1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Driver for AMBA serial ports
4 *
5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 *
7 * Copyright 1999 ARM Limited
8 * Copyright (C) 2000 Deep Blue Solutions Ltd.
9 * Copyright (C) 2010 ST-Ericsson SA
10 *
11 * This is a generic driver for ARM AMBA-type serial ports. They
12 * have a lot of 16550-like features, but are not register compatible.
13 * Note that although they do have CTS, DCD and DSR inputs, they do
14 * not have an RI input, nor do they have DTR or RTS outputs. If
15 * required, these have to be supplied via some other means (eg, GPIO)
16 * and hooked into this driver.
17 */
18
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/platform_device.h>
24 #include <linux/sysrq.h>
25 #include <linux/device.h>
26 #include <linux/tty.h>
27 #include <linux/tty_flip.h>
28 #include <linux/serial_core.h>
29 #include <linux/serial.h>
30 #include <linux/amba/bus.h>
31 #include <linux/amba/serial.h>
32 #include <linux/clk.h>
33 #include <linux/slab.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/scatterlist.h>
37 #include <linux/delay.h>
38 #include <linux/types.h>
39 #include <linux/of.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44
45 #define UART_NR 14
46
47 #define SERIAL_AMBA_MAJOR 204
48 #define SERIAL_AMBA_MINOR 64
49 #define SERIAL_AMBA_NR UART_NR
50
51 #define AMBA_ISR_PASS_LIMIT 256
52
53 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
54 #define UART_DUMMY_DR_RX (1 << 16)
55
56 enum {
57 REG_DR,
58 REG_ST_DMAWM,
59 REG_ST_TIMEOUT,
60 REG_FR,
61 REG_LCRH_RX,
62 REG_LCRH_TX,
63 REG_IBRD,
64 REG_FBRD,
65 REG_CR,
66 REG_IFLS,
67 REG_IMSC,
68 REG_RIS,
69 REG_MIS,
70 REG_ICR,
71 REG_DMACR,
72 REG_ST_XFCR,
73 REG_ST_XON1,
74 REG_ST_XON2,
75 REG_ST_XOFF1,
76 REG_ST_XOFF2,
77 REG_ST_ITCR,
78 REG_ST_ITIP,
79 REG_ST_ABCR,
80 REG_ST_ABIMSC,
81
82 /* The size of the array - must be last */
83 REG_ARRAY_SIZE,
84 };
85
86 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
87 [REG_DR] = UART01x_DR,
88 [REG_FR] = UART01x_FR,
89 [REG_LCRH_RX] = UART011_LCRH,
90 [REG_LCRH_TX] = UART011_LCRH,
91 [REG_IBRD] = UART011_IBRD,
92 [REG_FBRD] = UART011_FBRD,
93 [REG_CR] = UART011_CR,
94 [REG_IFLS] = UART011_IFLS,
95 [REG_IMSC] = UART011_IMSC,
96 [REG_RIS] = UART011_RIS,
97 [REG_MIS] = UART011_MIS,
98 [REG_ICR] = UART011_ICR,
99 [REG_DMACR] = UART011_DMACR,
100 };
101
102 /* There is by now at least one vendor with differing details, so handle it */
103 struct vendor_data {
104 const u16 *reg_offset;
105 unsigned int ifls;
106 unsigned int fr_busy;
107 unsigned int fr_dsr;
108 unsigned int fr_cts;
109 unsigned int fr_ri;
110 unsigned int inv_fr;
111 bool access_32b;
112 bool oversampling;
113 bool dma_threshold;
114 bool cts_event_workaround;
115 bool always_enabled;
116 bool fixed_options;
117
118 unsigned int (*get_fifosize)(struct amba_device *dev);
119 };
120
get_fifosize_arm(struct amba_device * dev)121 static unsigned int get_fifosize_arm(struct amba_device *dev)
122 {
123 return amba_rev(dev) < 3 ? 16 : 32;
124 }
125
126 static struct vendor_data vendor_arm = {
127 .reg_offset = pl011_std_offsets,
128 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
129 .fr_busy = UART01x_FR_BUSY,
130 .fr_dsr = UART01x_FR_DSR,
131 .fr_cts = UART01x_FR_CTS,
132 .fr_ri = UART011_FR_RI,
133 .oversampling = false,
134 .dma_threshold = false,
135 .cts_event_workaround = false,
136 .always_enabled = false,
137 .fixed_options = false,
138 .get_fifosize = get_fifosize_arm,
139 };
140
141 static const struct vendor_data vendor_sbsa = {
142 .reg_offset = pl011_std_offsets,
143 .fr_busy = UART01x_FR_BUSY,
144 .fr_dsr = UART01x_FR_DSR,
145 .fr_cts = UART01x_FR_CTS,
146 .fr_ri = UART011_FR_RI,
147 .access_32b = true,
148 .oversampling = false,
149 .dma_threshold = false,
150 .cts_event_workaround = false,
151 .always_enabled = true,
152 .fixed_options = true,
153 };
154
155 #ifdef CONFIG_ACPI_SPCR_TABLE
156 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
157 .reg_offset = pl011_std_offsets,
158 .fr_busy = UART011_FR_TXFE,
159 .fr_dsr = UART01x_FR_DSR,
160 .fr_cts = UART01x_FR_CTS,
161 .fr_ri = UART011_FR_RI,
162 .inv_fr = UART011_FR_TXFE,
163 .access_32b = true,
164 .oversampling = false,
165 .dma_threshold = false,
166 .cts_event_workaround = false,
167 .always_enabled = true,
168 .fixed_options = true,
169 };
170 #endif
171
172 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
173 [REG_DR] = UART01x_DR,
174 [REG_ST_DMAWM] = ST_UART011_DMAWM,
175 [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
176 [REG_FR] = UART01x_FR,
177 [REG_LCRH_RX] = ST_UART011_LCRH_RX,
178 [REG_LCRH_TX] = ST_UART011_LCRH_TX,
179 [REG_IBRD] = UART011_IBRD,
180 [REG_FBRD] = UART011_FBRD,
181 [REG_CR] = UART011_CR,
182 [REG_IFLS] = UART011_IFLS,
183 [REG_IMSC] = UART011_IMSC,
184 [REG_RIS] = UART011_RIS,
185 [REG_MIS] = UART011_MIS,
186 [REG_ICR] = UART011_ICR,
187 [REG_DMACR] = UART011_DMACR,
188 [REG_ST_XFCR] = ST_UART011_XFCR,
189 [REG_ST_XON1] = ST_UART011_XON1,
190 [REG_ST_XON2] = ST_UART011_XON2,
191 [REG_ST_XOFF1] = ST_UART011_XOFF1,
192 [REG_ST_XOFF2] = ST_UART011_XOFF2,
193 [REG_ST_ITCR] = ST_UART011_ITCR,
194 [REG_ST_ITIP] = ST_UART011_ITIP,
195 [REG_ST_ABCR] = ST_UART011_ABCR,
196 [REG_ST_ABIMSC] = ST_UART011_ABIMSC,
197 };
198
get_fifosize_st(struct amba_device * dev)199 static unsigned int get_fifosize_st(struct amba_device *dev)
200 {
201 return 64;
202 }
203
204 static struct vendor_data vendor_st = {
205 .reg_offset = pl011_st_offsets,
206 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
207 .fr_busy = UART01x_FR_BUSY,
208 .fr_dsr = UART01x_FR_DSR,
209 .fr_cts = UART01x_FR_CTS,
210 .fr_ri = UART011_FR_RI,
211 .oversampling = true,
212 .dma_threshold = true,
213 .cts_event_workaround = true,
214 .always_enabled = false,
215 .fixed_options = false,
216 .get_fifosize = get_fifosize_st,
217 };
218
219 /* Deals with DMA transactions */
220
221 struct pl011_dmabuf {
222 dma_addr_t dma;
223 size_t len;
224 char *buf;
225 };
226
227 struct pl011_dmarx_data {
228 struct dma_chan *chan;
229 struct completion complete;
230 bool use_buf_b;
231 struct pl011_dmabuf dbuf_a;
232 struct pl011_dmabuf dbuf_b;
233 dma_cookie_t cookie;
234 bool running;
235 struct timer_list timer;
236 unsigned int last_residue;
237 unsigned long last_jiffies;
238 bool auto_poll_rate;
239 unsigned int poll_rate;
240 unsigned int poll_timeout;
241 };
242
243 struct pl011_dmatx_data {
244 struct dma_chan *chan;
245 dma_addr_t dma;
246 size_t len;
247 char *buf;
248 bool queued;
249 };
250
251 /*
252 * We wrap our port structure around the generic uart_port.
253 */
254 struct uart_amba_port {
255 struct uart_port port;
256 const u16 *reg_offset;
257 struct clk *clk;
258 const struct vendor_data *vendor;
259 unsigned int dmacr; /* dma control reg */
260 unsigned int im; /* interrupt mask */
261 unsigned int old_status;
262 unsigned int fifosize; /* vendor-specific */
263 unsigned int fixed_baud; /* vendor-set fixed baud rate */
264 char type[12];
265 bool rs485_tx_started;
266 unsigned int rs485_tx_drain_interval; /* usecs */
267 #ifdef CONFIG_DMA_ENGINE
268 /* DMA stuff */
269 bool using_tx_dma;
270 bool using_rx_dma;
271 struct pl011_dmarx_data dmarx;
272 struct pl011_dmatx_data dmatx;
273 bool dma_probed;
274 #endif
275 };
276
277 static unsigned int pl011_tx_empty(struct uart_port *port);
278
pl011_reg_to_offset(const struct uart_amba_port * uap,unsigned int reg)279 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
280 unsigned int reg)
281 {
282 return uap->reg_offset[reg];
283 }
284
pl011_read(const struct uart_amba_port * uap,unsigned int reg)285 static unsigned int pl011_read(const struct uart_amba_port *uap,
286 unsigned int reg)
287 {
288 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
289
290 return (uap->port.iotype == UPIO_MEM32) ?
291 readl_relaxed(addr) : readw_relaxed(addr);
292 }
293
pl011_write(unsigned int val,const struct uart_amba_port * uap,unsigned int reg)294 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
295 unsigned int reg)
296 {
297 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
298
299 if (uap->port.iotype == UPIO_MEM32)
300 writel_relaxed(val, addr);
301 else
302 writew_relaxed(val, addr);
303 }
304
305 /*
306 * Reads up to 256 characters from the FIFO or until it's empty and
307 * inserts them into the TTY layer. Returns the number of characters
308 * read from the FIFO.
309 */
pl011_fifo_to_tty(struct uart_amba_port * uap)310 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
311 {
312 unsigned int ch, fifotaken;
313 int sysrq;
314 u16 status;
315 u8 flag;
316
317 for (fifotaken = 0; fifotaken != 256; fifotaken++) {
318 status = pl011_read(uap, REG_FR);
319 if (status & UART01x_FR_RXFE)
320 break;
321
322 /* Take chars from the FIFO and update status */
323 ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
324 flag = TTY_NORMAL;
325 uap->port.icount.rx++;
326
327 if (unlikely(ch & UART_DR_ERROR)) {
328 if (ch & UART011_DR_BE) {
329 ch &= ~(UART011_DR_FE | UART011_DR_PE);
330 uap->port.icount.brk++;
331 if (uart_handle_break(&uap->port))
332 continue;
333 } else if (ch & UART011_DR_PE)
334 uap->port.icount.parity++;
335 else if (ch & UART011_DR_FE)
336 uap->port.icount.frame++;
337 if (ch & UART011_DR_OE)
338 uap->port.icount.overrun++;
339
340 ch &= uap->port.read_status_mask;
341
342 if (ch & UART011_DR_BE)
343 flag = TTY_BREAK;
344 else if (ch & UART011_DR_PE)
345 flag = TTY_PARITY;
346 else if (ch & UART011_DR_FE)
347 flag = TTY_FRAME;
348 }
349
350 uart_port_unlock(&uap->port);
351 sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
352 uart_port_lock(&uap->port);
353
354 if (!sysrq)
355 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
356 }
357
358 return fifotaken;
359 }
360
361
362 /*
363 * All the DMA operation mode stuff goes inside this ifdef.
364 * This assumes that you have a generic DMA device interface,
365 * no custom DMA interfaces are supported.
366 */
367 #ifdef CONFIG_DMA_ENGINE
368
369 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
370
pl011_dmabuf_init(struct dma_chan * chan,struct pl011_dmabuf * db,enum dma_data_direction dir)371 static int pl011_dmabuf_init(struct dma_chan *chan, struct pl011_dmabuf *db,
372 enum dma_data_direction dir)
373 {
374 db->buf = dma_alloc_coherent(chan->device->dev, PL011_DMA_BUFFER_SIZE,
375 &db->dma, GFP_KERNEL);
376 if (!db->buf)
377 return -ENOMEM;
378 db->len = PL011_DMA_BUFFER_SIZE;
379
380 return 0;
381 }
382
pl011_dmabuf_free(struct dma_chan * chan,struct pl011_dmabuf * db,enum dma_data_direction dir)383 static void pl011_dmabuf_free(struct dma_chan *chan, struct pl011_dmabuf *db,
384 enum dma_data_direction dir)
385 {
386 if (db->buf) {
387 dma_free_coherent(chan->device->dev,
388 PL011_DMA_BUFFER_SIZE, db->buf, db->dma);
389 }
390 }
391
pl011_dma_probe(struct uart_amba_port * uap)392 static void pl011_dma_probe(struct uart_amba_port *uap)
393 {
394 /* DMA is the sole user of the platform data right now */
395 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
396 struct device *dev = uap->port.dev;
397 struct dma_slave_config tx_conf = {
398 .dst_addr = uap->port.mapbase +
399 pl011_reg_to_offset(uap, REG_DR),
400 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
401 .direction = DMA_MEM_TO_DEV,
402 .dst_maxburst = uap->fifosize >> 1,
403 .device_fc = false,
404 };
405 struct dma_chan *chan;
406 dma_cap_mask_t mask;
407
408 uap->dma_probed = true;
409 chan = dma_request_chan(dev, "tx");
410 if (IS_ERR(chan)) {
411 if (PTR_ERR(chan) == -EPROBE_DEFER) {
412 uap->dma_probed = false;
413 return;
414 }
415
416 /* We need platform data */
417 if (!plat || !plat->dma_filter) {
418 dev_info(uap->port.dev, "no DMA platform data\n");
419 return;
420 }
421
422 /* Try to acquire a generic DMA engine slave TX channel */
423 dma_cap_zero(mask);
424 dma_cap_set(DMA_SLAVE, mask);
425
426 chan = dma_request_channel(mask, plat->dma_filter,
427 plat->dma_tx_param);
428 if (!chan) {
429 dev_err(uap->port.dev, "no TX DMA channel!\n");
430 return;
431 }
432 }
433
434 dmaengine_slave_config(chan, &tx_conf);
435 uap->dmatx.chan = chan;
436
437 dev_info(uap->port.dev, "DMA channel TX %s\n",
438 dma_chan_name(uap->dmatx.chan));
439
440 /* Optionally make use of an RX channel as well */
441 chan = dma_request_slave_channel(dev, "rx");
442
443 if (!chan && plat && plat->dma_rx_param) {
444 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
445
446 if (!chan) {
447 dev_err(uap->port.dev, "no RX DMA channel!\n");
448 return;
449 }
450 }
451
452 if (chan) {
453 struct dma_slave_config rx_conf = {
454 .src_addr = uap->port.mapbase +
455 pl011_reg_to_offset(uap, REG_DR),
456 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
457 .direction = DMA_DEV_TO_MEM,
458 .src_maxburst = uap->fifosize >> 2,
459 .device_fc = false,
460 };
461 struct dma_slave_caps caps;
462
463 /*
464 * Some DMA controllers provide information on their capabilities.
465 * If the controller does, check for suitable residue processing
466 * otherwise assime all is well.
467 */
468 if (0 == dma_get_slave_caps(chan, &caps)) {
469 if (caps.residue_granularity ==
470 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
471 dma_release_channel(chan);
472 dev_info(uap->port.dev,
473 "RX DMA disabled - no residue processing\n");
474 return;
475 }
476 }
477 dmaengine_slave_config(chan, &rx_conf);
478 uap->dmarx.chan = chan;
479
480 uap->dmarx.auto_poll_rate = false;
481 if (plat && plat->dma_rx_poll_enable) {
482 /* Set poll rate if specified. */
483 if (plat->dma_rx_poll_rate) {
484 uap->dmarx.auto_poll_rate = false;
485 uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
486 } else {
487 /*
488 * 100 ms defaults to poll rate if not
489 * specified. This will be adjusted with
490 * the baud rate at set_termios.
491 */
492 uap->dmarx.auto_poll_rate = true;
493 uap->dmarx.poll_rate = 100;
494 }
495 /* 3 secs defaults poll_timeout if not specified. */
496 if (plat->dma_rx_poll_timeout)
497 uap->dmarx.poll_timeout =
498 plat->dma_rx_poll_timeout;
499 else
500 uap->dmarx.poll_timeout = 3000;
501 } else if (!plat && dev->of_node) {
502 uap->dmarx.auto_poll_rate = of_property_read_bool(
503 dev->of_node, "auto-poll");
504 if (uap->dmarx.auto_poll_rate) {
505 u32 x;
506
507 if (0 == of_property_read_u32(dev->of_node,
508 "poll-rate-ms", &x))
509 uap->dmarx.poll_rate = x;
510 else
511 uap->dmarx.poll_rate = 100;
512 if (0 == of_property_read_u32(dev->of_node,
513 "poll-timeout-ms", &x))
514 uap->dmarx.poll_timeout = x;
515 else
516 uap->dmarx.poll_timeout = 3000;
517 }
518 }
519 dev_info(uap->port.dev, "DMA channel RX %s\n",
520 dma_chan_name(uap->dmarx.chan));
521 }
522 }
523
pl011_dma_remove(struct uart_amba_port * uap)524 static void pl011_dma_remove(struct uart_amba_port *uap)
525 {
526 if (uap->dmatx.chan)
527 dma_release_channel(uap->dmatx.chan);
528 if (uap->dmarx.chan)
529 dma_release_channel(uap->dmarx.chan);
530 }
531
532 /* Forward declare these for the refill routine */
533 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
534 static void pl011_start_tx_pio(struct uart_amba_port *uap);
535
536 /*
537 * The current DMA TX buffer has been sent.
538 * Try to queue up another DMA buffer.
539 */
pl011_dma_tx_callback(void * data)540 static void pl011_dma_tx_callback(void *data)
541 {
542 struct uart_amba_port *uap = data;
543 struct pl011_dmatx_data *dmatx = &uap->dmatx;
544 unsigned long flags;
545 u16 dmacr;
546
547 uart_port_lock_irqsave(&uap->port, &flags);
548 if (uap->dmatx.queued)
549 dma_unmap_single(dmatx->chan->device->dev, dmatx->dma,
550 dmatx->len, DMA_TO_DEVICE);
551
552 dmacr = uap->dmacr;
553 uap->dmacr = dmacr & ~UART011_TXDMAE;
554 pl011_write(uap->dmacr, uap, REG_DMACR);
555
556 /*
557 * If TX DMA was disabled, it means that we've stopped the DMA for
558 * some reason (eg, XOFF received, or we want to send an X-char.)
559 *
560 * Note: we need to be careful here of a potential race between DMA
561 * and the rest of the driver - if the driver disables TX DMA while
562 * a TX buffer completing, we must update the tx queued status to
563 * get further refills (hence we check dmacr).
564 */
565 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
566 uart_circ_empty(&uap->port.state->xmit)) {
567 uap->dmatx.queued = false;
568 uart_port_unlock_irqrestore(&uap->port, flags);
569 return;
570 }
571
572 if (pl011_dma_tx_refill(uap) <= 0)
573 /*
574 * We didn't queue a DMA buffer for some reason, but we
575 * have data pending to be sent. Re-enable the TX IRQ.
576 */
577 pl011_start_tx_pio(uap);
578
579 uart_port_unlock_irqrestore(&uap->port, flags);
580 }
581
582 /*
583 * Try to refill the TX DMA buffer.
584 * Locking: called with port lock held and IRQs disabled.
585 * Returns:
586 * 1 if we queued up a TX DMA buffer.
587 * 0 if we didn't want to handle this by DMA
588 * <0 on error
589 */
pl011_dma_tx_refill(struct uart_amba_port * uap)590 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
591 {
592 struct pl011_dmatx_data *dmatx = &uap->dmatx;
593 struct dma_chan *chan = dmatx->chan;
594 struct dma_device *dma_dev = chan->device;
595 struct dma_async_tx_descriptor *desc;
596 struct circ_buf *xmit = &uap->port.state->xmit;
597 unsigned int count;
598
599 /*
600 * Try to avoid the overhead involved in using DMA if the
601 * transaction fits in the first half of the FIFO, by using
602 * the standard interrupt handling. This ensures that we
603 * issue a uart_write_wakeup() at the appropriate time.
604 */
605 count = uart_circ_chars_pending(xmit);
606 if (count < (uap->fifosize >> 1)) {
607 uap->dmatx.queued = false;
608 return 0;
609 }
610
611 /*
612 * Bodge: don't send the last character by DMA, as this
613 * will prevent XON from notifying us to restart DMA.
614 */
615 count -= 1;
616
617 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
618 if (count > PL011_DMA_BUFFER_SIZE)
619 count = PL011_DMA_BUFFER_SIZE;
620
621 if (xmit->tail < xmit->head)
622 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
623 else {
624 size_t first = UART_XMIT_SIZE - xmit->tail;
625 size_t second;
626
627 if (first > count)
628 first = count;
629 second = count - first;
630
631 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
632 if (second)
633 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
634 }
635
636 dmatx->len = count;
637 dmatx->dma = dma_map_single(dma_dev->dev, dmatx->buf, count,
638 DMA_TO_DEVICE);
639 if (dmatx->dma == DMA_MAPPING_ERROR) {
640 uap->dmatx.queued = false;
641 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
642 return -EBUSY;
643 }
644
645 desc = dmaengine_prep_slave_single(chan, dmatx->dma, dmatx->len, DMA_MEM_TO_DEV,
646 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
647 if (!desc) {
648 dma_unmap_single(dma_dev->dev, dmatx->dma, dmatx->len, DMA_TO_DEVICE);
649 uap->dmatx.queued = false;
650 /*
651 * If DMA cannot be used right now, we complete this
652 * transaction via IRQ and let the TTY layer retry.
653 */
654 dev_dbg(uap->port.dev, "TX DMA busy\n");
655 return -EBUSY;
656 }
657
658 /* Some data to go along to the callback */
659 desc->callback = pl011_dma_tx_callback;
660 desc->callback_param = uap;
661
662 /* All errors should happen at prepare time */
663 dmaengine_submit(desc);
664
665 /* Fire the DMA transaction */
666 dma_dev->device_issue_pending(chan);
667
668 uap->dmacr |= UART011_TXDMAE;
669 pl011_write(uap->dmacr, uap, REG_DMACR);
670 uap->dmatx.queued = true;
671
672 /*
673 * Now we know that DMA will fire, so advance the ring buffer
674 * with the stuff we just dispatched.
675 */
676 uart_xmit_advance(&uap->port, count);
677
678 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
679 uart_write_wakeup(&uap->port);
680
681 return 1;
682 }
683
684 /*
685 * We received a transmit interrupt without a pending X-char but with
686 * pending characters.
687 * Locking: called with port lock held and IRQs disabled.
688 * Returns:
689 * false if we want to use PIO to transmit
690 * true if we queued a DMA buffer
691 */
pl011_dma_tx_irq(struct uart_amba_port * uap)692 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
693 {
694 if (!uap->using_tx_dma)
695 return false;
696
697 /*
698 * If we already have a TX buffer queued, but received a
699 * TX interrupt, it will be because we've just sent an X-char.
700 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
701 */
702 if (uap->dmatx.queued) {
703 uap->dmacr |= UART011_TXDMAE;
704 pl011_write(uap->dmacr, uap, REG_DMACR);
705 uap->im &= ~UART011_TXIM;
706 pl011_write(uap->im, uap, REG_IMSC);
707 return true;
708 }
709
710 /*
711 * We don't have a TX buffer queued, so try to queue one.
712 * If we successfully queued a buffer, mask the TX IRQ.
713 */
714 if (pl011_dma_tx_refill(uap) > 0) {
715 uap->im &= ~UART011_TXIM;
716 pl011_write(uap->im, uap, REG_IMSC);
717 return true;
718 }
719 return false;
720 }
721
722 /*
723 * Stop the DMA transmit (eg, due to received XOFF).
724 * Locking: called with port lock held and IRQs disabled.
725 */
pl011_dma_tx_stop(struct uart_amba_port * uap)726 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
727 {
728 if (uap->dmatx.queued) {
729 uap->dmacr &= ~UART011_TXDMAE;
730 pl011_write(uap->dmacr, uap, REG_DMACR);
731 }
732 }
733
734 /*
735 * Try to start a DMA transmit, or in the case of an XON/OFF
736 * character queued for send, try to get that character out ASAP.
737 * Locking: called with port lock held and IRQs disabled.
738 * Returns:
739 * false if we want the TX IRQ to be enabled
740 * true if we have a buffer queued
741 */
pl011_dma_tx_start(struct uart_amba_port * uap)742 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
743 {
744 u16 dmacr;
745
746 if (!uap->using_tx_dma)
747 return false;
748
749 if (!uap->port.x_char) {
750 /* no X-char, try to push chars out in DMA mode */
751 bool ret = true;
752
753 if (!uap->dmatx.queued) {
754 if (pl011_dma_tx_refill(uap) > 0) {
755 uap->im &= ~UART011_TXIM;
756 pl011_write(uap->im, uap, REG_IMSC);
757 } else
758 ret = false;
759 } else if (!(uap->dmacr & UART011_TXDMAE)) {
760 uap->dmacr |= UART011_TXDMAE;
761 pl011_write(uap->dmacr, uap, REG_DMACR);
762 }
763 return ret;
764 }
765
766 /*
767 * We have an X-char to send. Disable DMA to prevent it loading
768 * the TX fifo, and then see if we can stuff it into the FIFO.
769 */
770 dmacr = uap->dmacr;
771 uap->dmacr &= ~UART011_TXDMAE;
772 pl011_write(uap->dmacr, uap, REG_DMACR);
773
774 if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
775 /*
776 * No space in the FIFO, so enable the transmit interrupt
777 * so we know when there is space. Note that once we've
778 * loaded the character, we should just re-enable DMA.
779 */
780 return false;
781 }
782
783 pl011_write(uap->port.x_char, uap, REG_DR);
784 uap->port.icount.tx++;
785 uap->port.x_char = 0;
786
787 /* Success - restore the DMA state */
788 uap->dmacr = dmacr;
789 pl011_write(dmacr, uap, REG_DMACR);
790
791 return true;
792 }
793
794 /*
795 * Flush the transmit buffer.
796 * Locking: called with port lock held and IRQs disabled.
797 */
pl011_dma_flush_buffer(struct uart_port * port)798 static void pl011_dma_flush_buffer(struct uart_port *port)
799 __releases(&uap->port.lock)
800 __acquires(&uap->port.lock)
801 {
802 struct uart_amba_port *uap =
803 container_of(port, struct uart_amba_port, port);
804
805 if (!uap->using_tx_dma)
806 return;
807
808 dmaengine_terminate_async(uap->dmatx.chan);
809
810 if (uap->dmatx.queued) {
811 dma_unmap_single(uap->dmatx.chan->device->dev, uap->dmatx.dma,
812 uap->dmatx.len, DMA_TO_DEVICE);
813 uap->dmatx.queued = false;
814 uap->dmacr &= ~UART011_TXDMAE;
815 pl011_write(uap->dmacr, uap, REG_DMACR);
816 }
817 }
818
819 static void pl011_dma_rx_callback(void *data);
820
pl011_dma_rx_trigger_dma(struct uart_amba_port * uap)821 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
822 {
823 struct dma_chan *rxchan = uap->dmarx.chan;
824 struct pl011_dmarx_data *dmarx = &uap->dmarx;
825 struct dma_async_tx_descriptor *desc;
826 struct pl011_dmabuf *dbuf;
827
828 if (!rxchan)
829 return -EIO;
830
831 /* Start the RX DMA job */
832 dbuf = uap->dmarx.use_buf_b ?
833 &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
834 desc = dmaengine_prep_slave_single(rxchan, dbuf->dma, dbuf->len,
835 DMA_DEV_TO_MEM,
836 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
837 /*
838 * If the DMA engine is busy and cannot prepare a
839 * channel, no big deal, the driver will fall back
840 * to interrupt mode as a result of this error code.
841 */
842 if (!desc) {
843 uap->dmarx.running = false;
844 dmaengine_terminate_all(rxchan);
845 return -EBUSY;
846 }
847
848 /* Some data to go along to the callback */
849 desc->callback = pl011_dma_rx_callback;
850 desc->callback_param = uap;
851 dmarx->cookie = dmaengine_submit(desc);
852 dma_async_issue_pending(rxchan);
853
854 uap->dmacr |= UART011_RXDMAE;
855 pl011_write(uap->dmacr, uap, REG_DMACR);
856 uap->dmarx.running = true;
857
858 uap->im &= ~UART011_RXIM;
859 pl011_write(uap->im, uap, REG_IMSC);
860
861 return 0;
862 }
863
864 /*
865 * This is called when either the DMA job is complete, or
866 * the FIFO timeout interrupt occurred. This must be called
867 * with the port spinlock uap->port.lock held.
868 */
pl011_dma_rx_chars(struct uart_amba_port * uap,u32 pending,bool use_buf_b,bool readfifo)869 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
870 u32 pending, bool use_buf_b,
871 bool readfifo)
872 {
873 struct tty_port *port = &uap->port.state->port;
874 struct pl011_dmabuf *dbuf = use_buf_b ?
875 &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
876 int dma_count = 0;
877 u32 fifotaken = 0; /* only used for vdbg() */
878
879 struct pl011_dmarx_data *dmarx = &uap->dmarx;
880 int dmataken = 0;
881
882 if (uap->dmarx.poll_rate) {
883 /* The data can be taken by polling */
884 dmataken = dbuf->len - dmarx->last_residue;
885 /* Recalculate the pending size */
886 if (pending >= dmataken)
887 pending -= dmataken;
888 }
889
890 /* Pick the remain data from the DMA */
891 if (pending) {
892
893 /*
894 * First take all chars in the DMA pipe, then look in the FIFO.
895 * Note that tty_insert_flip_buf() tries to take as many chars
896 * as it can.
897 */
898 dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken,
899 pending);
900
901 uap->port.icount.rx += dma_count;
902 if (dma_count < pending)
903 dev_warn(uap->port.dev,
904 "couldn't insert all characters (TTY is full?)\n");
905 }
906
907 /* Reset the last_residue for Rx DMA poll */
908 if (uap->dmarx.poll_rate)
909 dmarx->last_residue = dbuf->len;
910
911 /*
912 * Only continue with trying to read the FIFO if all DMA chars have
913 * been taken first.
914 */
915 if (dma_count == pending && readfifo) {
916 /* Clear any error flags */
917 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
918 UART011_FEIS, uap, REG_ICR);
919
920 /*
921 * If we read all the DMA'd characters, and we had an
922 * incomplete buffer, that could be due to an rx error, or
923 * maybe we just timed out. Read any pending chars and check
924 * the error status.
925 *
926 * Error conditions will only occur in the FIFO, these will
927 * trigger an immediate interrupt and stop the DMA job, so we
928 * will always find the error in the FIFO, never in the DMA
929 * buffer.
930 */
931 fifotaken = pl011_fifo_to_tty(uap);
932 }
933
934 dev_vdbg(uap->port.dev,
935 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
936 dma_count, fifotaken);
937 tty_flip_buffer_push(port);
938 }
939
pl011_dma_rx_irq(struct uart_amba_port * uap)940 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
941 {
942 struct pl011_dmarx_data *dmarx = &uap->dmarx;
943 struct dma_chan *rxchan = dmarx->chan;
944 struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
945 &dmarx->dbuf_b : &dmarx->dbuf_a;
946 size_t pending;
947 struct dma_tx_state state;
948 enum dma_status dmastat;
949
950 /*
951 * Pause the transfer so we can trust the current counter,
952 * do this before we pause the PL011 block, else we may
953 * overflow the FIFO.
954 */
955 if (dmaengine_pause(rxchan))
956 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
957 dmastat = rxchan->device->device_tx_status(rxchan,
958 dmarx->cookie, &state);
959 if (dmastat != DMA_PAUSED)
960 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
961
962 /* Disable RX DMA - incoming data will wait in the FIFO */
963 uap->dmacr &= ~UART011_RXDMAE;
964 pl011_write(uap->dmacr, uap, REG_DMACR);
965 uap->dmarx.running = false;
966
967 pending = dbuf->len - state.residue;
968 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
969 /* Then we terminate the transfer - we now know our residue */
970 dmaengine_terminate_all(rxchan);
971
972 /*
973 * This will take the chars we have so far and insert
974 * into the framework.
975 */
976 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
977
978 /* Switch buffer & re-trigger DMA job */
979 dmarx->use_buf_b = !dmarx->use_buf_b;
980 if (pl011_dma_rx_trigger_dma(uap)) {
981 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
982 "fall back to interrupt mode\n");
983 uap->im |= UART011_RXIM;
984 pl011_write(uap->im, uap, REG_IMSC);
985 }
986 }
987
pl011_dma_rx_callback(void * data)988 static void pl011_dma_rx_callback(void *data)
989 {
990 struct uart_amba_port *uap = data;
991 struct pl011_dmarx_data *dmarx = &uap->dmarx;
992 struct dma_chan *rxchan = dmarx->chan;
993 bool lastbuf = dmarx->use_buf_b;
994 struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
995 &dmarx->dbuf_b : &dmarx->dbuf_a;
996 size_t pending;
997 struct dma_tx_state state;
998 int ret;
999
1000 /*
1001 * This completion interrupt occurs typically when the
1002 * RX buffer is totally stuffed but no timeout has yet
1003 * occurred. When that happens, we just want the RX
1004 * routine to flush out the secondary DMA buffer while
1005 * we immediately trigger the next DMA job.
1006 */
1007 uart_port_lock_irq(&uap->port);
1008 /*
1009 * Rx data can be taken by the UART interrupts during
1010 * the DMA irq handler. So we check the residue here.
1011 */
1012 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1013 pending = dbuf->len - state.residue;
1014 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1015 /* Then we terminate the transfer - we now know our residue */
1016 dmaengine_terminate_all(rxchan);
1017
1018 uap->dmarx.running = false;
1019 dmarx->use_buf_b = !lastbuf;
1020 ret = pl011_dma_rx_trigger_dma(uap);
1021
1022 pl011_dma_rx_chars(uap, pending, lastbuf, false);
1023 uart_port_unlock_irq(&uap->port);
1024 /*
1025 * Do this check after we picked the DMA chars so we don't
1026 * get some IRQ immediately from RX.
1027 */
1028 if (ret) {
1029 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1030 "fall back to interrupt mode\n");
1031 uap->im |= UART011_RXIM;
1032 pl011_write(uap->im, uap, REG_IMSC);
1033 }
1034 }
1035
1036 /*
1037 * Stop accepting received characters, when we're shutting down or
1038 * suspending this port.
1039 * Locking: called with port lock held and IRQs disabled.
1040 */
pl011_dma_rx_stop(struct uart_amba_port * uap)1041 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1042 {
1043 if (!uap->using_rx_dma)
1044 return;
1045
1046 /* FIXME. Just disable the DMA enable */
1047 uap->dmacr &= ~UART011_RXDMAE;
1048 pl011_write(uap->dmacr, uap, REG_DMACR);
1049 }
1050
1051 /*
1052 * Timer handler for Rx DMA polling.
1053 * Every polling, It checks the residue in the dma buffer and transfer
1054 * data to the tty. Also, last_residue is updated for the next polling.
1055 */
pl011_dma_rx_poll(struct timer_list * t)1056 static void pl011_dma_rx_poll(struct timer_list *t)
1057 {
1058 struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1059 struct tty_port *port = &uap->port.state->port;
1060 struct pl011_dmarx_data *dmarx = &uap->dmarx;
1061 struct dma_chan *rxchan = uap->dmarx.chan;
1062 unsigned long flags;
1063 unsigned int dmataken = 0;
1064 unsigned int size = 0;
1065 struct pl011_dmabuf *dbuf;
1066 int dma_count;
1067 struct dma_tx_state state;
1068
1069 dbuf = dmarx->use_buf_b ? &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
1070 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1071 if (likely(state.residue < dmarx->last_residue)) {
1072 dmataken = dbuf->len - dmarx->last_residue;
1073 size = dmarx->last_residue - state.residue;
1074 dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken,
1075 size);
1076 if (dma_count == size)
1077 dmarx->last_residue = state.residue;
1078 dmarx->last_jiffies = jiffies;
1079 }
1080 tty_flip_buffer_push(port);
1081
1082 /*
1083 * If no data is received in poll_timeout, the driver will fall back
1084 * to interrupt mode. We will retrigger DMA at the first interrupt.
1085 */
1086 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1087 > uap->dmarx.poll_timeout) {
1088
1089 uart_port_lock_irqsave(&uap->port, &flags);
1090 pl011_dma_rx_stop(uap);
1091 uap->im |= UART011_RXIM;
1092 pl011_write(uap->im, uap, REG_IMSC);
1093 uart_port_unlock_irqrestore(&uap->port, flags);
1094
1095 uap->dmarx.running = false;
1096 dmaengine_terminate_all(rxchan);
1097 del_timer(&uap->dmarx.timer);
1098 } else {
1099 mod_timer(&uap->dmarx.timer,
1100 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1101 }
1102 }
1103
pl011_dma_startup(struct uart_amba_port * uap)1104 static void pl011_dma_startup(struct uart_amba_port *uap)
1105 {
1106 int ret;
1107
1108 if (!uap->dma_probed)
1109 pl011_dma_probe(uap);
1110
1111 if (!uap->dmatx.chan)
1112 return;
1113
1114 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1115 if (!uap->dmatx.buf) {
1116 dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1117 uap->port.fifosize = uap->fifosize;
1118 return;
1119 }
1120
1121 uap->dmatx.len = PL011_DMA_BUFFER_SIZE;
1122
1123 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1124 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1125 uap->using_tx_dma = true;
1126
1127 if (!uap->dmarx.chan)
1128 goto skip_rx;
1129
1130 /* Allocate and map DMA RX buffers */
1131 ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1132 DMA_FROM_DEVICE);
1133 if (ret) {
1134 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1135 "RX buffer A", ret);
1136 goto skip_rx;
1137 }
1138
1139 ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_b,
1140 DMA_FROM_DEVICE);
1141 if (ret) {
1142 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1143 "RX buffer B", ret);
1144 pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1145 DMA_FROM_DEVICE);
1146 goto skip_rx;
1147 }
1148
1149 uap->using_rx_dma = true;
1150
1151 skip_rx:
1152 /* Turn on DMA error (RX/TX will be enabled on demand) */
1153 uap->dmacr |= UART011_DMAONERR;
1154 pl011_write(uap->dmacr, uap, REG_DMACR);
1155
1156 /*
1157 * ST Micro variants has some specific dma burst threshold
1158 * compensation. Set this to 16 bytes, so burst will only
1159 * be issued above/below 16 bytes.
1160 */
1161 if (uap->vendor->dma_threshold)
1162 pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1163 uap, REG_ST_DMAWM);
1164
1165 if (uap->using_rx_dma) {
1166 if (pl011_dma_rx_trigger_dma(uap))
1167 dev_dbg(uap->port.dev, "could not trigger initial "
1168 "RX DMA job, fall back to interrupt mode\n");
1169 if (uap->dmarx.poll_rate) {
1170 timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1171 mod_timer(&uap->dmarx.timer,
1172 jiffies +
1173 msecs_to_jiffies(uap->dmarx.poll_rate));
1174 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1175 uap->dmarx.last_jiffies = jiffies;
1176 }
1177 }
1178 }
1179
pl011_dma_shutdown(struct uart_amba_port * uap)1180 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1181 {
1182 if (!(uap->using_tx_dma || uap->using_rx_dma))
1183 return;
1184
1185 /* Disable RX and TX DMA */
1186 while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1187 cpu_relax();
1188
1189 uart_port_lock_irq(&uap->port);
1190 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1191 pl011_write(uap->dmacr, uap, REG_DMACR);
1192 uart_port_unlock_irq(&uap->port);
1193
1194 if (uap->using_tx_dma) {
1195 /* In theory, this should already be done by pl011_dma_flush_buffer */
1196 dmaengine_terminate_all(uap->dmatx.chan);
1197 if (uap->dmatx.queued) {
1198 dma_unmap_single(uap->dmatx.chan->device->dev,
1199 uap->dmatx.dma, uap->dmatx.len,
1200 DMA_TO_DEVICE);
1201 uap->dmatx.queued = false;
1202 }
1203
1204 kfree(uap->dmatx.buf);
1205 uap->using_tx_dma = false;
1206 }
1207
1208 if (uap->using_rx_dma) {
1209 dmaengine_terminate_all(uap->dmarx.chan);
1210 /* Clean up the RX DMA */
1211 pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a, DMA_FROM_DEVICE);
1212 pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_b, DMA_FROM_DEVICE);
1213 if (uap->dmarx.poll_rate)
1214 del_timer_sync(&uap->dmarx.timer);
1215 uap->using_rx_dma = false;
1216 }
1217 }
1218
pl011_dma_rx_available(struct uart_amba_port * uap)1219 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1220 {
1221 return uap->using_rx_dma;
1222 }
1223
pl011_dma_rx_running(struct uart_amba_port * uap)1224 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1225 {
1226 return uap->using_rx_dma && uap->dmarx.running;
1227 }
1228
1229 #else
1230 /* Blank functions if the DMA engine is not available */
pl011_dma_remove(struct uart_amba_port * uap)1231 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1232 {
1233 }
1234
pl011_dma_startup(struct uart_amba_port * uap)1235 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1236 {
1237 }
1238
pl011_dma_shutdown(struct uart_amba_port * uap)1239 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1240 {
1241 }
1242
pl011_dma_tx_irq(struct uart_amba_port * uap)1243 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1244 {
1245 return false;
1246 }
1247
pl011_dma_tx_stop(struct uart_amba_port * uap)1248 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1249 {
1250 }
1251
pl011_dma_tx_start(struct uart_amba_port * uap)1252 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1253 {
1254 return false;
1255 }
1256
pl011_dma_rx_irq(struct uart_amba_port * uap)1257 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1258 {
1259 }
1260
pl011_dma_rx_stop(struct uart_amba_port * uap)1261 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1262 {
1263 }
1264
pl011_dma_rx_trigger_dma(struct uart_amba_port * uap)1265 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1266 {
1267 return -EIO;
1268 }
1269
pl011_dma_rx_available(struct uart_amba_port * uap)1270 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1271 {
1272 return false;
1273 }
1274
pl011_dma_rx_running(struct uart_amba_port * uap)1275 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1276 {
1277 return false;
1278 }
1279
1280 #define pl011_dma_flush_buffer NULL
1281 #endif
1282
pl011_rs485_tx_stop(struct uart_amba_port * uap)1283 static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1284 {
1285 /*
1286 * To be on the safe side only time out after twice as many iterations
1287 * as fifo size.
1288 */
1289 const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1290 struct uart_port *port = &uap->port;
1291 int i = 0;
1292 u32 cr;
1293
1294 /* Wait until hardware tx queue is empty */
1295 while (!pl011_tx_empty(port)) {
1296 if (i > MAX_TX_DRAIN_ITERS) {
1297 dev_warn(port->dev,
1298 "timeout while draining hardware tx queue\n");
1299 break;
1300 }
1301
1302 udelay(uap->rs485_tx_drain_interval);
1303 i++;
1304 }
1305
1306 if (port->rs485.delay_rts_after_send)
1307 mdelay(port->rs485.delay_rts_after_send);
1308
1309 cr = pl011_read(uap, REG_CR);
1310
1311 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1312 cr &= ~UART011_CR_RTS;
1313 else
1314 cr |= UART011_CR_RTS;
1315
1316 /* Disable the transmitter and reenable the transceiver */
1317 cr &= ~UART011_CR_TXE;
1318 cr |= UART011_CR_RXE;
1319 pl011_write(cr, uap, REG_CR);
1320
1321 uap->rs485_tx_started = false;
1322 }
1323
pl011_stop_tx(struct uart_port * port)1324 static void pl011_stop_tx(struct uart_port *port)
1325 {
1326 struct uart_amba_port *uap =
1327 container_of(port, struct uart_amba_port, port);
1328
1329 uap->im &= ~UART011_TXIM;
1330 pl011_write(uap->im, uap, REG_IMSC);
1331 pl011_dma_tx_stop(uap);
1332
1333 if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1334 pl011_rs485_tx_stop(uap);
1335 }
1336
1337 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1338
1339 /* Start TX with programmed I/O only (no DMA) */
pl011_start_tx_pio(struct uart_amba_port * uap)1340 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1341 {
1342 if (pl011_tx_chars(uap, false)) {
1343 uap->im |= UART011_TXIM;
1344 pl011_write(uap->im, uap, REG_IMSC);
1345 }
1346 }
1347
pl011_rs485_tx_start(struct uart_amba_port * uap)1348 static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1349 {
1350 struct uart_port *port = &uap->port;
1351 u32 cr;
1352
1353 /* Enable transmitter */
1354 cr = pl011_read(uap, REG_CR);
1355 cr |= UART011_CR_TXE;
1356
1357 /* Disable receiver if half-duplex */
1358 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1359 cr &= ~UART011_CR_RXE;
1360
1361 if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1362 cr &= ~UART011_CR_RTS;
1363 else
1364 cr |= UART011_CR_RTS;
1365
1366 pl011_write(cr, uap, REG_CR);
1367
1368 if (port->rs485.delay_rts_before_send)
1369 mdelay(port->rs485.delay_rts_before_send);
1370
1371 uap->rs485_tx_started = true;
1372 }
1373
pl011_start_tx(struct uart_port * port)1374 static void pl011_start_tx(struct uart_port *port)
1375 {
1376 struct uart_amba_port *uap =
1377 container_of(port, struct uart_amba_port, port);
1378
1379 if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1380 !uap->rs485_tx_started)
1381 pl011_rs485_tx_start(uap);
1382
1383 if (!pl011_dma_tx_start(uap))
1384 pl011_start_tx_pio(uap);
1385 }
1386
pl011_stop_rx(struct uart_port * port)1387 static void pl011_stop_rx(struct uart_port *port)
1388 {
1389 struct uart_amba_port *uap =
1390 container_of(port, struct uart_amba_port, port);
1391
1392 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1393 UART011_PEIM|UART011_BEIM|UART011_OEIM);
1394 pl011_write(uap->im, uap, REG_IMSC);
1395
1396 pl011_dma_rx_stop(uap);
1397 }
1398
pl011_throttle_rx(struct uart_port * port)1399 static void pl011_throttle_rx(struct uart_port *port)
1400 {
1401 unsigned long flags;
1402
1403 uart_port_lock_irqsave(port, &flags);
1404 pl011_stop_rx(port);
1405 uart_port_unlock_irqrestore(port, flags);
1406 }
1407
pl011_enable_ms(struct uart_port * port)1408 static void pl011_enable_ms(struct uart_port *port)
1409 {
1410 struct uart_amba_port *uap =
1411 container_of(port, struct uart_amba_port, port);
1412
1413 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1414 pl011_write(uap->im, uap, REG_IMSC);
1415 }
1416
pl011_rx_chars(struct uart_amba_port * uap)1417 static void pl011_rx_chars(struct uart_amba_port *uap)
1418 __releases(&uap->port.lock)
1419 __acquires(&uap->port.lock)
1420 {
1421 pl011_fifo_to_tty(uap);
1422
1423 uart_port_unlock(&uap->port);
1424 tty_flip_buffer_push(&uap->port.state->port);
1425 /*
1426 * If we were temporarily out of DMA mode for a while,
1427 * attempt to switch back to DMA mode again.
1428 */
1429 if (pl011_dma_rx_available(uap)) {
1430 if (pl011_dma_rx_trigger_dma(uap)) {
1431 dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1432 "fall back to interrupt mode again\n");
1433 uap->im |= UART011_RXIM;
1434 pl011_write(uap->im, uap, REG_IMSC);
1435 } else {
1436 #ifdef CONFIG_DMA_ENGINE
1437 /* Start Rx DMA poll */
1438 if (uap->dmarx.poll_rate) {
1439 uap->dmarx.last_jiffies = jiffies;
1440 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1441 mod_timer(&uap->dmarx.timer,
1442 jiffies +
1443 msecs_to_jiffies(uap->dmarx.poll_rate));
1444 }
1445 #endif
1446 }
1447 }
1448 uart_port_lock(&uap->port);
1449 }
1450
pl011_tx_char(struct uart_amba_port * uap,unsigned char c,bool from_irq)1451 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1452 bool from_irq)
1453 {
1454 if (unlikely(!from_irq) &&
1455 pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1456 return false; /* unable to transmit character */
1457
1458 pl011_write(c, uap, REG_DR);
1459 uap->port.icount.tx++;
1460
1461 return true;
1462 }
1463
1464 /* Returns true if tx interrupts have to be (kept) enabled */
pl011_tx_chars(struct uart_amba_port * uap,bool from_irq)1465 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1466 {
1467 struct circ_buf *xmit = &uap->port.state->xmit;
1468 int count = uap->fifosize >> 1;
1469
1470 if (uap->port.x_char) {
1471 if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1472 return true;
1473 uap->port.x_char = 0;
1474 --count;
1475 }
1476 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1477 pl011_stop_tx(&uap->port);
1478 return false;
1479 }
1480
1481 /* If we are using DMA mode, try to send some characters. */
1482 if (pl011_dma_tx_irq(uap))
1483 return true;
1484
1485 do {
1486 if (likely(from_irq) && count-- == 0)
1487 break;
1488
1489 if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1490 break;
1491
1492 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1493 } while (!uart_circ_empty(xmit));
1494
1495 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1496 uart_write_wakeup(&uap->port);
1497
1498 if (uart_circ_empty(xmit)) {
1499 pl011_stop_tx(&uap->port);
1500 return false;
1501 }
1502 return true;
1503 }
1504
pl011_modem_status(struct uart_amba_port * uap)1505 static void pl011_modem_status(struct uart_amba_port *uap)
1506 {
1507 unsigned int status, delta;
1508
1509 status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1510
1511 delta = status ^ uap->old_status;
1512 uap->old_status = status;
1513
1514 if (!delta)
1515 return;
1516
1517 if (delta & UART01x_FR_DCD)
1518 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1519
1520 if (delta & uap->vendor->fr_dsr)
1521 uap->port.icount.dsr++;
1522
1523 if (delta & uap->vendor->fr_cts)
1524 uart_handle_cts_change(&uap->port,
1525 status & uap->vendor->fr_cts);
1526
1527 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1528 }
1529
check_apply_cts_event_workaround(struct uart_amba_port * uap)1530 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1531 {
1532 if (!uap->vendor->cts_event_workaround)
1533 return;
1534
1535 /* workaround to make sure that all bits are unlocked.. */
1536 pl011_write(0x00, uap, REG_ICR);
1537
1538 /*
1539 * WA: introduce 26ns(1 uart clk) delay before W1C;
1540 * single apb access will incur 2 pclk(133.12Mhz) delay,
1541 * so add 2 dummy reads
1542 */
1543 pl011_read(uap, REG_ICR);
1544 pl011_read(uap, REG_ICR);
1545 }
1546
pl011_int(int irq,void * dev_id)1547 static irqreturn_t pl011_int(int irq, void *dev_id)
1548 {
1549 struct uart_amba_port *uap = dev_id;
1550 unsigned long flags;
1551 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1552 int handled = 0;
1553
1554 uart_port_lock_irqsave(&uap->port, &flags);
1555 status = pl011_read(uap, REG_RIS) & uap->im;
1556 if (status) {
1557 do {
1558 check_apply_cts_event_workaround(uap);
1559
1560 pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1561 UART011_RXIS),
1562 uap, REG_ICR);
1563
1564 if (status & (UART011_RTIS|UART011_RXIS)) {
1565 if (pl011_dma_rx_running(uap))
1566 pl011_dma_rx_irq(uap);
1567 else
1568 pl011_rx_chars(uap);
1569 }
1570 if (status & (UART011_DSRMIS|UART011_DCDMIS|
1571 UART011_CTSMIS|UART011_RIMIS))
1572 pl011_modem_status(uap);
1573 if (status & UART011_TXIS)
1574 pl011_tx_chars(uap, true);
1575
1576 if (pass_counter-- == 0)
1577 break;
1578
1579 status = pl011_read(uap, REG_RIS) & uap->im;
1580 } while (status != 0);
1581 handled = 1;
1582 }
1583
1584 uart_port_unlock_irqrestore(&uap->port, flags);
1585
1586 return IRQ_RETVAL(handled);
1587 }
1588
pl011_tx_empty(struct uart_port * port)1589 static unsigned int pl011_tx_empty(struct uart_port *port)
1590 {
1591 struct uart_amba_port *uap =
1592 container_of(port, struct uart_amba_port, port);
1593
1594 /* Allow feature register bits to be inverted to work around errata */
1595 unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1596
1597 return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1598 0 : TIOCSER_TEMT;
1599 }
1600
pl011_get_mctrl(struct uart_port * port)1601 static unsigned int pl011_get_mctrl(struct uart_port *port)
1602 {
1603 struct uart_amba_port *uap =
1604 container_of(port, struct uart_amba_port, port);
1605 unsigned int result = 0;
1606 unsigned int status = pl011_read(uap, REG_FR);
1607
1608 #define TIOCMBIT(uartbit, tiocmbit) \
1609 if (status & uartbit) \
1610 result |= tiocmbit
1611
1612 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1613 TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1614 TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1615 TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1616 #undef TIOCMBIT
1617 return result;
1618 }
1619
pl011_set_mctrl(struct uart_port * port,unsigned int mctrl)1620 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1621 {
1622 struct uart_amba_port *uap =
1623 container_of(port, struct uart_amba_port, port);
1624 unsigned int cr;
1625
1626 cr = pl011_read(uap, REG_CR);
1627
1628 #define TIOCMBIT(tiocmbit, uartbit) \
1629 if (mctrl & tiocmbit) \
1630 cr |= uartbit; \
1631 else \
1632 cr &= ~uartbit
1633
1634 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1635 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1636 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1637 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1638 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1639
1640 if (port->status & UPSTAT_AUTORTS) {
1641 /* We need to disable auto-RTS if we want to turn RTS off */
1642 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1643 }
1644 #undef TIOCMBIT
1645
1646 pl011_write(cr, uap, REG_CR);
1647 }
1648
pl011_break_ctl(struct uart_port * port,int break_state)1649 static void pl011_break_ctl(struct uart_port *port, int break_state)
1650 {
1651 struct uart_amba_port *uap =
1652 container_of(port, struct uart_amba_port, port);
1653 unsigned long flags;
1654 unsigned int lcr_h;
1655
1656 uart_port_lock_irqsave(&uap->port, &flags);
1657 lcr_h = pl011_read(uap, REG_LCRH_TX);
1658 if (break_state == -1)
1659 lcr_h |= UART01x_LCRH_BRK;
1660 else
1661 lcr_h &= ~UART01x_LCRH_BRK;
1662 pl011_write(lcr_h, uap, REG_LCRH_TX);
1663 uart_port_unlock_irqrestore(&uap->port, flags);
1664 }
1665
1666 #ifdef CONFIG_CONSOLE_POLL
1667
pl011_quiesce_irqs(struct uart_port * port)1668 static void pl011_quiesce_irqs(struct uart_port *port)
1669 {
1670 struct uart_amba_port *uap =
1671 container_of(port, struct uart_amba_port, port);
1672
1673 pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1674 /*
1675 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1676 * we simply mask it. start_tx() will unmask it.
1677 *
1678 * Note we can race with start_tx(), and if the race happens, the
1679 * polling user might get another interrupt just after we clear it.
1680 * But it should be OK and can happen even w/o the race, e.g.
1681 * controller immediately got some new data and raised the IRQ.
1682 *
1683 * And whoever uses polling routines assumes that it manages the device
1684 * (including tx queue), so we're also fine with start_tx()'s caller
1685 * side.
1686 */
1687 pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1688 REG_IMSC);
1689 }
1690
pl011_get_poll_char(struct uart_port * port)1691 static int pl011_get_poll_char(struct uart_port *port)
1692 {
1693 struct uart_amba_port *uap =
1694 container_of(port, struct uart_amba_port, port);
1695 unsigned int status;
1696
1697 /*
1698 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1699 * debugger.
1700 */
1701 pl011_quiesce_irqs(port);
1702
1703 status = pl011_read(uap, REG_FR);
1704 if (status & UART01x_FR_RXFE)
1705 return NO_POLL_CHAR;
1706
1707 return pl011_read(uap, REG_DR);
1708 }
1709
pl011_put_poll_char(struct uart_port * port,unsigned char ch)1710 static void pl011_put_poll_char(struct uart_port *port,
1711 unsigned char ch)
1712 {
1713 struct uart_amba_port *uap =
1714 container_of(port, struct uart_amba_port, port);
1715
1716 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1717 cpu_relax();
1718
1719 pl011_write(ch, uap, REG_DR);
1720 }
1721
1722 #endif /* CONFIG_CONSOLE_POLL */
1723
pl011_hwinit(struct uart_port * port)1724 static int pl011_hwinit(struct uart_port *port)
1725 {
1726 struct uart_amba_port *uap =
1727 container_of(port, struct uart_amba_port, port);
1728 int retval;
1729
1730 /* Optionaly enable pins to be muxed in and configured */
1731 pinctrl_pm_select_default_state(port->dev);
1732
1733 /*
1734 * Try to enable the clock producer.
1735 */
1736 retval = clk_prepare_enable(uap->clk);
1737 if (retval)
1738 return retval;
1739
1740 uap->port.uartclk = clk_get_rate(uap->clk);
1741
1742 /* Clear pending error and receive interrupts */
1743 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1744 UART011_FEIS | UART011_RTIS | UART011_RXIS,
1745 uap, REG_ICR);
1746
1747 /*
1748 * Save interrupts enable mask, and enable RX interrupts in case if
1749 * the interrupt is used for NMI entry.
1750 */
1751 uap->im = pl011_read(uap, REG_IMSC);
1752 pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1753
1754 if (dev_get_platdata(uap->port.dev)) {
1755 struct amba_pl011_data *plat;
1756
1757 plat = dev_get_platdata(uap->port.dev);
1758 if (plat->init)
1759 plat->init();
1760 }
1761 return 0;
1762 }
1763
pl011_split_lcrh(const struct uart_amba_port * uap)1764 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1765 {
1766 return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1767 pl011_reg_to_offset(uap, REG_LCRH_TX);
1768 }
1769
pl011_write_lcr_h(struct uart_amba_port * uap,unsigned int lcr_h)1770 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1771 {
1772 pl011_write(lcr_h, uap, REG_LCRH_RX);
1773 if (pl011_split_lcrh(uap)) {
1774 int i;
1775 /*
1776 * Wait 10 PCLKs before writing LCRH_TX register,
1777 * to get this delay write read only register 10 times
1778 */
1779 for (i = 0; i < 10; ++i)
1780 pl011_write(0xff, uap, REG_MIS);
1781 pl011_write(lcr_h, uap, REG_LCRH_TX);
1782 }
1783 }
1784
pl011_allocate_irq(struct uart_amba_port * uap)1785 static int pl011_allocate_irq(struct uart_amba_port *uap)
1786 {
1787 pl011_write(uap->im, uap, REG_IMSC);
1788
1789 return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1790 }
1791
1792 /*
1793 * Enable interrupts, only timeouts when using DMA
1794 * if initial RX DMA job failed, start in interrupt mode
1795 * as well.
1796 */
pl011_enable_interrupts(struct uart_amba_port * uap)1797 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1798 {
1799 unsigned long flags;
1800 unsigned int i;
1801
1802 uart_port_lock_irqsave(&uap->port, &flags);
1803
1804 /* Clear out any spuriously appearing RX interrupts */
1805 pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1806
1807 /*
1808 * RXIS is asserted only when the RX FIFO transitions from below
1809 * to above the trigger threshold. If the RX FIFO is already
1810 * full to the threshold this can't happen and RXIS will now be
1811 * stuck off. Drain the RX FIFO explicitly to fix this:
1812 */
1813 for (i = 0; i < uap->fifosize * 2; ++i) {
1814 if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1815 break;
1816
1817 pl011_read(uap, REG_DR);
1818 }
1819
1820 uap->im = UART011_RTIM;
1821 if (!pl011_dma_rx_running(uap))
1822 uap->im |= UART011_RXIM;
1823 pl011_write(uap->im, uap, REG_IMSC);
1824 uart_port_unlock_irqrestore(&uap->port, flags);
1825 }
1826
pl011_unthrottle_rx(struct uart_port * port)1827 static void pl011_unthrottle_rx(struct uart_port *port)
1828 {
1829 struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1830 unsigned long flags;
1831
1832 uart_port_lock_irqsave(&uap->port, &flags);
1833
1834 uap->im = UART011_RTIM;
1835 if (!pl011_dma_rx_running(uap))
1836 uap->im |= UART011_RXIM;
1837
1838 pl011_write(uap->im, uap, REG_IMSC);
1839
1840 #ifdef CONFIG_DMA_ENGINE
1841 if (uap->using_rx_dma) {
1842 uap->dmacr |= UART011_RXDMAE;
1843 pl011_write(uap->dmacr, uap, REG_DMACR);
1844 }
1845 #endif
1846
1847 uart_port_unlock_irqrestore(&uap->port, flags);
1848 }
1849
pl011_startup(struct uart_port * port)1850 static int pl011_startup(struct uart_port *port)
1851 {
1852 struct uart_amba_port *uap =
1853 container_of(port, struct uart_amba_port, port);
1854 unsigned int cr;
1855 int retval;
1856
1857 retval = pl011_hwinit(port);
1858 if (retval)
1859 goto clk_dis;
1860
1861 retval = pl011_allocate_irq(uap);
1862 if (retval)
1863 goto clk_dis;
1864
1865 pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1866
1867 uart_port_lock_irq(&uap->port);
1868
1869 cr = pl011_read(uap, REG_CR);
1870 cr &= UART011_CR_RTS | UART011_CR_DTR;
1871 cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1872
1873 if (!(port->rs485.flags & SER_RS485_ENABLED))
1874 cr |= UART011_CR_TXE;
1875
1876 pl011_write(cr, uap, REG_CR);
1877
1878 uart_port_unlock_irq(&uap->port);
1879
1880 /*
1881 * initialise the old status of the modem signals
1882 */
1883 uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1884
1885 /* Startup DMA */
1886 pl011_dma_startup(uap);
1887
1888 pl011_enable_interrupts(uap);
1889
1890 return 0;
1891
1892 clk_dis:
1893 clk_disable_unprepare(uap->clk);
1894 return retval;
1895 }
1896
sbsa_uart_startup(struct uart_port * port)1897 static int sbsa_uart_startup(struct uart_port *port)
1898 {
1899 struct uart_amba_port *uap =
1900 container_of(port, struct uart_amba_port, port);
1901 int retval;
1902
1903 retval = pl011_hwinit(port);
1904 if (retval)
1905 return retval;
1906
1907 retval = pl011_allocate_irq(uap);
1908 if (retval)
1909 return retval;
1910
1911 /* The SBSA UART does not support any modem status lines. */
1912 uap->old_status = 0;
1913
1914 pl011_enable_interrupts(uap);
1915
1916 return 0;
1917 }
1918
pl011_shutdown_channel(struct uart_amba_port * uap,unsigned int lcrh)1919 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1920 unsigned int lcrh)
1921 {
1922 unsigned long val;
1923
1924 val = pl011_read(uap, lcrh);
1925 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1926 pl011_write(val, uap, lcrh);
1927 }
1928
1929 /*
1930 * disable the port. It should not disable RTS and DTR.
1931 * Also RTS and DTR state should be preserved to restore
1932 * it during startup().
1933 */
pl011_disable_uart(struct uart_amba_port * uap)1934 static void pl011_disable_uart(struct uart_amba_port *uap)
1935 {
1936 unsigned int cr;
1937
1938 uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1939 uart_port_lock_irq(&uap->port);
1940 cr = pl011_read(uap, REG_CR);
1941 cr &= UART011_CR_RTS | UART011_CR_DTR;
1942 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1943 pl011_write(cr, uap, REG_CR);
1944 uart_port_unlock_irq(&uap->port);
1945
1946 /*
1947 * disable break condition and fifos
1948 */
1949 pl011_shutdown_channel(uap, REG_LCRH_RX);
1950 if (pl011_split_lcrh(uap))
1951 pl011_shutdown_channel(uap, REG_LCRH_TX);
1952 }
1953
pl011_disable_interrupts(struct uart_amba_port * uap)1954 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1955 {
1956 uart_port_lock_irq(&uap->port);
1957
1958 /* mask all interrupts and clear all pending ones */
1959 uap->im = 0;
1960 pl011_write(uap->im, uap, REG_IMSC);
1961 pl011_write(0xffff, uap, REG_ICR);
1962
1963 uart_port_unlock_irq(&uap->port);
1964 }
1965
pl011_shutdown(struct uart_port * port)1966 static void pl011_shutdown(struct uart_port *port)
1967 {
1968 struct uart_amba_port *uap =
1969 container_of(port, struct uart_amba_port, port);
1970
1971 pl011_disable_interrupts(uap);
1972
1973 pl011_dma_shutdown(uap);
1974
1975 if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1976 pl011_rs485_tx_stop(uap);
1977
1978 free_irq(uap->port.irq, uap);
1979
1980 pl011_disable_uart(uap);
1981
1982 /*
1983 * Shut down the clock producer
1984 */
1985 clk_disable_unprepare(uap->clk);
1986 /* Optionally let pins go into sleep states */
1987 pinctrl_pm_select_sleep_state(port->dev);
1988
1989 if (dev_get_platdata(uap->port.dev)) {
1990 struct amba_pl011_data *plat;
1991
1992 plat = dev_get_platdata(uap->port.dev);
1993 if (plat->exit)
1994 plat->exit();
1995 }
1996
1997 if (uap->port.ops->flush_buffer)
1998 uap->port.ops->flush_buffer(port);
1999 }
2000
sbsa_uart_shutdown(struct uart_port * port)2001 static void sbsa_uart_shutdown(struct uart_port *port)
2002 {
2003 struct uart_amba_port *uap =
2004 container_of(port, struct uart_amba_port, port);
2005
2006 pl011_disable_interrupts(uap);
2007
2008 free_irq(uap->port.irq, uap);
2009
2010 if (uap->port.ops->flush_buffer)
2011 uap->port.ops->flush_buffer(port);
2012 }
2013
2014 static void
pl011_setup_status_masks(struct uart_port * port,struct ktermios * termios)2015 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
2016 {
2017 port->read_status_mask = UART011_DR_OE | 255;
2018 if (termios->c_iflag & INPCK)
2019 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2020 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2021 port->read_status_mask |= UART011_DR_BE;
2022
2023 /*
2024 * Characters to ignore
2025 */
2026 port->ignore_status_mask = 0;
2027 if (termios->c_iflag & IGNPAR)
2028 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2029 if (termios->c_iflag & IGNBRK) {
2030 port->ignore_status_mask |= UART011_DR_BE;
2031 /*
2032 * If we're ignoring parity and break indicators,
2033 * ignore overruns too (for real raw support).
2034 */
2035 if (termios->c_iflag & IGNPAR)
2036 port->ignore_status_mask |= UART011_DR_OE;
2037 }
2038
2039 /*
2040 * Ignore all characters if CREAD is not set.
2041 */
2042 if ((termios->c_cflag & CREAD) == 0)
2043 port->ignore_status_mask |= UART_DUMMY_DR_RX;
2044 }
2045
2046 static void
pl011_set_termios(struct uart_port * port,struct ktermios * termios,const struct ktermios * old)2047 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2048 const struct ktermios *old)
2049 {
2050 struct uart_amba_port *uap =
2051 container_of(port, struct uart_amba_port, port);
2052 unsigned int lcr_h, old_cr;
2053 unsigned long flags;
2054 unsigned int baud, quot, clkdiv;
2055 unsigned int bits;
2056
2057 if (uap->vendor->oversampling)
2058 clkdiv = 8;
2059 else
2060 clkdiv = 16;
2061
2062 /*
2063 * Ask the core to calculate the divisor for us.
2064 */
2065 baud = uart_get_baud_rate(port, termios, old, 0,
2066 port->uartclk / clkdiv);
2067 #ifdef CONFIG_DMA_ENGINE
2068 /*
2069 * Adjust RX DMA polling rate with baud rate if not specified.
2070 */
2071 if (uap->dmarx.auto_poll_rate)
2072 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2073 #endif
2074
2075 if (baud > port->uartclk/16)
2076 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2077 else
2078 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2079
2080 switch (termios->c_cflag & CSIZE) {
2081 case CS5:
2082 lcr_h = UART01x_LCRH_WLEN_5;
2083 break;
2084 case CS6:
2085 lcr_h = UART01x_LCRH_WLEN_6;
2086 break;
2087 case CS7:
2088 lcr_h = UART01x_LCRH_WLEN_7;
2089 break;
2090 default: // CS8
2091 lcr_h = UART01x_LCRH_WLEN_8;
2092 break;
2093 }
2094 if (termios->c_cflag & CSTOPB)
2095 lcr_h |= UART01x_LCRH_STP2;
2096 if (termios->c_cflag & PARENB) {
2097 lcr_h |= UART01x_LCRH_PEN;
2098 if (!(termios->c_cflag & PARODD))
2099 lcr_h |= UART01x_LCRH_EPS;
2100 if (termios->c_cflag & CMSPAR)
2101 lcr_h |= UART011_LCRH_SPS;
2102 }
2103 if (uap->fifosize > 1)
2104 lcr_h |= UART01x_LCRH_FEN;
2105
2106 bits = tty_get_frame_size(termios->c_cflag);
2107
2108 uart_port_lock_irqsave(port, &flags);
2109
2110 /*
2111 * Update the per-port timeout.
2112 */
2113 uart_update_timeout(port, termios->c_cflag, baud);
2114
2115 /*
2116 * Calculate the approximated time it takes to transmit one character
2117 * with the given baud rate. We use this as the poll interval when we
2118 * wait for the tx queue to empty.
2119 */
2120 uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
2121
2122 pl011_setup_status_masks(port, termios);
2123
2124 if (UART_ENABLE_MS(port, termios->c_cflag))
2125 pl011_enable_ms(port);
2126
2127 if (port->rs485.flags & SER_RS485_ENABLED)
2128 termios->c_cflag &= ~CRTSCTS;
2129
2130 old_cr = pl011_read(uap, REG_CR);
2131
2132 if (termios->c_cflag & CRTSCTS) {
2133 if (old_cr & UART011_CR_RTS)
2134 old_cr |= UART011_CR_RTSEN;
2135
2136 old_cr |= UART011_CR_CTSEN;
2137 port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2138 } else {
2139 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2140 port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2141 }
2142
2143 if (uap->vendor->oversampling) {
2144 if (baud > port->uartclk / 16)
2145 old_cr |= ST_UART011_CR_OVSFACT;
2146 else
2147 old_cr &= ~ST_UART011_CR_OVSFACT;
2148 }
2149
2150 /*
2151 * Workaround for the ST Micro oversampling variants to
2152 * increase the bitrate slightly, by lowering the divisor,
2153 * to avoid delayed sampling of start bit at high speeds,
2154 * else we see data corruption.
2155 */
2156 if (uap->vendor->oversampling) {
2157 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2158 quot -= 1;
2159 else if ((baud > 3250000) && (quot > 2))
2160 quot -= 2;
2161 }
2162 /* Set baud rate */
2163 pl011_write(quot & 0x3f, uap, REG_FBRD);
2164 pl011_write(quot >> 6, uap, REG_IBRD);
2165
2166 /*
2167 * ----------v----------v----------v----------v-----
2168 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2169 * REG_FBRD & REG_IBRD.
2170 * ----------^----------^----------^----------^-----
2171 */
2172 pl011_write_lcr_h(uap, lcr_h);
2173
2174 /*
2175 * Receive was disabled by pl011_disable_uart during shutdown.
2176 * Need to reenable receive if you need to use a tty_driver
2177 * returns from tty_find_polling_driver() after a port shutdown.
2178 */
2179 old_cr |= UART011_CR_RXE;
2180 pl011_write(old_cr, uap, REG_CR);
2181
2182 uart_port_unlock_irqrestore(port, flags);
2183 }
2184
2185 static void
sbsa_uart_set_termios(struct uart_port * port,struct ktermios * termios,const struct ktermios * old)2186 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2187 const struct ktermios *old)
2188 {
2189 struct uart_amba_port *uap =
2190 container_of(port, struct uart_amba_port, port);
2191 unsigned long flags;
2192
2193 tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2194
2195 /* The SBSA UART only supports 8n1 without hardware flow control. */
2196 termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2197 termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2198 termios->c_cflag |= CS8 | CLOCAL;
2199
2200 uart_port_lock_irqsave(port, &flags);
2201 uart_update_timeout(port, CS8, uap->fixed_baud);
2202 pl011_setup_status_masks(port, termios);
2203 uart_port_unlock_irqrestore(port, flags);
2204 }
2205
pl011_type(struct uart_port * port)2206 static const char *pl011_type(struct uart_port *port)
2207 {
2208 struct uart_amba_port *uap =
2209 container_of(port, struct uart_amba_port, port);
2210 return uap->port.type == PORT_AMBA ? uap->type : NULL;
2211 }
2212
2213 /*
2214 * Configure/autoconfigure the port.
2215 */
pl011_config_port(struct uart_port * port,int flags)2216 static void pl011_config_port(struct uart_port *port, int flags)
2217 {
2218 if (flags & UART_CONFIG_TYPE)
2219 port->type = PORT_AMBA;
2220 }
2221
2222 /*
2223 * verify the new serial_struct (for TIOCSSERIAL).
2224 */
pl011_verify_port(struct uart_port * port,struct serial_struct * ser)2225 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2226 {
2227 int ret = 0;
2228 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2229 ret = -EINVAL;
2230 if (ser->irq < 0 || ser->irq >= nr_irqs)
2231 ret = -EINVAL;
2232 if (ser->baud_base < 9600)
2233 ret = -EINVAL;
2234 if (port->mapbase != (unsigned long) ser->iomem_base)
2235 ret = -EINVAL;
2236 return ret;
2237 }
2238
pl011_rs485_config(struct uart_port * port,struct ktermios * termios,struct serial_rs485 * rs485)2239 static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2240 struct serial_rs485 *rs485)
2241 {
2242 struct uart_amba_port *uap =
2243 container_of(port, struct uart_amba_port, port);
2244
2245 if (port->rs485.flags & SER_RS485_ENABLED)
2246 pl011_rs485_tx_stop(uap);
2247
2248 /* Make sure auto RTS is disabled */
2249 if (rs485->flags & SER_RS485_ENABLED) {
2250 u32 cr = pl011_read(uap, REG_CR);
2251
2252 cr &= ~UART011_CR_RTSEN;
2253 pl011_write(cr, uap, REG_CR);
2254 port->status &= ~UPSTAT_AUTORTS;
2255 }
2256
2257 return 0;
2258 }
2259
2260 static const struct uart_ops amba_pl011_pops = {
2261 .tx_empty = pl011_tx_empty,
2262 .set_mctrl = pl011_set_mctrl,
2263 .get_mctrl = pl011_get_mctrl,
2264 .stop_tx = pl011_stop_tx,
2265 .start_tx = pl011_start_tx,
2266 .stop_rx = pl011_stop_rx,
2267 .throttle = pl011_throttle_rx,
2268 .unthrottle = pl011_unthrottle_rx,
2269 .enable_ms = pl011_enable_ms,
2270 .break_ctl = pl011_break_ctl,
2271 .startup = pl011_startup,
2272 .shutdown = pl011_shutdown,
2273 .flush_buffer = pl011_dma_flush_buffer,
2274 .set_termios = pl011_set_termios,
2275 .type = pl011_type,
2276 .config_port = pl011_config_port,
2277 .verify_port = pl011_verify_port,
2278 #ifdef CONFIG_CONSOLE_POLL
2279 .poll_init = pl011_hwinit,
2280 .poll_get_char = pl011_get_poll_char,
2281 .poll_put_char = pl011_put_poll_char,
2282 #endif
2283 };
2284
sbsa_uart_set_mctrl(struct uart_port * port,unsigned int mctrl)2285 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2286 {
2287 }
2288
sbsa_uart_get_mctrl(struct uart_port * port)2289 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2290 {
2291 return 0;
2292 }
2293
2294 static const struct uart_ops sbsa_uart_pops = {
2295 .tx_empty = pl011_tx_empty,
2296 .set_mctrl = sbsa_uart_set_mctrl,
2297 .get_mctrl = sbsa_uart_get_mctrl,
2298 .stop_tx = pl011_stop_tx,
2299 .start_tx = pl011_start_tx,
2300 .stop_rx = pl011_stop_rx,
2301 .startup = sbsa_uart_startup,
2302 .shutdown = sbsa_uart_shutdown,
2303 .set_termios = sbsa_uart_set_termios,
2304 .type = pl011_type,
2305 .config_port = pl011_config_port,
2306 .verify_port = pl011_verify_port,
2307 #ifdef CONFIG_CONSOLE_POLL
2308 .poll_init = pl011_hwinit,
2309 .poll_get_char = pl011_get_poll_char,
2310 .poll_put_char = pl011_put_poll_char,
2311 #endif
2312 };
2313
2314 static struct uart_amba_port *amba_ports[UART_NR];
2315
2316 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2317
pl011_console_putchar(struct uart_port * port,unsigned char ch)2318 static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2319 {
2320 struct uart_amba_port *uap =
2321 container_of(port, struct uart_amba_port, port);
2322
2323 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2324 cpu_relax();
2325 pl011_write(ch, uap, REG_DR);
2326 }
2327
2328 static void
pl011_console_write(struct console * co,const char * s,unsigned int count)2329 pl011_console_write(struct console *co, const char *s, unsigned int count)
2330 {
2331 struct uart_amba_port *uap = amba_ports[co->index];
2332 unsigned int old_cr = 0, new_cr;
2333 unsigned long flags;
2334 int locked = 1;
2335
2336 clk_enable(uap->clk);
2337
2338 local_irq_save(flags);
2339 if (uap->port.sysrq)
2340 locked = 0;
2341 else if (oops_in_progress)
2342 locked = uart_port_trylock(&uap->port);
2343 else
2344 uart_port_lock(&uap->port);
2345
2346 /*
2347 * First save the CR then disable the interrupts
2348 */
2349 if (!uap->vendor->always_enabled) {
2350 old_cr = pl011_read(uap, REG_CR);
2351 new_cr = old_cr & ~UART011_CR_CTSEN;
2352 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2353 pl011_write(new_cr, uap, REG_CR);
2354 }
2355
2356 uart_console_write(&uap->port, s, count, pl011_console_putchar);
2357
2358 /*
2359 * Finally, wait for transmitter to become empty and restore the
2360 * TCR. Allow feature register bits to be inverted to work around
2361 * errata.
2362 */
2363 while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2364 & uap->vendor->fr_busy)
2365 cpu_relax();
2366 if (!uap->vendor->always_enabled)
2367 pl011_write(old_cr, uap, REG_CR);
2368
2369 if (locked)
2370 uart_port_unlock(&uap->port);
2371 local_irq_restore(flags);
2372
2373 clk_disable(uap->clk);
2374 }
2375
pl011_console_get_options(struct uart_amba_port * uap,int * baud,int * parity,int * bits)2376 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2377 int *parity, int *bits)
2378 {
2379 if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2380 unsigned int lcr_h, ibrd, fbrd;
2381
2382 lcr_h = pl011_read(uap, REG_LCRH_TX);
2383
2384 *parity = 'n';
2385 if (lcr_h & UART01x_LCRH_PEN) {
2386 if (lcr_h & UART01x_LCRH_EPS)
2387 *parity = 'e';
2388 else
2389 *parity = 'o';
2390 }
2391
2392 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2393 *bits = 7;
2394 else
2395 *bits = 8;
2396
2397 ibrd = pl011_read(uap, REG_IBRD);
2398 fbrd = pl011_read(uap, REG_FBRD);
2399
2400 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2401
2402 if (uap->vendor->oversampling) {
2403 if (pl011_read(uap, REG_CR)
2404 & ST_UART011_CR_OVSFACT)
2405 *baud *= 2;
2406 }
2407 }
2408 }
2409
pl011_console_setup(struct console * co,char * options)2410 static int pl011_console_setup(struct console *co, char *options)
2411 {
2412 struct uart_amba_port *uap;
2413 int baud = 38400;
2414 int bits = 8;
2415 int parity = 'n';
2416 int flow = 'n';
2417 int ret;
2418
2419 /*
2420 * Check whether an invalid uart number has been specified, and
2421 * if so, search for the first available port that does have
2422 * console support.
2423 */
2424 if (co->index >= UART_NR)
2425 co->index = 0;
2426 uap = amba_ports[co->index];
2427 if (!uap)
2428 return -ENODEV;
2429
2430 /* Allow pins to be muxed in and configured */
2431 pinctrl_pm_select_default_state(uap->port.dev);
2432
2433 ret = clk_prepare(uap->clk);
2434 if (ret)
2435 return ret;
2436
2437 if (dev_get_platdata(uap->port.dev)) {
2438 struct amba_pl011_data *plat;
2439
2440 plat = dev_get_platdata(uap->port.dev);
2441 if (plat->init)
2442 plat->init();
2443 }
2444
2445 uap->port.uartclk = clk_get_rate(uap->clk);
2446
2447 if (uap->vendor->fixed_options) {
2448 baud = uap->fixed_baud;
2449 } else {
2450 if (options)
2451 uart_parse_options(options,
2452 &baud, &parity, &bits, &flow);
2453 else
2454 pl011_console_get_options(uap, &baud, &parity, &bits);
2455 }
2456
2457 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2458 }
2459
2460 /**
2461 * pl011_console_match - non-standard console matching
2462 * @co: registering console
2463 * @name: name from console command line
2464 * @idx: index from console command line
2465 * @options: ptr to option string from console command line
2466 *
2467 * Only attempts to match console command lines of the form:
2468 * console=pl011,mmio|mmio32,<addr>[,<options>]
2469 * console=pl011,0x<addr>[,<options>]
2470 * This form is used to register an initial earlycon boot console and
2471 * replace it with the amba_console at pl011 driver init.
2472 *
2473 * Performs console setup for a match (as required by interface)
2474 * If no <options> are specified, then assume the h/w is already setup.
2475 *
2476 * Returns 0 if console matches; otherwise non-zero to use default matching
2477 */
pl011_console_match(struct console * co,char * name,int idx,char * options)2478 static int pl011_console_match(struct console *co, char *name, int idx,
2479 char *options)
2480 {
2481 unsigned char iotype;
2482 resource_size_t addr;
2483 int i;
2484
2485 /*
2486 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2487 * have a distinct console name, so make sure we check for that.
2488 * The actual implementation of the erratum occurs in the probe
2489 * function.
2490 */
2491 if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2492 return -ENODEV;
2493
2494 if (uart_parse_earlycon(options, &iotype, &addr, &options))
2495 return -ENODEV;
2496
2497 if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2498 return -ENODEV;
2499
2500 /* try to match the port specified on the command line */
2501 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2502 struct uart_port *port;
2503
2504 if (!amba_ports[i])
2505 continue;
2506
2507 port = &amba_ports[i]->port;
2508
2509 if (port->mapbase != addr)
2510 continue;
2511
2512 co->index = i;
2513 port->cons = co;
2514 return pl011_console_setup(co, options);
2515 }
2516
2517 return -ENODEV;
2518 }
2519
2520 static struct uart_driver amba_reg;
2521 static struct console amba_console = {
2522 .name = "ttyAMA",
2523 .write = pl011_console_write,
2524 .device = uart_console_device,
2525 .setup = pl011_console_setup,
2526 .match = pl011_console_match,
2527 .flags = CON_PRINTBUFFER | CON_ANYTIME,
2528 .index = -1,
2529 .data = &amba_reg,
2530 };
2531
2532 #define AMBA_CONSOLE (&amba_console)
2533
qdf2400_e44_putc(struct uart_port * port,unsigned char c)2534 static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2535 {
2536 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2537 cpu_relax();
2538 writel(c, port->membase + UART01x_DR);
2539 while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2540 cpu_relax();
2541 }
2542
qdf2400_e44_early_write(struct console * con,const char * s,unsigned n)2543 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2544 {
2545 struct earlycon_device *dev = con->data;
2546
2547 uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2548 }
2549
pl011_putc(struct uart_port * port,unsigned char c)2550 static void pl011_putc(struct uart_port *port, unsigned char c)
2551 {
2552 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2553 cpu_relax();
2554 if (port->iotype == UPIO_MEM32)
2555 writel(c, port->membase + UART01x_DR);
2556 else
2557 writeb(c, port->membase + UART01x_DR);
2558 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2559 cpu_relax();
2560 }
2561
pl011_early_write(struct console * con,const char * s,unsigned n)2562 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2563 {
2564 struct earlycon_device *dev = con->data;
2565
2566 uart_console_write(&dev->port, s, n, pl011_putc);
2567 }
2568
2569 #ifdef CONFIG_CONSOLE_POLL
pl011_getc(struct uart_port * port)2570 static int pl011_getc(struct uart_port *port)
2571 {
2572 if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2573 return NO_POLL_CHAR;
2574
2575 if (port->iotype == UPIO_MEM32)
2576 return readl(port->membase + UART01x_DR);
2577 else
2578 return readb(port->membase + UART01x_DR);
2579 }
2580
pl011_early_read(struct console * con,char * s,unsigned int n)2581 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2582 {
2583 struct earlycon_device *dev = con->data;
2584 int ch, num_read = 0;
2585
2586 while (num_read < n) {
2587 ch = pl011_getc(&dev->port);
2588 if (ch == NO_POLL_CHAR)
2589 break;
2590
2591 s[num_read++] = ch;
2592 }
2593
2594 return num_read;
2595 }
2596 #else
2597 #define pl011_early_read NULL
2598 #endif
2599
2600 /*
2601 * On non-ACPI systems, earlycon is enabled by specifying
2602 * "earlycon=pl011,<address>" on the kernel command line.
2603 *
2604 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2605 * by specifying only "earlycon" on the command line. Because it requires
2606 * SPCR, the console starts after ACPI is parsed, which is later than a
2607 * traditional early console.
2608 *
2609 * To get the traditional early console that starts before ACPI is parsed,
2610 * specify the full "earlycon=pl011,<address>" option.
2611 */
pl011_early_console_setup(struct earlycon_device * device,const char * opt)2612 static int __init pl011_early_console_setup(struct earlycon_device *device,
2613 const char *opt)
2614 {
2615 if (!device->port.membase)
2616 return -ENODEV;
2617
2618 device->con->write = pl011_early_write;
2619 device->con->read = pl011_early_read;
2620
2621 return 0;
2622 }
2623 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2624 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2625
2626 /*
2627 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2628 * Erratum 44, traditional earlycon can be enabled by specifying
2629 * "earlycon=qdf2400_e44,<address>". Any options are ignored.
2630 *
2631 * Alternatively, you can just specify "earlycon", and the early console
2632 * will be enabled with the information from the SPCR table. In this
2633 * case, the SPCR code will detect the need for the E44 work-around,
2634 * and set the console name to "qdf2400_e44".
2635 */
2636 static int __init
qdf2400_e44_early_console_setup(struct earlycon_device * device,const char * opt)2637 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2638 const char *opt)
2639 {
2640 if (!device->port.membase)
2641 return -ENODEV;
2642
2643 device->con->write = qdf2400_e44_early_write;
2644 return 0;
2645 }
2646 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2647
2648 #else
2649 #define AMBA_CONSOLE NULL
2650 #endif
2651
2652 static struct uart_driver amba_reg = {
2653 .owner = THIS_MODULE,
2654 .driver_name = "ttyAMA",
2655 .dev_name = "ttyAMA",
2656 .major = SERIAL_AMBA_MAJOR,
2657 .minor = SERIAL_AMBA_MINOR,
2658 .nr = UART_NR,
2659 .cons = AMBA_CONSOLE,
2660 };
2661
pl011_probe_dt_alias(int index,struct device * dev)2662 static int pl011_probe_dt_alias(int index, struct device *dev)
2663 {
2664 struct device_node *np;
2665 static bool seen_dev_with_alias = false;
2666 static bool seen_dev_without_alias = false;
2667 int ret = index;
2668
2669 if (!IS_ENABLED(CONFIG_OF))
2670 return ret;
2671
2672 np = dev->of_node;
2673 if (!np)
2674 return ret;
2675
2676 ret = of_alias_get_id(np, "serial");
2677 if (ret < 0) {
2678 seen_dev_without_alias = true;
2679 ret = index;
2680 } else {
2681 seen_dev_with_alias = true;
2682 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2683 dev_warn(dev, "requested serial port %d not available.\n", ret);
2684 ret = index;
2685 }
2686 }
2687
2688 if (seen_dev_with_alias && seen_dev_without_alias)
2689 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2690
2691 return ret;
2692 }
2693
2694 /* unregisters the driver also if no more ports are left */
pl011_unregister_port(struct uart_amba_port * uap)2695 static void pl011_unregister_port(struct uart_amba_port *uap)
2696 {
2697 int i;
2698 bool busy = false;
2699
2700 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2701 if (amba_ports[i] == uap)
2702 amba_ports[i] = NULL;
2703 else if (amba_ports[i])
2704 busy = true;
2705 }
2706 pl011_dma_remove(uap);
2707 if (!busy)
2708 uart_unregister_driver(&amba_reg);
2709 }
2710
pl011_find_free_port(void)2711 static int pl011_find_free_port(void)
2712 {
2713 int i;
2714
2715 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2716 if (amba_ports[i] == NULL)
2717 return i;
2718
2719 return -EBUSY;
2720 }
2721
pl011_get_rs485_mode(struct uart_amba_port * uap)2722 static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2723 {
2724 struct uart_port *port = &uap->port;
2725 int ret;
2726
2727 ret = uart_get_rs485_mode(port);
2728 if (ret)
2729 return ret;
2730
2731 return 0;
2732 }
2733
pl011_setup_port(struct device * dev,struct uart_amba_port * uap,struct resource * mmiobase,int index)2734 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2735 struct resource *mmiobase, int index)
2736 {
2737 void __iomem *base;
2738 int ret;
2739
2740 base = devm_ioremap_resource(dev, mmiobase);
2741 if (IS_ERR(base))
2742 return PTR_ERR(base);
2743
2744 index = pl011_probe_dt_alias(index, dev);
2745
2746 uap->port.dev = dev;
2747 uap->port.mapbase = mmiobase->start;
2748 uap->port.membase = base;
2749 uap->port.fifosize = uap->fifosize;
2750 uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2751 uap->port.flags = UPF_BOOT_AUTOCONF;
2752 uap->port.line = index;
2753
2754 ret = pl011_get_rs485_mode(uap);
2755 if (ret)
2756 return ret;
2757
2758 amba_ports[index] = uap;
2759
2760 return 0;
2761 }
2762
pl011_register_port(struct uart_amba_port * uap)2763 static int pl011_register_port(struct uart_amba_port *uap)
2764 {
2765 int ret, i;
2766
2767 /* Ensure interrupts from this UART are masked and cleared */
2768 pl011_write(0, uap, REG_IMSC);
2769 pl011_write(0xffff, uap, REG_ICR);
2770
2771 if (!amba_reg.state) {
2772 ret = uart_register_driver(&amba_reg);
2773 if (ret < 0) {
2774 dev_err(uap->port.dev,
2775 "Failed to register AMBA-PL011 driver\n");
2776 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2777 if (amba_ports[i] == uap)
2778 amba_ports[i] = NULL;
2779 return ret;
2780 }
2781 }
2782
2783 ret = uart_add_one_port(&amba_reg, &uap->port);
2784 if (ret)
2785 pl011_unregister_port(uap);
2786
2787 return ret;
2788 }
2789
2790 static const struct serial_rs485 pl011_rs485_supported = {
2791 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2792 SER_RS485_RX_DURING_TX,
2793 .delay_rts_before_send = 1,
2794 .delay_rts_after_send = 1,
2795 };
2796
pl011_probe(struct amba_device * dev,const struct amba_id * id)2797 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2798 {
2799 struct uart_amba_port *uap;
2800 struct vendor_data *vendor = id->data;
2801 int portnr, ret;
2802 u32 val;
2803
2804 portnr = pl011_find_free_port();
2805 if (portnr < 0)
2806 return portnr;
2807
2808 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2809 GFP_KERNEL);
2810 if (!uap)
2811 return -ENOMEM;
2812
2813 uap->clk = devm_clk_get(&dev->dev, NULL);
2814 if (IS_ERR(uap->clk))
2815 return PTR_ERR(uap->clk);
2816
2817 uap->reg_offset = vendor->reg_offset;
2818 uap->vendor = vendor;
2819 uap->fifosize = vendor->get_fifosize(dev);
2820 uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2821 uap->port.irq = dev->irq[0];
2822 uap->port.ops = &amba_pl011_pops;
2823 uap->port.rs485_config = pl011_rs485_config;
2824 uap->port.rs485_supported = pl011_rs485_supported;
2825 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2826
2827 if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2828 switch (val) {
2829 case 1:
2830 uap->port.iotype = UPIO_MEM;
2831 break;
2832 case 4:
2833 uap->port.iotype = UPIO_MEM32;
2834 break;
2835 default:
2836 dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2837 val);
2838 return -EINVAL;
2839 }
2840 }
2841
2842 ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2843 if (ret)
2844 return ret;
2845
2846 amba_set_drvdata(dev, uap);
2847
2848 return pl011_register_port(uap);
2849 }
2850
pl011_remove(struct amba_device * dev)2851 static void pl011_remove(struct amba_device *dev)
2852 {
2853 struct uart_amba_port *uap = amba_get_drvdata(dev);
2854
2855 uart_remove_one_port(&amba_reg, &uap->port);
2856 pl011_unregister_port(uap);
2857 }
2858
2859 #ifdef CONFIG_PM_SLEEP
pl011_suspend(struct device * dev)2860 static int pl011_suspend(struct device *dev)
2861 {
2862 struct uart_amba_port *uap = dev_get_drvdata(dev);
2863
2864 if (!uap)
2865 return -EINVAL;
2866
2867 return uart_suspend_port(&amba_reg, &uap->port);
2868 }
2869
pl011_resume(struct device * dev)2870 static int pl011_resume(struct device *dev)
2871 {
2872 struct uart_amba_port *uap = dev_get_drvdata(dev);
2873
2874 if (!uap)
2875 return -EINVAL;
2876
2877 return uart_resume_port(&amba_reg, &uap->port);
2878 }
2879 #endif
2880
2881 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2882
sbsa_uart_probe(struct platform_device * pdev)2883 static int sbsa_uart_probe(struct platform_device *pdev)
2884 {
2885 struct uart_amba_port *uap;
2886 struct resource *r;
2887 int portnr, ret;
2888 int baudrate;
2889
2890 /*
2891 * Check the mandatory baud rate parameter in the DT node early
2892 * so that we can easily exit with the error.
2893 */
2894 if (pdev->dev.of_node) {
2895 struct device_node *np = pdev->dev.of_node;
2896
2897 ret = of_property_read_u32(np, "current-speed", &baudrate);
2898 if (ret)
2899 return ret;
2900 } else {
2901 baudrate = 115200;
2902 }
2903
2904 portnr = pl011_find_free_port();
2905 if (portnr < 0)
2906 return portnr;
2907
2908 uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2909 GFP_KERNEL);
2910 if (!uap)
2911 return -ENOMEM;
2912
2913 ret = platform_get_irq(pdev, 0);
2914 if (ret < 0)
2915 return ret;
2916 uap->port.irq = ret;
2917
2918 #ifdef CONFIG_ACPI_SPCR_TABLE
2919 if (qdf2400_e44_present) {
2920 dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2921 uap->vendor = &vendor_qdt_qdf2400_e44;
2922 } else
2923 #endif
2924 uap->vendor = &vendor_sbsa;
2925
2926 uap->reg_offset = uap->vendor->reg_offset;
2927 uap->fifosize = 32;
2928 uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2929 uap->port.ops = &sbsa_uart_pops;
2930 uap->fixed_baud = baudrate;
2931
2932 snprintf(uap->type, sizeof(uap->type), "SBSA");
2933
2934 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2935
2936 ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2937 if (ret)
2938 return ret;
2939
2940 platform_set_drvdata(pdev, uap);
2941
2942 return pl011_register_port(uap);
2943 }
2944
sbsa_uart_remove(struct platform_device * pdev)2945 static int sbsa_uart_remove(struct platform_device *pdev)
2946 {
2947 struct uart_amba_port *uap = platform_get_drvdata(pdev);
2948
2949 uart_remove_one_port(&amba_reg, &uap->port);
2950 pl011_unregister_port(uap);
2951 return 0;
2952 }
2953
2954 static const struct of_device_id sbsa_uart_of_match[] = {
2955 { .compatible = "arm,sbsa-uart", },
2956 {},
2957 };
2958 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2959
2960 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2961 { "ARMH0011", 0 },
2962 { "ARMHB000", 0 },
2963 {},
2964 };
2965 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2966
2967 static struct platform_driver arm_sbsa_uart_platform_driver = {
2968 .probe = sbsa_uart_probe,
2969 .remove = sbsa_uart_remove,
2970 .driver = {
2971 .name = "sbsa-uart",
2972 .pm = &pl011_dev_pm_ops,
2973 .of_match_table = of_match_ptr(sbsa_uart_of_match),
2974 .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2975 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2976 },
2977 };
2978
2979 static const struct amba_id pl011_ids[] = {
2980 {
2981 .id = 0x00041011,
2982 .mask = 0x000fffff,
2983 .data = &vendor_arm,
2984 },
2985 {
2986 .id = 0x00380802,
2987 .mask = 0x00ffffff,
2988 .data = &vendor_st,
2989 },
2990 { 0, 0 },
2991 };
2992
2993 MODULE_DEVICE_TABLE(amba, pl011_ids);
2994
2995 static struct amba_driver pl011_driver = {
2996 .drv = {
2997 .name = "uart-pl011",
2998 .pm = &pl011_dev_pm_ops,
2999 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
3000 },
3001 .id_table = pl011_ids,
3002 .probe = pl011_probe,
3003 .remove = pl011_remove,
3004 };
3005
pl011_init(void)3006 static int __init pl011_init(void)
3007 {
3008 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
3009
3010 if (platform_driver_register(&arm_sbsa_uart_platform_driver))
3011 pr_warn("could not register SBSA UART platform driver\n");
3012 return amba_driver_register(&pl011_driver);
3013 }
3014
pl011_exit(void)3015 static void __exit pl011_exit(void)
3016 {
3017 platform_driver_unregister(&arm_sbsa_uart_platform_driver);
3018 amba_driver_unregister(&pl011_driver);
3019 }
3020
3021 /*
3022 * While this can be a module, if builtin it's most likely the console
3023 * So let's leave module_exit but move module_init to an earlier place
3024 */
3025 arch_initcall(pl011_init);
3026 module_exit(pl011_exit);
3027
3028 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3029 MODULE_DESCRIPTION("ARM AMBA serial port driver");
3030 MODULE_LICENSE("GPL");
3031