1094 		goto err_clk;
1095 	}
1096 	init.ops = &vc5_pll_ops;
1097 	init.flags = CLK_SET_RATE_PARENT;
1098 	init.parent_names = parent_names;
1099 	parent_names[0] = clk_hw_get_name(&vc5->clk_pfd);
1100 	init.num_parents = 1;
1101 	vc5->clk_pll.num = 0;
1102 	vc5->clk_pll.vc5 = vc5;
1103 	vc5->clk_pll.hw.init = &init;
1104 	ret = devm_clk_hw_register(&client->dev, &vc5->clk_pll.hw);
1105 	if (ret)
1106 		goto err_clk_register;
1107 	kfree(init.name); /* clock framework made a copy of the name */
1108 
1109 	/* Register FODs */
1110 	for (n = 0; n < vc5->chip_info->clk_fod_cnt; n++) {
1111 		idx = vc5_map_index_to_output(vc5->chip_info->model, n);
1112 		memset(&init, 0, sizeof(init));
1113 		init.name = kasprintf(GFP_KERNEL, "%pOFn.fod%d",
1114 				      client->dev.of_node, idx);
1115 		if (!init.name) {
1116 			ret = -ENOMEM;
1117 			goto err_clk;
1118 		}
1119 		init.ops = &vc5_fod_ops;
1120 		init.flags = CLK_SET_RATE_PARENT;
1121 		init.parent_names = parent_names;
1122 		parent_names[0] = clk_hw_get_name(&vc5->clk_pll.hw);
1123 		init.num_parents = 1;
1124 		vc5->clk_fod[n].num = idx;
1125 		vc5->clk_fod[n].vc5 = vc5;
1126 		vc5->clk_fod[n].hw.init = &init;
1127 		ret = devm_clk_hw_register(&client->dev, &vc5->clk_fod[n].hw);
1128 		if (ret)
1129 			goto err_clk_register;
1130 		kfree(init.name); /* clock framework made a copy of the name */
1131 	}
1132 
1133 	/* Register MUX-connected OUT0_I2C_SELB output */
1134 	memset(&init, 0, sizeof(init));
1135 	init.name = kasprintf(GFP_KERNEL, "%pOFn.out0_sel_i2cb",
1136 			      client->dev.of_node);
1137 	if (!init.name) {
1138 		ret = -ENOMEM;
1139 		goto err_clk;
1140 	}
1141 	init.ops = &vc5_clk_out_ops;
1142 	init.flags = CLK_SET_RATE_PARENT;
1143 	init.parent_names = parent_names;
1144 	parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
1145 	init.num_parents = 1;
1146 	vc5->clk_out[0].num = idx;
1147 	vc5->clk_out[0].vc5 = vc5;
1148 	vc5->clk_out[0].hw.init = &init;
1149 	ret = devm_clk_hw_register(&client->dev, &vc5->clk_out[0].hw);
1150 	if (ret)
1151 		goto err_clk_register;
1152 	kfree(init.name); /* clock framework made a copy of the name */
1153 
1154 	/* Register FOD-connected OUTx outputs */
1155 	for (n = 1; n < vc5->chip_info->clk_out_cnt; n++) {
1156 		idx = vc5_map_index_to_output(vc5->chip_info->model, n - 1);
1157 		parent_names[0] = clk_hw_get_name(&vc5->clk_fod[idx].hw);
1158 		if (n == 1)
1159 			parent_names[1] = clk_hw_get_name(&vc5->clk_mux);
1160 		else
1161 			parent_names[1] =
1162 			    clk_hw_get_name(&vc5->clk_out[n - 1].hw);
1163 
1164 		memset(&init, 0, sizeof(init));
1165 		init.name = kasprintf(GFP_KERNEL, "%pOFn.out%d",
1166 				      client->dev.of_node, idx + 1);
1167 		if (!init.name) {
1168 			ret = -ENOMEM;
1169 			goto err_clk;
1170 		}
1171 		init.ops = &vc5_clk_out_ops;
1172 		init.flags = CLK_SET_RATE_PARENT;
1173 		init.parent_names = parent_names;
1174 		init.num_parents = 2;
1175 		vc5->clk_out[n].num = idx;
1176 		vc5->clk_out[n].vc5 = vc5;
1177 		vc5->clk_out[n].hw.init = &init;
1178 		ret = devm_clk_hw_register(&client->dev, &vc5->clk_out[n].hw);
1179 		if (ret)
1180 			goto err_clk_register;
1181 		kfree(init.name); /* clock framework made a copy of the name */
1182 
1183 		/* Fetch Clock Output configuration from DT (if specified) */
1184 		ret = vc5_get_output_config(client, &vc5->clk_out[n]);
1185 		if (ret)
1186 			goto err_clk;
1187 	}
1188 
1189 	ret = of_clk_add_hw_provider(client->dev.of_node, vc5_of_clk_get, vc5);
1190 	if (ret) {
1191 		dev_err_probe(&client->dev, ret,
1192 			      "unable to add clk provider\n");
1193 		goto err_clk;
1194 	}
1195 
1196 	return 0;
1197 
1198 err_clk_register:
1199 	dev_err_probe(&client->dev, ret,
1200 		      "unable to register %s\n", init.name);
1201 	kfree(init.name); /* clock framework made a copy of the name */
1202 err_clk:
1203 	if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)
1204 		clk_unregister_fixed_rate(vc5->pin_xin);
1205 	return ret;
1206 }
1207 
vc5_remove(struct i2c_client * client)1208 static void vc5_remove(struct i2c_client *client)
1209 {
1210 	struct vc5_driver_data *vc5 = i2c_get_clientdata(client);
1211 
1212 	of_clk_del_provider(client->dev.of_node);
1213 
1214 	if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)
1215 		clk_unregister_fixed_rate(vc5->pin_xin);
1216 }
1217 
vc5_suspend(struct device * dev)1218 static int __maybe_unused vc5_suspend(struct device *dev)
1219 {
1220 	struct vc5_driver_data *vc5 = dev_get_drvdata(dev);
1221 
1222 	regcache_cache_only(vc5->regmap, true);
1223 	regcache_mark_dirty(vc5->regmap);
1224 
1225 	return 0;
1226 }
1227 
vc5_resume(struct device * dev)1228 static int __maybe_unused vc5_resume(struct device *dev)
1229 {
1230 	struct vc5_driver_data *vc5 = dev_get_drvdata(dev);
1231 	int ret;
1232 
1233 	regcache_cache_only(vc5->regmap, false);
1234 	ret = regcache_sync(vc5->regmap);
1235 	if (ret)
1236 		dev_err(dev, "Failed to restore register map: %d\n", ret);
1237 	return ret;
1238 }
1239 
1240 static const struct vc5_chip_info idt_5p49v5923_info = {
1241 	.model = IDT_VC5_5P49V5923,
1242 	.clk_fod_cnt = 2,
1243 	.clk_out_cnt = 3,
1244 	.flags = 0,
1245 	.vco_max = 3000000000UL,
1246 };
1247 
1248 static const struct vc5_chip_info idt_5p49v5925_info = {
1249 	.model = IDT_VC5_5P49V5925,
1250 	.clk_fod_cnt = 4,
1251 	.clk_out_cnt = 5,
1252 	.flags = 0,
1253 	.vco_max = 3000000000UL,
1254 };
1255 
1256 static const struct vc5_chip_info idt_5p49v5933_info = {
1257 	.model = IDT_VC5_5P49V5933,
1258 	.clk_fod_cnt = 2,
1259 	.clk_out_cnt = 3,
1260 	.flags = VC5_HAS_INTERNAL_XTAL,
1261 	.vco_max = 3000000000UL,
1262 };
1263 
1264 static const struct vc5_chip_info idt_5p49v5935_info = {
1265 	.model = IDT_VC5_5P49V5935,
1266 	.clk_fod_cnt = 4,
1267 	.clk_out_cnt = 5,
1268 	.flags = VC5_HAS_INTERNAL_XTAL,
1269 	.vco_max = 3000000000UL,
1270 };
1271 
1272 static const struct vc5_chip_info idt_5p49v60_info = {
1273 	.model = IDT_VC6_5P49V60,
1274 	.clk_fod_cnt = 4,
1275 	.clk_out_cnt = 5,
1276 	.flags = VC5_HAS_PFD_FREQ_DBL | VC5_HAS_BYPASS_SYNC_BIT,
1277 	.vco_max = 2700000000UL,
1278 };
1279 
1280 static const struct vc5_chip_info idt_5p49v6901_info = {
1281 	.model = IDT_VC6_5P49V6901,
1282 	.clk_fod_cnt = 4,
1283 	.clk_out_cnt = 5,
1284 	.flags = VC5_HAS_PFD_FREQ_DBL | VC5_HAS_BYPASS_SYNC_BIT,
1285 	.vco_max = 3000000000UL,
1286 };
1287 
1288 static const struct vc5_chip_info idt_5p49v6965_info = {
1289 	.model = IDT_VC6_5P49V6965,
1290 	.clk_fod_cnt = 4,
1291 	.clk_out_cnt = 5,
1292 	.flags = VC5_HAS_BYPASS_SYNC_BIT,
1293 	.vco_max = 3000000000UL,
1294 };
1295 
1296 static const struct vc5_chip_info idt_5p49v6975_info = {
1297 	.model = IDT_VC6_5P49V6975,
1298 	.clk_fod_cnt = 4,
1299 	.clk_out_cnt = 5,
1300 	.flags = VC5_HAS_BYPASS_SYNC_BIT | VC5_HAS_INTERNAL_XTAL,
1301 	.vco_max = 3000000000UL,
1302 };
1303 
1304 static const struct i2c_device_id vc5_id[] = {
1305 	{ "5p49v5923", .driver_data = (kernel_ulong_t)&idt_5p49v5923_info },
1306 	{ "5p49v5925", .driver_data = (kernel_ulong_t)&idt_5p49v5925_info },
1307 	{ "5p49v5933", .driver_data = (kernel_ulong_t)&idt_5p49v5933_info },
1308 	{ "5p49v5935", .driver_data = (kernel_ulong_t)&idt_5p49v5935_info },
1309 	{ "5p49v60", .driver_data = (kernel_ulong_t)&idt_5p49v60_info },
1310 	{ "5p49v6901", .driver_data = (kernel_ulong_t)&idt_5p49v6901_info },
1311 	{ "5p49v6965", .driver_data = (kernel_ulong_t)&idt_5p49v6965_info },
1312 	{ "5p49v6975", .driver_data = (kernel_ulong_t)&idt_5p49v6975_info },
1313 	{ }
1314 };
1315 MODULE_DEVICE_TABLE(i2c, vc5_id);
1316 
1317 static const struct of_device_id clk_vc5_of_match[] = {
1318 	{ .compatible = "idt,5p49v5923", .data = &idt_5p49v5923_info },
1319 	{ .compatible = "idt,5p49v5925", .data = &idt_5p49v5925_info },
1320 	{ .compatible = "idt,5p49v5933", .data = &idt_5p49v5933_info },
1321 	{ .compatible = "idt,5p49v5935", .data = &idt_5p49v5935_info },
1322 	{ .compatible = "idt,5p49v60", .data = &idt_5p49v60_info },
1323 	{ .compatible = "idt,5p49v6901", .data = &idt_5p49v6901_info },
1324 	{ .compatible = "idt,5p49v6965", .data = &idt_5p49v6965_info },
1325 	{ .compatible = "idt,5p49v6975", .data = &idt_5p49v6975_info },
1326 	{ },
1327 };
1328 MODULE_DEVICE_TABLE(of, clk_vc5_of_match);
1329 
1330 static SIMPLE_DEV_PM_OPS(vc5_pm_ops, vc5_suspend, vc5_resume);
1331 
1332 static struct i2c_driver vc5_driver = {
1333 	.driver = {
1334 		.name = "vc5",
1335 		.pm	= &vc5_pm_ops,
1336 		.of_match_table = clk_vc5_of_match,
1337 	},
1338 	.probe		= vc5_probe,
1339 	.remove		= vc5_remove,
1340 	.id_table	= vc5_id,
1341 };
1342 module_i2c_driver(vc5_driver);
1343 
1344 MODULE_AUTHOR("Marek Vasut <marek.vasut@gmail.com>");
1345 MODULE_DESCRIPTION("IDT VersaClock 5 driver");
1346 MODULE_LICENSE("GPL");
1347