xref: /openbmc/linux/fs/userfaultfd.c (revision d699090510c3223641a23834b4710e2d4309a6ad)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12 
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34 
35 static int sysctl_unprivileged_userfaultfd __read_mostly;
36 
37 #ifdef CONFIG_SYSCTL
38 static struct ctl_table vm_userfaultfd_table[] = {
39 	{
40 		.procname	= "unprivileged_userfaultfd",
41 		.data		= &sysctl_unprivileged_userfaultfd,
42 		.maxlen		= sizeof(sysctl_unprivileged_userfaultfd),
43 		.mode		= 0644,
44 		.proc_handler	= proc_dointvec_minmax,
45 		.extra1		= SYSCTL_ZERO,
46 		.extra2		= SYSCTL_ONE,
47 	},
48 	{ }
49 };
50 #endif
51 
52 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
53 
54 /*
55  * Start with fault_pending_wqh and fault_wqh so they're more likely
56  * to be in the same cacheline.
57  *
58  * Locking order:
59  *	fd_wqh.lock
60  *		fault_pending_wqh.lock
61  *			fault_wqh.lock
62  *		event_wqh.lock
63  *
64  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
65  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
66  * also taken in IRQ context.
67  */
68 struct userfaultfd_ctx {
69 	/* waitqueue head for the pending (i.e. not read) userfaults */
70 	wait_queue_head_t fault_pending_wqh;
71 	/* waitqueue head for the userfaults */
72 	wait_queue_head_t fault_wqh;
73 	/* waitqueue head for the pseudo fd to wakeup poll/read */
74 	wait_queue_head_t fd_wqh;
75 	/* waitqueue head for events */
76 	wait_queue_head_t event_wqh;
77 	/* a refile sequence protected by fault_pending_wqh lock */
78 	seqcount_spinlock_t refile_seq;
79 	/* pseudo fd refcounting */
80 	refcount_t refcount;
81 	/* userfaultfd syscall flags */
82 	unsigned int flags;
83 	/* features requested from the userspace */
84 	unsigned int features;
85 	/* released */
86 	bool released;
87 	/* memory mappings are changing because of non-cooperative event */
88 	atomic_t mmap_changing;
89 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
90 	struct mm_struct *mm;
91 };
92 
93 struct userfaultfd_fork_ctx {
94 	struct userfaultfd_ctx *orig;
95 	struct userfaultfd_ctx *new;
96 	struct list_head list;
97 };
98 
99 struct userfaultfd_unmap_ctx {
100 	struct userfaultfd_ctx *ctx;
101 	unsigned long start;
102 	unsigned long end;
103 	struct list_head list;
104 };
105 
106 struct userfaultfd_wait_queue {
107 	struct uffd_msg msg;
108 	wait_queue_entry_t wq;
109 	struct userfaultfd_ctx *ctx;
110 	bool waken;
111 };
112 
113 struct userfaultfd_wake_range {
114 	unsigned long start;
115 	unsigned long len;
116 };
117 
118 /* internal indication that UFFD_API ioctl was successfully executed */
119 #define UFFD_FEATURE_INITIALIZED		(1u << 31)
120 
userfaultfd_is_initialized(struct userfaultfd_ctx * ctx)121 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
122 {
123 	return ctx->features & UFFD_FEATURE_INITIALIZED;
124 }
125 
126 /*
127  * Whether WP_UNPOPULATED is enabled on the uffd context.  It is only
128  * meaningful when userfaultfd_wp()==true on the vma and when it's
129  * anonymous.
130  */
userfaultfd_wp_unpopulated(struct vm_area_struct * vma)131 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
132 {
133 	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
134 
135 	if (!ctx)
136 		return false;
137 
138 	return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
139 }
140 
userfaultfd_set_vm_flags(struct vm_area_struct * vma,vm_flags_t flags)141 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
142 				     vm_flags_t flags)
143 {
144 	const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
145 
146 	vm_flags_reset(vma, flags);
147 	/*
148 	 * For shared mappings, we want to enable writenotify while
149 	 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
150 	 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
151 	 */
152 	if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
153 		vma_set_page_prot(vma);
154 }
155 
userfaultfd_wake_function(wait_queue_entry_t * wq,unsigned mode,int wake_flags,void * key)156 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
157 				     int wake_flags, void *key)
158 {
159 	struct userfaultfd_wake_range *range = key;
160 	int ret;
161 	struct userfaultfd_wait_queue *uwq;
162 	unsigned long start, len;
163 
164 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
165 	ret = 0;
166 	/* len == 0 means wake all */
167 	start = range->start;
168 	len = range->len;
169 	if (len && (start > uwq->msg.arg.pagefault.address ||
170 		    start + len <= uwq->msg.arg.pagefault.address))
171 		goto out;
172 	WRITE_ONCE(uwq->waken, true);
173 	/*
174 	 * The Program-Order guarantees provided by the scheduler
175 	 * ensure uwq->waken is visible before the task is woken.
176 	 */
177 	ret = wake_up_state(wq->private, mode);
178 	if (ret) {
179 		/*
180 		 * Wake only once, autoremove behavior.
181 		 *
182 		 * After the effect of list_del_init is visible to the other
183 		 * CPUs, the waitqueue may disappear from under us, see the
184 		 * !list_empty_careful() in handle_userfault().
185 		 *
186 		 * try_to_wake_up() has an implicit smp_mb(), and the
187 		 * wq->private is read before calling the extern function
188 		 * "wake_up_state" (which in turns calls try_to_wake_up).
189 		 */
190 		list_del_init(&wq->entry);
191 	}
192 out:
193 	return ret;
194 }
195 
196 /**
197  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
198  * context.
199  * @ctx: [in] Pointer to the userfaultfd context.
200  */
userfaultfd_ctx_get(struct userfaultfd_ctx * ctx)201 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
202 {
203 	refcount_inc(&ctx->refcount);
204 }
205 
206 /**
207  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
208  * context.
209  * @ctx: [in] Pointer to userfaultfd context.
210  *
211  * The userfaultfd context reference must have been previously acquired either
212  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
213  */
userfaultfd_ctx_put(struct userfaultfd_ctx * ctx)214 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
215 {
216 	if (refcount_dec_and_test(&ctx->refcount)) {
217 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
218 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
219 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
220 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
221 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
222 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
223 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
224 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
225 		mmdrop(ctx->mm);
226 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
227 	}
228 }
229 
msg_init(struct uffd_msg * msg)230 static inline void msg_init(struct uffd_msg *msg)
231 {
232 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
233 	/*
234 	 * Must use memset to zero out the paddings or kernel data is
235 	 * leaked to userland.
236 	 */
237 	memset(msg, 0, sizeof(struct uffd_msg));
238 }
239 
userfault_msg(unsigned long address,unsigned long real_address,unsigned int flags,unsigned long reason,unsigned int features)240 static inline struct uffd_msg userfault_msg(unsigned long address,
241 					    unsigned long real_address,
242 					    unsigned int flags,
243 					    unsigned long reason,
244 					    unsigned int features)
245 {
246 	struct uffd_msg msg;
247 
248 	msg_init(&msg);
249 	msg.event = UFFD_EVENT_PAGEFAULT;
250 
251 	msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
252 				    real_address : address;
253 
254 	/*
255 	 * These flags indicate why the userfault occurred:
256 	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
257 	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
258 	 * - Neither of these flags being set indicates a MISSING fault.
259 	 *
260 	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
261 	 * fault. Otherwise, it was a read fault.
262 	 */
263 	if (flags & FAULT_FLAG_WRITE)
264 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
265 	if (reason & VM_UFFD_WP)
266 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
267 	if (reason & VM_UFFD_MINOR)
268 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
269 	if (features & UFFD_FEATURE_THREAD_ID)
270 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
271 	return msg;
272 }
273 
274 #ifdef CONFIG_HUGETLB_PAGE
275 /*
276  * Same functionality as userfaultfd_must_wait below with modifications for
277  * hugepmd ranges.
278  */
userfaultfd_huge_must_wait(struct userfaultfd_ctx * ctx,struct vm_fault * vmf,unsigned long reason)279 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
280 					      struct vm_fault *vmf,
281 					      unsigned long reason)
282 {
283 	struct vm_area_struct *vma = vmf->vma;
284 	pte_t *ptep, pte;
285 	bool ret = true;
286 
287 	assert_fault_locked(vmf);
288 
289 	ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
290 	if (!ptep)
291 		goto out;
292 
293 	ret = false;
294 	pte = huge_ptep_get(ptep);
295 
296 	/*
297 	 * Lockless access: we're in a wait_event so it's ok if it
298 	 * changes under us.  PTE markers should be handled the same as none
299 	 * ptes here.
300 	 */
301 	if (huge_pte_none_mostly(pte))
302 		ret = true;
303 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
304 		ret = true;
305 out:
306 	return ret;
307 }
308 #else
userfaultfd_huge_must_wait(struct userfaultfd_ctx * ctx,struct vm_fault * vmf,unsigned long reason)309 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
310 					      struct vm_fault *vmf,
311 					      unsigned long reason)
312 {
313 	return false;	/* should never get here */
314 }
315 #endif /* CONFIG_HUGETLB_PAGE */
316 
317 /*
318  * Verify the pagetables are still not ok after having reigstered into
319  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
320  * userfault that has already been resolved, if userfaultfd_read and
321  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
322  * threads.
323  */
userfaultfd_must_wait(struct userfaultfd_ctx * ctx,struct vm_fault * vmf,unsigned long reason)324 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
325 					 struct vm_fault *vmf,
326 					 unsigned long reason)
327 {
328 	struct mm_struct *mm = ctx->mm;
329 	unsigned long address = vmf->address;
330 	pgd_t *pgd;
331 	p4d_t *p4d;
332 	pud_t *pud;
333 	pmd_t *pmd, _pmd;
334 	pte_t *pte;
335 	pte_t ptent;
336 	bool ret = true;
337 
338 	assert_fault_locked(vmf);
339 
340 	pgd = pgd_offset(mm, address);
341 	if (!pgd_present(*pgd))
342 		goto out;
343 	p4d = p4d_offset(pgd, address);
344 	if (!p4d_present(*p4d))
345 		goto out;
346 	pud = pud_offset(p4d, address);
347 	if (!pud_present(*pud))
348 		goto out;
349 	pmd = pmd_offset(pud, address);
350 again:
351 	_pmd = pmdp_get_lockless(pmd);
352 	if (pmd_none(_pmd))
353 		goto out;
354 
355 	ret = false;
356 	if (!pmd_present(_pmd) || pmd_devmap(_pmd))
357 		goto out;
358 
359 	if (pmd_trans_huge(_pmd)) {
360 		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
361 			ret = true;
362 		goto out;
363 	}
364 
365 	pte = pte_offset_map(pmd, address);
366 	if (!pte) {
367 		ret = true;
368 		goto again;
369 	}
370 	/*
371 	 * Lockless access: we're in a wait_event so it's ok if it
372 	 * changes under us.  PTE markers should be handled the same as none
373 	 * ptes here.
374 	 */
375 	ptent = ptep_get(pte);
376 	if (pte_none_mostly(ptent))
377 		ret = true;
378 	if (!pte_write(ptent) && (reason & VM_UFFD_WP))
379 		ret = true;
380 	pte_unmap(pte);
381 
382 out:
383 	return ret;
384 }
385 
userfaultfd_get_blocking_state(unsigned int flags)386 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
387 {
388 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
389 		return TASK_INTERRUPTIBLE;
390 
391 	if (flags & FAULT_FLAG_KILLABLE)
392 		return TASK_KILLABLE;
393 
394 	return TASK_UNINTERRUPTIBLE;
395 }
396 
397 /*
398  * The locking rules involved in returning VM_FAULT_RETRY depending on
399  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
400  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
401  * recommendation in __lock_page_or_retry is not an understatement.
402  *
403  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
404  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
405  * not set.
406  *
407  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
408  * set, VM_FAULT_RETRY can still be returned if and only if there are
409  * fatal_signal_pending()s, and the mmap_lock must be released before
410  * returning it.
411  */
handle_userfault(struct vm_fault * vmf,unsigned long reason)412 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
413 {
414 	struct vm_area_struct *vma = vmf->vma;
415 	struct mm_struct *mm = vma->vm_mm;
416 	struct userfaultfd_ctx *ctx;
417 	struct userfaultfd_wait_queue uwq;
418 	vm_fault_t ret = VM_FAULT_SIGBUS;
419 	bool must_wait;
420 	unsigned int blocking_state;
421 
422 	/*
423 	 * We don't do userfault handling for the final child pid update.
424 	 *
425 	 * We also don't do userfault handling during
426 	 * coredumping. hugetlbfs has the special
427 	 * hugetlb_follow_page_mask() to skip missing pages in the
428 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
429 	 * the no_page_table() helper in follow_page_mask(), but the
430 	 * shmem_vm_ops->fault method is invoked even during
431 	 * coredumping and it ends up here.
432 	 */
433 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
434 		goto out;
435 
436 	assert_fault_locked(vmf);
437 
438 	ctx = vma->vm_userfaultfd_ctx.ctx;
439 	if (!ctx)
440 		goto out;
441 
442 	BUG_ON(ctx->mm != mm);
443 
444 	/* Any unrecognized flag is a bug. */
445 	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
446 	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
447 	VM_BUG_ON(!reason || (reason & (reason - 1)));
448 
449 	if (ctx->features & UFFD_FEATURE_SIGBUS)
450 		goto out;
451 	if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
452 		goto out;
453 
454 	/*
455 	 * Check that we can return VM_FAULT_RETRY.
456 	 *
457 	 * NOTE: it should become possible to return VM_FAULT_RETRY
458 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
459 	 * -EBUSY failures, if the userfaultfd is to be extended for
460 	 * VM_UFFD_WP tracking and we intend to arm the userfault
461 	 * without first stopping userland access to the memory. For
462 	 * VM_UFFD_MISSING userfaults this is enough for now.
463 	 */
464 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
465 		/*
466 		 * Validate the invariant that nowait must allow retry
467 		 * to be sure not to return SIGBUS erroneously on
468 		 * nowait invocations.
469 		 */
470 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
471 #ifdef CONFIG_DEBUG_VM
472 		if (printk_ratelimit()) {
473 			printk(KERN_WARNING
474 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
475 			       vmf->flags);
476 			dump_stack();
477 		}
478 #endif
479 		goto out;
480 	}
481 
482 	/*
483 	 * Handle nowait, not much to do other than tell it to retry
484 	 * and wait.
485 	 */
486 	ret = VM_FAULT_RETRY;
487 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
488 		goto out;
489 
490 	if (unlikely(READ_ONCE(ctx->released))) {
491 		/*
492 		 * If a concurrent release is detected, do not return
493 		 * VM_FAULT_SIGBUS or VM_FAULT_NOPAGE, but instead always
494 		 * return VM_FAULT_RETRY with lock released proactively.
495 		 *
496 		 * If we were to return VM_FAULT_SIGBUS here, the non
497 		 * cooperative manager would be instead forced to
498 		 * always call UFFDIO_UNREGISTER before it can safely
499 		 * close the uffd, to avoid involuntary SIGBUS triggered.
500 		 *
501 		 * If we were to return VM_FAULT_NOPAGE, it would work for
502 		 * the fault path, in which the lock will be released
503 		 * later.  However for GUP, faultin_page() does nothing
504 		 * special on NOPAGE, so GUP would spin retrying without
505 		 * releasing the mmap read lock, causing possible livelock.
506 		 *
507 		 * Here only VM_FAULT_RETRY would make sure the mmap lock
508 		 * be released immediately, so that the thread concurrently
509 		 * releasing the userfault would always make progress.
510 		 */
511 		release_fault_lock(vmf);
512 		goto out;
513 	}
514 
515 	/* take the reference before dropping the mmap_lock */
516 	userfaultfd_ctx_get(ctx);
517 
518 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
519 	uwq.wq.private = current;
520 	uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
521 				reason, ctx->features);
522 	uwq.ctx = ctx;
523 	uwq.waken = false;
524 
525 	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
526 
527         /*
528          * Take the vma lock now, in order to safely call
529          * userfaultfd_huge_must_wait() later. Since acquiring the
530          * (sleepable) vma lock can modify the current task state, that
531          * must be before explicitly calling set_current_state().
532          */
533 	if (is_vm_hugetlb_page(vma))
534 		hugetlb_vma_lock_read(vma);
535 
536 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
537 	/*
538 	 * After the __add_wait_queue the uwq is visible to userland
539 	 * through poll/read().
540 	 */
541 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
542 	/*
543 	 * The smp_mb() after __set_current_state prevents the reads
544 	 * following the spin_unlock to happen before the list_add in
545 	 * __add_wait_queue.
546 	 */
547 	set_current_state(blocking_state);
548 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
549 
550 	if (!is_vm_hugetlb_page(vma))
551 		must_wait = userfaultfd_must_wait(ctx, vmf, reason);
552 	else
553 		must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
554 	if (is_vm_hugetlb_page(vma))
555 		hugetlb_vma_unlock_read(vma);
556 	release_fault_lock(vmf);
557 
558 	if (likely(must_wait && !READ_ONCE(ctx->released))) {
559 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
560 		schedule();
561 	}
562 
563 	__set_current_state(TASK_RUNNING);
564 
565 	/*
566 	 * Here we race with the list_del; list_add in
567 	 * userfaultfd_ctx_read(), however because we don't ever run
568 	 * list_del_init() to refile across the two lists, the prev
569 	 * and next pointers will never point to self. list_add also
570 	 * would never let any of the two pointers to point to
571 	 * self. So list_empty_careful won't risk to see both pointers
572 	 * pointing to self at any time during the list refile. The
573 	 * only case where list_del_init() is called is the full
574 	 * removal in the wake function and there we don't re-list_add
575 	 * and it's fine not to block on the spinlock. The uwq on this
576 	 * kernel stack can be released after the list_del_init.
577 	 */
578 	if (!list_empty_careful(&uwq.wq.entry)) {
579 		spin_lock_irq(&ctx->fault_pending_wqh.lock);
580 		/*
581 		 * No need of list_del_init(), the uwq on the stack
582 		 * will be freed shortly anyway.
583 		 */
584 		list_del(&uwq.wq.entry);
585 		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
586 	}
587 
588 	/*
589 	 * ctx may go away after this if the userfault pseudo fd is
590 	 * already released.
591 	 */
592 	userfaultfd_ctx_put(ctx);
593 
594 out:
595 	return ret;
596 }
597 
userfaultfd_event_wait_completion(struct userfaultfd_ctx * ctx,struct userfaultfd_wait_queue * ewq)598 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
599 					      struct userfaultfd_wait_queue *ewq)
600 {
601 	struct userfaultfd_ctx *release_new_ctx;
602 
603 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
604 		goto out;
605 
606 	ewq->ctx = ctx;
607 	init_waitqueue_entry(&ewq->wq, current);
608 	release_new_ctx = NULL;
609 
610 	spin_lock_irq(&ctx->event_wqh.lock);
611 	/*
612 	 * After the __add_wait_queue the uwq is visible to userland
613 	 * through poll/read().
614 	 */
615 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
616 	for (;;) {
617 		set_current_state(TASK_KILLABLE);
618 		if (ewq->msg.event == 0)
619 			break;
620 		if (READ_ONCE(ctx->released) ||
621 		    fatal_signal_pending(current)) {
622 			/*
623 			 * &ewq->wq may be queued in fork_event, but
624 			 * __remove_wait_queue ignores the head
625 			 * parameter. It would be a problem if it
626 			 * didn't.
627 			 */
628 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
629 			if (ewq->msg.event == UFFD_EVENT_FORK) {
630 				struct userfaultfd_ctx *new;
631 
632 				new = (struct userfaultfd_ctx *)
633 					(unsigned long)
634 					ewq->msg.arg.reserved.reserved1;
635 				release_new_ctx = new;
636 			}
637 			break;
638 		}
639 
640 		spin_unlock_irq(&ctx->event_wqh.lock);
641 
642 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
643 		schedule();
644 
645 		spin_lock_irq(&ctx->event_wqh.lock);
646 	}
647 	__set_current_state(TASK_RUNNING);
648 	spin_unlock_irq(&ctx->event_wqh.lock);
649 
650 	if (release_new_ctx) {
651 		struct vm_area_struct *vma;
652 		struct mm_struct *mm = release_new_ctx->mm;
653 		VMA_ITERATOR(vmi, mm, 0);
654 
655 		/* the various vma->vm_userfaultfd_ctx still points to it */
656 		mmap_write_lock(mm);
657 		for_each_vma(vmi, vma) {
658 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
659 				vma_start_write(vma);
660 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
661 				userfaultfd_set_vm_flags(vma,
662 							 vma->vm_flags & ~__VM_UFFD_FLAGS);
663 			}
664 		}
665 		mmap_write_unlock(mm);
666 
667 		userfaultfd_ctx_put(release_new_ctx);
668 	}
669 
670 	/*
671 	 * ctx may go away after this if the userfault pseudo fd is
672 	 * already released.
673 	 */
674 out:
675 	atomic_dec(&ctx->mmap_changing);
676 	VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
677 	userfaultfd_ctx_put(ctx);
678 }
679 
userfaultfd_event_complete(struct userfaultfd_ctx * ctx,struct userfaultfd_wait_queue * ewq)680 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
681 				       struct userfaultfd_wait_queue *ewq)
682 {
683 	ewq->msg.event = 0;
684 	wake_up_locked(&ctx->event_wqh);
685 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
686 }
687 
dup_userfaultfd(struct vm_area_struct * vma,struct list_head * fcs)688 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
689 {
690 	struct userfaultfd_ctx *ctx = NULL, *octx;
691 	struct userfaultfd_fork_ctx *fctx;
692 
693 	octx = vma->vm_userfaultfd_ctx.ctx;
694 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
695 		vma_start_write(vma);
696 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
697 		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
698 		return 0;
699 	}
700 
701 	list_for_each_entry(fctx, fcs, list)
702 		if (fctx->orig == octx) {
703 			ctx = fctx->new;
704 			break;
705 		}
706 
707 	if (!ctx) {
708 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
709 		if (!fctx)
710 			return -ENOMEM;
711 
712 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
713 		if (!ctx) {
714 			kfree(fctx);
715 			return -ENOMEM;
716 		}
717 
718 		refcount_set(&ctx->refcount, 1);
719 		ctx->flags = octx->flags;
720 		ctx->features = octx->features;
721 		ctx->released = false;
722 		atomic_set(&ctx->mmap_changing, 0);
723 		ctx->mm = vma->vm_mm;
724 		mmgrab(ctx->mm);
725 
726 		userfaultfd_ctx_get(octx);
727 		atomic_inc(&octx->mmap_changing);
728 		fctx->orig = octx;
729 		fctx->new = ctx;
730 		list_add_tail(&fctx->list, fcs);
731 	}
732 
733 	vma->vm_userfaultfd_ctx.ctx = ctx;
734 	return 0;
735 }
736 
dup_fctx(struct userfaultfd_fork_ctx * fctx)737 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
738 {
739 	struct userfaultfd_ctx *ctx = fctx->orig;
740 	struct userfaultfd_wait_queue ewq;
741 
742 	msg_init(&ewq.msg);
743 
744 	ewq.msg.event = UFFD_EVENT_FORK;
745 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
746 
747 	userfaultfd_event_wait_completion(ctx, &ewq);
748 }
749 
dup_userfaultfd_complete(struct list_head * fcs)750 void dup_userfaultfd_complete(struct list_head *fcs)
751 {
752 	struct userfaultfd_fork_ctx *fctx, *n;
753 
754 	list_for_each_entry_safe(fctx, n, fcs, list) {
755 		dup_fctx(fctx);
756 		list_del(&fctx->list);
757 		kfree(fctx);
758 	}
759 }
760 
mremap_userfaultfd_prep(struct vm_area_struct * vma,struct vm_userfaultfd_ctx * vm_ctx)761 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
762 			     struct vm_userfaultfd_ctx *vm_ctx)
763 {
764 	struct userfaultfd_ctx *ctx;
765 
766 	ctx = vma->vm_userfaultfd_ctx.ctx;
767 
768 	if (!ctx)
769 		return;
770 
771 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
772 		vm_ctx->ctx = ctx;
773 		userfaultfd_ctx_get(ctx);
774 		atomic_inc(&ctx->mmap_changing);
775 	} else {
776 		/* Drop uffd context if remap feature not enabled */
777 		vma_start_write(vma);
778 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
779 		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
780 	}
781 }
782 
mremap_userfaultfd_complete(struct vm_userfaultfd_ctx * vm_ctx,unsigned long from,unsigned long to,unsigned long len)783 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
784 				 unsigned long from, unsigned long to,
785 				 unsigned long len)
786 {
787 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
788 	struct userfaultfd_wait_queue ewq;
789 
790 	if (!ctx)
791 		return;
792 
793 	if (to & ~PAGE_MASK) {
794 		userfaultfd_ctx_put(ctx);
795 		return;
796 	}
797 
798 	msg_init(&ewq.msg);
799 
800 	ewq.msg.event = UFFD_EVENT_REMAP;
801 	ewq.msg.arg.remap.from = from;
802 	ewq.msg.arg.remap.to = to;
803 	ewq.msg.arg.remap.len = len;
804 
805 	userfaultfd_event_wait_completion(ctx, &ewq);
806 }
807 
userfaultfd_remove(struct vm_area_struct * vma,unsigned long start,unsigned long end)808 bool userfaultfd_remove(struct vm_area_struct *vma,
809 			unsigned long start, unsigned long end)
810 {
811 	struct mm_struct *mm = vma->vm_mm;
812 	struct userfaultfd_ctx *ctx;
813 	struct userfaultfd_wait_queue ewq;
814 
815 	ctx = vma->vm_userfaultfd_ctx.ctx;
816 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
817 		return true;
818 
819 	userfaultfd_ctx_get(ctx);
820 	atomic_inc(&ctx->mmap_changing);
821 	mmap_read_unlock(mm);
822 
823 	msg_init(&ewq.msg);
824 
825 	ewq.msg.event = UFFD_EVENT_REMOVE;
826 	ewq.msg.arg.remove.start = start;
827 	ewq.msg.arg.remove.end = end;
828 
829 	userfaultfd_event_wait_completion(ctx, &ewq);
830 
831 	return false;
832 }
833 
has_unmap_ctx(struct userfaultfd_ctx * ctx,struct list_head * unmaps,unsigned long start,unsigned long end)834 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
835 			  unsigned long start, unsigned long end)
836 {
837 	struct userfaultfd_unmap_ctx *unmap_ctx;
838 
839 	list_for_each_entry(unmap_ctx, unmaps, list)
840 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
841 		    unmap_ctx->end == end)
842 			return true;
843 
844 	return false;
845 }
846 
userfaultfd_unmap_prep(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * unmaps)847 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
848 			   unsigned long end, struct list_head *unmaps)
849 {
850 	struct userfaultfd_unmap_ctx *unmap_ctx;
851 	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
852 
853 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
854 	    has_unmap_ctx(ctx, unmaps, start, end))
855 		return 0;
856 
857 	unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
858 	if (!unmap_ctx)
859 		return -ENOMEM;
860 
861 	userfaultfd_ctx_get(ctx);
862 	atomic_inc(&ctx->mmap_changing);
863 	unmap_ctx->ctx = ctx;
864 	unmap_ctx->start = start;
865 	unmap_ctx->end = end;
866 	list_add_tail(&unmap_ctx->list, unmaps);
867 
868 	return 0;
869 }
870 
userfaultfd_unmap_complete(struct mm_struct * mm,struct list_head * uf)871 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
872 {
873 	struct userfaultfd_unmap_ctx *ctx, *n;
874 	struct userfaultfd_wait_queue ewq;
875 
876 	list_for_each_entry_safe(ctx, n, uf, list) {
877 		msg_init(&ewq.msg);
878 
879 		ewq.msg.event = UFFD_EVENT_UNMAP;
880 		ewq.msg.arg.remove.start = ctx->start;
881 		ewq.msg.arg.remove.end = ctx->end;
882 
883 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
884 
885 		list_del(&ctx->list);
886 		kfree(ctx);
887 	}
888 }
889 
userfaultfd_release(struct inode * inode,struct file * file)890 static int userfaultfd_release(struct inode *inode, struct file *file)
891 {
892 	struct userfaultfd_ctx *ctx = file->private_data;
893 	struct mm_struct *mm = ctx->mm;
894 	struct vm_area_struct *vma, *prev;
895 	/* len == 0 means wake all */
896 	struct userfaultfd_wake_range range = { .len = 0, };
897 	unsigned long new_flags;
898 	VMA_ITERATOR(vmi, mm, 0);
899 
900 	WRITE_ONCE(ctx->released, true);
901 
902 	if (!mmget_not_zero(mm))
903 		goto wakeup;
904 
905 	/*
906 	 * Flush page faults out of all CPUs. NOTE: all page faults
907 	 * must be retried without returning VM_FAULT_SIGBUS if
908 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
909 	 * changes while handle_userfault released the mmap_lock. So
910 	 * it's critical that released is set to true (above), before
911 	 * taking the mmap_lock for writing.
912 	 */
913 	mmap_write_lock(mm);
914 	prev = NULL;
915 	for_each_vma(vmi, vma) {
916 		cond_resched();
917 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
918 		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
919 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
920 			prev = vma;
921 			continue;
922 		}
923 		/* Reset ptes for the whole vma range if wr-protected */
924 		if (userfaultfd_wp(vma))
925 			uffd_wp_range(vma, vma->vm_start,
926 				      vma->vm_end - vma->vm_start, false);
927 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
928 		prev = vma_merge(&vmi, mm, prev, vma->vm_start, vma->vm_end,
929 				 new_flags, vma->anon_vma,
930 				 vma->vm_file, vma->vm_pgoff,
931 				 vma_policy(vma),
932 				 NULL_VM_UFFD_CTX, anon_vma_name(vma));
933 		if (prev) {
934 			vma = prev;
935 		} else {
936 			prev = vma;
937 		}
938 
939 		vma_start_write(vma);
940 		userfaultfd_set_vm_flags(vma, new_flags);
941 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
942 	}
943 	mmap_write_unlock(mm);
944 	mmput(mm);
945 wakeup:
946 	/*
947 	 * After no new page faults can wait on this fault_*wqh, flush
948 	 * the last page faults that may have been already waiting on
949 	 * the fault_*wqh.
950 	 */
951 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
952 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
953 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
954 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
955 
956 	/* Flush pending events that may still wait on event_wqh */
957 	wake_up_all(&ctx->event_wqh);
958 
959 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
960 	userfaultfd_ctx_put(ctx);
961 	return 0;
962 }
963 
964 /* fault_pending_wqh.lock must be hold by the caller */
find_userfault_in(wait_queue_head_t * wqh)965 static inline struct userfaultfd_wait_queue *find_userfault_in(
966 		wait_queue_head_t *wqh)
967 {
968 	wait_queue_entry_t *wq;
969 	struct userfaultfd_wait_queue *uwq;
970 
971 	lockdep_assert_held(&wqh->lock);
972 
973 	uwq = NULL;
974 	if (!waitqueue_active(wqh))
975 		goto out;
976 	/* walk in reverse to provide FIFO behavior to read userfaults */
977 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
978 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
979 out:
980 	return uwq;
981 }
982 
find_userfault(struct userfaultfd_ctx * ctx)983 static inline struct userfaultfd_wait_queue *find_userfault(
984 		struct userfaultfd_ctx *ctx)
985 {
986 	return find_userfault_in(&ctx->fault_pending_wqh);
987 }
988 
find_userfault_evt(struct userfaultfd_ctx * ctx)989 static inline struct userfaultfd_wait_queue *find_userfault_evt(
990 		struct userfaultfd_ctx *ctx)
991 {
992 	return find_userfault_in(&ctx->event_wqh);
993 }
994 
userfaultfd_poll(struct file * file,poll_table * wait)995 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
996 {
997 	struct userfaultfd_ctx *ctx = file->private_data;
998 	__poll_t ret;
999 
1000 	poll_wait(file, &ctx->fd_wqh, wait);
1001 
1002 	if (!userfaultfd_is_initialized(ctx))
1003 		return EPOLLERR;
1004 
1005 	/*
1006 	 * poll() never guarantees that read won't block.
1007 	 * userfaults can be waken before they're read().
1008 	 */
1009 	if (unlikely(!(file->f_flags & O_NONBLOCK)))
1010 		return EPOLLERR;
1011 	/*
1012 	 * lockless access to see if there are pending faults
1013 	 * __pollwait last action is the add_wait_queue but
1014 	 * the spin_unlock would allow the waitqueue_active to
1015 	 * pass above the actual list_add inside
1016 	 * add_wait_queue critical section. So use a full
1017 	 * memory barrier to serialize the list_add write of
1018 	 * add_wait_queue() with the waitqueue_active read
1019 	 * below.
1020 	 */
1021 	ret = 0;
1022 	smp_mb();
1023 	if (waitqueue_active(&ctx->fault_pending_wqh))
1024 		ret = EPOLLIN;
1025 	else if (waitqueue_active(&ctx->event_wqh))
1026 		ret = EPOLLIN;
1027 
1028 	return ret;
1029 }
1030 
1031 static const struct file_operations userfaultfd_fops;
1032 
resolve_userfault_fork(struct userfaultfd_ctx * new,struct inode * inode,struct uffd_msg * msg)1033 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1034 				  struct inode *inode,
1035 				  struct uffd_msg *msg)
1036 {
1037 	int fd;
1038 
1039 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
1040 			O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1041 	if (fd < 0)
1042 		return fd;
1043 
1044 	msg->arg.reserved.reserved1 = 0;
1045 	msg->arg.fork.ufd = fd;
1046 	return 0;
1047 }
1048 
userfaultfd_ctx_read(struct userfaultfd_ctx * ctx,int no_wait,struct uffd_msg * msg,struct inode * inode)1049 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1050 				    struct uffd_msg *msg, struct inode *inode)
1051 {
1052 	ssize_t ret;
1053 	DECLARE_WAITQUEUE(wait, current);
1054 	struct userfaultfd_wait_queue *uwq;
1055 	/*
1056 	 * Handling fork event requires sleeping operations, so
1057 	 * we drop the event_wqh lock, then do these ops, then
1058 	 * lock it back and wake up the waiter. While the lock is
1059 	 * dropped the ewq may go away so we keep track of it
1060 	 * carefully.
1061 	 */
1062 	LIST_HEAD(fork_event);
1063 	struct userfaultfd_ctx *fork_nctx = NULL;
1064 
1065 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1066 	spin_lock_irq(&ctx->fd_wqh.lock);
1067 	__add_wait_queue(&ctx->fd_wqh, &wait);
1068 	for (;;) {
1069 		set_current_state(TASK_INTERRUPTIBLE);
1070 		spin_lock(&ctx->fault_pending_wqh.lock);
1071 		uwq = find_userfault(ctx);
1072 		if (uwq) {
1073 			/*
1074 			 * Use a seqcount to repeat the lockless check
1075 			 * in wake_userfault() to avoid missing
1076 			 * wakeups because during the refile both
1077 			 * waitqueue could become empty if this is the
1078 			 * only userfault.
1079 			 */
1080 			write_seqcount_begin(&ctx->refile_seq);
1081 
1082 			/*
1083 			 * The fault_pending_wqh.lock prevents the uwq
1084 			 * to disappear from under us.
1085 			 *
1086 			 * Refile this userfault from
1087 			 * fault_pending_wqh to fault_wqh, it's not
1088 			 * pending anymore after we read it.
1089 			 *
1090 			 * Use list_del() by hand (as
1091 			 * userfaultfd_wake_function also uses
1092 			 * list_del_init() by hand) to be sure nobody
1093 			 * changes __remove_wait_queue() to use
1094 			 * list_del_init() in turn breaking the
1095 			 * !list_empty_careful() check in
1096 			 * handle_userfault(). The uwq->wq.head list
1097 			 * must never be empty at any time during the
1098 			 * refile, or the waitqueue could disappear
1099 			 * from under us. The "wait_queue_head_t"
1100 			 * parameter of __remove_wait_queue() is unused
1101 			 * anyway.
1102 			 */
1103 			list_del(&uwq->wq.entry);
1104 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1105 
1106 			write_seqcount_end(&ctx->refile_seq);
1107 
1108 			/* careful to always initialize msg if ret == 0 */
1109 			*msg = uwq->msg;
1110 			spin_unlock(&ctx->fault_pending_wqh.lock);
1111 			ret = 0;
1112 			break;
1113 		}
1114 		spin_unlock(&ctx->fault_pending_wqh.lock);
1115 
1116 		spin_lock(&ctx->event_wqh.lock);
1117 		uwq = find_userfault_evt(ctx);
1118 		if (uwq) {
1119 			*msg = uwq->msg;
1120 
1121 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1122 				fork_nctx = (struct userfaultfd_ctx *)
1123 					(unsigned long)
1124 					uwq->msg.arg.reserved.reserved1;
1125 				list_move(&uwq->wq.entry, &fork_event);
1126 				/*
1127 				 * fork_nctx can be freed as soon as
1128 				 * we drop the lock, unless we take a
1129 				 * reference on it.
1130 				 */
1131 				userfaultfd_ctx_get(fork_nctx);
1132 				spin_unlock(&ctx->event_wqh.lock);
1133 				ret = 0;
1134 				break;
1135 			}
1136 
1137 			userfaultfd_event_complete(ctx, uwq);
1138 			spin_unlock(&ctx->event_wqh.lock);
1139 			ret = 0;
1140 			break;
1141 		}
1142 		spin_unlock(&ctx->event_wqh.lock);
1143 
1144 		if (signal_pending(current)) {
1145 			ret = -ERESTARTSYS;
1146 			break;
1147 		}
1148 		if (no_wait) {
1149 			ret = -EAGAIN;
1150 			break;
1151 		}
1152 		spin_unlock_irq(&ctx->fd_wqh.lock);
1153 		schedule();
1154 		spin_lock_irq(&ctx->fd_wqh.lock);
1155 	}
1156 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1157 	__set_current_state(TASK_RUNNING);
1158 	spin_unlock_irq(&ctx->fd_wqh.lock);
1159 
1160 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1161 		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1162 		spin_lock_irq(&ctx->event_wqh.lock);
1163 		if (!list_empty(&fork_event)) {
1164 			/*
1165 			 * The fork thread didn't abort, so we can
1166 			 * drop the temporary refcount.
1167 			 */
1168 			userfaultfd_ctx_put(fork_nctx);
1169 
1170 			uwq = list_first_entry(&fork_event,
1171 					       typeof(*uwq),
1172 					       wq.entry);
1173 			/*
1174 			 * If fork_event list wasn't empty and in turn
1175 			 * the event wasn't already released by fork
1176 			 * (the event is allocated on fork kernel
1177 			 * stack), put the event back to its place in
1178 			 * the event_wq. fork_event head will be freed
1179 			 * as soon as we return so the event cannot
1180 			 * stay queued there no matter the current
1181 			 * "ret" value.
1182 			 */
1183 			list_del(&uwq->wq.entry);
1184 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1185 
1186 			/*
1187 			 * Leave the event in the waitqueue and report
1188 			 * error to userland if we failed to resolve
1189 			 * the userfault fork.
1190 			 */
1191 			if (likely(!ret))
1192 				userfaultfd_event_complete(ctx, uwq);
1193 		} else {
1194 			/*
1195 			 * Here the fork thread aborted and the
1196 			 * refcount from the fork thread on fork_nctx
1197 			 * has already been released. We still hold
1198 			 * the reference we took before releasing the
1199 			 * lock above. If resolve_userfault_fork
1200 			 * failed we've to drop it because the
1201 			 * fork_nctx has to be freed in such case. If
1202 			 * it succeeded we'll hold it because the new
1203 			 * uffd references it.
1204 			 */
1205 			if (ret)
1206 				userfaultfd_ctx_put(fork_nctx);
1207 		}
1208 		spin_unlock_irq(&ctx->event_wqh.lock);
1209 	}
1210 
1211 	return ret;
1212 }
1213 
userfaultfd_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1214 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1215 				size_t count, loff_t *ppos)
1216 {
1217 	struct userfaultfd_ctx *ctx = file->private_data;
1218 	ssize_t _ret, ret = 0;
1219 	struct uffd_msg msg;
1220 	int no_wait = file->f_flags & O_NONBLOCK;
1221 	struct inode *inode = file_inode(file);
1222 
1223 	if (!userfaultfd_is_initialized(ctx))
1224 		return -EINVAL;
1225 
1226 	for (;;) {
1227 		if (count < sizeof(msg))
1228 			return ret ? ret : -EINVAL;
1229 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1230 		if (_ret < 0)
1231 			return ret ? ret : _ret;
1232 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1233 			return ret ? ret : -EFAULT;
1234 		ret += sizeof(msg);
1235 		buf += sizeof(msg);
1236 		count -= sizeof(msg);
1237 		/*
1238 		 * Allow to read more than one fault at time but only
1239 		 * block if waiting for the very first one.
1240 		 */
1241 		no_wait = O_NONBLOCK;
1242 	}
1243 }
1244 
__wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)1245 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1246 			     struct userfaultfd_wake_range *range)
1247 {
1248 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1249 	/* wake all in the range and autoremove */
1250 	if (waitqueue_active(&ctx->fault_pending_wqh))
1251 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1252 				     range);
1253 	if (waitqueue_active(&ctx->fault_wqh))
1254 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1255 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1256 }
1257 
wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)1258 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1259 					   struct userfaultfd_wake_range *range)
1260 {
1261 	unsigned seq;
1262 	bool need_wakeup;
1263 
1264 	/*
1265 	 * To be sure waitqueue_active() is not reordered by the CPU
1266 	 * before the pagetable update, use an explicit SMP memory
1267 	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1268 	 * have release semantics that can allow the
1269 	 * waitqueue_active() to be reordered before the pte update.
1270 	 */
1271 	smp_mb();
1272 
1273 	/*
1274 	 * Use waitqueue_active because it's very frequent to
1275 	 * change the address space atomically even if there are no
1276 	 * userfaults yet. So we take the spinlock only when we're
1277 	 * sure we've userfaults to wake.
1278 	 */
1279 	do {
1280 		seq = read_seqcount_begin(&ctx->refile_seq);
1281 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1282 			waitqueue_active(&ctx->fault_wqh);
1283 		cond_resched();
1284 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1285 	if (need_wakeup)
1286 		__wake_userfault(ctx, range);
1287 }
1288 
validate_unaligned_range(struct mm_struct * mm,__u64 start,__u64 len)1289 static __always_inline int validate_unaligned_range(
1290 	struct mm_struct *mm, __u64 start, __u64 len)
1291 {
1292 	__u64 task_size = mm->task_size;
1293 
1294 	if (len & ~PAGE_MASK)
1295 		return -EINVAL;
1296 	if (!len)
1297 		return -EINVAL;
1298 	if (start < mmap_min_addr)
1299 		return -EINVAL;
1300 	if (start >= task_size)
1301 		return -EINVAL;
1302 	if (len > task_size - start)
1303 		return -EINVAL;
1304 	if (start + len <= start)
1305 		return -EINVAL;
1306 	return 0;
1307 }
1308 
validate_range(struct mm_struct * mm,__u64 start,__u64 len)1309 static __always_inline int validate_range(struct mm_struct *mm,
1310 					  __u64 start, __u64 len)
1311 {
1312 	if (start & ~PAGE_MASK)
1313 		return -EINVAL;
1314 
1315 	return validate_unaligned_range(mm, start, len);
1316 }
1317 
userfaultfd_register(struct userfaultfd_ctx * ctx,unsigned long arg)1318 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1319 				unsigned long arg)
1320 {
1321 	struct mm_struct *mm = ctx->mm;
1322 	struct vm_area_struct *vma, *prev, *cur;
1323 	int ret;
1324 	struct uffdio_register uffdio_register;
1325 	struct uffdio_register __user *user_uffdio_register;
1326 	unsigned long vm_flags, new_flags;
1327 	bool found;
1328 	bool basic_ioctls;
1329 	unsigned long start, end, vma_end;
1330 	struct vma_iterator vmi;
1331 	pgoff_t pgoff;
1332 
1333 	user_uffdio_register = (struct uffdio_register __user *) arg;
1334 
1335 	ret = -EFAULT;
1336 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1337 			   sizeof(uffdio_register)-sizeof(__u64)))
1338 		goto out;
1339 
1340 	ret = -EINVAL;
1341 	if (!uffdio_register.mode)
1342 		goto out;
1343 	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1344 		goto out;
1345 	vm_flags = 0;
1346 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1347 		vm_flags |= VM_UFFD_MISSING;
1348 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1349 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1350 		goto out;
1351 #endif
1352 		vm_flags |= VM_UFFD_WP;
1353 	}
1354 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1355 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1356 		goto out;
1357 #endif
1358 		vm_flags |= VM_UFFD_MINOR;
1359 	}
1360 
1361 	ret = validate_range(mm, uffdio_register.range.start,
1362 			     uffdio_register.range.len);
1363 	if (ret)
1364 		goto out;
1365 
1366 	start = uffdio_register.range.start;
1367 	end = start + uffdio_register.range.len;
1368 
1369 	ret = -ENOMEM;
1370 	if (!mmget_not_zero(mm))
1371 		goto out;
1372 
1373 	ret = -EINVAL;
1374 	mmap_write_lock(mm);
1375 	vma_iter_init(&vmi, mm, start);
1376 	vma = vma_find(&vmi, end);
1377 	if (!vma)
1378 		goto out_unlock;
1379 
1380 	/*
1381 	 * If the first vma contains huge pages, make sure start address
1382 	 * is aligned to huge page size.
1383 	 */
1384 	if (is_vm_hugetlb_page(vma)) {
1385 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1386 
1387 		if (start & (vma_hpagesize - 1))
1388 			goto out_unlock;
1389 	}
1390 
1391 	/*
1392 	 * Search for not compatible vmas.
1393 	 */
1394 	found = false;
1395 	basic_ioctls = false;
1396 	cur = vma;
1397 	do {
1398 		cond_resched();
1399 
1400 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1401 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1402 
1403 		/* check not compatible vmas */
1404 		ret = -EINVAL;
1405 		if (!vma_can_userfault(cur, vm_flags))
1406 			goto out_unlock;
1407 
1408 		/*
1409 		 * UFFDIO_COPY will fill file holes even without
1410 		 * PROT_WRITE. This check enforces that if this is a
1411 		 * MAP_SHARED, the process has write permission to the backing
1412 		 * file. If VM_MAYWRITE is set it also enforces that on a
1413 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1414 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1415 		 */
1416 		ret = -EPERM;
1417 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1418 			goto out_unlock;
1419 
1420 		/*
1421 		 * If this vma contains ending address, and huge pages
1422 		 * check alignment.
1423 		 */
1424 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1425 		    end > cur->vm_start) {
1426 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1427 
1428 			ret = -EINVAL;
1429 
1430 			if (end & (vma_hpagesize - 1))
1431 				goto out_unlock;
1432 		}
1433 		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1434 			goto out_unlock;
1435 
1436 		/*
1437 		 * Check that this vma isn't already owned by a
1438 		 * different userfaultfd. We can't allow more than one
1439 		 * userfaultfd to own a single vma simultaneously or we
1440 		 * wouldn't know which one to deliver the userfaults to.
1441 		 */
1442 		ret = -EBUSY;
1443 		if (cur->vm_userfaultfd_ctx.ctx &&
1444 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1445 			goto out_unlock;
1446 
1447 		/*
1448 		 * Note vmas containing huge pages
1449 		 */
1450 		if (is_vm_hugetlb_page(cur))
1451 			basic_ioctls = true;
1452 
1453 		found = true;
1454 	} for_each_vma_range(vmi, cur, end);
1455 	BUG_ON(!found);
1456 
1457 	vma_iter_set(&vmi, start);
1458 	prev = vma_prev(&vmi);
1459 	if (vma->vm_start < start)
1460 		prev = vma;
1461 
1462 	ret = 0;
1463 	for_each_vma_range(vmi, vma, end) {
1464 		cond_resched();
1465 
1466 		BUG_ON(!vma_can_userfault(vma, vm_flags));
1467 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1468 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1469 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1470 
1471 		/*
1472 		 * Nothing to do: this vma is already registered into this
1473 		 * userfaultfd and with the right tracking mode too.
1474 		 */
1475 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1476 		    (vma->vm_flags & vm_flags) == vm_flags)
1477 			goto skip;
1478 
1479 		if (vma->vm_start > start)
1480 			start = vma->vm_start;
1481 		vma_end = min(end, vma->vm_end);
1482 
1483 		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1484 		pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
1485 		prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
1486 				 vma->anon_vma, vma->vm_file, pgoff,
1487 				 vma_policy(vma),
1488 				 ((struct vm_userfaultfd_ctx){ ctx }),
1489 				 anon_vma_name(vma));
1490 		if (prev) {
1491 			/* vma_merge() invalidated the mas */
1492 			vma = prev;
1493 			goto next;
1494 		}
1495 		if (vma->vm_start < start) {
1496 			ret = split_vma(&vmi, vma, start, 1);
1497 			if (ret)
1498 				break;
1499 		}
1500 		if (vma->vm_end > end) {
1501 			ret = split_vma(&vmi, vma, end, 0);
1502 			if (ret)
1503 				break;
1504 		}
1505 	next:
1506 		/*
1507 		 * In the vma_merge() successful mprotect-like case 8:
1508 		 * the next vma was merged into the current one and
1509 		 * the current one has not been updated yet.
1510 		 */
1511 		vma_start_write(vma);
1512 		userfaultfd_set_vm_flags(vma, new_flags);
1513 		vma->vm_userfaultfd_ctx.ctx = ctx;
1514 
1515 		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1516 			hugetlb_unshare_all_pmds(vma);
1517 
1518 	skip:
1519 		prev = vma;
1520 		start = vma->vm_end;
1521 	}
1522 
1523 out_unlock:
1524 	mmap_write_unlock(mm);
1525 	mmput(mm);
1526 	if (!ret) {
1527 		__u64 ioctls_out;
1528 
1529 		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1530 		    UFFD_API_RANGE_IOCTLS;
1531 
1532 		/*
1533 		 * Declare the WP ioctl only if the WP mode is
1534 		 * specified and all checks passed with the range
1535 		 */
1536 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1537 			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1538 
1539 		/* CONTINUE ioctl is only supported for MINOR ranges. */
1540 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1541 			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1542 
1543 		/*
1544 		 * Now that we scanned all vmas we can already tell
1545 		 * userland which ioctls methods are guaranteed to
1546 		 * succeed on this range.
1547 		 */
1548 		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1549 			ret = -EFAULT;
1550 	}
1551 out:
1552 	return ret;
1553 }
1554 
userfaultfd_unregister(struct userfaultfd_ctx * ctx,unsigned long arg)1555 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1556 				  unsigned long arg)
1557 {
1558 	struct mm_struct *mm = ctx->mm;
1559 	struct vm_area_struct *vma, *prev, *cur;
1560 	int ret;
1561 	struct uffdio_range uffdio_unregister;
1562 	unsigned long new_flags;
1563 	bool found;
1564 	unsigned long start, end, vma_end;
1565 	const void __user *buf = (void __user *)arg;
1566 	struct vma_iterator vmi;
1567 	pgoff_t pgoff;
1568 
1569 	ret = -EFAULT;
1570 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1571 		goto out;
1572 
1573 	ret = validate_range(mm, uffdio_unregister.start,
1574 			     uffdio_unregister.len);
1575 	if (ret)
1576 		goto out;
1577 
1578 	start = uffdio_unregister.start;
1579 	end = start + uffdio_unregister.len;
1580 
1581 	ret = -ENOMEM;
1582 	if (!mmget_not_zero(mm))
1583 		goto out;
1584 
1585 	mmap_write_lock(mm);
1586 	ret = -EINVAL;
1587 	vma_iter_init(&vmi, mm, start);
1588 	vma = vma_find(&vmi, end);
1589 	if (!vma)
1590 		goto out_unlock;
1591 
1592 	/*
1593 	 * If the first vma contains huge pages, make sure start address
1594 	 * is aligned to huge page size.
1595 	 */
1596 	if (is_vm_hugetlb_page(vma)) {
1597 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1598 
1599 		if (start & (vma_hpagesize - 1))
1600 			goto out_unlock;
1601 	}
1602 
1603 	/*
1604 	 * Search for not compatible vmas.
1605 	 */
1606 	found = false;
1607 	cur = vma;
1608 	do {
1609 		cond_resched();
1610 
1611 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1612 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1613 
1614 		/*
1615 		 * Check not compatible vmas, not strictly required
1616 		 * here as not compatible vmas cannot have an
1617 		 * userfaultfd_ctx registered on them, but this
1618 		 * provides for more strict behavior to notice
1619 		 * unregistration errors.
1620 		 */
1621 		if (!vma_can_userfault(cur, cur->vm_flags))
1622 			goto out_unlock;
1623 
1624 		found = true;
1625 	} for_each_vma_range(vmi, cur, end);
1626 	BUG_ON(!found);
1627 
1628 	vma_iter_set(&vmi, start);
1629 	prev = vma_prev(&vmi);
1630 	if (vma->vm_start < start)
1631 		prev = vma;
1632 
1633 	ret = 0;
1634 	for_each_vma_range(vmi, vma, end) {
1635 		cond_resched();
1636 
1637 		BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1638 
1639 		/*
1640 		 * Nothing to do: this vma is already registered into this
1641 		 * userfaultfd and with the right tracking mode too.
1642 		 */
1643 		if (!vma->vm_userfaultfd_ctx.ctx)
1644 			goto skip;
1645 
1646 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1647 
1648 		if (vma->vm_start > start)
1649 			start = vma->vm_start;
1650 		vma_end = min(end, vma->vm_end);
1651 
1652 		if (userfaultfd_missing(vma)) {
1653 			/*
1654 			 * Wake any concurrent pending userfault while
1655 			 * we unregister, so they will not hang
1656 			 * permanently and it avoids userland to call
1657 			 * UFFDIO_WAKE explicitly.
1658 			 */
1659 			struct userfaultfd_wake_range range;
1660 			range.start = start;
1661 			range.len = vma_end - start;
1662 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1663 		}
1664 
1665 		/* Reset ptes for the whole vma range if wr-protected */
1666 		if (userfaultfd_wp(vma))
1667 			uffd_wp_range(vma, start, vma_end - start, false);
1668 
1669 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1670 		pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
1671 		prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
1672 				 vma->anon_vma, vma->vm_file, pgoff,
1673 				 vma_policy(vma),
1674 				 NULL_VM_UFFD_CTX, anon_vma_name(vma));
1675 		if (prev) {
1676 			vma = prev;
1677 			goto next;
1678 		}
1679 		if (vma->vm_start < start) {
1680 			ret = split_vma(&vmi, vma, start, 1);
1681 			if (ret)
1682 				break;
1683 		}
1684 		if (vma->vm_end > end) {
1685 			ret = split_vma(&vmi, vma, end, 0);
1686 			if (ret)
1687 				break;
1688 		}
1689 	next:
1690 		/*
1691 		 * In the vma_merge() successful mprotect-like case 8:
1692 		 * the next vma was merged into the current one and
1693 		 * the current one has not been updated yet.
1694 		 */
1695 		vma_start_write(vma);
1696 		userfaultfd_set_vm_flags(vma, new_flags);
1697 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1698 
1699 	skip:
1700 		prev = vma;
1701 		start = vma->vm_end;
1702 	}
1703 
1704 out_unlock:
1705 	mmap_write_unlock(mm);
1706 	mmput(mm);
1707 out:
1708 	return ret;
1709 }
1710 
1711 /*
1712  * userfaultfd_wake may be used in combination with the
1713  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1714  */
userfaultfd_wake(struct userfaultfd_ctx * ctx,unsigned long arg)1715 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1716 			    unsigned long arg)
1717 {
1718 	int ret;
1719 	struct uffdio_range uffdio_wake;
1720 	struct userfaultfd_wake_range range;
1721 	const void __user *buf = (void __user *)arg;
1722 
1723 	ret = -EFAULT;
1724 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1725 		goto out;
1726 
1727 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1728 	if (ret)
1729 		goto out;
1730 
1731 	range.start = uffdio_wake.start;
1732 	range.len = uffdio_wake.len;
1733 
1734 	/*
1735 	 * len == 0 means wake all and we don't want to wake all here,
1736 	 * so check it again to be sure.
1737 	 */
1738 	VM_BUG_ON(!range.len);
1739 
1740 	wake_userfault(ctx, &range);
1741 	ret = 0;
1742 
1743 out:
1744 	return ret;
1745 }
1746 
userfaultfd_copy(struct userfaultfd_ctx * ctx,unsigned long arg)1747 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1748 			    unsigned long arg)
1749 {
1750 	__s64 ret;
1751 	struct uffdio_copy uffdio_copy;
1752 	struct uffdio_copy __user *user_uffdio_copy;
1753 	struct userfaultfd_wake_range range;
1754 	uffd_flags_t flags = 0;
1755 
1756 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1757 
1758 	ret = -EAGAIN;
1759 	if (atomic_read(&ctx->mmap_changing))
1760 		goto out;
1761 
1762 	ret = -EFAULT;
1763 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1764 			   /* don't copy "copy" last field */
1765 			   sizeof(uffdio_copy)-sizeof(__s64)))
1766 		goto out;
1767 
1768 	ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1769 				       uffdio_copy.len);
1770 	if (ret)
1771 		goto out;
1772 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1773 	if (ret)
1774 		goto out;
1775 
1776 	ret = -EINVAL;
1777 	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1778 		goto out;
1779 	if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1780 		flags |= MFILL_ATOMIC_WP;
1781 	if (mmget_not_zero(ctx->mm)) {
1782 		ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1783 					uffdio_copy.len, &ctx->mmap_changing,
1784 					flags);
1785 		mmput(ctx->mm);
1786 	} else {
1787 		return -ESRCH;
1788 	}
1789 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1790 		return -EFAULT;
1791 	if (ret < 0)
1792 		goto out;
1793 	BUG_ON(!ret);
1794 	/* len == 0 would wake all */
1795 	range.len = ret;
1796 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1797 		range.start = uffdio_copy.dst;
1798 		wake_userfault(ctx, &range);
1799 	}
1800 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1801 out:
1802 	return ret;
1803 }
1804 
userfaultfd_zeropage(struct userfaultfd_ctx * ctx,unsigned long arg)1805 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1806 				unsigned long arg)
1807 {
1808 	__s64 ret;
1809 	struct uffdio_zeropage uffdio_zeropage;
1810 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1811 	struct userfaultfd_wake_range range;
1812 
1813 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1814 
1815 	ret = -EAGAIN;
1816 	if (atomic_read(&ctx->mmap_changing))
1817 		goto out;
1818 
1819 	ret = -EFAULT;
1820 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1821 			   /* don't copy "zeropage" last field */
1822 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1823 		goto out;
1824 
1825 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1826 			     uffdio_zeropage.range.len);
1827 	if (ret)
1828 		goto out;
1829 	ret = -EINVAL;
1830 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1831 		goto out;
1832 
1833 	if (mmget_not_zero(ctx->mm)) {
1834 		ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start,
1835 					   uffdio_zeropage.range.len,
1836 					   &ctx->mmap_changing);
1837 		mmput(ctx->mm);
1838 	} else {
1839 		return -ESRCH;
1840 	}
1841 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1842 		return -EFAULT;
1843 	if (ret < 0)
1844 		goto out;
1845 	/* len == 0 would wake all */
1846 	BUG_ON(!ret);
1847 	range.len = ret;
1848 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1849 		range.start = uffdio_zeropage.range.start;
1850 		wake_userfault(ctx, &range);
1851 	}
1852 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1853 out:
1854 	return ret;
1855 }
1856 
userfaultfd_writeprotect(struct userfaultfd_ctx * ctx,unsigned long arg)1857 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1858 				    unsigned long arg)
1859 {
1860 	int ret;
1861 	struct uffdio_writeprotect uffdio_wp;
1862 	struct uffdio_writeprotect __user *user_uffdio_wp;
1863 	struct userfaultfd_wake_range range;
1864 	bool mode_wp, mode_dontwake;
1865 
1866 	if (atomic_read(&ctx->mmap_changing))
1867 		return -EAGAIN;
1868 
1869 	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1870 
1871 	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1872 			   sizeof(struct uffdio_writeprotect)))
1873 		return -EFAULT;
1874 
1875 	ret = validate_range(ctx->mm, uffdio_wp.range.start,
1876 			     uffdio_wp.range.len);
1877 	if (ret)
1878 		return ret;
1879 
1880 	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1881 			       UFFDIO_WRITEPROTECT_MODE_WP))
1882 		return -EINVAL;
1883 
1884 	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1885 	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1886 
1887 	if (mode_wp && mode_dontwake)
1888 		return -EINVAL;
1889 
1890 	if (mmget_not_zero(ctx->mm)) {
1891 		ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1892 					  uffdio_wp.range.len, mode_wp,
1893 					  &ctx->mmap_changing);
1894 		mmput(ctx->mm);
1895 	} else {
1896 		return -ESRCH;
1897 	}
1898 
1899 	if (ret)
1900 		return ret;
1901 
1902 	if (!mode_wp && !mode_dontwake) {
1903 		range.start = uffdio_wp.range.start;
1904 		range.len = uffdio_wp.range.len;
1905 		wake_userfault(ctx, &range);
1906 	}
1907 	return ret;
1908 }
1909 
userfaultfd_continue(struct userfaultfd_ctx * ctx,unsigned long arg)1910 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1911 {
1912 	__s64 ret;
1913 	struct uffdio_continue uffdio_continue;
1914 	struct uffdio_continue __user *user_uffdio_continue;
1915 	struct userfaultfd_wake_range range;
1916 	uffd_flags_t flags = 0;
1917 
1918 	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1919 
1920 	ret = -EAGAIN;
1921 	if (atomic_read(&ctx->mmap_changing))
1922 		goto out;
1923 
1924 	ret = -EFAULT;
1925 	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1926 			   /* don't copy the output fields */
1927 			   sizeof(uffdio_continue) - (sizeof(__s64))))
1928 		goto out;
1929 
1930 	ret = validate_range(ctx->mm, uffdio_continue.range.start,
1931 			     uffdio_continue.range.len);
1932 	if (ret)
1933 		goto out;
1934 
1935 	ret = -EINVAL;
1936 	if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1937 				     UFFDIO_CONTINUE_MODE_WP))
1938 		goto out;
1939 	if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1940 		flags |= MFILL_ATOMIC_WP;
1941 
1942 	if (mmget_not_zero(ctx->mm)) {
1943 		ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start,
1944 					    uffdio_continue.range.len,
1945 					    &ctx->mmap_changing, flags);
1946 		mmput(ctx->mm);
1947 	} else {
1948 		return -ESRCH;
1949 	}
1950 
1951 	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1952 		return -EFAULT;
1953 	if (ret < 0)
1954 		goto out;
1955 
1956 	/* len == 0 would wake all */
1957 	BUG_ON(!ret);
1958 	range.len = ret;
1959 	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1960 		range.start = uffdio_continue.range.start;
1961 		wake_userfault(ctx, &range);
1962 	}
1963 	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1964 
1965 out:
1966 	return ret;
1967 }
1968 
userfaultfd_poison(struct userfaultfd_ctx * ctx,unsigned long arg)1969 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1970 {
1971 	__s64 ret;
1972 	struct uffdio_poison uffdio_poison;
1973 	struct uffdio_poison __user *user_uffdio_poison;
1974 	struct userfaultfd_wake_range range;
1975 
1976 	user_uffdio_poison = (struct uffdio_poison __user *)arg;
1977 
1978 	ret = -EAGAIN;
1979 	if (atomic_read(&ctx->mmap_changing))
1980 		goto out;
1981 
1982 	ret = -EFAULT;
1983 	if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1984 			   /* don't copy the output fields */
1985 			   sizeof(uffdio_poison) - (sizeof(__s64))))
1986 		goto out;
1987 
1988 	ret = validate_range(ctx->mm, uffdio_poison.range.start,
1989 			     uffdio_poison.range.len);
1990 	if (ret)
1991 		goto out;
1992 
1993 	ret = -EINVAL;
1994 	if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1995 		goto out;
1996 
1997 	if (mmget_not_zero(ctx->mm)) {
1998 		ret = mfill_atomic_poison(ctx->mm, uffdio_poison.range.start,
1999 					  uffdio_poison.range.len,
2000 					  &ctx->mmap_changing, 0);
2001 		mmput(ctx->mm);
2002 	} else {
2003 		return -ESRCH;
2004 	}
2005 
2006 	if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
2007 		return -EFAULT;
2008 	if (ret < 0)
2009 		goto out;
2010 
2011 	/* len == 0 would wake all */
2012 	BUG_ON(!ret);
2013 	range.len = ret;
2014 	if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
2015 		range.start = uffdio_poison.range.start;
2016 		wake_userfault(ctx, &range);
2017 	}
2018 	ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
2019 
2020 out:
2021 	return ret;
2022 }
2023 
uffd_ctx_features(__u64 user_features)2024 static inline unsigned int uffd_ctx_features(__u64 user_features)
2025 {
2026 	/*
2027 	 * For the current set of features the bits just coincide. Set
2028 	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
2029 	 */
2030 	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
2031 }
2032 
2033 /*
2034  * userland asks for a certain API version and we return which bits
2035  * and ioctl commands are implemented in this kernel for such API
2036  * version or -EINVAL if unknown.
2037  */
userfaultfd_api(struct userfaultfd_ctx * ctx,unsigned long arg)2038 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
2039 			   unsigned long arg)
2040 {
2041 	struct uffdio_api uffdio_api;
2042 	void __user *buf = (void __user *)arg;
2043 	unsigned int ctx_features;
2044 	int ret;
2045 	__u64 features;
2046 
2047 	ret = -EFAULT;
2048 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
2049 		goto out;
2050 	features = uffdio_api.features;
2051 	ret = -EINVAL;
2052 	if (uffdio_api.api != UFFD_API)
2053 		goto err_out;
2054 	ret = -EPERM;
2055 	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2056 		goto err_out;
2057 	/* report all available features and ioctls to userland */
2058 	uffdio_api.features = UFFD_API_FEATURES;
2059 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2060 	uffdio_api.features &=
2061 		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2062 #endif
2063 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2064 	uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2065 #endif
2066 #ifndef CONFIG_PTE_MARKER_UFFD_WP
2067 	uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2068 	uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2069 #endif
2070 
2071 	ret = -EINVAL;
2072 	if (features & ~uffdio_api.features)
2073 		goto err_out;
2074 
2075 	uffdio_api.ioctls = UFFD_API_IOCTLS;
2076 	ret = -EFAULT;
2077 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2078 		goto out;
2079 
2080 	/* only enable the requested features for this uffd context */
2081 	ctx_features = uffd_ctx_features(features);
2082 	ret = -EINVAL;
2083 	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2084 		goto err_out;
2085 
2086 	ret = 0;
2087 out:
2088 	return ret;
2089 err_out:
2090 	memset(&uffdio_api, 0, sizeof(uffdio_api));
2091 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2092 		ret = -EFAULT;
2093 	goto out;
2094 }
2095 
userfaultfd_ioctl(struct file * file,unsigned cmd,unsigned long arg)2096 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2097 			      unsigned long arg)
2098 {
2099 	int ret = -EINVAL;
2100 	struct userfaultfd_ctx *ctx = file->private_data;
2101 
2102 	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2103 		return -EINVAL;
2104 
2105 	switch(cmd) {
2106 	case UFFDIO_API:
2107 		ret = userfaultfd_api(ctx, arg);
2108 		break;
2109 	case UFFDIO_REGISTER:
2110 		ret = userfaultfd_register(ctx, arg);
2111 		break;
2112 	case UFFDIO_UNREGISTER:
2113 		ret = userfaultfd_unregister(ctx, arg);
2114 		break;
2115 	case UFFDIO_WAKE:
2116 		ret = userfaultfd_wake(ctx, arg);
2117 		break;
2118 	case UFFDIO_COPY:
2119 		ret = userfaultfd_copy(ctx, arg);
2120 		break;
2121 	case UFFDIO_ZEROPAGE:
2122 		ret = userfaultfd_zeropage(ctx, arg);
2123 		break;
2124 	case UFFDIO_WRITEPROTECT:
2125 		ret = userfaultfd_writeprotect(ctx, arg);
2126 		break;
2127 	case UFFDIO_CONTINUE:
2128 		ret = userfaultfd_continue(ctx, arg);
2129 		break;
2130 	case UFFDIO_POISON:
2131 		ret = userfaultfd_poison(ctx, arg);
2132 		break;
2133 	}
2134 	return ret;
2135 }
2136 
2137 #ifdef CONFIG_PROC_FS
userfaultfd_show_fdinfo(struct seq_file * m,struct file * f)2138 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2139 {
2140 	struct userfaultfd_ctx *ctx = f->private_data;
2141 	wait_queue_entry_t *wq;
2142 	unsigned long pending = 0, total = 0;
2143 
2144 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2145 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2146 		pending++;
2147 		total++;
2148 	}
2149 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2150 		total++;
2151 	}
2152 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2153 
2154 	/*
2155 	 * If more protocols will be added, there will be all shown
2156 	 * separated by a space. Like this:
2157 	 *	protocols: aa:... bb:...
2158 	 */
2159 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2160 		   pending, total, UFFD_API, ctx->features,
2161 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2162 }
2163 #endif
2164 
2165 static const struct file_operations userfaultfd_fops = {
2166 #ifdef CONFIG_PROC_FS
2167 	.show_fdinfo	= userfaultfd_show_fdinfo,
2168 #endif
2169 	.release	= userfaultfd_release,
2170 	.poll		= userfaultfd_poll,
2171 	.read		= userfaultfd_read,
2172 	.unlocked_ioctl = userfaultfd_ioctl,
2173 	.compat_ioctl	= compat_ptr_ioctl,
2174 	.llseek		= noop_llseek,
2175 };
2176 
init_once_userfaultfd_ctx(void * mem)2177 static void init_once_userfaultfd_ctx(void *mem)
2178 {
2179 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2180 
2181 	init_waitqueue_head(&ctx->fault_pending_wqh);
2182 	init_waitqueue_head(&ctx->fault_wqh);
2183 	init_waitqueue_head(&ctx->event_wqh);
2184 	init_waitqueue_head(&ctx->fd_wqh);
2185 	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2186 }
2187 
new_userfaultfd(int flags)2188 static int new_userfaultfd(int flags)
2189 {
2190 	struct userfaultfd_ctx *ctx;
2191 	int fd;
2192 
2193 	BUG_ON(!current->mm);
2194 
2195 	/* Check the UFFD_* constants for consistency.  */
2196 	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2197 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2198 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2199 
2200 	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2201 		return -EINVAL;
2202 
2203 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2204 	if (!ctx)
2205 		return -ENOMEM;
2206 
2207 	refcount_set(&ctx->refcount, 1);
2208 	ctx->flags = flags;
2209 	ctx->features = 0;
2210 	ctx->released = false;
2211 	atomic_set(&ctx->mmap_changing, 0);
2212 	ctx->mm = current->mm;
2213 	/* prevent the mm struct to be freed */
2214 	mmgrab(ctx->mm);
2215 
2216 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2217 			O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2218 	if (fd < 0) {
2219 		mmdrop(ctx->mm);
2220 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2221 	}
2222 	return fd;
2223 }
2224 
userfaultfd_syscall_allowed(int flags)2225 static inline bool userfaultfd_syscall_allowed(int flags)
2226 {
2227 	/* Userspace-only page faults are always allowed */
2228 	if (flags & UFFD_USER_MODE_ONLY)
2229 		return true;
2230 
2231 	/*
2232 	 * The user is requesting a userfaultfd which can handle kernel faults.
2233 	 * Privileged users are always allowed to do this.
2234 	 */
2235 	if (capable(CAP_SYS_PTRACE))
2236 		return true;
2237 
2238 	/* Otherwise, access to kernel fault handling is sysctl controlled. */
2239 	return sysctl_unprivileged_userfaultfd;
2240 }
2241 
SYSCALL_DEFINE1(userfaultfd,int,flags)2242 SYSCALL_DEFINE1(userfaultfd, int, flags)
2243 {
2244 	if (!userfaultfd_syscall_allowed(flags))
2245 		return -EPERM;
2246 
2247 	return new_userfaultfd(flags);
2248 }
2249 
userfaultfd_dev_ioctl(struct file * file,unsigned int cmd,unsigned long flags)2250 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2251 {
2252 	if (cmd != USERFAULTFD_IOC_NEW)
2253 		return -EINVAL;
2254 
2255 	return new_userfaultfd(flags);
2256 }
2257 
2258 static const struct file_operations userfaultfd_dev_fops = {
2259 	.unlocked_ioctl = userfaultfd_dev_ioctl,
2260 	.compat_ioctl = userfaultfd_dev_ioctl,
2261 	.owner = THIS_MODULE,
2262 	.llseek = noop_llseek,
2263 };
2264 
2265 static struct miscdevice userfaultfd_misc = {
2266 	.minor = MISC_DYNAMIC_MINOR,
2267 	.name = "userfaultfd",
2268 	.fops = &userfaultfd_dev_fops
2269 };
2270 
userfaultfd_init(void)2271 static int __init userfaultfd_init(void)
2272 {
2273 	int ret;
2274 
2275 	ret = misc_register(&userfaultfd_misc);
2276 	if (ret)
2277 		return ret;
2278 
2279 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2280 						sizeof(struct userfaultfd_ctx),
2281 						0,
2282 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2283 						init_once_userfaultfd_ctx);
2284 #ifdef CONFIG_SYSCTL
2285 	register_sysctl_init("vm", vm_userfaultfd_table);
2286 #endif
2287 	return 0;
2288 }
2289 __initcall(userfaultfd_init);
2290